
PHYSICAL REVIEW C JANUARY 1998VOLUME 57, NUMBER 1
Chaos modified wall formula damping of the surface motion of a cavity
undergoing fissionlike shape evolutions

Santanu Pal* and Tapan Mukhopadhyay†
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~Received 29 August 1997; revised manuscript received 6 October 1997!

The chaos weighted wall formula developed earlier for systems with partially chaotic single-particle motion
is applied to large amplitude collective motions similar to those in nuclear fission. Considering an ideal gas in
a cavity undergoing fissionlike shape evolutions, the irreversible energy transfer to the gas is dynamically
calculated and compared with the prediction of the chaos weighted wall formula. We conclude that the chaos
weighted wall formula provides a fairly accurate description of one-body dissipation in dynamical systems
similar to fissioning nuclei. We also find a qualitative similarity between the phenomenological friction in
nuclear fission and the chaos weighted wall formula. This provides further evidence for the one-body nature of
the dissipative force acting in a fissioning nucleus.
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I. INTRODUCTION

It is now well established@1–9# that a dissipative force
operates in the dynamics of a fissioning nucleus as it
scends from the saddle point to the scission. Since the fis
process is expected to follow the mean-field dynamics w
the excitation energy of the nucleus is not too high,
physical processes that give rise to dissipation in fission
usually identified as one-body mechanisms. The systema
of experimental mean kinetic energies of the fission fr
ments were fairly well reproduced@1,2,9# using a one-body
dissipative force in classical dynamical calculations. Ho
ever, it has also been observed that the mean kinetic en
of the fission fragments is not very sensitive to the details
the dissipative forces. Though two-body processes are
favored compared to one-body processes in the long m
free path dominated mean-field regime, both one- and t
body dissipations in classical dynamical calculations h
been found@2,9# to describe the systematics of experimen
mean kinetic energies. Nix and Sierk, on the other ha
suggested@3–5# in their analyses of mean fragment kinet
energy data that the effective dissipation is about four tim
weaker than that predicted by the wall plus window formu
of one-body dissipation.

It has been pointed out@6–8# in recent years that prescis
sion neutron andg multiplicities are sensitive to the detai
of the friction force in nuclear fission. In particular, it wa
shown@8# that one-body dissipation is preferred to two-bo
viscosity in order to describe the neutron multiplicity data
was further observed@6# that a shape-dependent dissipati
force is essential for simultaneous reproduction of exp
mental values of prescissiong multiplicities and fission
probabilities. Specifically, it has been observed@6,7# that the
dissipative force in a compact configuration of the fission
compound nucleus should be much smaller than that
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dicted by the wall formula of one-body dissipation.
The wall formula was developed by Blockiet al. @1# in a

simple classical picture of one-body dissipation in which e
ergy is transferred from the nuclear surface motion to
nucleon motion as a result of frequent collisions of the nuc
ons with the nuclear surface. According to the wall formu
the rate of energy dissipation is given as

ĖWF~ t !5r v̄ E ṅ2ds, ~1.1!

whereṅ is the normal component of the surface velocity
the surface elementds, while the nuclear mass density an
the average nucleon speed inside the nucleus are denote
r and v̄ , respectively. The wall formula was also obtain
from a formal theory of one-body dissipation based on cl
sical linear-response techniques@10#.

The wall formula was originally derived for idealized sy
tems employing a number of simplifying assumptions su
as approximating the nuclear surface by a rigid wall a
considering only adiabatic collective motions. The valid
of these assumptions were scrutinized@11,12# in the frame-
work of random-phase approximation~RPA! damping. It
was shown@11,12# that in the limiting situation where the
above assumptions are realized, RPA damping coinc
with the wall formula. These works further brought out th
importance of including the 2p2h states for realistic appli-
cations.

We are however of the opinion that since the wall formu
captures all the essential ingredients of dissipation un
mean-field dynamics, it is still possible to improve upon t
dissipation rate given by Eq.~1.1! by examining its various
assumptions. One such assumption of the wall formula c
cerns the randomization of the particle motion. It is assum
@1# that successive collisions of a nucleon with the one-bo
potential give rise to a velocity distribution which is com
pletely random. In other words, a complete mixing in t
classical phase space of the particle motion is required.
have recently discussed@13# the implications of these as
210 © 1998 The American Physical Society
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sumptions and obtained a modification of the wall formu
by relaxing the full randomization assumption in order
make it applicable to systems in which the mixing in pha
space is partial. Considering chaotic particle trajector
which arise due to irregularity in the shape of the one-bo
potential and which are responsible for irreversible ene
transfer, we modified the wall formula in Ref.@13# as

ĖCWWF5mr v̄ E ṅ2ds, ~1.2!

where m is a measure of chaos~chaoticity! in the single-
particle motion. The chaoticitym is 1 for cavities of highly
irregular shapes in which most of the particles move in
chaotic fashion, and one recovers the original wall form
given by Eq.~1.1! for such systems. Equation~1.2! becomes
useful however for systems in which the particle motion
partially chaotic giving rise to a chaoticity less than 1.
fact, Eq. ~1.2! gave a quite successful description@14# of
energy transferred to a gas from its container oscillating w
small amplitudes. In what follows, we shall use the te
‘‘chaos weighted wall formula’’~CWWF! for Eq. ~1.2! in
order to distinguish it from the original wall formula~WF!
given by Eq.~1.1!.

In the present work, we shall consider an ideal gas i
cavity which will be subjected to a time-dependent quad
pole deformation. We shall calculate the energy transfer
to the particles from the wall motion. We shall then compa
this transferred energy with that predicted by the ch
weighted wall formula@Eq. ~1.2!#. In this model, the cavity
will be progressively deformed until the neck radius va
ishes. The motion will be thus tailored to resemble that o
fissioning nucleus as it descends from saddle to scission.
motivation in this work is twofold. First, we wish to test th
applicability of the chaos weighted wall formula for larg
amplitude motions such as fission. Second, we would like
compare the chaos weighted wall formula with the pheno
enological reduced friction suggested by Fro¨brich et al. @7#.
We shall find that the chaos weighted wall formula can
count for the energy damping fairly accurately in large a
plitude collective motions in an ideal gas. We shall also o
serve a qualitative similarity between the chaos weigh
wall formula and the phenomenological reduced friction.

The dynamics of independent particles in time-depend
cavities has been extensively studied earlier by Blocki a
his co-workers@15–22#. Considering classical particles i
vibrating cavities of various shapes, a strong correlation
tween chaos in classical phase space and the efficienc
energy transfer from collective to intrinsic motion was n
merically observed@15#. In particular, it was demonstrate
@15,16# that while the energy transfer is much smaller th
the wall formula limit in a cavity undergoing quadrupo
vibration, it reaches the wall formula limit for higher mult
pole vibrations. Similar conclusions were also reached@18–
21# when the particle motion was treated quantum mech
cally, though the quantal energy transfers were found to
suppressed compared to the classical ones. In the pre
work, we shall demonstrate that the chaos weighted w
formula can describe the energy transferred to classical
ticles when a cavity is strongly deformed starting fro
spherical shape.
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The paper is organized as follows. We shall describe
fissionlike cavity motion in the next section. A procedure
obtain the irreversible energy transfer to the gas from
cavity motion will be outlined in Sec. III. Section IV will
contain a comparison between this irreversible energy tra
fer and the chaos weighted wall formula prediction. A su
mary of our main results will be presented in Sec. V whe
we shall also draw our conclusions.

II. A MODEL FOR FISSIONLIKE CAVITY MOTION

We shall consider a gas of noninteracting particles in
axially symmetric cavity which is undergoing a quadrupo
deformation. The initial velocity distribution for the particle
will be assumed to be uniform up to a certain maximu
valuev similar to that of a completely degenerate Fermi g
The deformation of the surface will be proportional to t
Legendre polynomialsP2 and the surface at any instantt
will be defined as

R~u,t !5
R0

l~ t !
$11a~ t !P2~cosu!%, ~2.1!

where

a~ t !5a02a2 cosvt. ~2.2!

Here a0 and a2 are parameters which define the amp
tude of deformation andv denotes its frequency, whilel(t)
is a volume conserving normalization factor. According
Eq. ~2.2!, the rate of change of deformation will be given
ȧ5a2v sinvt. The cavity is thus initially at rest with a
deformation (a02a2) which subsequently changes fast
with time till the deformation reachesa0 at vt5 p/2. If we
choosea052.0 at which the neck radius becomes zero,
above cavity motion can serve as a model for fission dyna
ics during its transition from saddle to scission. By choos
a suitable value fora2 , the cavity shape at the saddle poi
can also be defined.

We can now evaluate Eq.~1.2! for a quadrupole deformed
cavity and obtain

S Ė

E0
D

CWWF

5
15

4
a2hvm„a~ t !…I „a~ t !…sin2 vt, ~2.3!

where

I „a~ t !…5
1

l4
„a~ t !… E21

11

F~z!dz, ~2.4!

and

F~z!5

H P2~z!2
1

l
~dl/da!@11aP2~z!#J 2

@11aP2~z!#3

$@11aP2~z!#21a2P28
2
~z!~12z2!%1/2

.

~2.5!

In the above equations, the adiabacity indexh is defined
@15# as the ratio of the maximum speed of the surface tips
the maximum particle speedv and will be given by
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212 57SANTANU PAL AND TAPAN MUKHOPADHYAY
h5
a2vR0

v
, ~2.6!

and E0 denotes the total initial energy of the unperturb
gas. It may further be noted that fora!1, Eq.~2.3! reduces
to

S Ė

E0
D

CWWF

5
3

2
a2hvm„a~ t !…sin2 vt, ~2.7!

which was used@14# earlier for small amplitude shape osc
lations. In the present work however we shall use Eq.~2.3!
since we shall be dealing here with large amplitude deform
tions. The essential steps to obtain Eq.~2.3! can be found in
the Appendix. Subsequently the energy dissipated from
wall motion after a certain intervalt will be obtained as

S Ediss~ t !

E0
D

CWWF

5
15

4
a2hE

0

t

m„a~ t8!…I „a~ t8!…

3sin2 vt8d~vt8!. ~2.8!

In order to calculate the dissipated energy using Eq.~2.8!,
the chaoticitym„a(t)… is required for all deformationsa(t)
through which the cavity evolves with time. The chaotic
for each deformation will be obtained@13# by considering
particle trajectories in a static cavity with the same deform
tion and distinguishing between the regular and chaotic
jectories. Following the procedure outlined in Refs.@22,14#,
the chaoticitym will be determined by uniformly sampling
the trajectories which originate from the cavity surface. F
ure 1 shows the calculated values ofm which will be subse-
quently employed to calculate the dissipated energy acc
ing to the chaos weighted wall formula. It may also be no
that the original wall formula dissipation will be obtained b
simply settingm51 in Eq. ~2.8!.

III. REVERSIBLE AND IRREVERSIBLE
ENERGY TRANSFERS

In the dynamical calculation of energy transferred to
particles in a cavity from its surface motion, the classi

FIG. 1. Variation of the chaoticity with deformation for quad
rupole shapes. Solid circles are calculated values and the line
guide the eye.
-
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equation of motion of the particles is numerically solved.
this end, the initial position and the velocity vectors~lying
within a Fermi sphere of radiusv in velocity space! of a
particle are chosen at random and the trajectory of the
ticle is followed in time allowing reflections whenever
encounters the oscillating walls of the cavity@15#. By con-
sidering a gas consisting of a large~typically several thou-
sands! number of such noninteracting particles in the cavi
the relative energy transferred to the gasEtrans(t)/E0 is ob-
tained up to an interval given byvt5 p/2 at which the de-
formation becomes maximum. Figure 2 shows the tra
ferred energy calculated for different values ofh. The
deformation parameters chosen area05a252.0 which cor-
respond to an initial spherical shape and a maximum de
mation ofa52.0 at which the neck radius is zero.

A part of the transferred energyEtrans(t) is reversible and
is elastic in nature. This reversible part arises due to
symmetries present in the single-particle Hamiltonian of
system and has been discussed by Blockiet al. @1# in detail.
For volume conserving systems, the reversible energy
pends only on the deformation of the system and is indep
dent of the speed of the deformation. It is of interest to n
here that this property is quite distinct@15# from that of a real
gas. An intrinsic randomization of particle velocities is a
ways assumed for an idea gas in a real container giving
to the ideal-gas laws according to which the energy of a
does not change under adiabatic volume conserving de
mations. The reversibility of the transferred energy in
ideal gas in a model container depends on the degre
nonintegrability of the single-particle Hamiltonian and
thus fully reversible for an integrable system. This feature
illustrated in Fig. 3 where the relative transferred energy
shown over a full cycle of deformation for a cavity underg
ing harmonic spheroidal deformation. The surface of
spheroidal cavity considered is defined by

to

FIG. 2. Growth of relative energy transferred to the gas from
wall motion. Curvesa, b, c, d, ande in the lower panel are for
h50.02, 0.04, 0.06, 0.08, and 0.10, respectively, while curvesf , g,
h, and i in the upper panel are forh50.03, 0.05, 0.07, and 0.09
respectively. The cavity motion is defined bya05a252.0.
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x2

a2~ t !
1

y2

a2~ t !
1

z2

c2~ t !
51, ~3.1!

where

c~ t !5R0@11a~ t !#, ~3.2!

and

a~ t !5R0@11a~ t !#2 1/2, ~3.3!

such that it undergoes volume conserving oscillations
particles inside such a cavity constitute an integrable syst
The deformation will be given asa(t)5a02a0 cosvt,
where we have useda051.0 in our calculation. We find in
Fig. 3 that the transferred energy is fully reversible and
independent of the speed of deformation.

For mixed~partially chaotic and partially regular! systems
such as cavities undergoing quadrupole deformations, a
of the transferred energy is reversible while the rest is ir
versible or dissipative in nature. The chaos weighted w
formula @Eq. ~1.2!# describes this irreversible part of the e
ergy transfer. We shall therefore proceed to obtain the di
pative part from the total transferred energy as follows.

Decomposing the transferred energyEtrans into its revers-
ible Erev, and the dissipativeEdiss, components, we write

Etrans~h,a!5Erev~a!1Ediss~h,a!. ~3.4!

The incremental energy dissipation due to an increme
adiabaticity index will therefore be given as

DEdiss~Dh,a!5DEtrans~Dh,a!, ~3.5!

where

DEdiss~Dh,a!5Ediss~h1Dh,a!2Ediss~h,a!, ~3.6!

and

DEtrans~Dh,a!5Etrans~h1Dh,a!2Etrans~h,a!.
~3.7!

FIG. 3. Relative energy growth for a cavity undergoing spher
dal deformation showing the complete reversibility of the ene
transferred. The plot represents calculated values forh50.02, 0.04,
0.06, 0.08, and 0.10 which are all indistinguishable from each ot
d
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We shall obtainDEtrans(Dh,a) using Eq.~3.7! by first
evaluatingEtrans(h1Dh,a) and Etrans(h,a) from classical
dynamical calculations. According to Eq.~3.5!, this quantity
will be the same asDEdiss(Dh,a) which shall be compared
with the chaos weighted wall formula prediction in the ne
section.

We should remark here that one can ideally obtain the
dissipated energyEdiss(h,a) from Eq.~3.4! by first calculat-
ing the reversible part as

Erev~a!5 lim
h→0

Etrans~h,a!. ~3.8!

This scheme is difficult to implement numerically thoug
As the motion becomes slower~small h!, computation time
increases prohibatively and numerical instability sets in. F
ther, it may be recalled that an interesting observation w
made in Ref.@17# where it was shown that dynamical corr
lation between successive collisions of a particle with
cavity wall can substantially enhance the energy transfer
beyond the wall formula limit for very slow motions of th
wall. Thus we shall not obtain the desired reversible ene
transfer from calculations at very slow wall motions. W
have therefore used finite values ofh ~within adiabatic limit!
in the above incremental method for our purpose.

IV. RESULTS

We shall first consider a cavity which starts deformi
from a spherical shape and reaches a maximum deforma
of a52.0. The relative energy transferred to the gas for t
system at different values ofh is given in Fig. 2. Following
the procedure outlined in the preceeding section, the in
mental energy dissipation for various values ofDh are then
obtained. This energy dissipation is also calculated from b
the chaos weighted wall formula and the original wall fo
mula using Eq.~2.8!. Figure 4 shows the comparison. It
observed that the chaos weighted wall formula prediction
energy dissipation is very close to that from dynamical c
culation. On the other hand, the original wall formula ove
estimates the energy dissipation by more than 50%.

We shall next consider a cavity for which we seta052.0
and a251.5. This gives rise to an initial deformation o
a50.5 at t50. The results of dynamical calculations fo
energy transfer are shown in Fig. 5. The incremental ene
dissipations are subsequently obtained and the compar
with predictions of the chaos weighted wall formula and t
original wall formula is shown in Fig. 6. The chaos weight
wall formula prediction remains reasonably close to the
namically calculated values for lower values ofDh ~0.02 and
0.04!. For higher values ofDh ~0.06 and 0.08!, the agree-
ment becomes somewhat poorer at larger deformations. N
ertheless, the chaos weighted wall formula provides a m
better description of the dynamical results compared to
original wall formula for all the cases considered here.

We shall now calculate the reduced friction coefficie
which corresponds to the dissipation according to the ch
weighted wall formula. The reduced friction coefficientb is
defined@7# asb5g/M where

Ė5gq̇2R0
2 . ~4.1!

-
y
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214 57SANTANU PAL AND TAPAN MUKHOPADHYAY
Hereq is half the distance between the centers of mas
the equal fragments on each side of the neck divided byR0 ,
M is the total mass of the gas, andg is the friction coeffi-
cient. The value ofq varies from q50.375 for spherical

FIG. 4. Growth of incremental dissipated energy relative toE0

for different values ofDh. The solid lines are from dynamical ca
culation. The long dashed and short dashed lines are the orig
wall formula ~WF! and chaos weighted wall formula~CWWF! pre-
dictions, respectively.

FIG. 5. Same as Fig. 2 but for the cavity motion defined
a052.0 anda251.5.
of

configuration toq51.0 for scission. The friction coefficien
g and hence the reduced friction coefficientb can be evalu-
ated from Eq.~2.8! for both the chaos weighted wall formul
and the original wall formula (m51). The reduced friction
coefficients thus obtained are plotted in Fig. 7. The pheno
enological reduced friction coefficient introduced by Fr¨-
brich @6,7# is also shown in this figure.

al

FIG. 6. Same as Fig. 4 but for the cavity motion defined
a052.0 anda251.5.

FIG. 7. Reduced friction coefficients from chaos weighted w
formula ~solid line!, original wall formula~long dashed line!, and
from Ref. @7# ~short dashed line!.
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We note in Fig. 7 that the friction strength is strong
suppressed in chaos weighted wall formula for spherica
near spherical configurations. This reduction in the dissi
tive force at the early stages of nuclear fission is an impor
consequence of the chaos weighted wall formula. It is
interest to note that a reduction of the wall plus windo
formula of one-body dissipation was also suggested@3–5#
earlier. Further, such a reduction was phenomenologic
found @7# to be essential in order to reproduce the excitat
functions of both the prescission neutron multiplicities a
the fission probabilities. The subsequent increase of the
duced friction coefficient~due to chaos weighted wall for
mula! at larger values ofq essentially reflects the increase
chaoticity with deformation. Since chaoticity depends sen
tively on the nonintegrability of the system, the reduced fr
tion coefficient at largeq in turn depends on the details o
the shape considered. Thus the comparison of our pre
calculation for a model shape evolution with the phenome
logical friction is a qualitative one, both showing an increa
of the reduced friction at higher deformations starting w
very small values at the spherical configuration. We furt
note that the phenomenological friction near scission is m
stronger than the original wall or its present chaos weigh
version~both merge near scission!. This can possibly be un
derstood@8# if other effects such as the exchange mechan
~‘‘window’’ formula ! and temperature dependence of nucl
friction are considered.

V. SUMMARY AND CONCLUSIONS

In the preceding sections, we have applied the ch
weighted wall formula to an ideal gas in a cavity undergo
fissionlike shape evolution in order to test the validity of t
former for large amplitude motions. To this end, we ha
dynamically calculated the energy transferred from the w
to the gas and compared its irreversible part with the pre
tion of the chaos weighted wall formula. In order to simula
the macroscopic dynamics of symmetric fission in o
model, we have chosen a cavity initially at rest with an init
deformation which is then progressively deformed till t
neck radius vanishes. In all the cases considered above
find a fair agreement between the results from dynam
calculations and the predictions of the chaos weighted w
formula. The original wall formula is found to considerab
overestimate the energy transfer.

We have also compared the reduced friction coeffici
extracted from the chaos weighted wall formula with th
prescribed@7# phenomenologically in order to reproduce t
excitation functions of both the precission neutron multipli
ties and the fission probabilities. Both the friction coef
cients are found to be qualitatively similar. An importa
feature of the phenomenological friction is its strong su
pression for compact shapes which is also present in
chaos weighted wall formula.

We can therefore conclude that the chaos weighted w
formula provides a fairly accurate description of one-bo
dissipation in dynamical systems similar to fissioning nuc
Further, the qualitative similarity between the phenome
logical friction in nuclear fission and the chaos weighted w
r
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formula provides evidence for the one-body nature of
dissipative force acting in a fissioning nucleus.
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APPENDIX

We shall briefly outline here the essential steps to arrive
the wall formula dissipation rate for cavities with large qua
rupole deformations which has been used in Eq.~2.3!.

The wall formula is given as

Ė5r v̄ E ṅ2ds, ~A1!

where ṅ5normal component of the velocity of the surfac
elementds at a pointrW5r (u,f). The wall of an azimuthally
symmetric quadrupole cavity is defined by

r ~u,t !5
R0

l~ t !
@11a~ t !P2~cosu!#. ~A2!

Taking the surface velocity component along the norm

ṅ5 ṙ cosun , ~A3!

whereun is the angle betweenrW andnW and is given by

cosun5r
du

ds
5

r

@r 21~dr/du!2#1/2,

and where we have used

ds5duF r 21S dr

du D 2G1/2

.

Hence

Ė52pr v̄ E ṙ 2r 3

@r 21~dr/du!2#1/2 sin udu. ~A4!

Now from Eq.~A2! we get

ṙ 5
R0

l
F ȧP22

l̇

l
~11aP2!G , ~A5!

and

dr

du
52

R0

l
aP28~z!sin u, ~A6!
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216 57SANTANU PAL AND TAPAN MUKHOPADHYAY
whereP28(z)5dP2(z)/dz andz5cosu. Using the above in
Eq. ~A4!, we obtain

Ė5
2pr v̄ R0

4ȧ2

l4 E
21

11

F~z!dz, ~A7a!

where
J.

na
8

ys

.

ep
F~z!5

H P2~z!2
1

l
~dl/da!@11aP2~z!#J 2

@11aP2~z!#3

$@11aP2~z!#21a2P28
2
~z!~12z2!%1/2

.

~A7b!

The above equations give the rate of energy transfer
large quadrupole deformations.
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@6# P. Fröbrich and I. I. Gontchar, Nucl. Phys.A563, 326 ~1993!.
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