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A generalized Gibbs equation for nuclear matter out of equilibrium
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We propose a generalized Gibbs equation for nuclear matter in the presence of a heat flux or a viscous
pressure, by using the formalism of extended irreversible thermodynamics. We study the consequences on the
equations of state, with special emphasis on the compressibility. The results may be useful in the analysis of
nuclear collisions[S0556-28138)05804-X

PACS numbses): 21.65+f, 05.70.Ln, 24.10.Pa, 25.70z

The equations of state are usually defined in equilibrium In 1981, Treineet al.[6] examined this problem from the
states, where thermodynamics has well-known foundationgoint of view of equilibrium statistical mechanics to take into
However, in many situations, the measurements are carriegccount the finite size of nuclei in contrast with the infinite
out in situations rather far from equilibrium. For instance, thesize corresponding to nuclear matter in the thermodynamic
equations of state of nuclear matter are usually checked ilimit. Indeed, for finite nuclei one should take into account
nuclear collisions, which are very far from equilibrium. In surface effects, several asymmetries, and, furthermore, Cou-
such situations, nonequilibrium contributions may modifylombian contributions due to the electrical charge of protons.
the equations of state, in such a way that what is interprete@hus one should make a distinction betwden, the com-
as a given parameter in the equilibrium equation of state ispressibility obtained for a nucleus of massic numBerand
in fact, not the value of such parameter in equilibrium but athe compressibility of nuclear matter, which should be the
value modified by nonequilibrium contributions. limit of K, whenA tends to infinity. This model may explain

Recently, Fai and Danielewicl] have taken into ac- a part of the discrepancies for nuclei with differet
count some nonequilibrium corrections arising in the frame- A different problem arises when one compares the values
work of extended irreversible thermodynami@T) [2—4]  for K obtained from nuclei with a given value & from
in order to outline their possible influence on the dispersiordifferent experimental methods. Again, there is a wide dis-
in the experimental values of nuclear compressibility. Inpersion which cannot be explained by the former static
their analysis, Fai and Danielewicz used for the non-analyses. Since in nuclear collisions nuclear matter is far
equilibrium entropy an expression corresponding to ideafrom equilibrium, it is quite logical to study how non-
gases[5]. Therefore, it is normal to ask how their results equilibrium effects could modify the effective value Kf.
would be modified by using a more suitable generalizedrai and Danielewicf1] have adopted the point of view of

Gibbs equation for nuclear matter. EIT to take account of some dynamical factors not included
One of the most relevant parameters in the equation ah the usual local-equilibrium equations of state.
state for nuclear matter is the compressibility, defined as EIT is a recent thermodynamic theof2—4] which as-
sumes that in nonequilibrium situations the entropy is not
ap equal to the local-equilibrium entropy, i.e., to the local ver-
K=9(%) , (1)  sion of the entropy of equilibrium thermodynamics, but that
T

it is also influenced by some nonequilibrium variables, in
particular the dissipative fluxesuch as heat flux or the
wherep is the pressure angdthe mass density. The numeri- viscous pressurf”). The generalized entropy of EIT per
cal factor is due to historical reasons. The valu&ahay be  unit mass in presence of nonvanishing viscous pressure ten-
obtained experimentally in several ways: from the giantsor P” has the forn{2—4]

monopole resonance, from nuclear collisions, or from the

explosion of supernovae. The corresponding results exhibit a 7

remarkably wide dispersion, as they are typically comprised s(u,v,P") =s¢fU,v) — ——= P":P”, 2
between 165 and 220 MeY1], or between 190 and 240 4npT

MeV [6]. Thus the characteristic uncertainty is of the order

of 30 MeV, i.e., K=190+30MeV [1] or K=210 with % the shear viscosityr, the relaxation time oP” de-
+30 MeV [6]. This does not mean that the uncertainty inscribing viscoelastic effectd, the local-equilibrium absolute
each measurement is so large. For instance, the values otemperature, and.{u, ) the local-equilibrium entropy. By
tained forK by several groups in 1981 wefé] K=213 differentiation of(2) one may obtain generalized equations
+2 MeV (Grenoble, K=231+4 MeV (Oak Ridge, K of state for the nonequilibrium temperatud®r the nonequi-
=222+3 MeV (Orsay, to mention only a few examples. librium pressurer, as we will discuss in more detail below.
Thus the uncertainty in the measurements is in fact much Fai and Danielewicl] proposed to use iftl), instead of
lower than the dispersion in the average values obtained bthe local-equilibrium pressurp, the nonequilibrium pres-
the different groups. suresr, which in the simplest version is relatedpgaas|1-5]
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whereT is given in MeV, 7 in MeV/fm? ¢, \ in ¢/fm?, and
l;{vhere one takes for the reference number densigy
~0.15 fm 3. Note that forT approaching zero. Eq6) and
(7) diverge(see[7] for a detailed discussign

For the corresponding relaxation times of the viscous
pressure and, of the heat flux, Danielewicz founi]

B
m=p+p? s PP, (3 o

with B=17,(45p) L. Furthermore, they assumed that
~(pov) 1, with o the nucleon-nucleon collision cross sec-
tion and v the average thermal speed of the particles, an
n~mv/3c. One then getsr=p—2B8pP":P”". When one
introduces in1) the expressiof3) for 7 instead of the local-
equilibrium pressurg, one gets

o 9 850/ n 1/3 n 38-'-71/2 n

K=9(—) Ko+ —=— P12, (4) _ - o 0
ap . 0 nZTm 12 ) TT No 1+0.04T n +mz n’ (8)

where we have set the Boltzmann constant equal to one, i.e., 310 n\® No 57T Y2 n,
T is measured in energy units rather than in temperature =57z Ny 1+01T n + 1+160T" 2 n ©

units, K is the equilibrium value oK, andPj7, is the pure

shear component d?”. From the results of recent simula- wherer, are expressed in fra/ The second term in the first
tions for the collision Au-Au at 400 MeV/nucleon, one has brackets corresponds to binary collisions amongst nucleons,
the following values for the parameters involvdd]:  whereas the first term corresponds to collisions of nucleons
v (shear rate}0.07c fm™%, p~0.30fm 3, and T~44  with the surface of the nuclei. Fd>6 MeV, the collisions
MeV, with ¢ being the speed of light. The value of the shearamongst nucleons are dominant, while for lower tempera-
viscosity at these values ¢f and T is 7~55 MeV/fn? c. tures the collisions with the surface dominate. A relaxation-
When these values are used and when one takes into accodimbe model has been used by er [8] for the analysis of
P1,= nv, one finds from4) thatK —K,=~20 MeV. ltis thus the transport coefficients of nuclear matter. His results, pre-
seen that the EIT corrections are not negligible, and thereforeious to those obtained by Danielewicz, are not so detailed
it is worthwhile to explore them carefully. as the latter ones.

The expression of the generalized nonequilibrium entropy We may combiné6)—(9) with (5) to give an explicit ex-
taking into account the contribution of the heat figzand of ~ pression for the nonequilibrium entropy. Since the general
the viscous pressure tend®f up to the second order in the expression would be rather cumbersome, we specify the re-
fluxes is[2—4] sults for high temperature, which is the regime in which Fai

and Danielewicz carried out their analysis[i. One has

71 72
S(U,v,0,P") =SeU,v)— 20-9— PY:P”, 126, ng 1.64ng
2npT 4npT s — 102 g g— —— =0 PP,
p np 5 S$=Seq mT3 10° n2 gq-9 mT2 n2 P":P (10
. _ . Here, we study the nonequilibrium corrections to tempera-
)[’\r']'th Tll and)a tht_e _;elaxanont_tlmle (c‘vahe heat ﬂutx gnd th‘? ture and pressure due ®’, and its consequences on the
errEa .c]?n uctivi yf resp/ec |vedy. / efn 0?]9 introduces Incompressibility. As well as Fai and Danielewicd, we spe-
(5) the information for7,/\ and 7,/ for the system at jajize our attention to a system submitted to a viscous pres-

zagtg’morbe ?gioa(pgg'trgggéfﬂggsbgg; E:hheecekr:atéosgcé);st%ure P71, [in (10) we have also given the contributions gf
y - Up OW, EXPress . . for completeness, but we neglect them Refde generalized
fully by comparison with microscopic evaluations of the en'entropy may be written as

tropy for ideal and nonideal gases, dilute polymer solutions,

elastic solids, electromagnetic radiation, and electronic de- 3.28n
vices[2]. Here, we will use it for the first time for nuclear S=Sgq— _2 _g ﬁ, (12)
matter. 4 mTn

Fai and Danielewicf1] used in their analysis the expres- ) ]
sion (5) evaluated for ideal gases. The results would be mor&vhere we have taken into account that in shear fiRfnP”
faithful if one was able to compute them from a more real-= 2P1:P15.
istic model for the entropy of nuclear matter. To do that, one The caloric equation of state for the temperature, i.e.,
needs results for the transport coefficientsind » and for
the relaxation times; andr,. DanielewicZ 7] has obtained le(ﬁ
from a Chapman-Enskog expansion of the Uhlenbeck- Ju
Uehling equation(the quantum version of the Boltzmann
equation the following expressions:

: (12

v,vP1,

may be calculated explicitly if we take into account tllat
=c'dT, with ¢’ the specific heat per unit mass, which is

_1700(n 2+ 22 n 0'7+ 587" given in this limit asc’=(3/2)m~? (recall that we set the
. Ng 1+10°3T2 | ng 1+160T 2’ Boltzmann constant equal to uniThus we find for the non-

(6) equilibrium temperaturé the expression
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0-1=T1 1+ 4.36—22, P2 (13) KoKt 229 v (16)
. EEZ 12|- 0 mplz-

The conceptual difference betwe#hand T has been dis-
cussed in detail if9]. We may assess the relative impor-
tance of these corrections for the collision -AAu analyzed
by Fai and Danielewicz, and we obtain thad !
~1.065T 1. Thus the relative nonequilibrium contribution
to the temperature is of the order of 6.5%, much higher tha
the 0.1% corrections obtained by Jou and Casag\ez]9]
for CO, at 300 K and 0.1 atm and for a heat flux of the order
of 10° Wcm™2,

Furthermore, we may compute the nonequilibrium correc
tions to the pressure from the definition

The numerical coefficient 5.89 of the nonequilibrium correc-
tion is lower than the value 9 in expressi¢f). Our result
corroborates qualitatively the results by Fai and Danielewicz,
but it indicates that the use of a more accurate Gibbs equa-
IIiion is necessary to yield quantitative predictions.

The reader must be warned that the uncertainties in the
nuclear properties such as viscosity and relaxation time are
rather high, and that the details of the flows produced during
the collisions are also uncertain. For instance, Danielewicz
110] and Kadler [11] estimated that quantum corrections to
relaxation effects may be a factor of two. The purpose of the

T [ds present Brief Report is not so much to provide a final, reli-
—=|— . (14 able value to the nonequilibrium corrections, for which a
0 v . .

urPy, consideration of the heat flux would also be necessary, but to

i ] point out that in spite of the fact that Fai and Danielewicz
Note that we have taken into account that the quantity to bggeq in[1] a too simplified model for the nonequilibrium
held constant during the differentiation i#7, rather than  entropy, the order of magnitude of their estimate is corrobo-
P1, itself, because of the extensive character of the formefated in a more detailed model. Nevertheless, for more reli-
[2]. Expression(14) yields 7/ §=p/T. Therefore, from(13)  able quantitative predictions, the Gibbs equations proposed
and (14) we finally obtain in this report should be used, instead of the simplified ideal
gas approximation.
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