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Poincaré invariant coupled channel model for the pion-nucleon system. II. An extended model

Yasser Elmessiri and Michael G. Fuda
Department of Physics, State University of New York at Buffalo, Buffalo, New York 14260

~Received 14 October 1997!

A previously developed Poincare´ invariant, front form model of the pion-nucleon system is extended up to
a pion lab kinetic energy of 1.0 GeV, which corresponds to a total c.m. energy of 1.74 GeV. The model is
constructed in a space spanned by single baryon statesuB&, whereB is the nucleon, or any resonance that
contributes in the energy range considered, and by meson-baryon statesumB& whereumB&5upN&, upD&, or
uhN&. The model specifies a mass-square operator in the formM25M0

21V whereM0 is a noninteracting mass
operator andV is an interaction. ThemB2m8B8 interactions are assumed to be separable.
@S0556-2813~98!02705-8#

PACS number~s!: 24.10.Jv, 11.80.2m, 13.75.Gx, 24.10.Eq
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I. INTRODUCTION

Models for the pion-nucleon system fall into two broa
categories; particle exchange models@1–5# and separable in
teraction models@6–16#. Apart from the Gross-Surya mode
@3#, which includes coupling to an effectivepD channel,
none of the exchange models include the effects of inela
channels, while many of the separable models do@6–
9,11,14–16#. The Landau-Tabakin model@6# takes account
of inelasticity through the use of complex form factors f
the separable potentials, while several of the other separ
models @7–9,11# are equivalent to a separable potent
model with real form factors, but with an energy depend
potential strength which becomes complex above the ine
tic threshold. A few of the separable models include inela
channels explicitly; in particular, the Blankleider-Walk
@15# model includes coupling to apD channel, while the
Bhalerao-Liu@14# and Fuda@16# models allow for coupling
to both pD and hN channels. Most of the models take a
count of the pole in theP11 elastic amplitude that occur
below the elastic threshold at a c.m. energy equal to
nucleon mass; the so-called nucleon pole. Several of
models @1–5,13,14,16# include resonances such as t
D(1232) as single particle intermediate states.

The model developed previously by one of us@16# is an
exactly Poincare´ invariant, front form model of the pion
nucleon system, constructed in the space spanned byuN&,
uD&, upN&, upD&, anduhN& states. This earlier model spec
fies a mass-square operator in the formM25M0

21V where
M0 is a noninteracting mass operator andV is an interaction.
The relative angular momentum or spin operatorJ of the
system is the same as that of the noninteracting system.
model gives a good fit to thepN elastic scattering ampli
tudes for pion laboratory kinetic energies up to 700 Me
Here we extend the model so as to reproduce the experim
tal amplitudes up to 1.0 GeV. The single baryon statesuB&
include not only the nucleon andD(1232) resonance, but a
other resonances in the energy range considered. The i
actions coupling two-particle channels to each other
taken to be separable potentials. In theS11 partial wave the
inelastic channel is thehN channel, while in all other partia
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waves it is assumed to be an effectivepD channel.
Throughout we work in units for which\5c51.

II. THE MODEL

Our model space is spanned by the statesu p̄B ;sBhB& and
u p̄mB ;qmB ,l j l&, where in generalB denotes a baryon andm
denotes a meson. For the sake of brevity we suppress
isospin quantum numbers. Herep̄5(p1,px ,py) with p1

5(E1pz)/A2, whereE is the total energy of the state an
px , py , and pz are the Cartesian components of the to
three-momentump. The quantum numberssB andhB are the
spin andz component of the spin, respectively, for baryonB.
The quantityqmB is the magnitude of the three-momentum
the mesonm in a particular rest frame of themB pair, i.e.,
the rest frame related to a general frame by a so-calledfront
form boost@16#. The angular momentum quantum numbe
l , j , andl specify the relative orbital angular momentum
the pairmB, their total angular momentum, and thez com-
ponent of their total angular momentum, respectively. Sin
the p and h mesons are spinless, the total spin of themB
pair is simply that of the baryon.

The basic ingredient of our model is a mass-square op
tor of the form

M25M0
21V, ~2.1!

whereM0 is the mass operator of the noninteracting syst
andV is the interaction. The action ofM0 on the basis state
is defined by

M0u p̄B ;sBhB&5mBu p̄B ;sBhB&, ~2.2a!

M0u p̄mB ;qmB ,l j l&5WmB~qmB!u p̄mB ;qmB ,l j l&,
~2.2b!

wheremB is thephysical massof baryonB, andWmB is the
total c.m. energy of the pairmB, which is given in terms of
the meson’s c.m. energyvm(qmB) and baryon’s c.m. energy
«B(qmB) by

WmB~qmB!5vm~qmB!1«B~qmB!. ~2.3!
2149 © 1998 The American Physical Society



n

b

ng

le

n
th

le

li-
o-
.,

he
n-
and

ys

2150 57YASSER ELMESSIRI AND MICHAEL G. FUDA
The physical masses of the meson and baryon are used i
~2.3!.

The matrix elements of the interactionV are defined by

^ p̄B ;sBhBuVu p̄B8
8 ;sB8hB8

8 &5~2p!32pB
1d3~ p̄B2 p̄B8 !

3dBB8~m0B
2 2mB

2 !, ~2.4a!

^ p̄mB ;qmB ,l j luVu p̄B8
8 ;sB8hB8

8 &

5~2p!32pmB
1 d3~ p̄mB2 p̄B8

8 !

3d jsB8
dlh

B8
8 VcB8~qmB!, ~2.4b!

^ p̄mB ;qmB ,l j luVu p̄m8B8
8 ;qm8B8

8 ,l 8 j 8l8&

5~2p!32pmB
1 d3~ p̄mB2 p̄m8B8

8 !d j j 8dll8Vcc8
j

~qmB ,qm8B8
8 !,

~2.4c!

wherec is the set of channel labels

c5$m,B,l %, ~2.5!

andm0B is thebare massof baryonB.
The scattering amplitudes of our model are obtained

solving the Lippmann-Schwinger equation

T~z!5V1V~z2M0
2!21T~z!, ~2.6!

where z is a complex parameter, which when calculati
physical amplitudes becomesz5W21 i« with W the invari-
ant mass of the scattering process. In solving the coup
integral equations that arise upon taking matrix elements
Eq. ~2.6!, it is possible to eliminate the single baryon cha
nels, and thereby obtain an effective potential that acts in
subspace of meson-baryon states@16#. The resulting integral
equations are

Tcc8
j

~q,q8;z!5Ucc8
j

~q,q8;z!1(
c9

E
0

`

3
Ucc9

j
~q,q9;z!q92dq9

Dm9B9 ~q9![z2Wm9B9
2 (q9)]

Tc9c8
j

~q9,q8;z!,

~2.7!

TABLE I. States and particle channels of the pion-nucleon s
tem.

pN State Baryon and meson-baryon channels mD ~MeV!

S11 S11(1535),S11(1650),pN,hN( l hN50)
S31 S31(1620),pN,pD( l pD52) 1402.21
P11 N,P11(1440),P11(1710),pN,pD( l pD51) 1076.95
P13 P13(1720),pN,pD( l pD51,3) 1076.95
P31 P31(1744),pN,pD( l pD51) 1125.95
P33 P33(1232),P33(1600),pN,pD( l pD51,3) 1076.95
D13 D13(1520),pN,pD( l pD50,2) 1076.95
D15 D15(1675),pN,pD( l pD52,4) 1076.95
D33 D33(1700),pN,pD( l pD50,2) 1076.95
Eq.
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where

Ucc8
j

~q,q8;z!5Vcc8
j

~q,q8!1(
B9

d jsB9

VcB9~q!Vc8B9~q8!

z2m0B9
2 ,

~2.8!

DmB~q!5~2p!32vm~q!«B~q!/WmB~q!. ~2.9!

For our mB2m8B8 potentials we assume the separab
forms

Vcc8
j

~q,q8!5gc
j ~q!lcc8gc8

j
~q8!, ~2.10!

and take for the functions that appear here, and for themB
2B8 vertex functions the expressions

gc
j ~q!5Cc

j ~q/bc
j ! l@11~q/bc

j !2#2Kc
j
, ~2.11!

VcB8~q!5CcB8~q/bcB8!
l@11~q/bcB8!

2#2KcB8.
~2.12!

III. RESULTS

In calculating the pion-nucleon elastic scattering amp
tudes we deal with states of well defined total angular m
mentumj , isospini , and parity, labeled in the usual way, i.e
X2i ,2j , where X5S,P,D, . . . , corresponding to l pN
50,1,2, . . . . Since the pion is a pseudoscalar particle t
parity is (21)11 l pN. The pion-nucleon states that we co
sider are shown in Table I, as well as the single baryon

FIG. 1. Fit of theS11 phase shifts to theSAID-SP95 analysis.

FIG. 2. Fit of theS11 inelasticities to theSAID-SP95 analysis.

-
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FIG. 3. Fit of theS31 phase shifts to theSAID-SP95 analysis.

FIG. 4. Fit of theS31 inelasticities to theSAID-SP95 analysis.

FIG. 5. Fit of theP11 phase shifts to theSAID-SP95 analysis.

FIG. 6. Fit of theP11 inelasticities to theSAID-SP95 analysis.
FIG. 7. Fit of theP13 phase shifts to theSAID-SP95 analysis.

FIG. 8. Fit of theP13 inelasticities to theSAID-SP95 analysis.

FIG. 9. Fit of theP31 phase shifts to theSAID-SP95 analysis.

FIG. 10. Fit of theP31 inelasticities to theSAID-SP95 analysis.
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FIG. 11. Fit of theP33 phase shifts to theSAID-SP95 analysis.

FIG. 12. Fit of theP33 inelasticities to theSAID-SP95 analysis.

FIG. 13. Fit of theD13 phase shifts to theSAID-SP95 analysis.

FIG. 14. Fit of theD13 inelasticities to theSAID-SP95 analysis.
FIG. 15. Fit of theD15 phase shifts to theSAID-SP95 analysis.

FIG. 16. Fit of theD15 inelasticities to theSAID-SP95 analysis.

FIG. 17. Fit of theD33 phase shifts to theSAID-SP95 analysis.

FIG. 18. Fit of theD33 inelasticities to theSAID-SP95 analysis.
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57 2153POINCARÉINVARIANT COUPLED . . . . II. . . .
TABLE II. Potential parameters.

States C1 b1 (fm21) K1 C2 b2 (fm21) K2 l11 l22 l12

S11 2.16469 3.20151 1 68.2495 1.37367 1 1 1 246.8376
S31 186.477 5.87154 1 249.0307 124.436 2 1 1 25.26329
P11

P13 51.1975 4.47382 2 11.0837 382.613 2 1 1 4.3785
P31 70.318 4.70084 2 3.85991 2.5995 2 1 1 29.19168
P33

D13 241.1344 45.9792 4 219.111 27.5447 2 1 1 27.04494
D15
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meson-baryon channels that are coupled in each state.
quantities in parentheses are the relative orbital angular
menta in the meson-baryon channel other than the p
nucleon channel. In those cases for which there are two
sible relative orbital angular momenta we retain only t
smaller one.

The parameters in Eqs.~2.10!–~2.12! were determined by
a least squares fit to the phase shiftsdc

j and inelasticitieshc
j

of theSAID-SP95 analysis of the pion-nucleon scattering d
@17#, where these quantities are related to the on-s
T-matrix elements by

hc
j exp@2idc

j ~W!#512 iqTcc
j ~q,q,W21 i«!/~16p2W!,

W5WpN~q!, c5$p,N,l %. ~3.1!

The resulting parameters are given in Tables II and III, wh
the phase shifts and inelasticities are shown in Figs. 1–18
Tables II and III, the subscripts 1 and 2 onC,b, etc., refer to
the pN channel and the inelastic channel, respectively. T
masses of the particles were taken to bemp5138.03 MeV,
mN5938.92 MeV, andmh5547.45 MeV. Since thepD
channel is an effective channel the mass of theD was either
set equal tomp1mN51076.95 MeV, or adjusted to improv
the fit in a particular partial wave. In fitting theP11 channel,
the amplitude was constrained to have a pole atWpN5mN
with the residue properly related to the pion-nucleon c
pling constantgpNN ; explicitly we required that
he
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TpN,pN@q,q,WpN
2 ~q!#→2

12mp
2 gpNN

2

WpN
2 ~q!2mN

2 ~P11channel!,

~3.2!

with gpNN
2 /4p513.5.

IV. DISCUSSION

It is clear that the model presented here gives a g
description of the pion-nucleon elastic scattering amplitu
up to a pion lab kinetic energy of 1.0 GeV. The model eas
accounts for the rapid variation of the amplitudes due to
presence of the various resonances, as well as the openi
the inelastic channels. Even though the model presented
is based on a formalism developed in the front form of re
tivistic quantum mechanics@16#, the internal parts of the
mass operator matrix elements can be used in an instant
version of the model. By theinternal partswe mean, e.g.,
the expressions to the right of the (2p)32p1d3( p̄2 p̄8) fac-
tors in Eq.~2.4!. The final Lippmann-Schwinger equation
i.e., Eq.~2.7!, are exactly the same in the corresponding
stant form model.

The model presented here has many more parameters
the version given in Ref.@16#, which of course is partly due
to the fact that the present model extends the upper limi
the fit from Tp lab50.7 GeV toTp lab51.0 GeV. Also, in the
0–0.7 GeV range there are four resonances, while in
2
1
4

2

1
2
3
1

TABLE III. Resonance parameters.

Resonance m0B ~MeV! C1B (fm21) b1B (fm21) K1B C2B (fm21) b2B (fm21) K2B

S11(1535) 1152.32 2326.58 26.8145 2 23562.6 0.787567
S11(1650) 1637.43 234.645 2.95343 1 1233.88 0.143372
S31(1620) 1880.38 442.095 4.4564 3 2131.29 1.43694
P11(938) 1031.42 186.246 2.88064 4 2453.457 10.2076 4
P11(1440) 1157.73 235.996 37.8333 2 1759.86 1.62646
P11(1710) 2522.56 21032.87 12.0482 4 1991.89 2.5982 4
P13(1720) 2036.37 293.686 13.9169 2 2341.716 5.43274 2
P31(1744) 1774.31 166.97 21.5643 2 2375.29 3.47007 2
P33(1232) 1302.96 2221.928 2.66403 3 619.428 2.07256 3
P33(1600) 1686.34 594.243 2.42704 1 2959.12 0.604585
D13(1520) 1528.38 456.701 4.29899 4 92.6454 3.58040
D15(1675) 1725.81 321.648 4.69012 3 437.185 3.90871
D33(1700) 1286.32 865.209 8.48629 3 1220.29 0.933036
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0.7–1.0 GeV range there are eight resonances. Besides
obvious reasons for an increase in complexity, there is
other reason having to do with a shift in approach. In R
@16# it was possible to account for theS11(1535),P11(1440),
andD13(1520) resonances through coupling to the inela
channels, i.e.,hN, pD, and pD, respectively. No single-
baryon states corresponding to these resonances wer
cluded. Upon attempting to extend this approach to hig
energies, we found that we were unable to do so. For
ample, in theS11 partial wave it is also necessary to accou
for the S11(1650) resonance. The coupling to thepD chan-
nel does not lead to this second resonance, so it was ne
sary to include a single-baryon state corresponding to
resonance. This, however, led to a deterioration of the fi
lower energies, which necessitated introducing a sin
baryon state corresponding to theS11(1535) resonance. Also
it was found that a rather delicate interplay between the
S11 single-baryon states was necessary to account for theS11
inelasticity above 0.7 GeV. Upon comparing Fig. 1 of t
present work with Fig. 1 of Ref.@16#, it is seen that the
cusplike behavior of theS11 phase shift near the threshold fo
the hN channel that occurs in the model of Ref.@16#, does
not appear in the present model. This threshold occurs
total c.m. energy of 1487 MeV, which is very close to t
location of theS11(1535) resonance. This probably accoun
for the sensitivity of the phase shifts near this threshold
the mechanism used to produce theS11(1535) resonance.

We also found that coupling to the inelastic channel co
not produce both theP11(1440) andP11(1710) resonances
and therefore found it necessary to introduce single-bar
states corresponding to these resonances. Here the inte
between the twoP11 single-baryon states played an impo
tant role in accounting for the flatness of the inelastic
above 0.7 GeV. Our experience suggests that is necessa
include explicitly the Roper resonance, i.e., theP11(1440), in
order to get a good fit to the data, but further analysis
necessary to arrive at a firm conclusion. In all of the oth
partial waves it was also found necessary to include sin
baryon states corresponding to the resonances in orde
obtain high quality fits. In fact, as Table II shows, it wa
possible to obtain good results in theP11, P33, D15, and
D33 partial waves using only the resonances.

Another reason for the increase in the number of para
eters has to do with the fact that all inelastic processes
particular partial wave are taken into account by a sing
two-particle channel. This is clearly an oversimplification.
an isobar model analysis ofpN→ppN for total c.m. ener-
gies in the range 1.32 to 1.93 GeV, Manleyet al. @18# found
it necessary to treat the inelasticity as arising from a cohe
superposition of the two-body channelspD, rN, eN, and
pN* . Heree denotes the strongs-wave isoscalarpp inter-
action, andN* denotes the Roper resonance. In a more
cent multichannel resonance parametrization ofpN scatter-
ing, Manley and Saleski@19# extended this set of inelasti
two-body channels to includehN, KL, vN, andrD chan-
nels. In the model of Ref.@16# it was only necessary to
account for inelasticity in theS11, S31, P11, andD13 partial
waves, and over a significantly smaller energy range t
here. In Ref.@16# an effectivepD channel was used to ac
count for the inelasticity in theS31, P11, and D13 partial
waves, and the effectiveD mass was simply taken to b
ese
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mD5mp1mN , so as to put the inelastic threshold at t
correct place, i.e., 2mp1mN . Here, as the work of Manley
et al. @18,19# shows, we are in an energy range for which
principle, several inelastic, two-body channels come i
play. Since it was not practical to include them all in o
model, we compromised in theS31 andP31 partial waves by
adjusting the effectivemD so as to optimize our fits. The
effectiveP31 mD came out rather close tomp1mN , but the
S31 mD came out significantly larger. The analysis of Manl
and Saleski@19# finds branching fractions for the decay o
the S31(1620) resonance topN, pD, andrN channels of 9,
62, and 29 %, respectively. So our high value for theS31 mD

may be compensating for our omission of therN channel. It
is worth noting that in an analysis ofpN→hN data, Batinic´
et al. @20# used an effective two-particle channel to accou
for all inelastic channels other than thehN channel, and they
also found it necessary to vary the threshold energy for
effective two-particle channel in order to obtain decent fi

An important lesson that we have learned from fitting o
model to thepN elastic scattering amplitudes, is that it
difficult to pin down the nature of thepN resonances. It is
worth noting that this problem is an old one. In the origin
Chew-Low model@21# it was possible, by an appropriat
choice of the cutoff function, to reproduce theP33(1232)
resonance without introducing a single-baryon state co
sponding to this resonance. Nowadays, most people a
that it is three-quark state, and would approve of our inclu
ing a single-baryon state corresponding to this resonance
higher energies the importance of the inelastic chann
makes it even more difficult to pin down the nature of t
resonances, i.e., are they essentially dressed versions o
single-baryon states, or are they the result of coupling to
inelastic channels? Clearly both mechanisms come into p
but it is difficult to establish their relative importance. A
analysis of the inelastic cross sections, as well as calculat
of meson photoproduction and electroproduction, sho
help to minimize the ambiguities.

As it stands our model can be used in calculations
meson photoproduction from nucleons, by a relative
straightforward extension of the method of Nozawaet al.
@13#. The present model should lead to an improvement o
the earlier work in that it includes coupling to inelastic cha
nels, as well as an accurate description of the many re
nances in the energy range considered. We are presently
suing this application of our model.

Some time ago Betz and Coester@22# developed an ex-
actly Poincare´ invariant model of theNNp system which
takes into account cluster separability. The model was s
sequently applied by Betz and Lee@23#, and shown to give a
satisfactory description of pion absorption by deuterons,
of elastic pion-deuteron scattering for pion lab kinetic en
gies up to about 300 MeV. The formalism@22# allows for the
treatment of a vertex such asNp⇔D, so it can accommo-
date the type of model for thepN system that has bee
presented here. The original development of the formal
@22# was in theinstant formof relativistic quantum mechan
ics, but it can be easily adapted to thefront form as well. In
general three-particle models such as that of Betz and
ester @22#, which are based on a Bakamjian-Thomas co
struction of a mass operator@24,25#, lead to somewhat cum
bersome square root operators that can be difficult to t
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numerically. Separable models for the two-particle su
systems, which of course can be solved analytically, can
leviate this difficulty to a large extent.

It is of course desirable to see if it is possible to deve
an exchange model of thepN system within the three
dimensional framework employed here. Since the coup
constants and the masses of the exchanged particles a
in other contexts, there are fewer arbitrary parameters tha
the type of model presented here. The method for constr
ing exchange models in the various forms of relativis
quantum mechanics exists. One of us~M.G.F.! has shown
that Okubo’s formalism@26# can be used to develop insta
ew
f.
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and front form mass operators starting from field theory v
tices @27,28#. The method has been successfully applied
theNN system@27#, as well as to a limited model of thepN
system@28#, and we are now applying it to thepN system in
the energy range considered here. We are hoping that
more constrained nature of an exchange model will help
determining the nature of thepN resonances.
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