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It is suggested that the study of multiplicity difference correlators between two well-separated bins in
high-energy heavy-ion collisions can be used as a means to detect evidence of a quark-hadron phase transition.
Analytical expressions for the scaled factorial moments of multiplicity difference distribution are obtained for
small bin size with mean multiplicit§$ 0.3 within Ginzburg-Landau description. It is shown that the scaling
behaviors between the moments are still valid, though the behaviors of the moments with respect to the bin size
are completely different from the so-called intermittency patterns. A universal expgriemfiven to describe
the dynamical fluctuations in the phase transiti®0556-28138)01404-§

PACS numbgs): 13.85.Hd, 05.70.Fh, 12.38.Mh

One of the primary motivations of the study of high- ties in two nearest bins. Present discussions, of course, will
energy heavy-ion collisions is to investigate the properties ofiot be limited in the nearest bins. Let the two bins, each of
a quark-gluon system at extremely high temperature andize 6% and separated by, have multiplicitiesn; andn,
high density. Such a system may be in the state of quarkand define their multiplicity differencen=|n;—n,|. Scaled
gluon-plasma(QGP, and with expanding and cooling the FMMD are defined as
system will undergo a quark-hadron phase transition and turn
out to be hadrons detected in experiments. One of the theo-  Fq=fo/f], f=2> m(m—1)---(M—q+1)Qp, (1)
retical aims is to find a signal about the phase transition. As m
is well known for a long time, fluctuations are large for sta-with Q,, the distribution of multiplicity difference which
tistical systems near their critical points. Thus the study ofmay be dependent of,d and details of the process. Mo-
fluctuations in the process might reveal some features for theents defined above are similar to but not the same as the
phase transitiof1,2]. Monte Carlo simulation§3] on inter-  Bialas-Peschanski correlatdi] Fy o, for 74 may depend
mittency [4]_W|Fhout p_hase transition fopp c_oII_ls_lons [5] on bothA and & while F . depends only om.
show quantitatively different results on multiplicity fluctua- 12 . . -
tions from theoretical predictions with the onset of phase .In Ref. [11], 7, are numencglly stud|gd within_the
transition[2]. These different results stimulated a lot of the- Ginzburg-Landau model. Thg scaling behaviors bet\{\lé@n
oretical works on multiplicity fluctuations with phase transi- andF2, fq“fgq' are shown withB,=(q—1)” and a univer-
tion of second-ordef2,6] and first-order{7,8] within the  sal exponenty=1.099.

Ginzburg-Landau model which is suitable for the study of In this paper, 7, are studied analytically for very small
phase transition for macroscopic systems. Most of thesbin sizes. Then the dynamical fluctuation componeﬁ@y“)
works give remarkable scaling behaviors betwégnand of FMMD are defined. It is shown that both Jf, and
F,, and there seems to exist a universal expond26,8. It In 7M™ increase linearly with the bin siz&when s is very

is suggested that the exponemtcan be used as a useful small, completely different from the usual intermittency be-
diagnostic tool to detect the formation of QGP.[IA InF,  haviors of InF, which increase with the decrease of bin size.
are expanded as power seriessf, and it is shown that the  But the scaling laws betweef, and F,, and betweerF(®™
coefficient of thes® term can be used as a criterion for the gng FO are still valid, although the correspondipigqand
onset and the order of the phase transition. All those Work%(dyn) are different. A universal exponent for Bédyn) is

. . . . . q
show the violation of intermittency patterns in the phasegiven which has no dependence on any parameter in the

”alns’_'“fl’(”- o lona fime that the investiaation of my. M0€! and is different from that if1.1).
. I't IS ﬂnown or a long tm:j_efft at the anestlgatmn“(_) MUl As a starting point, let us first discuss the trivial and sim-
tiplicity fluctuations is very ditferent in heavy-ion collisions, plest case. Suppose that the two bins considered are well

though the power-!avx{ dep(_andence QF(!mn S, Fqc,’cﬁwq’ separated so that there are no correlations between them. Let
has been found ubiquitous in hadronic and leptonic processsﬁe mean multiplicities in each bin I ,s,, respectively. If

[9] Th? main d|ffer_ences between_ h_e_avy-lon phy3|cs aNGhere is no dynamical reason, the multiplicity distribution for
hadronic and leptonic ones on multiplicity fluctuations Wereaach bin is a Poisson one

noticed earlier in Ref[10]. In Ref.[11] an alternative way
was proposed to study the fluctuations by means of factorial i
moments of the multiplicity differencéFMMD) between Pn(si)=—rexp—s) (i=1.2). 2
two well-separated bins. This alternative is a hybrid of the a

usual factorial correlatorigl] and wavelet$12] becausén;, From this distribution, one can deduce the multiplicity dif-
in Haar wavelet analysis is just the difference of multiplici- ference distribution as

N
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m s, wherer is an indication of lifetime of the whole parton sys-
Pm(sl,sz)zcosl{ﬁ In S—)Im(2\/slsz)e‘sl‘s2(2—5m0), tem, Dop=md|p|?, Z=[Dgpe ¥ and the free energy
2 3) FL#1=1 52 dZa| #|*+b|¢|*+clag/9z|?].
As has been pointed out ir2,6] that for small bin the

wherel ,(2) is the modified Bessel function of order, gradient term irfF[ ¢ ] does not have any significant effect on
(2/2)%+m the multiplicity fluctuation, so one can set 0. This setting
Im(2)= > Kk means thatp can be regarded as a constant over the &fea
o kI (k+m)! Of course, this is approximately true only whéf is very
FMMD for pure statistical fluctuations are small.

SubstitutingQ,,( 4, 7) into Eq. (1), one gets
fS@=> m(m—1)---(Mm—q+1)Py(s;,5,). (4) = ”
T i me fqu dqu(Txu)eX“L‘z/ f due ¥ (10)
0 0
For simplicity, let us discuss the case wih=s,. This
condition can always be satisfied if one chooses the two bingith x=|a|5/b related to the bin widths. Define[6]

properly. Since onlyn=q contribute tof,, the summation o )

overm in the last equation can be extendednte-0. This Jq(a)=f duule®' ! (11
summation converges very slowly becaligé2s) decreases 0

with m approximately as™/m! for large m and smalls, but  which satisfies recurrence relation  Jq(a)
the product m(m—1)---(m—q+1) increases withm =(al2)g-1(a)+[(q—1)/2]3q_»(«) and can be di-

quickly. So contributions from aln=q must be taken into rectly integrated for g=0 and 1, Jy(a)
account. This will cause some difficulties in numerical Ca|'=(\/;/Z)e“2’4[1+erf(a/2)], Ji(@) =1+ (al2)dy(@). With
culations if one starts directly from the definition of the mo- Jo(@), f, can be expressed as

ments. In this paper, we will alternatively sum ovarana- 47" 9
lytically, and then do numerical calculations from the final

[’

—3-1 G )i I — (—
expression. In this approach, one can control the precision fa=Jo (X)izzq bi(m%) il = (7= 1)x] (12
more easily in calculation. To complete the summation, one . .
can introduce a generating function with bi! constantshg=1, especially. Notice that the second

nonzerob{ for fixed q is for i=q+4. One can check this

- diG(x,s i i
G(x,s)=2e‘252 XM 1(25), Gg(X,5)= (x,s) 5 from the expression fo&(x,s) and the recurrence relations
m=0

dx? for afl.
The scaled FMMDF, defined do contain contributions
With this function,fffta‘) can be rewritten as from statistical fluctuations, contrary to the usual scaled fac-
(stah _ B torial ones. As a way to seek for the dynamical fluctuations,
fq =Gq(18)=Gq(s). (6) one can define the dynamical scaled FMMD as
Direct algebra shows that ey _ Fy 13
o di 1— i q ];(stat; '
_ -2)s| 40 0 exp(—xs) q
G(x,s)=2e a0+2 g ——| (D o
=1 ' dx X For the definition to make sense, one should ensure that the

o oD o mean multiplicity is the same for all calculations of the mo-

with a;=(—1)'s/(i!)* fori=0,1,..., and that ments concerned. In the Ginzburg-Landau model, the mean
2 (—g)itt multiplicity is s=7xJ;(x)/Jo(x). Then deviations ofF{"

a8+2 aﬁE m ) (8)  from one should indicate the existence of dynamical fluctua-
=t = J=08 tions. The three classes of moments defined in this paper can
wherea can be calculated by recurrence relation frafy  all be calculated directly. o
al=sal ! al=sal ! a¥=sal '+a’%"}! (i=2). Then one Up to now, all moments are expressed as infinite sums
can get two specially important coefficientad=s?, and are exact within the model. T_h(_a |nf|n|te' summation in
ad=—s9*2, The most important advantage of such calcula-Eq' (12) will hinder us from an explicit formalism for inter-

tions is that these formalisms facilitate analytical calcuIationsgisr:'Zigzgu:gt;;['aess'bglngsvr\]liv\fl?lcl:ﬁ:gﬁ:gﬁnfsnsgif?;g%% ;22"
for quantities in the range of very small bin size in which Weis for thé need of self—consisitence of the Ginzburg-Landau
are now interested. We will discuss it later in this paper. g

Now, we begin to discuss the FMMD in second-ordermOdel adopted in this paper, otherwise the gradient term

guark-hadron phase transition. We use the Ginzburg-Land ulays a role and cannot be set to zero. Experimentally, the

description to specify the probability thathadrons are cre- In size & can be chosen very small indeed. For example,
ated in the two-dimensional, such 43¢, aread®. In this experimental dat@13] show that the number of total pro-

description, the distribution of multiplicity is no longer a duced charged particles is about 70 within a rapidity range of

; T L about 7 in 208\ GeV S+Em collisions. The rapidity resolu-
[Plc;]sson one and that for multiplicity difference is given bytion in EMUO1 experiments can be high. up to 0.01. In a

two-dimensional analysis as in this paper, the aféaon-
o1 5 2 A—F[ 4] sidered can be so small that in that area the mean multiplicity
4Qm(6,7)=2 f DgP(°74]%)e ' ©) satisfiess<1. The mean multiplicity in a single bin can still

fgstal): 27
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FIG. 1. Dependences of I, and InF®" on the bin widthx c 5F g:é
for 7=10.0 andr=2.0. b q=5
25 q=4
L . . r q=3
be much less than 1 even for Pb-Pb collisions in which the —— e e
0.45 0.455 0.46 0.465

number of produced particles can reach 1500 or more. Gen- )
erally, if the multiplicity density is so low thgi<<1/r, with r _ _ In F . .
the highest resolution achievable in the analysis, the condi- FIG. 2. Scaling behaviors of I, , |nfgyn) vs In 7y, In F&
tion s<1 can be satisfied. Because of such experimentdP" "€ same choices of lifetime as in Fig. 1.

facts, we can discuss only the cases withl in the follow-

ing, and our results can be checked directly in experiments. Jo(X) )

Atgsuch low mean multiplicity it is still usefu)I/to stuzy mul- In 7= (a=1)In ex(s) +In Jg(—7'x)

tiplicity difference correlators as, since the correlators can

be used experimentally to study the correlations between dif- —q In Jy(—=7'x). (16)
ferent bins just as the usual correlatgdd, whereas usual The behaviors of I, and |nj:gdyn) as functions ofx

scaled factorial moments for single bins are very effectivefrom 0.005 to 0.05 are shown in Fig. 1 fer=2.0 and 10.0.
for the study of dynamical fluctuations inside single bins..l.he x range is chosen from the requiremeﬁso 3 for

One can see that the condition of low mean multiplicity will 7=10.0. One can see that both/f and INFD have linear
enable us to reach simple expressions for all the moments. T . a .
ependence on bin size This dependence is completely

For the pure statistical fluctuation case, terms except th ifferent from the usual intermittency behaviors. This result
leading term in Eq(8) can be neglected, and one can easily : y 7
can also be seen directly from last expressions for the mo-

get B ments if one substituteslg(a) with 3[T((q+1)/2)
In fgSta”:(q—l)(s—ln 2). (14 +al'((q+2)/2)] for very small«. In small x approxima-
tion,

One can check that the relative contribution from all non-

leading terms is about 1% f=0.3. From Egs(13) and In F.=const+ (q—l)w—r’ I'(q+2/2) _qF(%) X
(14), one can see that ™" can be obtained by a one-step =~ ') I(q+12) "I(1)] |
subtraction from InF, if the mean multiplicitys is k_n_own_. _ +O(x?) (17
For the moments with the onset of phase transition, it is a ’ )
little complicated because of the integration in EtQ) over [(3) T(q+2/2) I'(1)
the whole range o$. But, one can see that the leading termIn J"Efy'”:(:OﬂS't+ 7' q T'(1) - T'(q+1/2) —(q=1) - |X
in G4(s) plays a dominant role. One needs to notice that an q I'(z)]

integratingu” term is associated with the product of two +0(x?) (18)

2 ’ )
factors (=x)" and exp{ 7'xu—u), 7' =7—1. For smallxr ) o _ )
the first factor strongly suppresses the contribution. FoNumerical results shov(;/ n)nontrlwaldsngzghng_ behaviors  for
largerx the term expf-7'xu) overdepresses the contribution In 74 vs InF; and |nffqy vs In 7Y in Fig. 2, which
from the former. In fact, numerical results show thatfollow trivially from Fig. 1. Though InF; have different
(x7)4\]q+4(— 7'X)134(— 7'X) is always of the order ¢ for ranges of values for different, the scaling behaviors seem
x7<0.5, corresponding te=0.3 for 7=10.0. so that the independent of the lifetime of the system. For our choice of

. . . ) d . . . .
results will not be affected practically if only the leading X range, the range of I is quite small. Considering the
terms are kept for the calculation of the moments in small Scaling between ItFg vs In 7, with wider range ok shown

region. Then to a good approximation, in [11] and Eq.(14) in this paper, one can expect the scaling
between INAAY™ and InFY" s still true for a wider range

Jo(X) , , of x and thus of INF™™ . One can see weak dependence on
In 74=(q=D)In ——=+In Jg(= 7'x)=q In Iy (= 7'x), 7 for B4 from last equationsg™ do not depend on any

(15 parameter in the model because thelependencies in the
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[ . nE o r+22) I'(3) +( l)F(l)
I n F,=const-2a - -
6l - q Tg+12 T "V
< s _ . +0(a?).
£ i . Thus g, for the scaling betweek, and betweenF, is the
L same in the smak limit; so arey and». The slight differ-
2r. ence between them comes from the different regions con-
- 2s5fF cerned. As shown in Fig. 3 of the first paper[B], 8, take
;3 F minima ata=(x/2)*°=1 and increase with the decrease of
o 2f a. Our result corresponds @=0. Physically, since both
c ; and y describe dynamical fluctuations in small bins in the
— 15F same phase transition, they should be equal in the small
limit, though they correspond to different quantities. For ex-
TE L periments withs in a single bin a little larger than 0.3 the

1 1.5 2

In (q—1)
FIG. 3. Scaling exponent &, vs In (Q—1).

experimentally obtained should be close to but less than
1.3424. Thus if experiments observe a scaling exponent
about 1.34 in a high resolution analysis, the onset of a
second-order quark-hadron phase transition can be pro-

nounced.
local slopes are cancelled miraculously with each other inthe |+ should be pointed out that even without dropping off

smallx limit. More interestingly,8{™™ can be well fitted by nonleading terms, the exponentin this paper will not be
B((qdyn):(q_ 1)” (19 changed, because all those terms are related to higher orders
of x and have no contribution tg which is connected with
with y=1.3424, as shown in Fig. 3. B#; do not obey the properties of the moments in the limit—~0. In this sense,
same scaling law, as shown in Fig. 3 for the case withthe exponenty given here is exact and truly universal.
7=10.0. The universal exponentis different from that in In summary, scaled FMMD are studied analytically
[11]. But the difference does not mean any contradictionwithin the Ginzburg-Landau model in a kinetical region with
between the present paper did], because they correspond mean multiplicity in a single bin less than 0.3 for second-
to different quantities. The difference also comes from theorder quark-hadron phase transition. The dynamical fluctua-
differentx regions discussed sing&, depend on the fitting tions in FMMD are extracted, which give the same physical
range. In this paper, the exponenis completely determined contents as the usual scaled factorial moments. Scaling be-
by the general features but does not depend on any parameteviors between scaled FMMD are shown, and a truly uni-
of the Ginzburg-Landau model used to describe the phaseersal exponent is given.
transition. The exponeny given here is very close to the This work was supported in part by the NNSF, the SECF,
exponenty given in former studies on multiplicity fluctua- and Hubei NSF in China. One of the auth¢@s B. Yang is
tions for second-order phase transition. In fact, from Eqgrateful for fruitful discussions with Professor R. C. Hwa
(4.4) in the first paper ir[6] the usual scaled factorial mo- and would like to thank Professor T. S. Biaod Professor P.

ments InF, can be expressed, in smallor smallx limit, as

Levai for kind hospitality during his stay in Hungary.
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