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Energy dependence of theNN t matrix in the optical potential for elastic
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The influence of the energy dependence of the itéet matrix on the optical potential of nucleon-nucleus
elastic scattering is investigated within the context of a full-folding model based on the impulse approximation.
The treatment of the pole structure of tR& t matrix, which has to be taken into account when integrating to
negative energies, is described in detail. We calculate proton-nucleus elastic scattering observdf@s for
40Ca, and?°&Pb between 65 and 200 MeV laboratory energy and study the effect of the energy dependence of
the NN t matrix. We compare this result with experiment and with calculations where the center-of-mass
energy of theNN t matrix is fixed at half the projectile energy. It is found that around 200 MeV the fixed
energy approximation is a very good representation of the full calculation; however, deviations occur when
going to lower energie65 MeV). [S0556-28138)01201-1

PACS numbd(s): 25.40.Cm, 24.10.Ht

I. INTRODUCTION uncoupled from the integration variable by fixing it at half
the projectile laboratory energy. We will study the accuracy
The scattering of protons and neutrons from nuclei has &f this assumption at different projectile energies.
long history as a tool to investigate the details of the reaction The structure of this paper is as follows. First we will
mechanism between a nucleon and a many-nucleon systefigview in Sec. Il the relevant expressions for the single-
The spectator expansion of multiple-scattering thgdry3] scattering optical potential in the impulse approximation as
is our theoretical approach to define an optical potential foMell as the full-folding procedure as used in our calculations.
elastic nucleon-nucleus scattering. This expansion is prediVeé Will describe in some detail the numerical implementa-
cated upon the idea that two-body interactions between prdion for treating the energy dependence of MM t matrix,
jectile and target nucleons play the dominant role. gspemally since this was left out in Red). We then present
In its most general form, the first-order single-scatteringm Sec. lll elastic scattering results for proton scattering from

optical potential within the framework of the spectator ex-& variety of nuclei in the energy regime between 65 and 200

A . MeV, and end with concluding remarks in Sec. IV.
pansion is given by the expectation value of the nucleon-

nucleon (NN) transition amplitude and the ground state of
the target nucleus. This “full-folding” optical potential in-
volves the convolution of the fully-off-shell two-nucleon  The transition amplitude for elastic scattering of a projec-
scattering amplitude with a realistic nuclear density matrixjle from a target nucleus is given 3]
In this form, the exact calculation of this optical potential
requires a three-dimensional integration, in which the inte- Te=PUP+PUGH(E)Ty, (2.1
gration variable is coupled to the energy of propagation of
the projectile and target nucleon. This very fact leads to avhere P is the projector on the ground sta®,) of the
full-folding optical potential, which explicitly treats the off- target, P=|®a){(Da|/(PA|Dp), and Gy(E)=(E—H,
shell behavioandthe energy dependence of thé\ t matrix ~ +ig) 1. For the scattering of a single-particle projectile
when carrying out the integration. Full-folding models alongfrom an A-particle target nucleus the free Hamiltonian is
this line have been proposed and carried [@y5] with the  given by Ho=hy+H,, where H, stands for the target
conclusion that these model calculations based on the fredamiltonian. In the spirit of the spectator expansion the tar-
NN t matrix give a good description of the data for energiesget Hamiltonian is viewed abl,=h;+X;.v;;+H', where
between 200 and 400 MeV, but, however, are rather poor d; is the kinetic energy operator for thth target nucleony;;
200 MeV and below. We have repeated these calculationthe interaction between target nucleioand the other target
within our computational framework based on a full-folding nucleonsj, andH' is an (A— 1)-body operator containing all
model employing a realistic nuclear density matrix and a freenigher order effects. In a mean field approximatdpjv;;
NN t matrix where the off-shell behavior as well as the ~W,, whereW,; is assumed to depend only on thé par-
energy dependence are taken into account. However, we dizle coordinate. Thus, the propagator consistent with the first
not find as large effects as shown in R¢#&5]. order in the spectator expansions is given as

It can be argued that at intermediate energies the scatter- _
ing of a projectile from a nucleon in the target nucleus may Gy(E)~G;(E)=[(E—E")—ho—h,—W;+ig] 1. (2.2
resemble fre@&lN scattering mainly in the forward direction. _
This is the justification for a common approximation to the HereH', having no explicit dependence on ttik particle, is
optical potential in which the energy of tHé¢N t matrix is  replaced by an average enery; which is at most equiva-

Il. THEORETICAL FORMULATION

0556-2813/98/5(1)/189(7)/$15.00 57 189 © 1998 The American Physical Society



190 CH. ELSTER AND S. P. WEPPNER 57
lent to the separation energy of a nucleon from the nucleusiucleon-nucleusNA) center-of-mass frame yields, for the

In most of our calculations we s&t=0, since the projectile energy argumeng of the NN amplitude}m of Eq. (2.6),
energies are in comparison much larger. We will test this

assumption. Since we are considering the optical potential in A-l K+P ?

the impulse approximation, we neglect the mean fidjdof

Eq. (2.2) in the following. E=Ena— amy, : 2.7

The driving term of Eq(2.1) denotes the optical potential,

which in first order is given as HereEy, is the total energy in thBlA center-of-mass frame

and my is the nucleon mass. At this point we assufle
(K'[{®A|PUP|® ) |k)=0(k’ k) =0 as was discussed earlier. Since we employ relativistic
definitions for the NA kinematics, we haveEya
-~ — 2 2\2 2 2\2
_ KD A 5 ()] D DK =/(kc)?+ (myc?)?+ J(—ke)?+ (mac®)?, where m, de-
i;n,p< (@l 7ai(E)] P a)]k) notes the mass of the nucleus. With these definitions, the
2.3 optical potential of Eq(2.6) becomes

Herek’ andk are the external momenta of the system and

Toi ts th&IN transition operator ’ 3 ; 1A+l

70i(€) represents p U(q,K)=i:Enp d*P7(P,q.K) 7| d.5| ——K—P],

70i(E)=v0i +v0i0i(E) 7oi (2.9 A1 2
with ( A K+P
: Ena~ 4m
g(E)=[(E-E")—hg—h;+ie]™* (2.5 N

anduv, representing th&N interaction. The sum overin X pi| P— Al 9'p+ Al 9)_

Eq. (2.3 indicates the two different cases, namely, when the A 2 A 2

target nucleon is one d protons and when it is one & 2.9

neutrons. The energy is the energy of the interacting sys- Thjs expression shows that the evaluation of the full-folding
tem. Inserting a complete set of momenta for the struck taryeqral requires thélN t matrix to be not only off shell but
get nucleon before and after the collision and evaluating thg g 4t energiey = E> — . Specifically, when going to
momentum-conserving functions gives, as a final expres- negative energies, we have to take into account the pole

sion for the full-folding optical potentigl6, ], structure of theNN t matrix. TheNN interaction supports a
bound state aEy=—2.225 MeV in the3S;-3D; channel,
~ ~ 1/A+1 : .
U(q,K)= > f d®P5(P,q,K) o, q,_<_|<_p>,g} the deuteron, and a virtual state in th§, channel at-66
i=np 2l A keV, the “diproton.” A virtual state means a pole of thé&\

t matrix in the second sheet of the complex energy plane,
pP— A-1 a P+ A-1 9) (2.6) which manifests itself on the real axis as a very narrow finite
A 2’ A 2) ' peak (about 100 keV widg around the pole position. The
. deuteron, a true bound state, causes a pole itk matrix
Here the arguments of thieN amplituder,; areq=k’—k  at the binding energf,. In order to explicitly treat this

= ’§[ka K(gnd %’C,KJF/ E))]: %{[éA’%L 1)1/ [AI;] K(;z}'/\évh%eAI% pole, we factorizery, into a pole term and a residue function
=2k = (F=Qle— and A=j3lK— Qie—

X pi

are the nonrelativistic final and initial nuclear momenta in A-1 2
the zero-momentum frame of tiéN system, andK = 3 (k’ . A K+P
+k). The factory(P,q,K) is the Mdler factor for the frame T0i= Toi | Ena— amy, —Eq/. 2.9

transformation[8], and p; represents the density matrix of
the target. Evaluating the propagatp(E) of Eq.(2.5 inthe  so that the optical potential takes the form

-1 2
TN (AK+P
K- S stpTO' 42\ 7A 'ENA 4my, oorr [p A1 A-1g
(q! )_i:n,p A_1K+P 2 77( ', )pl A 27 A 2/
A .
ENA_ 4mN _Ed+|€

(2.10

To obtain a simple pole, which can be treated with standard numerical methods, we perform a change of the integration
variable toQ=[(A—1)/A]K+P, and Eq.(2.10 becomes
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I 1 Q2
. L[ TOi(q’E(ZK_Q)’ENA_rmN A1 q A1 .
U(q,K):i—En,pfdeo dQQ24mN QS—QZ-HE ﬂ(Q,q,K)pi[Q—T<K+§),Q_T<K_E”
_(ql(zK Q).E Qz)
~ © Toi !E - ) NA_4_rnN A1 q A1 q
:i;n’pfdQ/PJ'O dQQ24mN Qé—QZ ﬁ(Q,q,K)p{Q— T(K+§)’Q_ T(K_E)}

q
K+ 5

. A-1 q
anQ_ T(K_ EH
(2.11

. n - 1 n N . A-1
—i > dQ27mmyQq TOi( q,E(ZK—QdQ)aEd) 7(Q¢Q,q,K)pi| QuQ— N

i=n,p

Here [dQ represents the angular integrationQy Full-folding calculations based on this approximation have
= J4my(Ena— Eq), andP denotes a Cauchy principal value been carried out by several groujgs12].
integral. Fixing the energy aE, as given in Eq(2.12 is a “his-

The cut in the integrand of E@2.11) indicates the open- toric” choice, made by all calculations based on the Kerman-
ing of a new channel in the scattering reaction. In this speMcManus-Thale(KMT ) formulation[13]. The argument for
cific case it is the deuteron pickup channel, describing whetthis specific choice oEj is that this is the energy at which
an incoming projectile proton picks up a neutron and a deufree NN scattering at a fixed target nucleon would occur.
teron is knocked out, thus removing flux from the elasticThis choice ofE, favors the forward scattering process, and
channel. In order to obtain sonee priori estimate on the it was argued that due to the narrow peaking of the density in
possible size of this additional channel on the elastic scattemomentum space, the scattering is dominated by forward
ing reaction, it is worthwhile to look at experimental infor- scattering. Having in mind that the differential cross section
mation on the deuteron pickup reaction. for, e.g., proton scattering frorf®®b at 200 MeV falls off

In the 1980s cross sections of thp,d) reaction have by five orders of magnitude between 5° and 30°, this argu-
been measured for the closed shell nuclei considered heraent may capture some truth; however, it needs to be tested
[9-11]. For “°Ca at 200 MeV, the differential cross section numerically.
for the (p,d) reaction for small angle€l0°—-20°) is about 1 Before discussing the results of our calculations, we
mb/sr while at 65 MeV it is about 10 mb/sr. Compared to thewould like to elaborate some more on the details of our nu-
typical size of differential cross sections for elastic scatteringmerical implementation. Treating the pole structure of the
in a similar angular rangécf. Figs. 2 and B this is quite NN t matrix while integrating over the energy of the propa-
small. The effect of this additional channel will be studied ingation is standard in modern three-nucleon scattering calcu-
our calculations of elastic scattering observables and comations[14]. However, these calculations are carried out in
pared to calculations where the integration variable is decoypartial waves, which allows treating thts;-3D; and 'S,
pled from the energy of propagation of the projectile andchannels separately. Our calculation of the full-folding opti-
target nucleon. The latter is an approximation where the eneal potential of Eq.(2.11) is carried out directly in three
ergy of theNN t matrix is fixed at half the beam energy in dimensions based on Monte Carlo integration. Thus, for the
the laboratory frame, neutron-proton part of the optical potential, we have to treat
the pole singularity and the virtual state simultaneously. The
principle value integral of Eq2.11) is treated with standard
subtraction techniques. When calculating the optical poten-
tial as given in Eq(2.11), we have to interpolate thEdN t
matrix in four dimensions|q|,|2K—-Q],(2K—Q)-q, and
the energy. For the momenta we use a three-dimensi®nal
spline, for the energy a linear interpolation, since over a large
range of energies thN t matrix is a slowly varying func-
tion of the energy. When carrying out the energy integration
of Eq. (2.11), we find that for the higher projectile energies
integrating out to— 100 MeV c.m. energy in thBIN t matrix
is sufficient, while for the lower energi€65 MeV) we need
to integrate out to-400 MeV c.m. energy.

Of course, the argument of theN t matrix being a
) E slowly varying function of the energy is not true in the im-

-0 mediate vicinity of the virtual state in thkS, channel. Since
the peak around the pole position in the second energy sheet
A-1q A-1 Q) is finite and very narrow, we evaluate the integral overtthe
P———— = P+ —— . (2.13 e . \
matrix in this region separately and define

A+1 \?
1kg 1L AT

g:EO_EZmN 2 2my (2.12

wherek ., andk, are the on-shell momenta in the laboratory
andNA system, respectively. With this fixed energy approxi-
mation the full-folding optical potential of Eq2.10 be-
comes

1/A+1
q,§<—K—P

O(aK)= > Jd3Pn<P,q,K)‘TOi A

i=n,p

X pi

A 2’ A 2
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whereQ is defined vieEy,— Q3/4my=0, which is close to S 10 — AN A .
the pole position on the second sheet of the complex energy © 05F 32 . —
plane. The “average”?-a\,,i is usually obtained from 40 en- < 00F - «” 4
ergy points over a momentum interval of 0.5 MeV, and is
then used as one of the interpolation points in the energy
interpolation. The midpoinQQ, for the integration in Eq.
(2.14 depends vicEy, on the projectile energy, which im-
plies that the averaging process has to be carried out for each o

projectile energy. If we want to simplify the numerical pro-

cedure and creat%d\,vi only once, we change the integration
variable fromQ to E and calculate

6.m(deg)

2K —
q,TQ,E), (2.19

A 1 (EBotor .
Tav,i(q’KiEO)zz_ﬁle . dEg;
o FIG. 1. The angular distribution of the differential cross section

where we have chosef,=0 MeV ands;=0.25 MeV. The (do/dQ), analyzing powerA,), and spin rotation function) are

in obtainindr.. - f Eq.(2.19 instead of Eq(2.1 shown for elastic proton scattering frotfO at 200 MeV laboratory
_error In O. alnlngra\,,i_ rom Eq. (2.19 instead of Eq(2.14 energy. The solid line represents the calculation performed with a
is small if 26;/Eya is small. For our worst case tested

. 308 —+ first-order full-folding optical potential based on the DH density
Ena=50 MeV for proton scattering fro b, the numeri-  15] and the CD-Bonn modéLé] including the energy dependence

cal error was 1%. of the NN t matrix. The dashed line represents a calculation where
the energy of théN t matrix is fixed at half the projectile energy.
Ill. RESULTS AND DISCUSSION The dash-dotted line stands for a calculation including the energy

. . . dependence of thBIN t matrix and an additional energy shift by
In this paper the study of elastic scattering of protonsgi— _g mev. The data are taken from RéR1].
from spin-zero target nuclei at energies that range from 65 to

200 MeV incident prqjectile energy is strictly first order in and the dashed line shows the calculation where the energy
the spectator expansion and based on the impulse APPIOXt the NN t matrix is fixed at half the projectile energy. It is

mation. The full-folding optical potential is calculated as out- remarkable how close the fixed energy result is to the full

lined in the previous section, specifically as given in EQ..5 0 jation. This may stem from a relatively weak energy
(2.1D. As a model for Fhe density matrix for.the target dependence of theN t matrix and the fact that the folding
nucleus we employ a Dirac-Hartré®H) c.alcurlat|on[15]. with the sharply peaked density matrix does not sample the
The Fourier tra_n_sfo_rm_of the vector densip(r’.r), Serves N t matrix in the negative energy region. We confirmed
as our nonr_elatl\_/lstlc smgle-par_ncle densify). Ar_10ther CIU”  this numerically by artificially limiting the energy integration
E'al ingredient in the calculation of the optical potential to positive energies and did not find noticeable effects in the
U(q,K) is the fully-off-shellNN t matrix. The calculations  scattering observables at 200 MeV. In Fig. 2 we show the
presented here employ tieN t matrix based on the charge- opservables for elastic proton scattering frdfiCa at 200
dependent Bonn potentifl6]. This potential is fitted to de- MeV and in Fig. 3 those for elastic proton scattering from
scribe the Nijmegen database withya per datum~1. Itis  29%p As in Fig. 1, the solid line represents the full calcula-
also to beAunderstood that we perform all spin summations ifjon of the optical potential taking the energy dependence of
obtainingU(q,K). This reduces the requireddN t matrix  the NN t matrix into account, whereas the dashed line shows
elements to a spin-independent comporieatresponding to  the calculation at fixed enerds, given in Eq.(2.13. For all
the Wolfenstein amplitudé\) and a spin-orbit component three nuclei the fixed energy result is remarkably close to the
(corresponding to the Wolfenstein amplitu@g. Since we full calculation, a conclusion which essentially was also
are assuming that we have spin-saturated nuclei, the compdrawn in Ref[4]. A general trend is that for the fixed energy
nents of theNN t matrix depending on the spin of the struck calculation the dip structure in the differential cross section
nucleon vanish. The Coulomb interaction between the proand the spin observables is slightly more pronounced.
jectile and the target is included using the exact formulation In order to assess the importance of the additional energy
as described in Ref17]. shift given byE' in Eq.(2.2), we show in Fig1 a calculation

At first we want to concentrate on proton scattering from(including the energy dependence of tiill t matrix), which
different target nuclei at an intermediate energy. In Fig. 1 wevas performed settin§' = —8 MeV. This results in a shift
display the differential cross sectiato/d(), the analyzing of the total energy of théNA system to a slightly higher
powerA,, and the spin rotation functio@, for elastic pro-  value, as suggested already in Rdfs8,19. The effect of
ton scattering from*®0. The solid line represents the full this energy shift is negligible at 200 MeV as shown in Fig. 1.
calculation of the optical potential according to Eg.11) Next we turn to lower projectile energies, where we may
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do/dQ(mb /sr)
do/dQ(mb/sr)

>

0.m(deg) 0.m(deg)

FIG. 2. Same as Fig. 1, except that the target nucled8Qs, FIG. 4. Same as Fig. 3, except f8%Pb at 160 MeV proton

and the dash-dotted line is omitted. The data are taken from Rekinetic energy. The data are taken from Rée#].
[22].

different NN t matrices as well as densities are employed.
expect to see differences between the full calculation includThe scattering observables given in Fig. 5 for proton scatter-

ing the energy dependence of tNe&N t matrix and a calcu-  ing from %0 at 135 MeV exhibit less difference between the
lation with aNN t-matrix energy fixed at half the projectile solid and dashed lines, leading to the conclusion that even at
energy. In Fig. 4 we display the results for proton scatteringhis relatively low energy the fixed energy prescription in the
from 2%%Pb at 160 MeV and in Fig. 5 those for proton scat- optical potential is still amazingly and perhaps unexpectedly
tering from *°0 at 135 MeV. Compared to the results at 200good. One common trend is becoming apparent in Figs. 4
MeV, the difference between the solid line, which representsind 5, namely, that the differential cross sections predicted
the full calculation, and the dashed line, which represents thpy the full calculations are systematically higher compared
calculation for a fixed energy of theN t matrix, becomes to the ones predicted by the calculations employirg M t
more pronounced, especially f&y, at larger angles as shown matrix at a fixed energy. In Fig. 5 we also include a full
in Fig. 4. A similar figure is shown in Ref4]; however, a calculation, in which the energy shie' is chosen to bé'
direct comparison between calculations is not possible, since —8 MeV (dash-dotted ling Again, we conclude that the

CRRTT CE e N
>~ 3 o g 3
Q % 82 4 Q 1 02 3 3
B 10or E 0% .
I3 105 ¢ cC —2F E
< v% “*Pb (p,p) 200 MeV < 10_4E"0 (p,p) 135 MeV
\ 18 F ¥ ¥ | ) . n | \ 10 F ¥ ) n | L . ] b + + |
o) E T N &) E
o] % o) E
< < 0.
- = ool
—1.0¢ .
0 20 40 60 80
Ocm.(deg)
FIG. 3. Same as Fig. 2, except that the target nucled&%b. FIG. 5. Same as Fig. 1, except fdfO at 135 MeV proton

The data are taken from RgR3]. kinetic energy. The data are taken from Reb)].
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nucleug 3]. For comparison we include a calculation in Fig.
6 as a dotted line, where this term is calculated in an approxi-
mate fashion as described in RET9]. We see that this ad-
ditional “medium” contribution is necessary to get a better
description of the spin observables.

do/dQ(mb /sr)

IV. CONCLUSION

We have calculated the full-folding integral for the first-
order optical potential using the impulse approximation
within the framework of the spectator expansion of multiple-
scattering theory. The exact calculation of this full-folding
integral requires a three-dimensional integration, in which
the integration variable is coupled to the energy of propaga-
tion of the projectile and target nucleon. We have carried out

. e 3 the calculation taking into account the pole structure of the
0 20 40 60 80 100 NN t matrix when integrating to negative energies. Our op-

0, (deg) tical potentials are based on a Dirac-Hartree model for the
o nuclear density matrix and the charge-dependent Bonn po-
FIG. 6. Same as Fig. 1, except féfCa at 65 MeV proton tential for theNN t matrix. ThisNN t matrix describes the

e . 2
kinetic energy. The additional dotted line denotes a calculation inNijmegenNN database with &~ per datum~1 up to about
cluding the effect of the coupling of the struck target nucleon to the390 MeV laboratory energy. The Dirac-Hartree model pro-

residual nucleus. The data are taken from iR26). vides a very good description of the experimentally extracted
proton distribution for the nuclei under consideration. Recoil
effect of this energy shift is minute. and frame transformation factors are implemented in the cal-

Last we want to consider scattering observables at an ergulation in their complete form. We calculate elastic scatter-
ergy below 100 MeV projectile energy. It has already beering observables for°0,%°Ca, and?%%Pb at projectile ener-
stated in the literaturf3,5,2Q that at these low energies the gies from 65 to 200 MeV laboratory energy and compare the
strict impulse approximation is insufficient to describe thefull calculation with calculations in which the energy of the
experimental observables. We arrive again at the same cofdN t matrix is fixed at half the projectile energy. We find
clusion, when showing in Fig. 6 the scattering observableshat this fixed energy prescription describes the full calcula-
for proton scattering froni°Ca at 65 MeV. However, this is tion remarkably well for proton scattering at 200 MeV pro-
not the main point we want to make. When comparing aectile energy. This leads to the conclusion that the pole
calculation including the energy dependence of MW t  structure of theNN t matrix does not play a role at interme-
matrix in the optical potentialsolid line) with a calculation diate energies. For projectile energies below 200 MeV we
where the energy is fixed at half the projectile energyfind that the influence of the deuteron and diproton state
(dashed ling we clearly see that the additional channels, theslowly gains importance as we approach lower energies.
deuteron pickup channel and the diproton state, have a siHowever, between 100 and 200 MeV these effects are still
able effect on the elastic observables. This is consistent withelatively small. This is consistent with the small size of the
the experimental data, which show that the cross section foexperimentally measured cross sections for thgl) reac-
the (p,d) reaction is getting larger at lower energies. Thetion. At 65 MeV we see considerable differences between the
differential cross section predicted by the full calculationfull calculation and the one in which the energy is kept fixed.
(solid line) is higher than the one predicted by the calculationSimilar calculations were carried out in Ref4,5] based on
using the fixed energy prescriptigdashed ling and actu- different input quantities. Our calculations confirm previous
ally slightly closer to the experiment. The spin observablegesults, namely, that at energies around 200 MeV projectile
obtained from the full calculations show much less structureenergy and higher the influence of the energy dependence is
compared to those from the fixed energy calculation. How-quite small. However, we find smaller differences as were
ever, both impulse approximation calculations do not adsuggested in Refl4] between our full calculation and the
equately describe the spin observables. A similar conclusiofixed energy calculations at lower energies.
was drawn in Ref[5], although there the effect of including ~ The calculations presented in this manuscript are strictly
the deuteron and diproton channel is more dramatic than ibased on the impulse approximation using the fi&g t
our calculations. For the first time we also observe a visiblanatrix. It has been stated in many places that the impulse
effect on the scattering observables, when we introduce aapproximation is insufficient at energies around 100 MeV
energy shift by settindge' = —8 MeV (dash-dotted ling projectile energy. We confirm this result, while carrying out

From Fig. 6 we see that the impulse approximation, evercomplete calculations of the optical potential taking into ac-
if accurately and completely calculated, is clearly inadequateount the energy dependence of tll t matrix. Additional
in describing the elastic scattering observables at such a logorrections have to be taken into account at lower energies.
energy, and additional effects have to be included. The firsWithin the framework of the spectator expansion these cor-
term in the spectator expansion contains as an additionakctions have been derived and carried out in an approximate
term the coupling of the struck target nucleon to the residualashion[3]. A similarly complete calculation, as given here
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