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Cranking model with proton-neutron correlations
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A cranking Hartree-Fock-BCS HFB model wilh=0 andT=1 proton-neutron correlations is proposed and
discussed. Numerical calculations are carried out on a sirgg) {(ds2), shell as a first practical try. It is
found that theT =0 proton-neutron pairing correlation is crucial for a crossing of an even-spin ground band by
an odd-spin band, a so-call@d=1 andT=0 band crossing in aN=Z odd-odd system. A conventional spin
alignment of a ground state band in an even-even system is also examined. A delay of this spin alignment due
to aT=1,J=0 proton-neutron pairing correlation is found for nuclei witl+=Z.
[S0556-281®8)03504-3

PACS numbg(s): 21.60.Jz, 21.10.Hw, 21.30.Fe, 21.60.Ev

The study of the proton-neutrop4{n) interaction has be- crossing in’?Kr has been reportefd 3] and may be related to
come a hot issue in recent years. T interaction has the p-n correlations[10,14. Our model may be capable of
been recognized as playing an important role, especially fostudying the microscopic structure behind these experimental
theN=2Z nuclei(see Ref[1] for a review. The nuclei in the findings. It is found that basic features of these two types of
mass 70-80 region witN nearly equal taZ are known to  crossings can be explored even in a single shell approxima-
provide a variety of nuclear structure informati¢a—4|. tion of this model. We find that th#=0 andT=1 band
Since they are well-deformed, one can expect that therossing(we call it first band crossing later pm an odd-odd
cranking-HFB approacfb] may offer a very powerful frame nucleus, and the delay of the conventional band crossing
for understanding their microscopic structure. This modelsecond band crossingn an even-even nucleus are due to
has two average potentials, the deformation average fielghe p-n correlations.
which is usually described by the quadrupole parameers  Let us start with a general effective Hamiltonian which
andy, and pairing fields\ ; and A, which are known from includes thep-p, n-n, andp-n correlations with the follow-
BCS theory. In heavy nuclei, isovectdr=1,J=0 proton- ing form:
proton (p-p) and neutron-neutromgn) pairing correlations
dominate. In light nucleie.g., insd shel) the isoscalar T "
=0) correlation may become stronger than isovecios E U CT——XE QL (77 Qz.(17)
cluding T=1 proton-neutron component, and the ground
state may havd =0 [6]. The N=Z nuclei of the mas# . N
~80 region are very interesting for studying an interplay _E G,P(r7)P(77)
between theT=0 correlation andT=1 correlation[6,7]. T
Since protons and neutrons occupy the same levels, we 1 At A
should expect largp-n correlations in the region with mass - 52;4 kJEM: Ajm(pnAgu(pn), 7=p,n,

70-80 and lighter. At present, however, it is not clear

whether thep-n correlations are strong enough to form a

static pair condensatéan average field In this paper, we Q, (7= 2 (a|Q, | p)cIics, (1)
will propose and discuss a cranking-HFB model wjtin g g p

pairing average fields in addition to the usual average fields,

the deformed field, and the like-nucleon pairing fields. - apln ar LA

Recently, Rudolptet al.[8] have observed a band cross- P(rr')= Z’o CCqr Co=(-1)a m“CjTame,*
ing of an even-spin ground state band by an odd-spin band in “
the odd-oddN=Z nucleus "*Rb. For this nucleus, the first
spin alignment along the yrast line is not due to the conven-
tional one of two-proton or two-neutron pairs. This band
crossing phenomena has been studied by cranked shell
model calculationg8-10]. They found that thefl=1,J=0
p-n correlation and th&=0,J=9 p-n correlation are most
important for the first alignment. One other interesting ob-
servation is a conventional spin alignment of two-proton orS€t of quantum numbers=(na,la,ja,M,)- HereP(r7') is
two-neutron pairs in Kr isotopegl1,12. A delayed band theJ=0 pair operatoerM(rr) are components of quadru-

Alu(77')= E (jamaismglIM)cycy T

1
V1+6,,
The operatorc,(c!) denotes the nucleon annihilatidore-
ation) operator in the single-particle state characterized by a
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pole tensor, and, are single-particle energies. In the mean-

field approximation, the cranking Hamiltonian wiphn cor-
relations is expressed as

h'=h,+h,+hyn— -], (2)

1733

Ao ==20 2 2, [Cyourt (= 1) 107 Cyy]

M>0 «ap

X(jaMaipMglI— M) (CBTcH +H.c)

=2y, G302 (JaMajomglI0) (€L ER +H.c).

whereﬁp andh,, denote the proton part and the neutron part 153

of the Hamiltonian, respectively:
h=3 el8ei- 2 a3, Qplrn -\ N7
—A(PY(r7)+P(77)),
=2 cflc. Ji=2 (alidB)CL, k=xy.z,

and the proton-neutron pdﬁgn is given as

hon=—2 CoulAJu(Pm +Amm(pm], (@)
with
03, =x(B|Qzu(r7)|B), A, =G($|P(r7)| ),
Cam=Kky(B|Am(pN)| ). (5)

(70

Here, we should note that the nonconserved term may play
an important role foN=2Z nuclei in thesd and fp shells.
Especially, theT=0 proton-neutron correlation in time-
reversed states is significant for the ground state in odd-odd
nuclei nearN=2Z. As pointed out by Goodmafi], N=2Z
nuclei insd shell pairing correlations are important for neu-
trons and protons coupled =0 in time-reversed orbits,
and dominatel =1 correlations. In the mean-field approxi-
mation, the signature nonconserved tehfl” with T=0
gives rise to a signature breaking. Then, we may expect en-
hancedM 1 transitions as an observable consequence of a
signature breaking, similar to the case for the tilted-axis ro-
tation. Furthermore, sinch{i with T=0M#0 mixes K
quantum numbers of states, this pairjman field may evolve

to a triaxial HFB stat¢15]. In this paper, however, we will
limit ourselves to the cases where a symmetry under a rota-
tion by 180° about thex axis is sustained. The signature
nonconserved term will be discussed in a forthcoming paper.

Here,j, are the angular momentum operators with respect td hen,C;y satisfies the following relationships:

thek=x,y,z axes, andy is the angular frequency vectar
=(wy,0y,0,). The parameters ., A,, andC,y are the
chemical potentials, the pairing gaps, and tHé compo-

nents of thep-n field strength, respectively. The quadrupole

deformation parameters are defined as

1
dz,=pcosy (u=0), Eﬁsiny (n==x2),

0 (u==1). (6)

We now consider protons and neutrons system coupled to an

axially symmetric deformed prolate core so theat O in the
intrinsic frame. Thep-n Hamiltonian ﬁpn iS not invariant
under a rotation of 180° around theaxis by the operator
Re=exp(—im]y), i.e., RehpR ' #hy,, and it also breaks
an isospin symmetry. In fact, we can divide the abpva
Hamiltonian into two parts, signature conserved thfjf’

and nonconserved terfi{""

Ron= RS9+ A9,

(7a)

-3 3

Com> [{jaMaipmglIM)
M>0 af

—(=1)latIo 3 m,jpmgld—M)I(cETch + H.c),

- >

J=eve

C102, (iaMaisMglI0)(EB'C +H.c),
n af

(70)

Cyu+(—1)atle™3C; =0 (forall IM),

Cy=0 (forodd J), (8)

and the signature nonconserved term vanishes. This assump-
tion is reasonable for describing axially symmetric systems.
In fact, in “*Rb the even-even ground band and the odd-spin
band are considered to be specified by the signatyiel
andr,=—1, respectively. Under the above assumption, the
p-n Hamiltonian is written as

o £ (s9T=0_ f(soT=1
Rpn=h{oT=0+Ax0T=1, (9a)
where h(3T=% and h;™=! are isospinT=0 part andT
=1 part in the signature conservpeh Hamiltonian, respec-
tively,

AEOT=0=— > > Cym> [{jaMaipmglIM)
J=odd M>0 afB

—(=1)latIo= ) m,jpmgl I - M)I(cB e

+H.c), (9b)

ROT=1= — AT PT(pn)+P(pn)]

1
— —0C jam,jp,mg|IJM
J:zmo ME?O 1+ 6y JMaEﬁ [(aMaib B| )
—(=Dla* b7 m,jpmgld—M)]

x (cBich'+H.c), (90)



1734 KAZUNARI KANEKO AND JING-YE ZHANG 57

where Aj* is a parameter of thd=0M =0 component. 2 ——==
The Hamiltonian(2) can be diagonalized by the generalized S/
Bogoliubov transformation

E (U™ ¢, +V™ch). (10)

e' (MeV)

Then the quasiparticle vacuufg,) is defined bya;| o)

=0. The above transformation is required to be unitary, and
can then be inverted to express the particle operators in terms
of the quasiparticle operators

c;=§i} (Ula,+V™al). (11)

The unitary constraints are
utu+viv=1, uUuUt+v*VvT=1,
u™v+VvTu=0, uUVv'+v*UuT=0. (12

Then, the Hamiltoniaril) is given in terms of the quasipar-
ticle

&' (MeV)

ﬁ’=E0+E E,é\lral , (13)
I

whereE, is the energy of the quasiparticle vacuum dfd
are the quasiparticle energies. Then the ground state of odd- . VA

0 0.2 0.4 0.6 0.8
odd system is expressed |as) =a/ a | #0), whereig andi; o (MeV)

denote the lowest quasiparticle state and the second lowest
state, respectively. These quasiparticle states are not eigen- FIG. 1. (8) shows the Routhian for Bi=Z system withoup-n

interaction, and the trajectories are degenerate between quasiproton
states of the |sosp|n operatilir'Z while they are eigenstates and quasineutron state(in) is the Routhian in &J=Z=3 system

of z componentT, of isospin. In fact, we can see that the i p-n interactionsAT 1=2.3, C;_gy_;=1.0. The solid lines
p-n term hpn does not commute with |sosp|n operators and the dashed lines denote the signatyre—i andr,=i, respec-
T.,72 and only commutes with the componenfT,, tively.

[h n,-]-+]22 CJM[AEM(nn)_AJM(pp)]a (149 Thus, thep—n_term gives rise to a mixing of proton and_
P IM neutron quasiparticle states. Therefore, we cannot specify
proton or neutron for the quasiparticles, and there no longer
& A A are separate proton or neutron Routhians. We will see this in
[hP“’T—]:JEM CJM[A}M(pp)_AJM(nn)]’ (14b) Routhian plots of Fig. 1 later on.
In the above equationsi;, ,A ., andC;y depend on the
solution |¢), and generally have to be self-consistently de-

[ﬁpn,?z]z% Com{T:[Alu(PP) —Asu(nn)] termined. However, it is too early to try a full self-consistent
calculation with a microscopic model includingn interac-
+[A}M(nn)—AJM(pp)]'T',} (140 tions at present. Theoretically, it is because, no matter one

knows the existence of the-n interaction inside nuclei for
decades, there have only been a few numerical calculations
published withp-n interaction treated microscopically for
specifically real nuclei so far, and none of them was done
with a full self-consistency. Experimentally, it is very hard to
. R extract thep-n interaction quantitatively from the data, es-
T+=E CQTCE, T_ _2 CpT i (1539 pecially, to our knowledge, there is no known direct way to
“ extract different components op-n interactions, even
though there is, for instance, an empirical formula to extract
T :_2 (chfc" —cPfePy, (15h  the average effectivp-n interaction from dat§16].
Therefore, it seems to us, there is still a lot of work ahead
. to understand basic features of different components-of
T2=T,. T_+T,T,—1). (150 interactions. At present, one of the meaningful and practical

[ﬁpnyrrz]:O’ (140

where isospin operators are defined as
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approaches to this issue is to examine the role of different
components involved imp-n interactions under some clear
and reasonable approximations. The recipe we are taking is
to formulate a general model, as we have done above, and
then to carry out numerical calculations in a single
(9912 p(9or2)n shell with some reasonable constant param-
eters, and followed by checking the parameter dependence of
results we obtained. We first consider an axially symmetric
system withN=2Z, odd-proton numbeg, and odd-neutron
number N. The deformation parameters are chosengas
=0.3,y=0.0. The pairing gaps are fixed at,=A,=1.39
MeV, and the single particle energies are taken to be values
e.=0.0.

Let us now start with the investigation of the single qua-
siparticle Routhian. Figure(4) shows the single quasiproton
or quasineutron Routhians. The proton level and the neutron g, 2. The Routhian in &l=Z=3 system with parameters
level are degenerate for each trajectory in the ROUth'anAg,jl:o.o,CJ:LM:1:1.0.
There is not any type op-n interaction involved, it is just
the conventional Routhian plot. However, Figbllis differ- S0 it is coming from some specific termsin interactions.
ent. It is still the single quasiparticle Routhian, but it includesSuch findings may offer a microscopic basis for those theo-
some components gi-n interaction. The chemical poten- ries which attribute the signature inversion to the involve-
tials are kept at the values which give the average protoment of some type of phenomenologigain interactions
number N,=(N,)=3. The average neutron numbet, [1rg,2(r]1.t2 %etlai'lei‘:l S:“‘%’ of trr‘]‘z \?vli?lnsturre |nr;/edrS|c|)n v\\//vrl1thr
=(Np)=3 for h»=0.0 andAg,?l:Z.S andCj_gy-;=1.0 prese 0de’ 1S In progress a e reported elsewnere.

tak d oth ; ‘1 A The spin alignments due to the first band crossing in the
are taxen, and other componen .‘Qﬁ"' SELIo zero. ASmen- 4y g system for each odd neutron num\¥er3,5,7,9 and
tioned above, we cannot specify proton states or neutro

states in the Routhian due to the proton-neutron mixing b roton numbez =3 are shown as a function of the angular
the p-n interactions[see Eq.(7)]. Therefore, in Fig. (b) requencyf w in Fig. 3. The chemical potentials are kept at

both proton and neutron degrees of freedom are shown t(;[he values so that atw=0.0 the average proton number

gether. We can see a first crossing niar=0.22 MeV for ~ (Np) and the average neutron numkié,,) give Z andN,

the lowest-energy trajectory. Since the lowest level and th&eSpectively. INN=Z=3, we can see a sudden spin align-
third lowest haver,=—i and the second lowest and the ment ath w~0.22 MeV due to the first level crossing, while

fourth lowest have, =i, the yrast state of odd-odd system the spins inN# Z increase gradually. The single proton and

N Aqnt . neutron state$j,m,) with large j=9/2 and smalim,=3/2
(the lowest two quasiparticle Staﬁéoailw(’)) has a signa are just above the Fermi surface, then it is easy for the Co-

turer,=1 (an even-spinbefore this crossing, while it has riglis force to align the angular momentum vectors of both
the signature,= —1 (an odd-spih after the crossing. Thus quasiparticles in the direction of rotational axisWe also
the signature of the yrast state changes from¥1 to ry  carried out the cranking model calculations with oblate de-
=—-1 athw=0.22. The crossing @ w~0.75 MeV is the  formation for theN=Z=3 nucleus. However, a sudden spin
second crossing in Fig.()), the conventional one of two- glignment as mentioned above was not found in these calcu-
proton or two-neutron pair alignment without signhature|ations.

change, as is well known. This crossing frequency:is We also examined the Routhians with othgen terms in
~0.45 MeV when there is n@-n interaction as shown in  Eq. (7). Similar crossings in Fig. (b) are seen in odd-spin
Fig. 1(a). As seen later, thd=1, J=0 p-n term plays an
important role in this delayed crossing frequency. Thus two
kinds of crossings are found witt+n interaction presence as
shown in Fig. 1b).

There is one more type of crossing as shown in Fig. 2
coming from nonzeraC;_;y-;. The energy order of the
second pair of signature partners is inverted, i.e., instead of
the favorite signature,= —i, being lower in energy as in the
first pair of thegg, orbitals, the unfavored signaturg=i is
lower in energy for this pair. The crossing occurs between
the second level and third level with same signaturei.

As explained in detailed by Bengtssenal. [17], such an
energy order reversal between nearby signature partners
could lead to the signature inversion which has been seen in 0905 01 015 02 025 03
odd-odd nuclei in mass 120 and 150 regides)., see Ref. Ho (MeV)

[18]). The reversal energy order is attributed to a positve

deformation in Ref.[17], however, as mentioned above, FIG. 3. Spin alignment foZ=3 andN=3,5,7,9 with the same
there is noy deformation involved in the present calculation, parameters as in Fig.(4).

e' (MeV)

nm (MeV)

Alignment ()
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FIG. 4. The parameter dependence of the three types of band crossing: dependane ogy -, for oM (solid) and# w(® (dashegt
(b) Cy_1pm—1 for h0®? (solid) andhw? (dashedt (c) Al for 7w (solid) and%w(® (dashedt (d) N-Z of even system fofiw? , the

pn

conventional crossing With;,Tl:Z.B,CJ:gM:l: 1.0, the sam@-n interaction as in Fig. (b); (e) the deformation parametg@ for ﬁwgl) ;

(f) the gap parametek(=A,=A,) for Awl".

J=3,5,7 andM =1,3. However, as examples, we will only
focus on the role of three terms of then interactionA
Cjy-1m=1, and C;_gy—1. Figure 4 shows the two band
crossing frequencies as a function ©f_gp-1, Cj—1m=1,
Agy*, andN-Z. In Figs. 4a)-4(c), the chemical potentials
are fixed at\ ;=\,= —2.21 which is just below the single
particle staterj =9/2m,=3/2) at iw=0.0. We can see in
Fig. 4a) that under constant valu*=2.3 the first cross-

ing frequencyﬁwf:” (solid line) increases monotonically as
Cj—_gm=1 increases, while the second crossing frequency
hw(fj (dashed lingis almost constant. On the other hand,
Fig. 4b) shows the crossing frequencies as a function of
Cy-1m-1- The parameters are fixed & '=2.3 and
Cji-9m=-1=0.0. The crossing frequendyw(c‘q“)J (the one de-
scribed in Fig. 2 has a small valuésolid ling) in the fre-
quency region discussed, and increases slightly with increas-
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ing Cy_im=1. The frequencyi »? decreases By 1m-1 In conclusion, we here proposed a cranking model with
increases. Thus thd=1M=1 p-n term affects the fre- T=0 as well asT=1 p-n fields, and analyzed the band
quencyi w® of the second type of crossing, and results in aStructure ofN~Z systems using thege/) (9er2)n shell as a
small value thw(ca)_ Figure 4c) shows that, under constant first practllcal try. In.our analysis, we have shown thatphe
lUeC- or =10 the second crossing frequenw? n correlatlo_ns play important roles for the mechanism of the
va J=9M=1 " _ g frequenty. band crossings in th&l=Z system. TheT=0,J=odd p-n
increases as\,, " increases, while the first crossing fre- correlation gives rise to the first crossing along the yrast line,
quency%w(M is almost constant. Let us next discuss e with change of the signature from=1 of the ground band
Z dependence of the second crossing frequénogf) inthe  with even-spin ta,= — 1 of an excited band with odd-spin.
even-even systems. The crossing frequencies as a function lof the example calculated presently with=Z=3 in thegg,
N-Z are shown in Fig. @) with the samep-n interactions as  shell (approximately corresponding to the case’tRb), the
in Fig. 3. We can see a large crossing frequenciNatZ. isoscalarJ=9 component plays the key role in causing such
The T=0J=0 p-n correlation inN=Z becomes stronger a transition as shown in Fig(l). This result is in agreement
than that inN# Z. As the neutron excess increases, this corwith the finding reported in Ref9]. On the other hand, the
relation becomes less favorable. T=1J=0 p-n correlation results in a delay of the second
In this paper, we carried out on a singlgef),(Je)n  (CONventional crossing. The results of our cranking calcula-
shell as a first practical try, and assumed constant values féion are consistent with the experimental data of the band
the parameters3,y,A,,A,, and C,y for simplicity. For ~ crossing in”“Rb and the delayed crossing frequency fKr
more realistic calculation, however, we have to force theas mentioned in the introduction. The basic featurep-of
self-consistency condition€Eq. (5)]. Then, the pairing cor- interaction explored in our singleshell calculation are very
relations will be weakened by the Coriolis force, and theinteresting, and tell that the cranking model wikls=0 and
deformation parameter8, y may vary with the angular fre- T=1 p-n fields may be a powerful tool for describing mi-
guency. Figure @) shows that the first crossing frequency croscopic structure in the nuclei wittN~Z for mass
hoM has very small3 dependence. This agrees with the 70—80 and lighter. Thus, we can expect that fe corre-
result[8] of no sensitivity for deformation parametgr The  lations are strong enough to form a static pair condensate in
gap parameteh (=A,=A,) dependence abY is also very the nuclei of this region. We considered only the signature

small as seen from Fig.(. Furthermore, as shown in Fig. conserved terms for the-n Hamiltonian in the present cal-
4(c) the first crossing frequenwgl) is constant. Therefore, culations. As mentioned before, the signature nonconserved

we can expect that even if we force self-consistency conditeMs: however, may also play an important role forZ
ystems. This will be discussed in a forthcoming paper.

tions (5) the crossing frequencies will have about the same®
values. Thus, the first crossing frequermy) strongly de- The Joint Institute for Heavy lon Research has as member
pends only on thd=0,J=9 parameteCy , [See Fig. 4a)].  institutions the University of Tennessee, Vanderbilt Univer-
In the whole, one can see from Fig. 4 that the parameters wsity, and the Oak Ridge National Laboratory; it is supported
use in the calculation are reasonable, especially, our resultsy the member institutions and by the U. S. Department of
are not sensitive to the choice of tjgevalue in our singlg-  Energy through Contract No. DE-AS05-76ER04936 with the
shell approach. All three types of band crossing we examUniversity of Tennessee. Theoretical nuclear physics re-
ined vary with rotational frequency smoothly. In the future, search at the University of Tennessee is supported by the U.
certainly, one will increase the self-consistency level step bys. Department of Energy through Contract No. DE-FGO5-

step to deepen our understanding of fha interaction. 87ER40361.
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