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Lattice gas model with isospin-dependent interactions
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In this paper we continue the investigation of the lattice gas model. The main improvement is that we use
two strengths for bonds: one between like particles and another between unlike particles to implement the
isospin dependence of nuclear force. The main effect is the elimination of unphysical clusters, such as the
dineutron or diproton. It is therefore a better description of a nuclear system. The equation of state in mean
field theory is obtained for nuclear matter as well as Nb#Z systems. Through numerical and analytical
calculation we show that the new model maintains all the important features of the older model. We study the
effect of the Coulomb interaction on multifragmentation of a compound systel+=&6, Z= 40, and also for
A=197,Z=79. For the first case the Coulomb interaction has small effect. For the latter case the effect is
much more pronounced but typical signatures of the lattice gas model such as a migrimagimum in the
value of 7 (S,) are still obtained but at a much lower temperat{i80556-28188)04204-9

PACS numbds): 25.70.Pq, 24.10.Pa

[. INTRODUCTION lattice gas model that were studied[i2]. One finds that at
a certain temperature the distribution of composites is a
Over the past few years we have been developing a latticeower law:Y(Z)<Z~", whereY(Z) is the numbetaveraged
gas model for the study of nuclear multifragmentafi@n5].  over many simulationsof composites withZ protons. As is
In this modeln nucleons are placed iN cubes and they Ccommon practice, we will extract a value oeven when the
interact with nearest neighbor interactions. In most of thisdistribution has significantly deviated from a power Ig&y.
work the interaction between neutron-neutron, proton-This value is extracted by using
proton, and neutron-proton was taken to be identical al-

though we have sometimes usgd] a more complicated § 7Y(Z § _,

model in which interactions between like particles are differ- > (2) > 2z

ent from those between unlike particles. The purpose of this 0 =10 (Y
paper is to more fully expose this improved model and to Svyizg Sz

examine its relationship with our earlier and simpler model. 2 2

Among other things we will also show that the important
conclusions reached with our simpler model go through inWe also calculate the second mome®g=='A2Y(A)/n
our improved version. where in the sum the largest cluster is excluded. The useful-
The lattice gas model has the attractive feature that it caness ofS, was emphasized by Campi]. Since the lattice
provide an equation of state but it can also provide the clusgas model has a Hamiltonian, its average energy at any tem-
ter distribution. Most of the observables are calculated usingperature can be calculated. The excitation energy and spe-
Monte Carlo simulations. We used the Metropolis algorithmcific heatC, per particle can be calculated. We will find this
in our simulations. The particles are distributed iN boxes  useful too.
according to the lattice gas Hamiltonian and their momenta
are generated from a Maxwell-Boltzmann distribution at a
prescribed temperature. The calculation of clusters is
straightforward. Two nucleons in neighboring cells are part
of the same cluster if the relative kinetic energy is less than We haveN boxes in the lattice in which we have to pyt
the strength of the attractive bonp/2.+e<0. Herep, is  neutrons and n, protons, n,+n,=n<N, n/N=V,/V
the relative momentumy the reduced mass andis the  =p/py, whereVy, pg are normal nuclear volume and den-
negative (attractive interaction. This prescription is suffi- sity, respectively. In principle, we can have three kinds of
cient to calculate the cluster distribution. The motivation forbonds: €,,,€,,, and €,,. In the most general case where
introducing two kinds of bond is now obvious. If the these interactions can take any arbitrary value a rich assort-
neutron-neutron bond or the proton-proton bond is attractivénent of phenomena is predicted. The grand canonical parti-
then each numerical simulation can generate dineutrons aritbn function of this general lattice gas model can be mapped
diprotons which in reality do not exist in nature as compos-on to a spin-1 Ising-type model in the presence of a magnetic
ites. One can get rid of these unphysical clusters by simplgnd quadrupole field. These have been studied in detail in the
making the neutron-neutron and proton-proton bonds zero grast[8]. For the nuclear case the values of the interactions
repulsive. are quite restricted and the richness of phenomena disap-
For completeness we mention some more features of theears. First of all we have to set, ande, to be either zero

II. THE EQUATION OF STATE IN SIMPLE MEAN
FIELD APPROXIMATION
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or repulsive so that one avoids producing unphysical dineue,,= €,,=0;€e,,=—5.33 MeV. In the first case it predicts a
tron or diproton bound clusters. Charge independence dfinding energy of 16 Me\(which is the correct answebut
nuclear forces suggests that we pglt=€,,. From now on  in the second case it predicts 8 MeV which is a gross under-
we will write €, for both e, andey,,. In our past wor5]  estimation. The correct answer in the second case is also 16
and also in other modelind®] of nuclear collisions using MeV; it is just that sites will be alternately populated by
classical mechanics a slightly repulsieg, was used. To neutrons and protons so that all nearest neighbor bonds are
avoid proliferation of parameters we will set this bond to of neutron-proton type. In a similar fashion the Bragg-
zero in this work. The binding energy of nuclear matter fixesWilliams method predicts analytically that the critical tem-
the value ofe,, at —5.33 MeV. perature in the second case is half the value of the first case
Throughout this worky stands for the number of nearest but essentially “exact,” although numerical results in the
neighbors. In three dimensions one hgs 6. We use the next section will show that the difference is much less, only
Bragg-Williams mean field theory using the canonical en-about 10%. An improved treatment using the Bethe-Peierls
semble. There arll boxes anch,, protons anch, neutrons.  approximation is worked out in the Appendix. The mean
Let one of the boxes be occupied by a proton. Then, in thdéield calculation shown in this section and the appendix is
Bragg-Williams approximation, among its nearest neighborsmerely to form a rough idea about the nature of the phase
on the averageyn,/N will be occupied by protons and transition. In practical calculations we need to obtain the
yn,/N by neutrons. The number afi-p bonds will be Yields of the composites at a given temperature. Mean field
yNpny /N, the number ofp-p bonds will be (1/2yn,n, /N, theories do not provide these and we need to do event by
where the factor of 1/2 remedies the double counting foievent calculation which can be obtained through Monte
proton-proton bonds. Similarly starting with a box occupiedCarlo samplings.
by a neutron we come up with the same number of neutron-
proton bonds and the number of neutron-neutron bonds is

. . . [ll. MONTE CARLO RESULTS
determined to be (1/2)n,n,,/N. Thus the interaction energy

when there ar@, protons,n, neutrons placed ilN boxes is As far as we know exact results with two kinds of bonds
E= [ epnnpnn+ €enn(N2+ n,ZJ)IZ]/N and the partition func- are not available. For one kind of bond one can often inter-
tion is pret essentially exact although numerical results from the
well-studied spin-1/2 Ising model for use in the lattice gas

N! model. In the absence of such exact results our only recourse
Z(N,ny,ny) = (N—np—np)nging! exp(—BE). (2.1 s to compare numerical results obtained with two kinds of

bonds, i.e.,epn=—5.33 MeV, €,,=0 with those obtained
We now find pressure P from the equation P with one kind of bond that we have used before, i,
=KkT[dInZ/V]; andV=a®N, wherea3= 1/p, is the volume = €,,= —5.33 MeV. We use herd=73, which is a number
of each box. Using Stirling’s formula one arrives at appropriate for finite systems that we will investigate. As
mentioned in the Introduction the calculation proceeds by
first putting the required number of protons and neutrons in

P=pokTING——+ poyepn(np/N) (N, /N) theN boxes using a standard Metropolis algorithm. Nucleons
) ) are then assigned momenta from a Monte Carlo sampling of
+poY€nnl (Nn/N)=+ (N, /N)“]/2. (2.2 a Boltzmann distribution at a given temperature. The energy

, of the event can now be calculated. Clusters are then deter-
We introduce an asymmetry parametgr(n,—np)/(Nn  mined as explained in the Introduction. The results shown in
+np) which takes value 1 for neutron matter, 0 for nucleargigs, 1 and 2 are obtained by averaging over 1000 events for

matter, and—1 for proton matter. We can then write selected temperatures. For two assumed freeze-out densities
) we calculate the specific heat, the second morSgrand the
P— pokTln \ N Ep yﬁ €pnt €nn deduced values of. The unit chosen in the graph for tem-
V-V, 27072 2 perature isT,=1.1273¢,,,| which is theT, for an infinitely

large lattice with one kind of bond. We find that the peaking
of C,,S,, and the minimum ofr happen at a slightly lower
temperaturglabout 10% with two kinds of bond as com-
pared to when the same bond is used for all the particles. For
We determine the critical point fromP/dp=d?P/dp?>=0.  example, for the minimum of to appear at the same tem-
This gives the critical density.=0.50, and the critical tem- perature the value o,,=€,, has to be set at about 10%
perature— (y/4)[ (epnt epp)/2+(1/2)7]2(enn— €pn)]. In this  lower value than the value of,, when e, is set to zero.
approximation withep, attractive ande,,=0 the critical  Qualitatively and even semiquantitatively the results in the
temperature for nuclear mattéwhich has»=0) would be two models look similar when this renormalization of the
highest at— (y/4)(epn/2) and would fall off quadratically ~strength is done. However, the peaking@f is more pro-
with 7 to O at neutron or proton matter. nounced in the two bonds model.

The Bragg-Williams approximation is the simplest mean-  All models which employ freeze-out densities assume that
field approximation. Unfortunately it is rather inaccurate forthe freeze-out density is less than g)5If the freeze-out
two kinds of bonds. For nuclear matter at normal densitydensity is less than Qo3 then in the lattice gas model a peak
(np,=n,=N/2) it predicts a huge difference in binding en- in C, will signify the crossing of the coexistence curve and a
ergy for the casep,=¢€,,= €nn=—5.33 MeV and the case first order phase transition. The value of specific heat can be

. (2.3

1 2
+ > 7 (€nn— epn)
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FIG. 1. A comparison of the calculated valuesrofC, , and the FIG. 2. The same as above except that a higher freeze-out den-

second momensS, in the one type of bond modélop panel and  sity is used. The number of lattice sites is stifl. HereA=171,
two types of bonds modgbottom panel Here as elsewher€, Z=70.
=1.127%¢,,|~6 MeV. While T, here is merely the scale of energy
it also happens to be the critical temperature for an infinite systengffects to be small. For a much larger systétu on Au:
with one kind of bond. The compound system Was103,Z=45.  central collision so that the compound system hAas394)
Notice the maxima and the minimum shift to lower temperaturewe found the effect to be very large. One of the rather un-
whene,, is set to zero. AlscC, is more sharply peaked. avoidable features of the lattice gas model is the appearance
of a minimum in the extracted value of as a function of
deduced from the caloric curf&0] but locating the peak is temperature. This feature disappeared for the very large sys-
very difficult in experiment. In a recent paper we suggestedem of A=394 because of the Coulomb interaction.
[11] that since the peaking @, is accompanied by a mini- For completeness a short description of a similar calcula-
mum in 7 and a maximum irS,, the appearance of the last tion done for two kinds of bonds will be given here. In ad-
two could be taken as a signal of the phase transition. Thdition to lattice gas calculations, we do molecular dynamics
appearance of the maxima 8 and of the minimum inr in calculations whose purpose is twofold. One purpose is to
close vicinity of the maximum irC, happens in both the check if the predictions of a lattice gas model can resemble
versions of the lattice gas model. those of a molecular dynamics calculation provided the ini-
tial conditions are the same and the forces are chosen to be
IV. A STUDY ON THE EFEECTS OF THE COULOMB such that the_y resemble implied forces of the Iatticg gas
FORCE model. For this we place the, protons anch, neutrons in
the N boxes using, as usual, the Metropolis algorithm. Next
Here we follow the methods employed in RES]. Atthat  we assign the momenta from Monte Carlo sampling of a
time we studied the influence of the Coulomb force on frag-Maxwell-Boltzmann distribution. Once this is done the lat-
mentation of a system which had 85 nucleons and found théce gas model immediately gives the cluster distribution us-
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FIG. 4. Effect of Coulomb orr and the second moment for a

FIG. 3. The top part compares thevalues extracted from a ,,ch larger systemA=197,Z=79. The minimum inr and the
lattice gas calculatioridotted curvg with those extracted from a 1 aximum in'S, shift from about 5 to 2.4 MeV because of the
molecular dynamics calculation which had no Coulofdashed  coyjomb effect. At some larger Coulomb field the minimumsin
curvg and one which had Coulomb included in the molecular dy-,; finally disappear.
mamics calculatiorisolid curve. Molecular dynamics without Cou-
lomb gives results very similar to those of the lattice gas model.
Here the effect of the Coulomb is small. The number of protons wa

S . .
45. The lower part compares the second moments. ics propagation. The neutron-proton potential was taken to

be vpn(r)=A[B(ro/r)P—(ro/r)dexpg[1/(r/ro—a)]} for
riro<a anduvpn(r)=0 for r/ro>a. Herer,=1.842 fm is
ing the rule that two nucleons are part of the same cluster ithe distance between the centers of two adjacent cubes. We
pZ/2u+ e<0. To calculate clusters using molecular dynam-have choserp=2, q=1, a=1.3, B=0.924, andA=1966
ics we propagate the particles from this initial configurationMeV. With these parameters the potential is minimurm @t
for a long time under the influence of the chosen fowe  with the value—5.33 MeV, is zero when the nucleons are
will give the force parameters shortlyAt asymptotic times more than 1.6, apart and becomes strongly repulsive when
the clusters are easily recognizéal detailed discussion of r is significantly less thamg. We now turn to the nuclear
cluster recognition which requires shorter computer timegart of like particle interactions. Although we takg,=0 in
can be found in Ref12]). The cluster distribution in the two lattice gas calculations the fact that we do not put two like
models can now be compared. Figure 3 shows the two preparticles in the same cube would suggest that there is short
scriptions give nearly the same answer. range repulsion between them. We have taken the nuclear
We now come to the second and more important purpostorce between two like particles to be the same expression as
of the molecular dynamics calculation. We now add the Couabove plus 5.33 MeV up to=1.842 and zero afterwards:
lomb interaction to the nuclear part. The initialization of put- v pp(r) =vpn(r) —vpa(re) for r<rq and 0 afterwards. This
ting the nucleons iMN boxes is done again but now with the means there is a repulsive core which goes to zerg and
inclusion of Coulomb forces. We then do a molecular dy-is zero afterwards.
namics propagation including the Coulomb force. The clus- The results shown in Figs. 3 and 4 can be summarized as
ters can again be calculated and compared with the caséallows. Figure 3. first of all, shows that if there is no Cou-
where the Coulomb force was ignored. The effects of thdomb interaction then lattice gas model results are quite close
Coulomb interaction on fragment distribution was studied into that of molecular dynamics simulation provided in the
Ref. [13] for number of nucleons 100, half of which were latter one starts from the same initial condition and uses a
charged. force suitably chosen. Figure 3 also shows that in the case of
We now give the force parameters for molecular dynam-A=85, Z=40 the Coulomb force does not have a large ef-
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fect. The minimum inr and the maximum ir§, are shifted
to slightly lower temperature. The effect foA=197, 14
Z=79 is much bigger. The minimum inand the maximum

in S, are shifted from 4.8 MeMlattice gas without Cou- B 15 n 7
lomb) to about 2.4 MeV. Our previous calculation showed 12| 1 6 10 8
that there is no minimum inr for A=394, Z=158. So

somewhere between these two limits the minimum will van- 6lY 5 219

ish.

19 20 17| 3 |21

V. DISCUSSION
18 24 25 22

The two bond model is a natural progression of the sim-
pler lattice gas model. In this paper we have done calcula- 23
tions with the two bond model. Although in detail the two
models differ the major characteristics of the well studied
simple model remain unchanged. The lattice gas model re- FIG. 5. A square lattice is divided into blocks to illustrate the
mains a quick tool to calculate experimental data. Bethe-Peierls approximation. See text for details.

When the Coulomb force is very strong the lattice gas
model can not be relied upon. Figures 3 and 4 give some N . )
indication of the reliability of the model in the presence of aWill be two absolute fugacities, and\,, the first referring
Coulomb force. Calculations above indicate that a vighle 10 protons and the second to neutrons. The grand partition
though much more time consumingrescription might be to  function for a block can be written as
obtain the initial conditions as in a lattice gas model. Rut
nucleons inN boxes by Metropolis sampling where one in- Zg=A+B+C, (A2)
cludes, in addition to the lattice gas Hamiltonian, the Cou-
lomb force. Obtain momenta of each nucleon from a MonteVhere
Carlo sampling of a Maxwell-Boltzmann distribution. Then

propagate by molecular dynamics to obtain cluster distribu- A=(1+ee PeptetnFeny, (A3)
tions. Techniques developed in R§L2] might be used in _ _

order to avoid running molecular dynamics till asymptotic B=eMp(1+erp Pep~ PepptehnBen=Bepn)y  (A4)
times. One attractive feature of this hybrid model is that the

Coulomb force is operative even during the formation of C:exn(lJrexpfs?pfﬁepmrexnf,e?nf,eepp)y_ (A5)

clusters as opposed to other models where the Coulomb
force only adds repulsion between the composites alreadMgre A = contribution to the partition function when the

formed. central (innermost site is empty,B = contribution to the
partition function when the central site has a proton, &nd
ACKNOWLEDGMENTS = contribution to the partition function when the central site
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and Engineering Council of Canada and by le fonds pour I&Xef.[1]. The two constants, and €, are the average inter-
formation de Chercheurs et 'aidd@Recherche du Gbec.  action energy with the adjacent block when a protoau-

We would like to thank W. F. J. Mler for informing us  tron) occupies a peripheral site.
about Ref[8]. The probability that the central site is occupied by a pro-

ton isn,/N. Thus we have
APPENDIX
n, B
We follow the method of Ref{1]. We break up the lat- N Z_gr (A6)
tices intoN/(y+1) blocks, each of which contains 1 central

box andy nearest neighbors to it. We refer to Fig. 5 wheregyt since no particular site is favored over another one, the

for simplicity a two-dimensional lattice is shown. The inter- average occupation of one of the peripheral sites must also
actions within each block are taken into account exactlyye n,/N. This gives

while the interactions between different blocks are treated in

an approximate fashion. The grand partition function can be n, E+F+G
written as the product of the grand partition functions of the N- . (A7)
N/(y+1) blocks: or
N where
Zy=Zg(block 1)z4(block 2) - - - zgr( block—) . _ _ _
r+1 (A1) E=e Pep(1+erp Bép+ern Ben)r—1 (A8)

We want to write down the grand partition function of the F=ere s~ A~ Bépp(1+ Mo~ Bép~ Bepp-t ghn~ Fen—Bepn) 71,
block denoted by 1, 2, 3y, and 5. In the general case there (A9)
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G= e)\ne)\p—lg:p_ﬁfpn(l_i_ ekp_ﬁf—p—ﬁfpn_’_ e)‘n_ﬁzn_ﬁfpp) y—ll

(A10)
Similarly two equations can be written for, /N:
_C A1l
W - Z_gr! ( )
n, I+J+K
N- (A12)

ar

wherel,J,K can be written down from expressiofisF,G
by interchanging protons with neutrons. Equatioifs5),
(A7), @19 and (Al12) determine the four constants

Ao An,€p s €p.

For n,=n,, the calculations simplify. Now we have
=Ap=\p and e=€e,=€,. ThenB=E+F+G [EQgs. (A6)
and(A7)] leads to

eN(1+QerFe)r=ehFe(1+2eNFeyr-l
+e?N(1+Qe P leBeQ,
(A13)

where we have define@=e Pre+e~Pon. Dividing both
sides of Eq(A13) by e*(1+ Qe #¢)”"1 we obtain

) BT 1+2ewe)
=@ P€

1+QeM ke
We rewrite Eq.(A6) as N/n=z,/B, wheren=ny+n,, to
obtain

(A14)

N_ 1+2eh e |7 a5
—_— e —
n 1+ Qe Fe
Using Eq.(A14) the above relation leads to
e%:Leﬁ':y/(y— D, (A16)
2(N—n)

We definex=e~#</(r~1). Going back to Eq(A15) one can
now derive a simple solution for:

w

Values ofe ande* can be obtained from the definition ®f
and Eq.(A16).

N—2n
N—n

1
X=3

N—2n
N—n

(A17)

2 n
) +2Q .

Let us now go back to the partition function for the lattice
as given by Eq(Al). where it is written as a product of the

partition functions of theN/(y+ 1) blocks. If we simplyzy,
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FIG. 6. p—V diagram in the Bethe-peierls approximation with
same bond strength-5.33 MeV (top panel between all particles
and for the case where we distinguish between like particle interac-
tion and unlike particle interactiotbottom panel

evaluate the partition function for the lattice, the partition
function for each block should be corrected by the multipli-
cative factor

correction= eM/2BeN, (A18)

We can now usePV=kTInZgr, V=N/p, and InZ,
=N/(y+1)InZz, to obtain

P=pokT (A19)

mlnzg,,

for each little block as calculated above we will count twice wherezg, includes the correction factor.

the interaction between neighboring sites in different blocks.

For example, the binding energy between 1 ar&i§. 5 is
included inzy(block 1) and included again izg(block 2.
We note that on the average there arfél particles at each

In Fig. 6 we have drawiP-V diagrams for nuclear matter
for two cases:(1) €pn=e€p,=—5.33 MeV and(2) €,,=

—5.33 MeV ande,,=0 MeV. In the Bethe-Peierls approxi-
mation theT in the former case appears to be between 6 and

site and each block hag peripheral sites. Thus when we 8 MeV and in the second case between 4 and 6 MeV.
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