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Lattice gas model with isospin-dependent interactions
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Department of Physics, McGill University, 3600 University Street, Montre´al, Québec, Canada H3A 2T8

~Received 14 October 1997!

In this paper we continue the investigation of the lattice gas model. The main improvement is that we use
two strengths for bonds: one between like particles and another between unlike particles to implement the
isospin dependence of nuclear force. The main effect is the elimination of unphysical clusters, such as the
dineutron or diproton. It is therefore a better description of a nuclear system. The equation of state in mean
field theory is obtained for nuclear matter as well as forNÞZ systems. Through numerical and analytical
calculation we show that the new model maintains all the important features of the older model. We study the
effect of the Coulomb interaction on multifragmentation of a compound system ofA586, Z540, and also for
A5197, Z579. For the first case the Coulomb interaction has small effect. For the latter case the effect is
much more pronounced but typical signatures of the lattice gas model such as a minimum~maximum! in the
value oft (S2) are still obtained but at a much lower temperature.@S0556-2813~98!04204-6#

PACS number~s!: 25.70.Pq, 24.10.Pa
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I. INTRODUCTION

Over the past few years we have been developing a la
gas model for the study of nuclear multifragmentation@1–5#.
In this modeln nucleons are placed inN cubes and they
interact with nearest neighbor interactions. In most of t
work the interaction between neutron-neutron, proto
proton, and neutron-proton was taken to be identical
though we have sometimes used@5# a more complicated
model in which interactions between like particles are diff
ent from those between unlike particles. The purpose of
paper is to more fully expose this improved model and
examine its relationship with our earlier and simpler mod
Among other things we will also show that the importa
conclusions reached with our simpler model go through
our improved version.

The lattice gas model has the attractive feature that it
provide an equation of state but it can also provide the c
ter distribution. Most of the observables are calculated us
Monte Carlo simulations. We used the Metropolis algorith
in our simulations. Then particles are distributed inN boxes
according to the lattice gas Hamiltonian and their mome
are generated from a Maxwell-Boltzmann distribution a
prescribed temperature. The calculation of clusters
straightforward. Two nucleons in neighboring cells are p
of the same cluster if the relative kinetic energy is less th
the strength of the attractive bond:pr

2/2m1e,0. Herepr is
the relative momentum,m the reduced mass ande is the
negative ~attractive! interaction. This prescription is suffi
cient to calculate the cluster distribution. The motivation
introducing two kinds of bond is now obvious. If th
neutron-neutron bond or the proton-proton bond is attrac
then each numerical simulation can generate dineutrons
diprotons which in reality do not exist in nature as comp
ites. One can get rid of these unphysical clusters by sim
making the neutron-neutron and proton-proton bonds zer
repulsive.

For completeness we mention some more features of
570556-2813/98/57~4!/1839~7!/$15.00
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lattice gas model that were studied in@1,2#. One finds that at
a certain temperature the distribution of composites is
power law:Y(Z)}Z2t, whereY(Z) is the number~averaged
over many simulations! of composites withZ protons. As is
common practice, we will extract a value oft even when the
distribution has significantly deviated from a power law@6#.
This value is extracted by using

(
2
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ZY~Z!

(
2

10

Y~Z!

5

(
2

10

ZZ2t

(
2

10

Z2t

. ~1.1!

We also calculate the second momentS25(8A2Y(A)/n
where in the sum the largest cluster is excluded. The use
ness ofS2 was emphasized by Campi@7#. Since the lattice
gas model has a Hamiltonian, its average energy at any t
perature can be calculated. The excitation energy and
cific heatCv per particle can be calculated. We will find th
useful too.

II. THE EQUATION OF STATE IN SIMPLE MEAN
FIELD APPROXIMATION

We haveN boxes in the lattice in which we have to putnn
neutrons and np protons, np1nn5n,N, n/N5V0 /V
5r/r0, whereV0, r0 are normal nuclear volume and de
sity, respectively. In principle, we can have three kinds
bonds:enn ,epp , and epn . In the most general case whe
these interactions can take any arbitrary value a rich ass
ment of phenomena is predicted. The grand canonical p
tion function of this general lattice gas model can be map
on to a spin-1 Ising-type model in the presence of a magn
and quadrupole field. These have been studied in detail in
past @8#. For the nuclear case the values of the interactio
are quite restricted and the richness of phenomena di
pears. First of all we have to setenn andepp to be either zero
1839 © 1998 The American Physical Society
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1840 57J. PAN AND S. DAS GUPTA
or repulsive so that one avoids producing unphysical din
tron or diproton bound clusters. Charge independence
nuclear forces suggests that we putenn5epp . From now on
we will write epp for bothepp andenn . In our past work@5#
and also in other modelings@9# of nuclear collisions using
classical mechanics a slightly repulsiveepp was used. To
avoid proliferation of parameters we will set this bond
zero in this work. The binding energy of nuclear matter fix
the value ofepn at 25.33 MeV.

Throughout this workg stands for the number of neare
neighbors. In three dimensions one hasg56. We use the
Bragg-Williams mean field theory using the canonical e
semble. There areN boxes andnp protons andnn neutrons.
Let one of the boxes be occupied by a proton. Then, in
Bragg-Williams approximation, among its nearest neighbo
on the averagegnp /N will be occupied by protons and
gnn /N by neutrons. The number ofn-p bonds will be
gnpnn /N, the number ofp-p bonds will be (1/2)gnpnp /N,
where the factor of 1/2 remedies the double counting
proton-proton bonds. Similarly starting with a box occupi
by a neutron we come up with the same number of neutr
proton bonds and the number of neutron-neutron bond
determined to be (1/2)gnnnn /N. Thus the interaction energ
when there arenp protons,nn neutrons placed inN boxes is
E5g@epnnpnn1enn(nn

21np
2)/2#/N and the partition func-

tion is

Z~N,np ,nn!5
N!

~N2np2nn!!np!nn!
exp~2bE!. ~2.1!

We now find pressure P from the equation P
5kT@] lnZ/]V#T andV5a3N, wherea351/r0 is the volume
of each box. Using Stirling’s formula one arrives at

P5r0kT ln
N

N2n
1r0gepn~np /N!~nn /N!

1r0genn@~nn /N!21~np /N!2#/2. ~2.2!

We introduce an asymmetry parameterh5(nn2np)/(nn
1np) which takes value 1 for neutron matter, 0 for nucle
matter, and21 for proton matter. We can then write

P5r0kT ln
V

V2V0
1

1

2
r0g

V0
2

V2Fepn1enn

2

1
1

2
h2~enn2epn!G . ~2.3!

We determine the critical point from]P/]r5]2P/]r250.
This gives the critical densityrc50.5r0 and the critical tem-
perature2(g/4)@(epn1epp)/21(1/2)h2(enn2epn)#. In this
approximation withepn attractive andenn50 the critical
temperature for nuclear matter~which hash50! would be
highest at2(g/4)(epn/2) and would fall off quadratically
with h to 0 at neutron or proton matter.

The Bragg-Williams approximation is the simplest mea
field approximation. Unfortunately it is rather inaccurate f
two kinds of bonds. For nuclear matter at normal dens
(np5nn5N/2) it predicts a huge difference in binding e
ergy for the caseepn5epp5enn525.33 MeV and the case
-
of
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-
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epp5enn50;epn525.33 MeV. In the first case it predicts
binding energy of 16 MeV~which is the correct answer! but
in the second case it predicts 8 MeV which is a gross und
estimation. The correct answer in the second case is als
MeV; it is just that sites will be alternately populated b
neutrons and protons so that all nearest neighbor bonds
of neutron-proton type. In a similar fashion the Brag
Williams method predicts analytically that the critical tem
perature in the second case is half the value of the first c
but essentially ‘‘exact,’’ although numerical results in th
next section will show that the difference is much less, o
about 10%. An improved treatment using the Bethe-Pei
approximation is worked out in the Appendix. The me
field calculation shown in this section and the appendix
merely to form a rough idea about the nature of the ph
transition. In practical calculations we need to obtain t
yields of the composites at a given temperature. Mean fi
theories do not provide these and we need to do even
event calculation which can be obtained through Mo
Carlo samplings.

III. MONTE CARLO RESULTS

As far as we know exact results with two kinds of bon
are not available. For one kind of bond one can often int
pret essentially exact although numerical results from
well-studied spin-1/2 Ising model for use in the lattice g
model. In the absence of such exact results our only reco
is to compare numerical results obtained with two kinds
bonds, i.e.,epn525.33 MeV, enn50 with those obtained
with one kind of bond that we have used before, i.e.,epn
5enn525.33 MeV. We use hereN573, which is a number
appropriate for finite systems that we will investigate. A
mentioned in the Introduction the calculation proceeds
first putting the required number of protons and neutrons
theN boxes using a standard Metropolis algorithm. Nucleo
are then assigned momenta from a Monte Carlo samplin
a Boltzmann distribution at a given temperature. The ene
of the event can now be calculated. Clusters are then de
mined as explained in the Introduction. The results shown
Figs. 1 and 2 are obtained by averaging over 1000 events
selected temperatures. For two assumed freeze-out den
we calculate the specific heat, the second momentS2, and the
deduced values oft. The unit chosen in the graph for tem
perature isTc51.1275uepnu which is theTc for an infinitely
large lattice with one kind of bond. We find that the peaki
of Cv ,S2, and the minimum oft happen at a slightly lower
temperature~about 10%! with two kinds of bond as com-
pared to when the same bond is used for all the particles.
example, for the minimum oft to appear at the same tem
perature the value ofepp5epn has to be set at about 10%
lower value than the value ofepn when epp is set to zero.
Qualitatively and even semiquantitatively the results in
two models look similar when this renormalization of th
strength is done. However, the peaking ofCv is more pro-
nounced in the two bonds model.

All models which employ freeze-out densities assume t
the freeze-out density is less than 0.5r0. If the freeze-out
density is less than 0.5r0 then in the lattice gas model a pea
in Cv will signify the crossing of the coexistence curve and
first order phase transition. The value of specific heat can
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57 1841LATTICE GAS MODEL WITH ISOSPIN-DEPENDENT . . .
deduced from the caloric curve@10# but locating the peak is
very difficult in experiment. In a recent paper we sugges
@11# that since the peaking ofCv is accompanied by a mini
mum in t and a maximum inS2, the appearance of the la
two could be taken as a signal of the phase transition.
appearance of the maxima inS2 and of the minimum int in
close vicinity of the maximum inCv happens in both the
versions of the lattice gas model.

IV. A STUDY ON THE EFFECTS OF THE COULOMB
FORCE

Here we follow the methods employed in Ref.@3#. At that
time we studied the influence of the Coulomb force on fra
mentation of a system which had 85 nucleons and found

FIG. 1. A comparison of the calculated values oft, Cv , and the
second momentS2 in the one type of bond model~top panel! and
two types of bonds model~bottom panel!. Here as elsewhereT0

[1.1275uepnu'6 MeV. WhileT0 here is merely the scale of energ
it also happens to be the critical temperature for an infinite sys
with one kind of bond. The compound system hasA5103,Z545.
Notice the maxima and the minimum shift to lower temperat
whenepp is set to zero. AlsoCv is more sharply peaked.
d

e

-
e

effects to be small. For a much larger system~Au on Au:
central collision so that the compound system hasA'394)
we found the effect to be very large. One of the rather u
avoidable features of the lattice gas model is the appeara
of a minimum in the extracted value oft as a function of
temperature. This feature disappeared for the very large
tem of A5394 because of the Coulomb interaction.

For completeness a short description of a similar calcu
tion done for two kinds of bonds will be given here. In a
dition to lattice gas calculations, we do molecular dynam
calculations whose purpose is twofold. One purpose is
check if the predictions of a lattice gas model can resem
those of a molecular dynamics calculation provided the
tial conditions are the same and the forces are chosen t
such that they resemble implied forces of the lattice g
model. For this we place thenp protons andnn neutrons in
the N boxes using, as usual, the Metropolis algorithm. Ne
we assign the momenta from Monte Carlo sampling o
Maxwell-Boltzmann distribution. Once this is done the la
tice gas model immediately gives the cluster distribution

m

e

FIG. 2. The same as above except that a higher freeze-out
sity is used. The number of lattice sites is still 73. Here A5171,
Z570.
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1842 57J. PAN AND S. DAS GUPTA
ing the rule that two nucleons are part of the same cluste
pr

2/2m1e,0. To calculate clusters using molecular dyna
ics we propagate the particles from this initial configurati
for a long time under the influence of the chosen force~we
will give the force parameters shortly!. At asymptotic times
the clusters are easily recognized~a detailed discussion o
cluster recognition which requires shorter computer tim
can be found in Ref@12#!. The cluster distribution in the two
models can now be compared. Figure 3 shows the two
scriptions give nearly the same answer.

We now come to the second and more important purp
of the molecular dynamics calculation. We now add the C
lomb interaction to the nuclear part. The initialization of pu
ting the nucleons inN boxes is done again but now with th
inclusion of Coulomb forces. We then do a molecular d
namics propagation including the Coulomb force. The cl
ters can again be calculated and compared with the c
where the Coulomb force was ignored. The effects of
Coulomb interaction on fragment distribution was studied
Ref. @13# for number of nucleons 100, half of which wer
charged.

We now give the force parameters for molecular dyna

FIG. 3. The top part compares thet values extracted from a
lattice gas calculation~dotted curve! with those extracted from a
molecular dynamics calculation which had no Coulomb~dashed
curve! and one which had Coulomb included in the molecular d
mamics calculation~solid curve!. Molecular dynamics without Cou
lomb gives results very similar to those of the lattice gas mod
Here the effect of the Coulomb is small. The number of protons w
45. The lower part compares the second moments.
if
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e
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ics propagation. The neutron-proton potential was taken
be vpn(r )5A@B(r 0 /r )p2(r 0 /r )q#exp$@1/(r /r 02a)#% for
r /r 0,a and vpn(r )50 for r /r 0.a. Here r 051.842 fm is
the distance between the centers of two adjacent cubes
have chosenp52, q51, a51.3, B50.924, andA51966
MeV. With these parameters the potential is minimum atr 0
with the value25.33 MeV, is zero when the nucleons a
more than 1.3r 0 apart and becomes strongly repulsive wh
r is significantly less thanr 0. We now turn to the nuclea
part of like particle interactions. Although we takeepp50 in
lattice gas calculations the fact that we do not put two l
particles in the same cube would suggest that there is s
range repulsion between them. We have taken the nuc
force between two like particles to be the same expressio
above plus 5.33 MeV up tor 51.842 and zero afterwards
vpp(r )5vpn(r )2vpn(r 0) for r ,r 0 and 0 afterwards. This
means there is a repulsive core which goes to zero atr 0 and
is zero afterwards.

The results shown in Figs. 3 and 4 can be summarize
follows. Figure 3. first of all, shows that if there is no Co
lomb interaction then lattice gas model results are quite cl
to that of molecular dynamics simulation provided in t
latter one starts from the same initial condition and use
force suitably chosen. Figure 3 also shows that in the cas
A585, Z540 the Coulomb force does not have a large

-

l.
s

FIG. 4. Effect of Coulomb ont and the second moment for
much larger system;A5197, Z579. The minimum int and the
maximum in S2 shift from about 5 to 2.4 MeV because of th
Coulomb effect. At some larger Coulomb field the minimum int
will finally disappear.
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57 1843LATTICE GAS MODEL WITH ISOSPIN-DEPENDENT . . .
fect. The minimum int and the maximum inS2 are shifted
to slightly lower temperature. The effect forA5197,
Z579 is much bigger. The minimum int and the maximum
in S2 are shifted from 4.8 MeV~lattice gas without Cou-
lomb! to about 2.4 MeV. Our previous calculation show
that there is no minimum int for A5394, Z5158. So
somewhere between these two limits the minimum will va
ish.

V. DISCUSSION

The two bond model is a natural progression of the s
pler lattice gas model. In this paper we have done calc
tions with the two bond model. Although in detail the tw
models differ the major characteristics of the well stud
simple model remain unchanged. The lattice gas model
mains a quick tool to calculate experimental data.

When the Coulomb force is very strong the lattice g
model can not be relied upon. Figures 3 and 4 give so
indication of the reliability of the model in the presence o
Coulomb force. Calculations above indicate that a viable~al-
though much more time consuming! prescription might be to
obtain the initial conditions as in a lattice gas model. Pun
nucleons inN boxes by Metropolis sampling where one i
cludes, in addition to the lattice gas Hamiltonian, the Co
lomb force. Obtain momenta of each nucleon from a Mo
Carlo sampling of a Maxwell-Boltzmann distribution. The
propagate by molecular dynamics to obtain cluster distri
tions. Techniques developed in Ref.@12# might be used in
order to avoid running molecular dynamics till asympto
times. One attractive feature of this hybrid model is that
Coulomb force is operative even during the formation
clusters as opposed to other models where the Coul
force only adds repulsion between the composites alre
formed.
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APPENDIX

We follow the method of Ref.@1#. We break up the lat-
tices intoN/(g11) blocks, each of which contains 1 centr
box andg nearest neighbors to it. We refer to Fig. 5 whe
for simplicity a two-dimensional lattice is shown. The inte
actions within each block are taken into account exac
while the interactions between different blocks are treate
an approximate fashion. The grand partition function can
written as the product of the grand partition functions of t
N/(g11) blocks:

Zgr5zgr~block 1!zgr~block 2!•••zgrS block
N

g11D .

~A1!

We want to write down the grand partition function of th
block denoted by 1, 2, 3,g, and 5. In the general case the
-

-
a-

e-

s
e

-
e

-

e
f
b

dy

s
la

y
in
e

will be two absolute fugacitieslp andln , the first referring
to protons and the second to neutrons. The grand parti
function for a block can be written as

zgr5A1B1C, ~A2!

where

A5~11elp2bēp1eln2bēn!g, ~A3!

B5elp~11elp2bēp2bepp1eln2bēn2bepn!g, ~A4!

C5eln~11elp2bēp2bepn1eln2bēn2bepp!g. ~A5!

Here A 5 contribution to the partition function when th
central ~innermost! site is empty,B 5 contribution to the
partition function when the central site has a proton, andC
5 contribution to the partition function when the central s
has a neutron. Equation~A2! takes the place of Eq.~3.9! in
Ref. @1#. The two constantsē p and ēn are the average inter
action energy with the adjacent block when a proton~neu-
tron! occupies a peripheral site.

The probability that the central site is occupied by a p
ton is np /N. Thus we have

np

N
5

B

zgr
. ~A6!

But since no particular site is favored over another one,
average occupation of one of the peripheral sites must
be np /N. This gives

np

N
5

E1F1G

zgr
, ~A7!

where

E5elp2bēp~11elp2bēp1eln2bēn!g21, ~A8!

F5elpelp2bēp2bepp~11elp2bēp2bepp1eln2bēn2bepn!g21,
~A9!

FIG. 5. A square lattice is divided into blocks to illustrate th
Bethe-Peierls approximation. See text for details.
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1844 57J. PAN AND S. DAS GUPTA
G5elnelp2bēp2bepn~11elp2bēp2bepn1eln2bēn2bepp!g21.
~A10!

Similarly two equations can be written fornn /N:

nn

N
5

C

zgr
, ~A11!

nn

N
5

I 1J1K

zgr
, ~A12!

where I ,J,K can be written down from expressionsE,F,G
by interchanging protons with neutrons. Equations~A6!,
~A7!, ~A11!, and ~A12! determine the four constant
lp ,ln, ē p , ēn .

For np5nn , the calculations simplify. Now we havel
5ln5lp and ē5 ēn5 ē p . Then B5E1F1G @Eqs. ~A6!
and ~A7!# leads to

el~11Qel2bē !g5el2bē~112el2bē !g21

1e2l~11Qel2bē !g21ebēQ,

~A13!

where we have definedQ5e2bpp1e2bpn. Dividing both
sides of Eq.~A13! by el(11Qel2bē)g21 we obtain

15e2bēS 112el2bē

11Qel2bē D g21

. ~A14!

We rewrite Eq.~A6! as 2N/n5zgr /B, wheren5np1nn , to
obtain

2N

n
521e2lS 112el2bē

11Qel2bē D g

. ~A15!

Using Eq.~A14! the above relation leads to

el5
n

2~N2n!
ebēg/~g21!. ~A16!

We definex5e2bē /(g21). Going back to Eq.~A15! one can
now derive a simple solution forx:

x5
1

2FN22n

N2n
1AS N22n

N2n D 2

12Q
n

N2nG . ~A17!

Values of ē andel can be obtained from the definition ofx
and Eq.~A16!.

Let us now go back to the partition function for the latti
as given by Eq.~A1!. where it is written as a product of th
partition functions of theN/(g11) blocks. If we simplyzgr
for each little block as calculated above we will count twi
the interaction between neighboring sites in different bloc
For example, the binding energy between 1 and 6~Fig. 5! is
included inzgr~block 1! and included again inzgr~block 2!.
We note that on the average there aren/N particles at each
site and each block hasg peripheral sites. Thus when w
.

evaluate the partition function for the lattice, the partitio
function for each block should be corrected by the multip
cative factor

correction5e~1/2!b ēgn/N. ~A18!

We can now usePV5kT ln Zgr, V5N/r0, and lnZgr
5N/(g11)lnzgr to obtain

P5r0kT
1

g11
ln zgr , ~A19!

wherezgr includes the correction factor.
In Fig. 6 we have drawnP-V diagrams for nuclear matte

for two cases:~1! epn5epp525.33 MeV and ~2! epn5
25.33 MeV andepp50 MeV. In the Bethe-Peierls approxi
mation theTc in the former case appears to be between 6
8 MeV and in the second case between 4 and 6 MeV.

FIG. 6. p2V diagram in the Bethe-peierls approximation wi
same bond strength25.33 MeV ~top panel! between all particles
and for the case where we distinguish between like particle inte
tion and unlike particle interaction~bottom panel!.
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