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Iterative relationship in two-parameter formulas for rotational spectra and a universal equation
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An iterative relationship connecting a series of two-parameter formulas for rotational spectra is revealed. It
is also pointed out that various two-parameter formulas are merely solutions of a universal equation with
different powers[S0556-281®8)03104-5

PACS numbes): 21.10.Re, 21.60.Ev, 27.70q, 27.90+b

Phenomenological analysis of energy levels of well- #2 1 )
deformed even-even nuclei has gone on for more than four E= ﬁl(l +1)+ EC(J—jo) , %)
decades since Bohr and Mottelson described the ground-state
rotational bands with a rigid rotor expressifity where (1) is determined from the variational condition

JE(1)/97],=0. It has been proved] that the VMI model is
(1) equivalent to thexg formula.
(5) ab formula From experimental level systematics and,
alternatively, from nuclear hydrodynamics, Holmberg and
Up to now a variety of empirical formulas have been devel-Lipas[6] deduced a closed formula
oped to correct the systematic deviation between(Egand
experiment. Among these formulas two-parameter ones have E=a[y1+bI(I+1)—-1]. (6)
been used more generally for their less parameters. A brief ) o i
summation is as follows. Previous to them, Najakov and Mikhailov already derived
(1) AB formula In principle, the rotational energy may be the same formula from a generation of the Inglis cranking

expanded as an infinite power series I¢f+1) [1]. The Model[7] _
first-order approximation is of the form (6) pq formula Recently, following the way of Ref4],
we derived another formula

ﬁ2
E= 5211+ 1)=AI(1+1).

E=AI(1+1)—-BI?(1+1)? 2
3\/ X 2 X 4 X 3
where the second term represents the vibrational correction. E= p[ > + > + 3
(2) A variant of AB formula (Warke-Khadikikar formula)
[2]: If the magnitude of the second term in EG) is small 3\/ ¥\ 2 4 [x 3]
enough compared with the first one, one can rewrite the + _) - —| =], )
equation as 2 2 3
B Al(1+1) wherex=ql(l +1). Various comparisons show that our for-
E=AI(1+1)1- KI(I +1) |~ -8B ) mula is the best one among all two-parameter formulas we
1+ K|(| +1) we have known until now in fitting ground rotational bands

of even-even nuclei in rare-earth and actinide regif8is

There are also some other two-parameter formulas, which
The difference between Eq&2) and (3) is that the latter is  are omitted here for their either complicated forms or not
convergent ad increases. Using such a simple formula, being designed especially for rotational spectra. Up to now,

Bonatsos[3] has accounted for the gradual increase of thehere have been many references to discuss various formulas
moment of inertia with angular momentum below bandfor rotational spectrd9—14].

crossing in the actinide and rare-earth regions. The formulas enumerated above are all successful in vary-

(3) Harris w? expansior{4]: ing degrees in fitting experimental data. This fact is by no
means accidental and suggests that there must be some in-

E=aw’+ Bo?, 4 trinsic relationships among them. Many years ago, Mantri

and Sood gave an excellent unified summary of various for-
with w denoting rotational angular frequency. This expan-mulas advanced up to that time and proposed a basic set of
sion converges faster than the angular-momentum expansi@guations from which one can obtain various energy expres-
and can give a good fit to the data in many cases. sions. However, their set of equations is too complicated for
(4) Variable moment of inertia (VMI) model practical application and there are some formulas which, pro-
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posed later, have not been discussed in their paper. This m

tivates us to try to give a new discussion of the problem.
Recalling the derivation of Eq7), we practically take the

following steps(see Ref[8]): (i) assuming that the deviation

between Eq(1) and experiment is caused by the variation of

the moment of inertig/, with E. That is, 7 is the function of

E. Thus we have

2

E= 276

I(1+1); (8)

(i) rewriting the ab formula as the form of E
=(*%227[bl(1+1)]PI(1+1) and then replacing!(l+1)
in the expression of7/[bl(l +1)] with 2E/a by using the
pure-rotor limit of theab formula,E=3abl(l +1), to getan
expression similar to Ed8) and then yield a cubic equation
of E

3 2
afbl(+ 1)) _

E3+a?bl(1+1)E— > :

9
(iii) solving the above equation, one can obtain pagfor-
mula, wherep andq, corresponding ta andb, respectively,
are introduced to avoid confusion with tlad formula. Ob-

viously, these steps make an iterative process in essence.
Enlightened by this, we may perform the same process to

ZENG

aamely,

2

24
E+B

3
E—EI(I+1)=O. (12
Its physical root is just th@b formula with a=A?/2B and
b=4B/A. Thus we see that Egq$2), (3), (5), and (6) are
connected by an iterative relationship. Tab formula is a
starting point of the iteration. We are now interested in what
the limitation of the iteration is and how to get it. To this
end, we denote thE in Egs.(1), (2), (3), (4), and(5) asE,,
Eq, E1, E,, andEs, respectively, and rearrange the last four
equations into the following forms:

2

Eo+ 5 Ea’(Eo—En)=0, (13
A2
1 -1 —
Ei+ B Er"(E1—Ea) =0, (14
A2
2 0 _
E3+ 5 EA(E;—Ea) =0, (15)
A2
3 1 _
E3+ 5 EA(Es—Ea)=0. (16)

other two-parameter formulas. Let us start from the simplest

one, Eq.(2), which, according to step§) and (ii), can be
rewritten as

E=Al(1+1) . (10

B
1—;E

With a slight rearrangement, one obtains the expressidh of
just the same as E@3).

Now we deal with Eq(3) in turn. Its variant in analogue
with Eq. (8) is

E:AI(I+1), a

B
1+ —=E
A2

An obvious regulation shows up from these equations, i.e.,
they constitute an organic series and have a common form:

2

n A n—-2
En—’_EEA (En—Ea)=0, (17)
or, equivalently,
EN+2aE) ?(E,—EA)=0. (18

Naturally we expect that this equation is valid for any integer
n. In other wordsE, in Eqg. (18) is just the result ointh
iteration. To show this, we offer a demonstration instead of a
strict proof by applying the iteration procedure to thq
formula. First, making use of the relation+v=(u®
+v3)/(u?—uv+v?), one can change E¢g) into

X 2
2| —
; (19
= . 19
3\/x2 [[x\* x32x3\/x2 [Ix\* [x\3]?
—| + = +|= +—+ - - = +|=
2 2 3 3 2 2 3
Then replacing eack by 2E/a, except the one in the numerator which is recovered l{d+ 1), one obtains
(E bl(1+1)
2 _—_
a 2
E=p . (20)
. [ (E\2 E\4 [2E\3]° 2E ,[/(E\2 E\* [2E\3]?
\/ —| + —| +| = +—+ —| - —| +| =
a a 3a 3A a a 3a
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3
R4
FIG. 1. The Mallmann plots for Eq18) by solid lines for integersa=0, 1, 2, 3, 4, 5, and 6 from right to left. The experimental data are
denoted by closed circles for the actinide nuclei and open circles for the rare-earth nuclei.

After a tedious but straightforward derivation, one can sim-in the typical rotational range of 3:2R,<3.33. To see this,

plify the equation into we have also given the Mallmann plots of th@ formula in
. 5 Fig. 2 by dashed lines. One can see that the dashed line for
E*+2aE,(E-EA) =0, (21)  each of the spins is located between two solid ones with

=3 and 4, respectively. In fact, it almost overlaps with the
curve, shown in Fig. 2 by solid lines, plotted by taking
n=3.4 in Eq.(18). Thus we may take as a free parameter
and regard it as a mark of the stretching effect because the
largern is, the more down-bent of the curve ¢gfvs E is.

which is just the same as E¢L8) in the case of taking
=4,

Using the Mallmann plof15], i.e., the plot ofR,=(E,
—Ep)/(Es—Eg) (orri=R,—R,_,) versusR,, we may as-

sess which \_/aIue af _in Eq. (18) will lead to the best fitting  after extending the value range of and regarding it as a
to the experiment. Figure 1 shows the plotspis Ry, for  fiting parameter to be determined for each rotational band,

1=6,8,...,28, forn=0,1,..., 6,respectively, by solid gq (18) essentially becomes a three-parameter equation and
lines from right to left with the values dR, spanning from  jis solutions can cover the entire distribution of the experi-
3.0 to 3.33. All the experimental data available now for theqental data.

grqund—st_ate bands of even-even rare—eart_h and ac_tinide NU- We have also accomplished least-square fits of (E8),

clei [8] (with band-crossing spih,=16) are displayed in the n=0,1, ..., 6, toeach of the ground-state bands of
figure by open and solid circles, respectively. It can be apye|l-deformed nuclei, respectively. Since Ed.8) has no
parently seen that the curve correspondingite3 (i.e., the  anaiytical solutions whem takes integers larger than 5 or
pq formula) passes through the most experimental points fokea| numbers, one must solve the equation in value in these

almost each spin, apart from the first two small ones. In othegases. Table | lists the root-mean-squarm.s) errors, cal-
words, when takingi=3, Eq. (18) gives the best fitting in  cyjated by

systematical meaning. This conclusion is consistent with
Ref.[8]. It should be noticed that the band-crossing spins of =0 2
ground bands of most rare-earth nuclei are abqsat16, o= \/_E ( n ) ,
therefore the experimental pointslof 16 for these nuclei in Ni=1 E®N(i)
Fig. 1 are plotted for reference only.

We now discuss the relation between thg formula and  with N denoting the number of data points considered, which
Eq. (18). If n is limited to taking the integer only, the  allows us to see to what extent the experimental data can be
formula does not belong to the series given by @@). But  described by Eq.18) with varyingn. It can be seen from the

if we expand the value field af to any positive real number, table that the best values range from 0 to 5. Howevar,
it might become an approximate solution of E§j8), at least =3 generates the best agreement for most nuclei, while

(22
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TABLE I. The r.m.s. deviation defined by E@?2) for n=0, 1, 2, 3, 4,5, and 6. The minimum of the
r.m.s. is denoted by italic. The experimental data are taken from recent Nuclear Data (ShedRef[8]).

oX10?
Nuclei Al(1+1) n=0 1 2 3 4 5 6
1545m 7.499 1.406 0.973 0.577 0.227 0.170 0.452 0.727
156Gd 7.735 1.240 0.785 0.384 0.161 0.407 0.706 0.984
162Dy 6.066 0.761 0.469 0.206  0.085 0.288 0.495 0.688
164Dy 3.935 0.305 0.179 0.062 0.051 0.155 0.254 0.347
160gy 11.859 4.333 3.283 2.341 1.571 1.088 1.055 1.337
6%y 11.112 1271  0.635 0.826 1.370 1.906 2.388 2.815
164y 5.737 0.647 0.391 0.164 0.112 0.293 0.477 0.649
166gy 7.052 0.552  0.150 0.212 0.533 0.823 1.084 1.320
168y 2.270 0.106 0.070 0.042  0.041 0.066 0.098 0.130
164yp 13.991 4.314 2.831 1.631  0.982 1.288 1.941 2.553
166y 9.664 2.066 1.336 0.708 0.318 0.577 1.001 1.400
168yh 8.707 1.052 0.449 0.115 0.566 0.982 1.353 1.684
170y 4.507 0.247  0.120 0.131 0.243 0.364 0.480 0.590
172yp 3.696 0.391 0.281 0.179 0.085 0.045 0.116 0.197
74yp 4.981 0.547 0.344 0.157 0.037 0.187 0.338 0.479
176yp 4.371 0.078 0.084 0.226 0.358 0.481 0.596 0.702
1684 14.259 4.373 2.845 1.485 0.354 0.792 1.638 2.331
1704¢ 12.332 2.791 1.613 0.586  0.348 1.113 1.782 2.351
4 9.204 1.450 0.795  0.250 0.366 0.808 1.215 1.580
174t 8.471 0.943 0.376  0.165 0.592 0.985 1.337 1.651
1764 5.318 0.519 0.295  0.095 0.119 0.292 0.456 0.609
1784 6.970 0.314  0.105 0.434 0.740 1.014 1.261 1.485
By 4.003 0.446 0.323 0.210 0.113 0.082 0.147 0.233
%0s 17.572 6.373 4.100 2.040 0.277 1.208 2.327 3.095
8905 6.852 1.454 1.111 0.791 0.498 0.249 0.176 0.349
18505 8.368 1.813 1.322 0.879 0.512 0.338 0.493 0.756
22Ra 12.396 3.275 2.129 1.107 0.271 0.649 1.311 1.873
228Th 8.002 1.440 0.947 0.499 0.123 0.310 0.640 0.942
230Th 9.775 2.029 1.282 0.616  0.087 0.528 1.003 1.430
232Th 11.888 2.837 1.717 0.734 0.141 0.888 1.553 2.139
2y 6.730 1.082 0.722 0.391  0.091 0.196 0.451 0.687
23y 7.454 1.151 0.705 0.302 0.074 0.399 0.700 0.975
24 10.287 2.263 1.419 0.668  0.061 0.600 1.128 1.601
29 9.736 1.549 0.780 0.119 0.483 1.000 1.459 1.870
23y 9.638 1.499 0.758 0.145 0.478 0.976 1.423 1.823
23py 4.197 0.350 0.209 0.081 0.063 0.173 0.282 0.385
2Py 3.828 0.419 0.300 0.189 0.084 0.033 0.118 0.208
2%y 2.941 0.225 0.154 0.087 0.024 0.039 0.098 0.154
24Py 6.405 0.817 0.485 0.187 0.108 0.352 0.583 0.796
244py 5.429 0.641 0.407 0.196 0.076 0.219 0.387 0.546
248Cm 8.232 0.877 0.326  0.187 0.603 0.981 1.320 1.625

=2 gives the smallest discrepancies for most of the remaindoubtedly have a common microscopic basis. In other words,
ing nuclei. There are only a few nuclei which can be bestEq. (18) can certainly be derived from a microscopic model.
fitted by takingn=0, 1, 4, and 5. There only remains the task of performing it. We firmly be-
In this paper, we have revealed an intrinsic iterative reladieve this point also in view of the fact that E@®) (n=0) is
tionship present in some elementary two-parameter formulasbtained under symmetric consideration whereas(8q(n
for rotational energy spectra and then obtained a universa+1) can be obtained from a microscopic appro@2h or
equation[Eq. (18)] satisfied by these formulas, which has in from combining the Bohr-Mottelson model and the interact-
turn established definite correspondences among the paraimg boson mode{IBM) [16,17]. Moreover, Eqs(5) (n=2)
eters in different formulas proposed before and, thereforeand(6) (n=3) have backgrounds of nuclear hydrodynamics
allows us to give them consistent physical explanations. Irand the former can also be obtained from the Bohr and Mot-
fact, this work implies that various successful formulas un-telson model under certain approximatid8].
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FIG. 2. The Mallmann plots, for three representative spind 2, 20, and 28, for Eq18) by solid lines forn=3, 3.4, and 4 from right
to left and by dashed line for the formula (VMI model).

We have also accomplished the comparisons between EQe applied to transitional ang unstable regions; in view of
(18) and experiment and obtained the fitting results with highthat we have expanded the range of the value @b any
accuracy. From this equation we can easily derive some usgositive real number. It is also an open question, how to get

ful quantities, such as the softness parameter and the fungne universal equations f@(E2) and quadruple moments,
tional dependences of kinematic and dynamical moments aforresponding to Eq18).

inertia, A and /%), on angular momentum. Moreover, if

we replaceE in Eq. (18) with E—E,, this equation can be

used to analyze excited rotational bands and superdeformed This work is supported by the National Natural Science
bands. Another intriguing problem is to investigate if it can Foundation of China.
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