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Chaos modified wall formula damping of the surface motion of a cavity
undergoing fissionlike shape evolutions
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The chaos weighted wall formula developed earlier for systems with partially chaotic single-particle motion
is applied to large amplitude collective motions similar to those in nuclear fission. Considering an ideal gas in
a cavity undergoing fissionlike shape evolutions, the irreversible energy transfer to the gas is dynamically
calculated and compared with the prediction of the chaos weighted wall formula. We conclude that the chaos
weighted wall formula provides a fairly accurate description of one-body dissipation in dynamical systems
similar to fissioning nuclei. We also find a qualitative similarity between the phenomenological friction in
nuclear fission and the chaos weighted wall formula. This provides further evidence for the one-body nature of
the dissipative force acting in a fissioning nucleus.
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[. INTRODUCTION dicted by the wall formula of one-body dissipation.
The wall formula was developed by Blockt al.[1] in a

It is now well established1-9] that a dissipative force simple classical picture of one-body dissipation in which en-
operates in the dynamics of a fissioning nucleus as it deergy is transferred from the nuclear surface motion to the
scends from the saddle point to the scission. Since the fissidttcleon motion as a result of frequent collisions of the nucle-
process is expected to follow the mean-field dynamics whe®ns with the nuclear surface. According to the wall formula,
the excitation energy of the nucleus is not too high, thethe rate of energy dissipation is given as
physical processes that give rise to dissipation in fission are
usually identified as one-body mechanisms. The systematics
of experimental mean kinetic energies of the fission frag-
ments were fairly well reproducdd.,2,9| using a one-body

dissipative force in classical dynamical calculations. How-wheren is the normal component of the surface velocity at
ever, it has also been observed that the mean kinetic energie surface elements, while the nuclear mass density and
of the fission fragments is not very sensitive to the details othe average nucleon speed inside the nucleus are denoted by
the dissipative forces. Though two-body processes are 1eS5,q7,  respectively. The wall formula was also obtained
favored compared to one-body processes in the long meafym a formal theory of one-body dissipation based on clas-
free path dominated mean-field regime, both one- and twosjca) |inear-response techniquds).
bOdy diSSipationS in classical dynamical calculations have The Wa" formuia was Origina”y derived for idealized Sys_
been fOUﬂC[Z,g] to describe the systematics of experimentaltems emp|oying a number of s|mp||fy|ng assumptions such
mean kinetic energies. Nix and Sierk, on the other handgas approximating the nuclear surface by a rigid wall and
suggested3-5] in their analyses of mean fragment kinetic considering only adiabatic collective motions. The validity
energy data that the effective dissipation is about four timesf these assumptions were scrutinifdd,127] in the frame-
weaker than that predicted by the wall plus window formulawork of random-phase approximatidfiRPA) damping. It
of one-body dissipation. was shown[11,17 that in the limiting situation where the
It has been pointed oli6—8] in recent years that prescis- above assumptions are realized, RPA damping coincides
sion neutron andy multiplicities are sensitive to the details with the wall formula. These works further brought out the
of the friction force in nuclear fission. In particular, it was importance of including the (2h states for realistic appli-
shown[8] that one-body dissipation is preferred to two-body cations.
viscosity in order to describe the neutron multiplicity data. It We are however of the opinion that since the wall formula
was further observeff] that a shape-dependent dissipativecaptures all the essential ingredients of dissipation under
force is essential for simultaneous reproduction of experimean-field dynamics, it is still possible to improve upon the
mental values of prescissioy multiplicities and fission dissipation rate given by Edql.1) by examining its various
probabilities. Specifically, it has been obsery6¢/] that the  assumptions. One such assumption of the wall formula con-
dissipative force in a compact configuration of the fissioningcerns the randomization of the particle motion. It is assumed
compound nucleus should be much smaller than that prg-l] that successive collisions of a nucleon with the one-body
potential give rise to a velocity distribution which is com-
pletely random. In other words, a complete mixing in the
*Electronic address: santanu@veccal.ernet.in classical phase space of the particle motion is required. We
"Electronic address: tkm@veccal.ernet.in have recently discussdd 3] the implications of these as-

Ewe(t)= pv_i n’do, (1.2)
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sumptions and obtained a modification of the wall formula The paper is organized as follows. We shall describe the
by relaxing the full randomization assumption in order tofissionlike cavity motion in the next section. A procedure to
make it applicable to systems in which the mixing in phaseobtain the irreversible energy transfer to the gas from the
space is partial. Considering chaotic particle trajectoriesavity motion will be outlined in Sec. Ill. Section IV will
which arise due to irregularity in the shape of the one-bodycontain a comparison between this irreversible energy trans-
potential and which are responsible for irreversible energyer and the chaos weighted wall formula prediction. A sum-
transfer, we modified the wall formula in R¢fL3] as mary of our main results will be presented in Sec. V where
we shall also draw our conclusions.

. (.,
Ecwwr= ppv f n“do, (1.2 Il. A MODEL FOR FISSIONLIKE CAVITY MOTION

We shall consider a gas of noninteracting particles in an
axially symmetric cavity which is undergoing a quadrupole
deformation. The initial velocity distribution for the particles

4vill be assumed to be uniform up to a certain maximum
Q/aluev similar to that of a completely degenerate Fermi gas.

where u is a measure of chaoghaoticity in the single-
particle motion. The chaoticity. is 1 for cavities of highly
irregular shapes in which most of the particles move in
chaotic fashion, and one recovers the original wall formul

given by Eq.(1.1) for such systems. Equatidfi.2) becomes . The deformation of the surface will be proportional to the

useful howeve_r fo_r systems in which the_ particle motion IS’Legendre polynomial$, and the surface at any instant
partially chaotic giving rise to a chaoticity less than 1. InWiII be defined as

fact, Eq.(1.2) gave a quite successful descriptiptd] of

energy transferred to a gas from its container oscillating with Ro

small amplitudes. In what follows, we shall use the term R(6,t)= —{1+a(t)P,(cosb)}, (2.1
“chaos weighted wall formula”(CWWF) for Eq. (1.2) in MY
order to distinguish it from the original wall formuldVF)
given by Eq.(1.1).

In the present work, we shall consider an ideal gas in a
cavity which will be subjected to a time-dependent quadru-
pole deformation. We shall calculate the energy transferred pgre ao and a, are parameters which define the ampli-
to.the particles from the wa]l motion. We.shall then compare; e of deformation and denotes its frequency, whik(t)
this transferred energy with that predicted by the chaoss 5 yolume conserving normalization factor. According to

weighted wall formulg Eq. (1.2)]. In this model, the cavity g4 (2.2), the rate of change of deformation will be given as

will be progressively deformed until the neck radius van-- sinwt. The cavity is thus initially at rest with a
ishes. The motion will be thus tailored to resemble that of &, 2« >« Y Y

fissioning nucleus as it descends from saddle to scission. O&?tfr?rtmat'?.ﬂ tﬁo_dafZ) Wht'.Ch subshequenttlytihaglzgeﬁ faster
motivation in this work is twofold. First, we wish to test the Wr'] ime _'2 Oe te ‘r’]f”;]at'r?” reaﬁ eﬁ‘? a ‘k‘)’ — mle. twe th
applicability of the chaos weighted wall formula for large chooseap= 2.0 at which the neck radius bécomes 2ero, the

amplitude motions such as fission. Second, we would like t§oove cavity motion can serve as a model for fission dynam-

compare the chaos weighted wall formula with the phenomlcs d_uring its transition from sqddle to scission. By choos'ing
enological reduced friction suggested by Iiioh et al. [7]. a suitable value for,, the cavity shape at the saddle point
can also be defined.

We shall find that the chaos weighted wall formula can ac- W luate E6L 2 f q le def q
count for the energy damping fairly accurately in large am- . € can now evajuate (1.2 for a quadrupole deforme
cavity and obtain

plitude collective motions in an ideal gas. We shall also ob-

where

a(t)=ag— as COSwt. (2.2

serve a qualitative similarity between the chaos weighted .
wall formula and the phenomenological reduced friction. (E) ZE’a o) (a(t)sif? ot, (2.3
The dynamics of independent particles in time-dependent Eo/cowwe 2 2NOH ' '

cavities has been extensively studied earlier by Blocki and

his co-workers[15—22. Considering classical particles in where

vibrating cavities of various shapes, a strong correlation be-

tween chaos in classical phase space and the efficiency of 1 +1

energy transfer from collective to intrinsic motion was nu- I (a(t))= Na(D) f_l F(2)dz, (2.4
merically observed15]. In particular, it was demonstrated

[15,16 that while the energy transfer is much smaller thanand

the wall formula limit in a cavity undergoing quadrupole

vibration, it reaches the wall formula limit for higher multi- 1 2

pole vibrations. Similar conclusions were also reacHs}- Po(z)— — (d\/da)[1+ aPyx(z)]{ [1+aPy(2)]3
21] when the particle motion was treated quantum mechanig 2)= A .

cally, though the quantal energy transfers were found to be {[1+ aPy(2)12+ a?P} (2)(1—22)}1?
suppressed compared to the classical ones. In the present (2.5

work, we shall demonstrate that the chaos weighted wall

formula can describe the energy transferred to classical par- In the above equations, the adiabacity indgis defined
ticles when a cavity is strongly deformed starting from[15] as the ratio of the maximum speed of the surface tips to
spherical shape. the maximum particle speadand will be given by
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FIG. 1. Variation of the chaoticity with deformation for quad- 0.0 L L L L
rupole shapes. Solid circles are calculated values and the line is to 0.0 1.0 2.0
guide the eye. a(h

ar,wRy FIG. 2. Growth of relative energy transferred to the gas from the
=T, (260 wall motion. Curvesa, b, c, d, ande in the lower panel are for
7=0.02, 0.04, 0.06, 0.08, and 0.10, respectively, while cufyes
and E, denotes the total initial energy of the unperturbedh, andi in the upper panel are fop=0.03, 0.05, 0.07, and 0.09
gas. It may further be noted that far<1, Eq.(2.3) reduces respectively. The cavity motion is defined by=a,=2.0.
to

: equation of motion of the particles is numerically solved. To
(E) =§a277w,u(a(t))sinz ot, 2.7) th_is _end, the i_nitial position and the veloc_ity vectdhging
Eo/ cwwe 2 within a Fermi sphere of radius in velocity spacg of a

_ _ _ _ particle are chosen at random and the trajectory of the par-
which was used14] earlier for small amplitude shape oscil- ticie is followed in time allowing reflections whenever it
lations. In the present work however we shall use &8  encounters the oscillating walls of the caviti5]. By con-
since we shall be'deallng here W|t_h large amplitude defc_’rmaéidering a gas consisting of a larggpically several thou-
tions. The essential steps to obtain £23) can be found in sanqs number of such noninteracting particles in the cavity,
the Appendix. Subsequently the energy dissipated from th?ne relative energy transferred to the d&g,{t)/Eo is ob-
wall motion after a certain intervalwill be obtained as tained up to an interval given byt= /2 atnwhich the de-
formation becomes maximum. Figure 2 shows the trans-

Egisdt 15 t
(%’U) =Za2nf pmla(t'N(al(t’)) ferred energy calculated for different values @f The
0 /cwwr 0 deformation parameters chosen afg= a,=2.0 which cor-
; , / respond to an initial spherical shape and a maximum defor-
X . .
S wt’d(wt’) 28 mation ofa=2.0 at which the neck radius is zero.
In order to calculate the dissipated energy using(B®, A part of the transferred enerds,{t) is reversible and

the chaoticityu(a(t)) is required for all deformationa(t) is elastic in nature. This reversible part arises due to the
through which the cavity evolves with time. The chaoticity Symmetries present in the single-particle Hamiltonian of the
for each deformation will be obtaingd 3] by considering ~ System and has been discussed by Blatkal. [1] in detail.
particle trajectories in a static cavity with the same deformafor volume conserving systems, the reversible energy de-
tion and distinguishing between the regular and chaotic traP€nds only on the deformation of the system and is indepen-
jectories. Following the procedure outlined in Ret22,14], dent of the speed of the deformation. It is of interest to note
the chaoticity. will be determined by uniformly sampling here that this property is quite distir{d5] from that of a real

the trajectories which originate from the cavity surface. Fig-9as. An intrinsic randomization of particle velocities is al-
ure 1 shows the calculated valuesofvhich will be subse- Ways assumed for an idea gas in a real container giving rise
quently employed to calculate the dissipated energy accord0 the ideal-gas laws according to which the energy of a gas
ing to the chaos weighted wall formula. It may also be notecdoes not change under adiabatic volume conserving defor-
that the original wall formula dissipation will be obtained by mations. The reversibility of the transferred energy in an

simply settingu=1 in Eq.(2.9). ideal gas in a model container depends on the degree of
nonintegrability of the single-particle Hamiltonian and is

Il REVERSIBLE AND IRREVERSIBLE _t|r|1us fullydrgv?:r.sml\?(’e for: an |rr11tegra|1bI.e systerr}. Th|§ feature is
ENERGY TRANSFERS illustrated in Fig. 3 where the relative transferred energy is

shown over a full cycle of deformation for a cavity undergo-
In the dynamical calculation of energy transferred to theing harmonic spheroidal deformation. The surface of the
particles in a cavity from its surface motion, the classicalspheroidal cavity considered is defined by
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0.8 . We shall obtainAE.{An,a) using Eq.(3.7) by first
evaluatingE,nd 7t An,a) and E, o 7,«) from classical
f 0.6 ] dynamical calculations. According to E.5), this quantity
= will be the same ad Ejs{ A n, @) which shall be compared
g 04 i with the chaos weighted wall formula prediction in the next
ool | section. _ .
We should remark here that one can ideally obtain the full
0.0 . . . dissipated energk 4i.{ 7, @) from Eq.(3.4) by first calculat-
0.0 0.5 1.0 ing the reversible part as

Phase (wt/2m) _
Ered @)= lim Eqand 7,0). (3.9
FIG. 3. Relative energy growth for a cavity undergoing spheroi- 70

dal deformation showing the complete reversibility of the energy Thi h is difficul imol icallv th h
transferred. The plot represents calculated valuesfe0.02, 0.04, Is scheme Is difficult to implement numerically though.

0.06, 0.08, and 0.10 which are all indistinguishable from each otheS the motion becomes slowéesmall 7), computation time
increases prohibatively and numerical instability sets in. Fur-

ther, it may be recalled that an interesting observation was
made in Ref[17] where it was shown that dynamical corre-
lation between successive collisions of a particle with the
cavity wall can substantially enhance the energy transfer rate
beyond the wall formula limit for very slow motions of the
wall. Thus we shall not obtain the desired reversible energy
transfer from calculations at very slow wall motions. We
have therefore used finite valuespfwithin adiabatic limi}
c(t)=Ro[1+a(t)], (32 in the above incremental method for our purpose.

x2 y? z

aZ(t) | a%(t) | AN

2

1, (3.2

where

and IV. RESULTS

- - 12 We shall first consider a cavity which starts deforming
A =Ro[1+a(V)] ' 33 from a spherical shape and reaches a maximum deformation
) ) o of @=2.0. The relative energy transferred to the gas for this
such that it undergoes volume conserving oscillations an@ystem at different values of is given in Fig. 2. Following
particles inside such a cavity constitute an integrable systempe procedure outlined in the preceeding section, the incre-
The deformation will be given asi(t)=ao—ag COSwl,  mental energy dissipation for various valuesAof are then
where we have used,=1.0 in our calculation. We find in  optained. This energy dissipation is also calculated from both
Fig. 3 that the transferred energy is fully reversible and isthe chaos weighted wall formula and the original wall for-
independent of the speed of deformation. mula using Eq(2.9). Figure 4 shows the comparison. It is
For mixed(partially chaotic and partially regulesystems  ghserved that the chaos weighted wall formula prediction for
such as cavities undergoing quadrupole deformations, a paghergy dissipation is very close to that from dynamical cal-
of the transferred energy is reversible while the rest is irrezylation. On the other hand, the original wall formula over-
versible or dissipative in nature. The chaos weighted walbkstimates the energy dissipation by more than 50%.
formula[Eq. (1.2)] describes this irreversible part of the en-  \we shall next consider a cavity for which we sgf=2.0
ergy transfer. We shall therefore proceed to obtain the dissiynq a,=1.5. This gives rise to an initial deformation of
pative part from the total transferred energy as follows. =05 att=0. The results of dynamical calculations for
~ Decomposing the transferred ene§y.,sinto its revers-  energy transfer are shown in Fig. 5. The incremental energy
ible Erey, and the dissipativé&ss, components, we write  gjssipations are subsequently obtained and the comparison
with predictions of the chaos weighted wall formula and the
Evand 7,a) =Eel @) + Egisd 7, @). (3.4  original wall formula is shown in Fig. 6. The chaos weighted
wall formula prediction remains reasonably close to the dy-
amically calculated values for lower values/# (0.02 and
.04). For higher values oAz (0.06 and 0.08 the agree-
ment becomes somewhat poorer at larger deformations. Nev-
AEgdAp,a)=AE 0 Ap,a), (3.5)  ertheless, th_e phaos weighted V\_/all formula provides a much
better description of the dynamical results compared to the
where original wall formula for all the cases considered here.
We shall now calculate the reduced friction coefficient
AEgsdAm,a)=Egsd n+An,a)—Egsd 7,@), (3.6)  which corresponds to the dissipation according to the chaos
weighted wall formula. The reduced friction coefficig®is
and defined[7] as 8= y/M where

AEqand A, @) =Epand 7+ An,@) —Egand 7, @).

The incremental energy dissipation due to an increment
adiabaticity index will therefore be given as

(3.7) E=y9%Rj. (4.2)
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FIG. 6. Same as Fig. 4 but for the cavity motion defined by

for different values ofA#. The solid lines are from dynamical cal-
culation. The long dashed and short dashed lines are the original
wall formula (WF) and chaos weighted wall formul€WWF) pre-
dictions, respectively.

Hereq is half the distance between the centers of mass
the equal fragments on each side of the neck divide&hy
M is the total mass of the gas, andis the friction coeffi-
cient. The value ofq varies fromq=0.375 for spherical

configuration tog=1.0 for scission. The friction coefficient

v and hence the reduced friction coefficightan be evalu-
o"f‘ted from Eq(2.8) for both the chaos weighted wall formula

and the original wall formulag=1). The reduced friction

coefficients thus obtained are plotted in Fig. 7. The phenom-

enological reduced friction coefficient introduced by Fro

/K,

trans

brich[6,7] is also shown in this figure.
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FIG. 7. Reduced friction coefficients from chaos weighted wall
FIG. 5. Same as Fig. 2 but for the cavity motion defined byformula (solid line), original wall formula(long dashed ling and

from Ref.[7] (short dashed line
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We note in Fig. 7 that the friction strength is strongly formula provides evidence for the one-body nature of the
suppressed in chaos weighted wall formula for spherical odissipative force acting in a fissioning nucleus.
near spherical configurations. This reduction in the dissipa-
tive force at the early stages of nuclear fission is an important ACKNOWLEDGMENTS
consequence of the chaos weighted wall formula. It is of

interest to note that a reduction of the wall plus window.
formula of one-body dissipation was also suggegt@ds] ing us the computer codes for classical trajectory calculations
y P 99 which have been used extensively in this work.

earlier. Further, such a reduction was phenomenologically
found[7] to be essential in order to reproduce the excitation
functions of both the prescission neutron multiplicities and
the fission probabilities. The subsequent increase of the re- We shall briefly outline here the essential steps to arrive at
duced friction coefficien{due to chaos weighted wall for- the wall formula dissipation rate for cavities with large quad-
mula) at larger values of] essentially reflects the increase of rupole deformations which has been used in @0).

chaoticity with deformation. Since chaoticity depends sensi- The wall formula is given as

tively on the nonintegrability of the system, the reduced fric-

tion coefficient at largey in turn depends on the details of .,

the shape considered. Thus the comparison of our present E:PUJ’ n“do, (A1)
calculation for a model shape evolution with the phenomeno-

logical friction is a qualitative one, both showing an increase

of the reduced friction at higher deformations starting WlthWheren normal component of the velocity of the surface
very small values at the spherical configuration. We furthe€lementdo at a pointr =r (6, ). The wall of an azimuthally
note that the phenomenological friction near scission is mucgymmetric quadrupole cavity is defined by

stronger than the original wall or its present chaos weighted
version(both merge near scissiprThis can possibly be un-
derstood 8] if other effects such as the exchange mechanism
(“window” formula) and temperature dependence of nuclear
friction are considered.

The authors are grateful to Professor Jan Blocki for send-

APPENDIX

Ry
r(o,t)=

Mt)[1+a(t)P2(cosa)] (A2)

Taking the surface velocity component along the normal

V. SUMMARY AND CONCLUSIONS n=r coséb,, (A3)

In the preceding sections, we have applied the chaos
weighted wall formula to an ideal gas in a cavity undergomgWheree is the angle between andn and is given by
fissionlike shape evolution in order to test the validity of the
former for large amplitude motions. To this end, we have _do r
dynamically calculated the energy transferred from the wall COSn=T4g = [r2+(dr/dg)?]¥?’
to the gas and compared its irreversible part with the predic-
tion of the chaos weighted wall formula. In order to simulate 3,4 where we have used
the macroscopic dynamics of symmetric fission in our
model, we have chosen a cavity initially at rest with an initial
deformation which is then progressively deformed till the ds=dé@
neck radius vanishes. In all the cases considered above, we
find a fair agreement between the results from dynamical
calculations and the predictions of the chaos weighted wall Hence
formula. The original wall formula is found to considerably
overestimate the energy transfer. (2,3

We have also compared the reduced friction coefficient ;
extracted from the chgos weighted wall formula with that E= Zvaf [f2+(dr/d9)2]l/2 sin6dd.  (A4)
prescribed 7] phenomenologically in order to reproduce the
excitation functions of both the precission neutron multiplici-  Now from Eq.(A2) we get
ties and the fission probabilities. Both the friction coeffi-
cients are found to be qualitatively similar. An important
feature of the phenomenological friction is its strong sup- p= 0
pression for compact shapes which is also present in the Iy
chaos weighted wall formula.

We can therefore conclude that the chaos weighted wall
formula provides a fairly accurate description of one-body
dissipation in dynamical systems similar to fissioning nuclei.

Further, the qualitative similarity between the phenomeno- dr

Ro _, .
logical friction in nuclear fission and the chaos weighted wall de TaPz(z)sm 9, (A6)

211/2
. [dr
do '

: A
aPy— —(1+aPy) |, (A5)
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’ . . 1 2
whereP,(z) =dP,(z)/dz andz=cos#6. Using the above in P,(2)— = (d\/da)[1+ aP(2)]| [1+ aP4(2)]?
Eq. (A4), we obtain F(2)= N
— 4 {[1+aPy(2)]%+ a?P} (2)(1—22)}12
. 2mpuvRya” [+1 (A7b)
E:T f F(z)dz, (A7a)
-1
The above equations give the rate of energy transfer for

where large quadrupole deformations.

[1] J. Blocki, Y. Boneh, J. R. Nix, J. Randrup, M. Robel, A. J. [13] Santanu Pal and Tapan Mukhopadhyay, Phys. Res4, @333
Sierk, and W. J. Swiatecki, Ann. Phy@.Y.) 113 330(1978. (1996.

[2] A. J. Sierk and J. R. Nix, Phys. Rev. 21, 982 (1980. [14] Tapan Mukhopadhyay and Santanu Pal, Phys. Rex6,Q96
[3] J. R. Nix and A. J. Sierk, Proceedings of the International (1997.

School-Seminar on Heavy lon Physics, Dubna, USSR, 1986[15] J. Blocki, J.-J. Shi, and W. J. Swiatecki, Nucl. Ph&854, 387

Report No. JINR-D7-87-68987), p. 453. (1993.
[4] J. R. Nix and A. J. Sierk, J. Madras Universgg0, 38(1987. [16] J. Blocki, F. Brut, and W. J. Swiatecki, Nucl. Phys554, 107
[5] J. R. Nix and A. J. SierkProceedings of the 6th Adriatic (1993.
Conference on Nuclear Physics: Frontiers of Heavy lon Phys{17] J. Blocki, C. Jarzynski, and W. J. Swiatecki, Nucl. Ph4§99,
ics, Dubrovnik, Yogoslavia, 198®&dited by N. Cindrcet al. 486 (1996.
(World Scientific, Singapore, 1990p. 333. [18] J. Blocki, F. Brut, and W. J. Swiatecki, Acta Phys. Pol2g
[6] P. Frdorich and 1. I. Gontchar, Nucl. PhyA563, 326 (1993. 637 (1994.
[7] P. Frdorich, 1. I. Gontchar, and N. D. Mavlitov, Nucl. Phys. [19] J. Blocki, J. Skalski, and W. J. Swiatecki, Nucl. Php&94,
A556, 281 (1993. 137(1995.
[8] Y. Abe, S. Ayik, P.-G. Reinhard, and E. Suraud, Phys. Rep[20] J. Blocki, J. Skalski, and W. J. Swiatecki, Nucl. Ph#618, 1
275, 49 (1996. (1997.
[9] J. Blocki and J. Wilczyski, Acta Phys. Pol. 28, 133(1997). [21] P. Magierski, J. Skalski, and J. Blocki, Phys. Revo&; 1011
[10] S. E. Koonin and J. Randrup, Nucl. Phys289, 475(1977). (1997).
[11] C. Yannouleas, Nucl. Phy#439, 336 (1985. [22] J. Blocki, F. Brut, T. Srokowski, and W. J. Swiatecki, Nucl.

[12] J. J. Griffin and M. Dworzecka, Nucl. Phy&455, 61 (1986. Phys.A545, 511¢(1992.



