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A generalized Gibbs equation for nuclear matter out of equilibrium
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We propose a generalized Gibbs equation for nuclear matter in the presence of a heat flux or a viscous
pressure, by using the formalism of extended irreversible thermodynamics. We study the consequences on the
equations of state, with special emphasis on the compressibility. The results may be useful in the analysis of
nuclear collisions.@S0556-2813~98!05804-X#

PACS number~s!: 21.65.1f, 05.70.Ln, 24.10.Pa, 25.70.2z
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The equations of state are usually defined in equilibri
states, where thermodynamics has well-known foundatio
However, in many situations, the measurements are ca
out in situations rather far from equilibrium. For instance, t
equations of state of nuclear matter are usually checke
nuclear collisions, which are very far from equilibrium.
such situations, nonequilibrium contributions may mod
the equations of state, in such a way that what is interpre
as a given parameter in the equilibrium equation of state
in fact, not the value of such parameter in equilibrium bu
value modified by nonequilibrium contributions.

Recently, Fai and Danielewicz@1# have taken into ac-
count some nonequilibrium corrections arising in the fram
work of extended irreversible thermodynamics~EIT! @2–4#
in order to outline their possible influence on the dispers
in the experimental values of nuclear compressibility.
their analysis, Fai and Danielewicz used for the no
equilibrium entropy an expression corresponding to id
gases@5#. Therefore, it is normal to ask how their resu
would be modified by using a more suitable generaliz
Gibbs equation for nuclear matter.

One of the most relevant parameters in the equation
state for nuclear matter is the compressibility, defined as

K59S ]p

]r D
T

, ~1!

wherep is the pressure andr the mass density. The numer
cal factor is due to historical reasons. The value ofK may be
obtained experimentally in several ways: from the gia
monopole resonance, from nuclear collisions, or from
explosion of supernovae. The corresponding results exhib
remarkably wide dispersion, as they are typically compris
between 165 and 220 MeV@1#, or between 190 and 24
MeV @6#. Thus the characteristic uncertainty is of the ord
of 30 MeV, i.e., K5190630 MeV @1# or K5210
630 MeV @6#. This does not mean that the uncertainty
each measurement is so large. For instance, the values
tained for K by several groups in 1981 were@6# K5213
62 MeV ~Grenoble!, K523164 MeV ~Oak Ridge!, K
522263 MeV ~Orsay!, to mention only a few examples
Thus the uncertainty in the measurements is in fact m
lower than the dispersion in the average values obtained
the different groups.
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In 1981, Treineret al. @6# examined this problem from the
point of view of equilibrium statistical mechanics to take in
account the finite size of nuclei in contrast with the infin
size corresponding to nuclear matter in the thermodyna
limit. Indeed, for finite nuclei one should take into accou
surface effects, several asymmetries, and, furthermore, C
lombian contributions due to the electrical charge of proto
Thus one should make a distinction betweenKA , the com-
pressibility obtained for a nucleus of massic numberA, and
the compressibilityK of nuclear matter, which should be th
limit of KA whenA tends to infinity. This model may explain
a part of the discrepancies for nuclei with differentA.

A different problem arises when one compares the val
for K obtained from nuclei with a given value ofA from
different experimental methods. Again, there is a wide d
persion which cannot be explained by the former sta
analyses. Since in nuclear collisions nuclear matter is
from equilibrium, it is quite logical to study how non
equilibrium effects could modify the effective value ofK.
Fai and Danielewicz@1# have adopted the point of view o
EIT to take account of some dynamical factors not includ
in the usual local-equilibrium equations of state.

EIT is a recent thermodynamic theory@2–4# which as-
sumes that in nonequilibrium situations the entropy is
equal to the local-equilibrium entropy, i.e., to the local ve
sion of the entropy of equilibrium thermodynamics, but th
it is also influenced by some nonequilibrium variables,
particular the dissipative fluxes~such as heat fluxq or the
viscous pressurePn!. The generalized entropys of EIT per
unit mass in presence of nonvanishing viscous pressure
sor Pn has the form@2–4#

s~u,n,Pn!5seq~u,n!2
t2

4hrT
Pn:Pn, ~2!

with h the shear viscosity,t2 the relaxation time ofPn de-
scribing viscoelastic effects,T the local-equilibrium absolute
temperature, andseq(u,n) the local-equilibrium entropy. By
differentiation of ~2! one may obtain generalized equatio
of state for the nonequilibrium temperatureu or the nonequi-
librium pressurep, as we will discuss in more detail below

Fai and Danielewicz@1# proposed to use in~1!, instead of
the local-equilibrium pressurep, the nonequilibrium pres-
surep, which in the simplest version is related top as@1–5#
2068 © 1998 The American Physical Society
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p5p1r2
]b

]r
Pn:Pn, ~3!

with b5t2(4hr)21. Furthermore, they assumed thatt2
'(rsn)21, with s the nucleon-nucleon collision cross se
tion and n the average thermal speed of the particles, a
h'mn/3s. One then getsp5p22brPn:Pn. When one
introduces in~1! the expression~3! for p instead of the local-
equilibrium pressurep, one gets

K59S ]p

]r D
T

5K01
9

n2Tm
P12

n2, ~4!

where we have set the Boltzmann constant equal to one,
T is measured in energy units rather than in tempera
units, K0 is the equilibrium value ofK, andP12

n is the pure
shear component ofPn. From the results of recent simula
tions for the collision Au1Au at 400 MeV/nucleon, one ha
the following values for the parameters involved@1#:
g (shear rate)'0.07c fm21, r'0.30 fm23, and T'44
MeV, with c being the speed of light. The value of the she
viscosity at these values ofr and T is h'55 MeV/fm2 c.
When these values are used and when one takes into ac
P12

n 5hg, one finds from~4! thatK2K0'20 MeV. It is thus
seen that the EIT corrections are not negligible, and there
it is worthwhile to explore them carefully.

The expression of the generalized nonequilibrium entro
taking into account the contribution of the heat fluxq and of
the viscous pressure tensorPn up to the second order in th
fluxes is@2–4#

s~u,n,q,Pn!5seq~u,n!2
t1

2lrT2 q•q2
t2

4hrT
Pn:Pn,

~5!

with t1 and l the relaxation time of the heat flux and th
thermal conductivity respectively. When one introduces
~5! the information fort1 /l and t2 /h for the system at
hand, one has explicit expressions for the entropy of
system. Up to now, expression~5! has been checked succes
fully by comparison with microscopic evaluations of the e
tropy for ideal and nonideal gases, dilute polymer solutio
elastic solids, electromagnetic radiation, and electronic
vices @2#. Here, we will use it for the first time for nuclea
matter.

Fai and Danielewicz@1# used in their analysis the expre
sion ~5! evaluated for ideal gases. The results would be m
faithful if one was able to compute them from a more re
istic model for the entropy of nuclear matter. To do that, o
needs results for the transport coefficientsl and h and for
the relaxation timest1 andt2 . Danielewicz@7# has obtained
from a Chapman-Enskog expansion of the Uhlenbe
Uehling equation~the quantum version of the Boltzman
equation! the following expressions:

h5
1700

T2 S n

n0
D 2

1
22

111023T2 S n

n0
D 0.7

1
5.8T1/2

11160T22 ,

~6!
d

e.,
re

r

unt

re

y

n

e
-
-
s,
e-

re
-
e

-

l5
0.15

T S n

n0
D 1.4

1
0.02

111026~T4/7! S n

n0
D 0.4

1
0.0225T1/2

11160T22 ,

~7!

whereT is given in MeV,h in MeV/fm2 c, l in c/fm2, and
where one takes for the reference number densityn0
'0.15 fm23. Note that forT approaching zero. Eqs.~6! and
~7! diverge~see@7# for a detailed discussion!.

For the corresponding relaxation timest2 of the viscous
pressure andt1 of the heat flux, Danielewicz found@7#

t25
850

T2 S n

n0
D 1/3F110.04T

n0

n G1
38T21/2

11160T22

n0

n
, ~8!

t15
310

T2 S n

n0
D 0.4F110.1T

n0

n G1
57T21/2

11160T22

n0

n
, ~9!

wheret i are expressed in fm/c. The second term in the firs
brackets corresponds to binary collisions amongst nucle
whereas the first term corresponds to collisions of nucle
with the surface of the nuclei. ForT.6 MeV, the collisions
amongst nucleons are dominant, while for lower tempe
tures the collisions with the surface dominate. A relaxatio
time model has been used by Ko¨hler @8# for the analysis of
the transport coefficients of nuclear matter. His results, p
vious to those obtained by Danielewicz, are not so deta
as the latter ones.

We may combine~6!–~9! with ~5! to give an explicit ex-
pression for the nonequilibrium entropy. Since the gene
expression would be rather cumbersome, we specify the
sults for high temperature, which is the regime in which F
and Danielewicz carried out their analysis in@1#. One has

s5seq2
1.26

mT3 103
n0

n2 q•q2
1.64

mT2

n0

n2 Pn:Pn. ~10!

Here, we study the nonequilibrium corrections to tempe
ture and pressure due toPn, and its consequences on th
compressibility. As well as Fai and Danielewicz@1#, we spe-
cialize our attention to a system submitted to a viscous p
sureP12

n @in ~10! we have also given the contributions ofq
for completeness, but we neglect them here#. The generalized
entropy may be written as

s5seq2
3.28

mT2

n0

n2 P12
n2, ~11!

where we have taken into account that in shear flowPn:Pn

52P12
n P12

n .
The caloric equation of state for the temperature, i.e.,

u215S ]s

]uD
n,nP12

, ~12!

may be calculated explicitly if we take into account thatdu
5c8dT, with c8 the specific heat per unit mass, which
given in this limit asc85(3/2)m21 ~recall that we set the
Boltzmann constant equal to unit!. Thus we find for the non-
equilibrium temperatureu the expression
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u215T21F114.36
n0

n2T2 P12
n2G . ~13!

The conceptual difference betweenu and T has been dis-
cussed in detail in@9#. We may assess the relative impo
tance of these corrections for the collision Au1Au analyzed
by Fai and Danielewicz, and we obtain thatu21

'1.065T21. Thus the relative nonequilibrium contributio
to the temperature is of the order of 6.5%, much higher t
the 0.1% corrections obtained by Jou and Casas-Va´zquez@9#
for CO2 at 300 K and 0.1 atm and for a heat flux of the ord
of 105 W cm22.

Furthermore, we may compute the nonequilibrium corr
tions to the pressure from the definition

p

u
5S ]s

]n D
u,nP12

. ~14!

Note that we have taken into account that the quantity to
held constant during the differentiation isnP12

n rather than
P12

n itself, because of the extensive character of the form
@2#. Expression~14! yields p/u5p/T. Therefore, from~13!
and ~14! we finally obtain

p5
u

T
p5pF114.36

n0

n2T2 P12
n2G21

. ~15!

When~15! is introduced in~4! and when we have taken int
account the valuen050.15 fm23 used in expressions~6!–~9!
we obtain
s

d

n

r

-

e

r

K5K01
5.89

mn2T
p12

n2. ~16!

The numerical coefficient 5.89 of the nonequilibrium corre
tion is lower than the value 9 in expression~4!. Our result
corroborates qualitatively the results by Fai and Danielew
but it indicates that the use of a more accurate Gibbs eq
tion is necessary to yield quantitative predictions.

The reader must be warned that the uncertainties in
nuclear properties such as viscosity and relaxation time
rather high, and that the details of the flows produced dur
the collisions are also uncertain. For instance, Danielew
@10# and Köhler @11# estimated that quantum corrections
relaxation effects may be a factor of two. The purpose of
present Brief Report is not so much to provide a final, re
able value to the nonequilibrium corrections, for which
consideration of the heat flux would also be necessary, bu
point out that in spite of the fact that Fai and Danielewi
used in @1# a too simplified model for the nonequilibrium
entropy, the order of magnitude of their estimate is corro
rated in a more detailed model. Nevertheless, for more r
able quantitative predictions, the Gibbs equations propo
in this report should be used, instead of the simplified id
gas approximation.
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