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Iterative relationship in two-parameter formulas for rotational spectra and a universal equation
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An iterative relationship connecting a series of two-parameter formulas for rotational spectra is revealed. It
is also pointed out that various two-parameter formulas are merely solutions of a universal equation with
different powers.@S0556-2813~98!03104-5#

PACS number~s!: 21.10.Re, 21.60.Ev, 27.70.1q, 27.90.1b
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Phenomenological analysis of energy levels of we
deformed even-even nuclei has gone on for more than
decades since Bohr and Mottelson described the ground-
rotational bands with a rigid rotor expression@1#

E5
\2

2J I ~ I 11![AI~ I 11!. ~1!

Up to now a variety of empirical formulas have been dev
oped to correct the systematic deviation between Eq.~1! and
experiment. Among these formulas two-parameter ones h
been used more generally for their less parameters. A b
summation is as follows.

~1! AB formula: In principle, the rotational energy may b
expanded as an infinite power series ofI (I 11) @1#. The
first-order approximation is of the form

E5AI~ I 11!2BI2~ I 11!2, ~2!

where the second term represents the vibrational correc
~2! A variant of AB formula (Warke-Khadikikar formula

@2#: If the magnitude of the second term in Eq.~2! is small
enough compared with the first one, one can rewrite
equation as

E5AI~ I 11!F12
B

A
I ~ I 11!G' AI~ I 11!

11
B

A
I ~ I 11!

. ~3!

The difference between Eqs.~2! and ~3! is that the latter is
convergent asI increases. Using such a simple formu
Bonatsos@3# has accounted for the gradual increase of
moment of inertia with angular momentum below ba
crossing in the actinide and rare-earth regions.

~3! Harris v2 expansion@4#:

E5av21bv4, ~4!

with v denoting rotational angular frequency. This expa
sion converges faster than the angular-momentum expan
and can give a good fit to the data in many cases.

~4! Variable moment of inertia (VMI) model:
570556-2813/98/57~4!/1727~5!/$15.00
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E5
\2

2J I ~ I 11!1
1

2
C~J2J0!2, ~5!

where J(I ) is determined from the variational conditio
]E(I )/]Ju I50. It has been proved@5# that the VMI model is
equivalent to theab formula.

~5! ab formula: From experimental level systematics an
alternatively, from nuclear hydrodynamics, Holmberg a
Lipas @6# deduced a closed formula

E5a@A11bI~ I 11!21#. ~6!

Previous to them, Najakov and Mikhailov already deriv
the same formula from a generation of the Inglis crank
model @7#.

~6! pq formula: Recently, following the way of Ref.@4#,
we derived another formula

E5pHA3 S x

2
D 2

1AS x

2
D 4

1S x

3
D 3

1A3 S x

2
D 2

2AS x

2
D 4

1S x

3
D 3J , ~7!

wherex5qI(I 11). Various comparisons show that our fo
mula is the best one among all two-parameter formulas
we have known until now in fitting ground rotational ban
of even-even nuclei in rare-earth and actinide regions@8#.
There are also some other two-parameter formulas, wh
are omitted here for their either complicated forms or n
being designed especially for rotational spectra. Up to n
there have been many references to discuss various form
for rotational spectra@9–14#.

The formulas enumerated above are all successful in v
ing degrees in fitting experimental data. This fact is by
means accidental and suggests that there must be som
trinsic relationships among them. Many years ago, Ma
and Sood gave an excellent unified summary of various
mulas advanced up to that time and proposed a basic s
equations from which one can obtain various energy exp
sions. However, their set of equations is too complicated
practical application and there are some formulas which, p
1727 © 1998 The American Physical Society
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1728 57GUO-MO ZENG
posed later, have not been discussed in their paper. This
tivates us to try to give a new discussion of the problem

Recalling the derivation of Eq.~7!, we practically take the
following steps~see Ref.@8#!: ~i! assuming that the deviatio
between Eq.~1! and experiment is caused by the variation
the moment of inertiaJ, with E. That is,J is the function of
E. Thus we have

E5
\2

2J~E!
I ~ I 11!; ~8!

~ii ! rewriting the ab formula as the form of E
5„\2/2J @bI(I 11)#…I (I 11) and then replacingbI(I 11)
in the expression ofJ @bI(I 11)# with 2E/a by using the
pure-rotor limit of theab formula,E5 1

2 abI(I 11), to get an
expression similar to Eq.~8! and then yield a cubic equatio
of E

E31a2bI~ I 11!E2
a3@bI~ I 11!#2

2
50; ~9!

~iii ! solving the above equation, one can obtain thepq for-
mula, wherep andq, corresponding toa andb, respectively,
are introduced to avoid confusion with theab formula. Ob-
viously, these steps make an iterative process in esse
Enlightened by this, we may perform the same proces
other two-parameter formulas. Let us start from the simp
one, Eq.~2!, which, according to steps~i! and ~ii !, can be
rewritten as

E5AI~ I 11!F12
B

A2
EG . ~10!

With a slight rearrangement, one obtains the expressionE
just the same as Eq.~3!.

Now we deal with Eq.~3! in turn. Its variant in analogue
with Eq. ~8! is

E5
AI~ I 11!

11
B

A2
E

, ~11!
o-

f

ce.
to
st

namely,

E21
A2

B
E2

A3

B
I ~ I 11!50. ~12!

Its physical root is just theab formula with a5A2/2B and
b54B/A. Thus we see that Eqs.~2!, ~3!, ~5!, and ~6! are
connected by an iterative relationship. Theab formula is a
starting point of the iteration. We are now interested in wh
the limitation of the iteration is and how to get it. To th
end, we denote theE in Eqs.~1!, ~2!, ~3!, ~4!, and~5! asEA ,
E0 , E1 , E2, andE3, respectively, and rearrange the last fo
equations into the following forms:

E0
01

A2

B
EA

22~E02EA!50, ~13!

E1
11

A2

B
EA

21~E12EA!50, ~14!

E2
21

A2

B
EA

0~E22EA!50, ~15!

E3
31

A2

B
EA

1~E32EA!50. ~16!

An obvious regulation shows up from these equations,
they constitute an organic series and have a common fo

En
n1

A2

B
EA

n22~En2EA!50, ~17!

or, equivalently,

En
n12aEA

n22~En2EA!50. ~18!

Naturally we expect that this equation is valid for any integ
n. In other words,En in Eq. ~18! is just the result ofnth
iteration. To show this, we offer a demonstration instead o
strict proof by applying the iteration procedure to thepq
formula. First, making use of the relationu1v5(u3

1v3)/(u22uv1v2), one can change Eq.~8! into
E5p

2S x

2
D 2

A3 F S x

2
D 2

1AS x

2
D 4

1S x

3
D 3G 2

1
x

3
1A3 F S x

2
D 2

2AS x

2
D 4

1S x

3
D 3G 2 . ~19!

Then replacing eachx by 2E/a, except the one in the numerator which is recovered intobI(I 11), one obtains

E5p

2S E

a
D bI~ I 11!

2

A3 F S E

a
D 2

1AS E

a
D 4

1S 2E

3a
D 3G 2

1
2E

3A
1A3 F S E

a
D 2

2AS E

a
D 4

1S 2E

3a
D 3G 2 . ~20!
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FIG. 1. The Mallmann plots for Eq.~18! by solid lines for integersn50, 1, 2, 3, 4, 5, and 6 from right to left. The experimental data
denoted by closed circles for the actinide nuclei and open circles for the rare-earth nuclei.
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After a tedious but straightforward derivation, one can si
plify the equation into

E412aEA
2~E2EA!50, ~21!

which is just the same as Eq.~18! in the case of takingn
54.

Using the Mallmann plot@15#, i.e., the plot ofRI[(EI
2E0)/(E22E0) ~or r I[RI2RI 22) versusR4 , we may as-
sess which value ofn in Eq. ~18! will lead to the best fitting
to the experiment. Figure 1 shows the plots ofr I vs R4 , for
I 56, 8, . . . ,28, forn50, 1, . . . , 6, respectively, by solid
lines from right to left with the values ofR4 spanning from
3.0 to 3.33. All the experimental data available now for t
ground-state bands of even-even rare-earth and actinide
clei @8# ~with band-crossing spinI c>16) are displayed in the
figure by open and solid circles, respectively. It can be
parently seen that the curve corresponding ton53 ~i.e., the
pq formula! passes through the most experimental points
almost each spin, apart from the first two small ones. In ot
words, when takingn53, Eq. ~18! gives the best fitting in
systematical meaning. This conclusion is consistent w
Ref. @8#. It should be noticed that the band-crossing spins
ground bands of most rare-earth nuclei are aboutI c516,
therefore the experimental points ofI .16 for these nuclei in
Fig. 1 are plotted for reference only.

We now discuss the relation between theab formula and
Eq. ~18!. If n is limited to taking the integer only, theab
formula does not belong to the series given by Eq.~18!. But
if we expand the value field ofn to any positive real number
it might become an approximate solution of Eq.~18!, at least
-

u-

-

r
r

h
f

in the typical rotational range of 3.2,R4<3.33. To see this,
we have also given the Mallmann plots of theab formula in
Fig. 2 by dashed lines. One can see that the dashed line
each of the spins is located between two solid ones witn
53 and 4, respectively. In fact, it almost overlaps with t
curve, shown in Fig. 2 by solid lines, plotted by takin
n.3.4 in Eq.~18!. Thus we may taken as a free paramete
and regard it as a mark of the stretching effect because
larger n is, the more down-bent of the curve ofJ vs E is.
After extending the value range ofn, and regarding it as a
fitting parameter to be determined for each rotational ba
Eq. ~18! essentially becomes a three-parameter equation
its solutions can cover the entire distribution of the expe
mental data.

We have also accomplished least-square fits of Eq.~18!,
for n50, 1, . . . , 6, toeach of the ground-state bands
well-deformed nuclei, respectively. Since Eq.~18! has no
analytical solutions whenn takes integers larger than 5 o
real numbers, one must solve the equation in value in th
cases. Table I lists the root-mean-square~r.m.s.! errors, cal-
culated by

sn5A1

N(
i 51

N S En
cal~ i !2Eexp~ i !

Eexp~ i !
D 2

, ~22!

with N denoting the number of data points considered, wh
allows us to see to what extent the experimental data ca
described by Eq.~18! with varyingn. It can be seen from the
table that the bestn values range from 0 to 5. However,n
53 generates the best agreement for most nuclei, whiln
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TABLE I. The r.m.s. deviation defined by Eq.~22! for n50, 1, 2, 3, 4, 5, and 6. The minimum of th
r.m.s. is denoted by italic. The experimental data are taken from recent Nuclear Data Sheets~see Ref.@8#!.

s3102

Nuclei AI(I 11) n50 1 2 3 4 5 6

154Sm 7.499 1.406 0.973 0.577 0.227 0.170 0.452 0.727
156Gd 7.735 1.240 0.785 0.384 0.161 0.407 0.706 0.984
162Dy 6.066 0.761 0.469 0.206 0.085 0.288 0.495 0.688
164Dy 3.935 0.305 0.179 0.062 0.051 0.155 0.254 0.347
160Er 11.859 4.333 3.283 2.341 1.571 1.088 1.055 1.337
162Er 11.112 1.271 0.635 0.826 1.370 1.906 2.388 2.815
164Er 5.737 0.647 0.391 0.164 0.112 0.293 0.477 0.649
166Er 7.052 0.552 0.150 0.212 0.533 0.823 1.084 1.320
168Er 2.270 0.106 0.070 0.042 0.041 0.066 0.098 0.130
164Yb 13.991 4.314 2.831 1.631 0.982 1.288 1.941 2.553
166Yb 9.664 2.066 1.336 0.708 0.318 0.577 1.001 1.400
168Yb 8.707 1.052 0.449 0.115 0.566 0.982 1.353 1.684
170Yb 4.507 0.247 0.120 0.131 0.243 0.364 0.480 0.590
172Yb 3.696 0.391 0.281 0.179 0.085 0.045 0.116 0.197
174Yb 4.981 0.547 0.344 0.157 0.037 0.187 0.338 0.479
176Yb 4.371 0.078 0.084 0.226 0.358 0.481 0.596 0.702
168Hf 14.259 4.373 2.845 1.485 0.354 0.792 1.638 2.331
170Hf 12.332 2.791 1.613 0.586 0.348 1.113 1.782 2.351
172Hf 9.204 1.450 0.795 0.250 0.366 0.808 1.215 1.580
174Hf 8.471 0.943 0.376 0.165 0.592 0.985 1.337 1.651
176Hf 5.318 0.519 0.295 0.095 0.119 0.292 0.456 0.609
178Hf 6.970 0.314 0.105 0.434 0.740 1.014 1.261 1.485
182W 4.003 0.446 0.323 0.210 0.113 0.082 0.147 0.233
178Os 17.572 6.373 4.100 2.040 0.277 1.208 2.327 3.095
184Os 6.852 1.454 1.111 0.791 0.498 0.249 0.176 0.349
186Os 8.368 1.813 1.322 0.879 0.512 0.338 0.493 0.756
226Ra 12.396 3.275 2.129 1.107 0.271 0.649 1.311 1.873
228Th 8.002 1.440 0.947 0.499 0.123 0.310 0.640 0.942
230Th 9.775 2.029 1.282 0.616 0.087 0.528 1.003 1.430
232Th 11.888 2.837 1.717 0.734 0.141 0.888 1.553 2.139
230U 6.730 1.082 0.722 0.391 0.091 0.196 0.451 0.687
232U 7.454 1.151 0.705 0.302 0.074 0.399 0.700 0.975
234U 10.287 2.263 1.419 0.668 0.061 0.600 1.128 1.601
236U 9.736 1.549 0.780 0.119 0.483 1.000 1.459 1.870
238U 9.638 1.499 0.758 0.145 0.478 0.976 1.423 1.823
236Pu 4.197 0.350 0.209 0.081 0.063 0.173 0.282 0.385
238Pu 3.828 0.419 0.300 0.189 0.084 0.033 0.118 0.208
240Pu 2.941 0.225 0.154 0.087 0.024 0.039 0.098 0.154
242Pu 6.405 0.817 0.485 0.187 0.108 0.352 0.583 0.796
244Pu 5.429 0.641 0.407 0.196 0.076 0.219 0.387 0.546
248Cm 8.232 0.877 0.326 0.187 0.603 0.981 1.320 1.625
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52 gives the smallest discrepancies for most of the rem
ing nuclei. There are only a few nuclei which can be b
fitted by takingn50, 1, 4, and 5.

In this paper, we have revealed an intrinsic iterative re
tionship present in some elementary two-parameter form
for rotational energy spectra and then obtained a unive
equation@Eq. ~18!# satisfied by these formulas, which has
turn established definite correspondences among the pa
eters in different formulas proposed before and, theref
allows us to give them consistent physical explanations
fact, this work implies that various successful formulas u
n-
t

-
as
al

m-
e,
n
-

doubtedly have a common microscopic basis. In other wo
Eq. ~18! can certainly be derived from a microscopic mod
There only remains the task of performing it. We firmly b
lieve this point also in view of the fact that Eq.~2! (n50) is
obtained under symmetric consideration whereas Eq.~3! (n
51) can be obtained from a microscopic approach@2#, or
from combining the Bohr-Mottelson model and the intera
ing boson model~IBM ! @16,17#. Moreover, Eqs.~5! (n52)
and~6! (n53) have backgrounds of nuclear hydrodynam
and the former can also be obtained from the Bohr and M
telson model under certain approximation@18#.
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FIG. 2. The Mallmann plots, for three representative spinsI 512, 20, and 28, for Eq.~18! by solid lines forn53, 3.4, and 4 from right
to left and by dashed line for theab formula ~VMI model!.
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We have also accomplished the comparisons between
~18! and experiment and obtained the fitting results with h
accuracy. From this equation we can easily derive some
ful quantities, such as the softness parameter and the f
tional dependences of kinematic and dynamical moment
inertia,J(1) andJ(2), on angular momentum. Moreover,
we replaceE in Eq. ~18! with E2E0 , this equation can be
used to analyze excited rotational bands and superdefor
bands. Another intriguing problem is to investigate if it c
s.

s

q.
h
e-
c-

of

ed

be applied to transitional andg unstable regions; in view o
that we have expanded the range of the value ofn to any
positive real number. It is also an open question, how to
the universal equations forB(E2) and quadruple moments
corresponding to Eq.~18!.
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