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Analytical investigation for multiplicity difference correlators under quark-gluon
plasma phase transition
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It is suggested that the study of multiplicity difference correlators between two well-separated bins in
high-energy heavy-ion collisions can be used as a means to detect evidence of a quark-hadron phase transition.
Analytical expressions for the scaled factorial moments of multiplicity difference distribution are obtained for

small bin size with mean multiplicitys̄<0.3 within Ginzburg-Landau description. It is shown that the scaling
behaviors between the moments are still valid, though the behaviors of the moments with respect to the bin size
are completely different from the so-called intermittency patterns. A universal exponentg is given to describe
the dynamical fluctuations in the phase transition.@S0556-2813~98!01404-6#

PACS number~s!: 13.85.Hd, 05.70.Fh, 12.38.Mh
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One of the primary motivations of the study of hig
energy heavy-ion collisions is to investigate the properties
a quark-gluon system at extremely high temperature
high density. Such a system may be in the state of qu
gluon-plasma~QGP!, and with expanding and cooling th
system will undergo a quark-hadron phase transition and
out to be hadrons detected in experiments. One of the th
retical aims is to find a signal about the phase transition.
is well known for a long time, fluctuations are large for st
tistical systems near their critical points. Thus the study
fluctuations in the process might reveal some features for
phase transition@1,2#. Monte Carlo simulations@3# on inter-
mittency @4# without phase transition forpp collisions @5#
show quantitatively different results on multiplicity fluctua
tions from theoretical predictions with the onset of pha
transition@2#. These different results stimulated a lot of th
oretical works on multiplicity fluctuations with phase trans
tion of second-order@2,6# and first-order@7,8# within the
Ginzburg-Landau model which is suitable for the study
phase transition for macroscopic systems. Most of th
works give remarkable scaling behaviors betweenFq and
F2, and there seems to exist a universal exponentn @2,6,8#. It
is suggested that the exponentn can be used as a usef
diagnostic tool to detect the formation of QGP. In@7# ln Fq
are expanded as power series ofd1/3, and it is shown that the
coefficient of thed1/3 term can be used as a criterion for th
onset and the order of the phase transition. All those wo
show the violation of intermittency patterns in the pha
transition.

It is known for a long time that the investigation of mu
tiplicity fluctuations is very different in heavy-ion collisions
though the power-law dependence of lnFq on d, Fq}d2wq,
has been found ubiquitous in hadronic and leptonic proce
@9#. The main differences between heavy-ion physics a
hadronic and leptonic ones on multiplicity fluctuations we
noticed earlier in Ref.@10#. In Ref. @11# an alternative way
was proposed to study the fluctuations by means of facto
moments of the multiplicity difference~FMMD! between
two well-separated bins. This alternative is a hybrid of t
usual factorial correlators@4# and wavelets@12# becauseWjk
in Haar wavelet analysis is just the difference of multiplic
570556-2813/98/57~4!/2049~4!/$15.00
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ties in two nearest bins. Present discussions, of course,
not be limited in the nearest bins. Let the two bins, each
size d2 and separated byD, have multiplicitiesn1 and n2,
and define their multiplicity differencem5un12n2u. Scaled
FMMD are defined as

Fq5 f q / f 1
q , f q5(

m
m~m21!•••~m2q11!Qm , ~1!

with Qm the distribution of multiplicity difference which
may be dependent onD,d and details of the process. Mo
ments defined above are similar to but not the same as
Bialas-Peschanski correlators@4# Fq1q2

, for Fq may depend

on bothD andd while Fq1q2
depends only onD.

In Ref. @11#, Fq are numerically studied within the
Ginzburg-Landau model. The scaling behaviors betweenFq

andF2, Fq}F2
bq, are shown withbq5(q21)g and a univer-

sal exponentg51.099.
In this paper,Fq are studied analytically for very sma

bin sized. Then the dynamical fluctuation componentsFq
(dyn)

of FMMD are defined. It is shown that both lnFq and
ln Fq

(dyn) increase linearly with the bin sized whend is very
small, completely different from the usual intermittency b
haviors of lnFq which increase with the decrease of bin siz
But the scaling laws betweenFq andF2, and betweenFq

(dyn)

andF2
(dyn) are still valid, although the correspondingbq and

bq
(dyn) are different. A universal exponentg for bq

(dyn) is
given which has no dependence on any parameter in
model and is different from that in@11#.

As a starting point, let us first discuss the trivial and si
plest case. Suppose that the two bins considered are
separated so that there are no correlations between them
the mean multiplicities in each bin bes1 ,s2, respectively. If
there is no dynamical reason, the multiplicity distribution f
each bin is a Poisson one

Pni
~si !5

si
ni

ni !
exp~2si ! ~ i 51,2!. ~2!

From this distribution, one can deduce the multiplicity d
ference distribution as
2049 © 1998 The American Physical Society
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Pm~s1 ,s2!5coshS m

2
ln

s1

s2
D I m~2As1s2!e2s12s2~22dm0!,

~3!

whereI m(z) is the modified Bessel function of orderm,

I m~z!5 (
k50

`
~z/2!2k1m

k! ~k1m!!
.

FMMD for pure statistical fluctuations are

f q
~stat!5 (

m>q
m~m21!•••~m2q11!Pm~s1 ,s2!. ~4!

For simplicity, let us discuss the case withs15s2. This
condition can always be satisfied if one chooses the two
properly. Since onlym>q contribute tof q , the summation
over m in the last equation can be extended tom50. This
summation converges very slowly becauseI m(2s) decreases
with m approximately assm/m! for largem and smalls, but
the product m(m21)•••(m2q11) increases with m
quickly. So contributions from allm>q must be taken into
account. This will cause some difficulties in numerical c
culations if one starts directly from the definition of the m
ments. In this paper, we will alternatively sum overm ana-
lytically, and then do numerical calculations from the fin
expression. In this approach, one can control the preci
more easily in calculation. To complete the summation, o
can introduce a generating function

G~x,s!52e22s (
m50

`

xmI m~2s!, Gq~x,s!5
dqG~x,s!

dxq . ~5!

With this function, f q
(stat) can be rewritten as

f q
~stat!5Gq~1,s![Gq~s!. ~6!

Direct algebra shows that

G~x,s!52e~x22!sFa0
01(

i 51

`

ai
0 di

dxi

12exp~2xs!

x G ~7!

with ai
05(21)is2i /( i !) 2 for i 50,1,..., and that

f q
~stat!52e2sFa0

q1(
i 51

`

ai
q(

j 5 i

`
~2s! j 11

~ j 11!~ j 2 i !! G , ~8!

whereai
q can be calculated by recurrence relation fromai

0 ,
a0

q5sa0
q21 , a1

q5sa1
q21, ai

q5sai
q211ai 21

q21 ( i>2). Then one
can get two specially important coefficientsa0

q5sq,
a1

q52sq12. The most important advantage of such calcu
tions is that these formalisms facilitate analytical calculatio
for quantities in the range of very small bin size in which w
are now interested. We will discuss it later in this paper.

Now, we begin to discuss the FMMD in second-ord
quark-hadron phase transition. We use the Ginzburg-Lan
description to specify the probability thats hadrons are cre
ated in the two-dimensional, such asdhdw, aread2. In this
description, the distribution of multiplicity is no longer
Poisson one and that for multiplicity difference is given
@11#

qQm~d,t!5Z21E DfPm~d2tufu2!e2F[f] , ~9!
s

-
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n
e

-
s

r
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wheret is an indication of lifetime of the whole parton sys
tem, Df5pdufu2, Z5*Dfe2F[f] , and the free energy
F@f#5*d2 dz@aufu21bufu41cu]f/]zu2#.

As has been pointed out in@2,6# that for small bin the
gradient term inF@f# does not have any significant effect o
the multiplicity fluctuation, so one can setc50. This setting
means thatf can be regarded as a constant over the aread2.
Of course, this is approximately true only whend2 is very
small.

SubstitutingQm(d,t) into Eq. ~1!, one gets

f q5E
0

`

duGq~txu!exu2u2Y E
0

`

duexu2u2
~10!

with x5uaud/b related to the bin widthd. Define@6#

Jq~a!5E
0

`

duuqeau2u2
~11!

which satisfies recurrence relation Jq(a)
5(a/2)Jq21(a)1@(q21)/2#Jq22(a) and can be di-
rectly integrated for q50 and 1, J0(a)

5(Ap/2)ea2/4@11erf(a/2)#, J1(a)5 1
2 1(a/2)J0(a). With

Jq(a), f q can be expressed as

f q5J0
21~x!(

i 5q

`

bi
q~tx! iJi@2~t21!x# ~12!

with bi
q constants,bq

q51, especially. Notice that the secon
nonzerobi

q for fixed q is for i 5q14. One can check this
from the expression forG(x,s) and the recurrence relation
for ai

q .
The scaled FMMDFq defined do contain contribution

from statistical fluctuations, contrary to the usual scaled f
torial ones. As a way to seek for the dynamical fluctuatio
one can define the dynamical scaled FMMD as

Fq
~dyn!5

Fq

Fq
~stat!

. ~13!

For the definition to make sense, one should ensure tha
mean multiplicity is the same for all calculations of the m
ments concerned. In the Ginzburg-Landau model, the m
multiplicity is s̄5txJ1(x)/J0(x). Then deviations ofFq

(dyn)

from one should indicate the existence of dynamical fluct
tions. The three classes of moments defined in this paper
all be calculated directly.

Up to now, all moments are expressed as infinite su
and are exact within the model. The infinite summation
Eq. ~12! will hinder us from an explicit formalism for inter-
esting quantities. Now we focus on the range of very sm
bin size. As has been shown, the smallness of the bin sizd
is for the need of self-consistence of the Ginzburg-Land
model adopted in this paper, otherwise the gradient te
plays a role and cannot be set to zero. Experimentally,
bin size d can be chosen very small indeed. For examp
experimental data@13# show that the number of total pro
duced charged particles is about 70 within a rapidity range
about 7 in 200A GeV S1Em collisions. The rapidity resolu
tion in EMU01 experiments can be high, up to 0.01. In
two-dimensional analysis as in this paper, the aread2 con-
sidered can be so small that in that area the mean multipli
satisfiess!1. The mean multiplicity in a single bin can sti
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be much less than 1 even for Pb-Pb collisions in which
number of produced particles can reach 1500 or more. G
erally, if the multiplicity density is so low thatr!1/r , with r
the highest resolution achievable in the analysis, the co
tion s̄!1 can be satisfied. Because of such experime
facts, we can discuss only the cases withs!1 in the follow-
ing, and our results can be checked directly in experime
At such low mean multiplicity it is still useful to study mul
tiplicity difference correlators ats̄, since the correlators ca
be used experimentally to study the correlations between
ferent bins just as the usual correlators@4#, whereas usua
scaled factorial moments for single bins are very effect
for the study of dynamical fluctuations inside single bin
One can see that the condition of low mean multiplicity w
enable us to reach simple expressions for all the momen

For the pure statistical fluctuation case, terms except
leading term in Eq.~8! can be neglected, and one can eas
get

ln Fq
~stat!5~q21!~ s̄2 ln 2!. ~14!

One can check that the relative contribution from all no
leading terms is about 1% fors̄50.3. From Eqs.~13! and
~14!, one can see that lnFq

(dyn) can be obtained by a one-ste

subtraction from lnFq if the mean multiplicitys̄ is known.
For the moments with the onset of phase transition, it

little complicated because of the integration in Eq.~10! over
the whole range ofs. But, one can see that the leading te
in Gq(s) plays a dominant role. One needs to notice that
integrating un term is associated with the product of tw
factors (tx)n and exp(2t8xu2u2), t85t21. For smallxt
the first factor strongly suppresses the contribution.
largerxt the term exp(2t8xu) overdepresses the contributio
from the former. In fact, numerical results show th
(xt)4Jq14(2t8x)/Jq(2t8x) is always of the order 1024 for
xt<0.5, corresponding tos̄.0.3 for t510.0, so that the
results will not be affected practically if only the leadin
terms are kept for the calculation of the moments in smax
region. Then to a good approximation,

ln Fq5~q21!ln
J0~x!

2
1 ln Jq~2t8x!2q ln J1~2t8x!,

~15!

FIG. 1. Dependences of lnFq and lnFq
(dyn) on the bin widthx

for t510.0 andt52.0.
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ln Fq
~dyn!5~q21!ln

J0~x!

exp~ s̄!
1 ln Jq~2t8x!

2q ln J1~2t8x!. ~16!

The behaviors of lnFq and lnFq
(dyn) as functions ofx

from 0.005 to 0.05 are shown in Fig. 1 fort52.0 and 10.0.
The x range is chosen from the requirements̄<0.3 for
t510.0. One can see that both lnFq and lnFq

(dyn) have linear
dependence on bin sizex. This dependence is complete
different from the usual intermittency behaviors. This res
can also be seen directly from last expressions for the
ments if one substitutesJq(a) with 1

2 @G„(q11)/2…

1aG„(q12)/2…# for very smalla. In small x approxima-
tion,

ln Fq5const1F ~q21!
G~1!

G~ 1
2 !

2t8S G~q12/2!

G~q11/2!
2q

G~ 3
2 !

G~1!D Gx

1O~x2!, ~17!

ln Fq
~dyn!5const1t8Fq

G~ 3
2 !

G~1!
2

G~q12/2!

G~q11/2!
2~q21!

G~1!

G~ 1
2 !

Gx

1O~x2!. ~18!

Numerical results show nontrivial scaling behaviors f
ln Fq vs lnF2 and lnFq

(dyn) vs lnF2
(dyn) in Fig. 2, which

follow trivially from Fig. 1. Though lnFq have different
ranges of values for differentt, the scaling behaviors seem
independent of the lifetime of the system. For our choice
x range, the range of lnF2

(dyn) is quite small. Considering the
scaling between lnFq vs lnF2 with wider range ofx shown
in @11# and Eq.~14! in this paper, one can expect the scali
between lnFq

(dyn) and lnF2
(dyn) is still true for a wider range

of x and thus of lnF2
(dyn) . One can see weak dependence

t for bq from last equations.bq
(dyn) do not depend on any

parameter in the model because thet dependencies in the

FIG. 2. Scaling behaviors of lnFq , ln Fq
(dyn) vs lnF2 , ln F2

(dyn)

for the same choices of lifetime as in Fig. 1.
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local slopes are cancelled miraculously with each other in
smallx limit. More interestingly,bq

(dyn) can be well fitted by

bq
~dyn!5~q21!g ~19!

with g51.3424, as shown in Fig. 3. Butbq do not obey the
same scaling law, as shown in Fig. 3 for the case w
t510.0. The universal exponentg is different from that in
@11#. But the difference does not mean any contradict
between the present paper and@11#, because they correspon
to different quantities. The difference also comes from
different x regions discussed sincebq depend on the fitting
range. In this paper, the exponentg is completely determined
by the general features but does not depend on any param
of the Ginzburg-Landau model used to describe the ph
transition. The exponentg given here is very close to th
exponentn given in former studies on multiplicity fluctua
tions for second-order phase transition. In fact, from E
~4.4! in the first paper in@6# the usual scaled factorial mo
ments lnFq can be expressed, in smalla or smallx limit, as

FIG. 3. Scaling exponent lnbq vs ln (q21).
e

h

n

e
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se

.

ln Fq5const12aFG~q12/2!

G~q11/2!
2q

G~ 3
2 !

G~1!
1~q21!

G~1!

G~ 1
2 !

G
1O~a2!.

Thusbq for the scaling betweenFq and between_Fq is the
same in the smallx limit; so areg andn. The slight differ-
ence between them comes from the different regions c
cerned. As shown in Fig. 3 of the first paper in@6#, bq take
minima ata[(x/2)0.5.1 and increase with the decrease
a. Our result corresponds toa.0. Physically, since bothn
and g describe dynamical fluctuations in small bins in t
same phase transition, they should be equal in the smax
limit, though they correspond to different quantities. For e
periments withs̄ in a single bin a little larger than 0.3 th
experimentally obtainedg should be close to but less tha
1.3424. Thus if experiments observe a scaling exponeng
about 1.34 in a high resolution analysis, the onset o
second-order quark-hadron phase transition can be
nounced.

It should be pointed out that even without dropping o
nonleading terms, the exponentg in this paper will not be
changed, because all those terms are related to higher o
of x and have no contribution tog which is connected with
properties of the moments in the limitx→0. In this sense,
the exponentg given here is exact and truly universal.

In summary, scaled FMMD are studied analytica
within the Ginzburg-Landau model in a kinetical region wi
mean multiplicity in a single bin less than 0.3 for secon
order quark-hadron phase transition. The dynamical fluct
tions in FMMD are extracted, which give the same physi
contents as the usual scaled factorial moments. Scaling
haviors between scaled FMMD are shown, and a truly u
versal exponent is given.
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