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Spin dependence of intra-ground-state-bandE2 transitions in the SW3) limit of the sdg
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B(E2, L+2—L) transitions in thesdg interacting boson model SB) limit are studied with a gener&2
transition operator. Analytical expressions are obtained using a group theoretic method. It is found that when
using transition operators of the fornd’(g+g™d)?2 or (g'g)?, the B(E2, L+2—L) values in the ground-
state band have an(L +3) dependent term. Ak increases, th8(E2) values can be larger than the rigid
rotor model value. Application t3%623% is discussed.
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. INTRODUCTION observedB(E2)’s to be withinL<L,,,,/4=\/4, or in other
] o . words, to increasa. In boson models, this can be done by

In deformed nuclei, the spectrum exhibits rotational strucpuytting more pairs of nucleons into the systémore boson
tures. The energy levels have the¢L +1) dependence. The numbers or by including higher spin nucleon paithigher
B(E2, L+2—L) in the ground-state band has the form spin bosonk as pointed out in Ref4]. This means that one
15/327re2Q(2)(L+2)(L+1)/((2L+3)(2L+5)) in the rigid  has to include 35 bosons in tiselg-IBM, or 14 bosons in a
rotor model[1]. As L increasesB(E2) approaches a con- boson model withs, d, . .., up tol =10 bosons. It is unrea-
stant, 1@2Qg/128ﬂ_ If higher order effects are considered, sonable to include a number of bosons greater than half of
the B(E2) formula should be modified in two way§l) a the valence nucleons. Besides, there has been no experimen-
cutoff due to finite number effeth) band_mixing effect due tal informa‘;ion that bOSOI’.IS h|gher thgl’ShOUld be included.
to rotation. The latter induces ah(L+3) dependence,  In practice, the S(B) is broken[9,10]. One can depart
B(E2, L+2—L)=(L+2)(L+1)(M;+ M,L(L+3))?/ from the SU3) limit both in the Hamiltonian and in th&2
(2L+3)(2L+5) [1]. Before the 1980s, experimental data transition operator in the consiste@tformalism(CQF) [11],
on these values were not accurate enough to check thahere theQ operator in theE2 transition is taken the same
L(L+3) dependence. With the development of experimentafts that in the Hamiltonian. This has been done in the 1/
techniques, data for higher spin are available. For instance igXpansion technique by Kuyucak and Morrisdi2]. They
23623%, there are data fdr ~30. This effect becomes quite have shown that as the SyStem deviates from th@ﬂlﬂnlt,
appreciable. the resultingB(E2) indeed produces dn(L +3) dependent

In algebraic models, rotational nuclei are described by théerm. Li and KuyucaK6] applied the results to various de-
SU(3) group[2—4] in a first approximation. There are two formed nuclei with success. .
effects due to the finiteness of the particle number: the cutoff !f the SU3) symmetry breaking is not big, we can use the
and falloff effects in theB(E2) values. TheB(E2) must SU(3) limit to study the effects of differenE2 transition
vanish at a truncation angular momentum where no highepperators. The Hamiltonian is in the &) limit, but the E2
angular momentum is allowed in the model. This is the cutiransition operator is no longer the ) generator. We can
off effect. AsL increases from zerd(E2) increases, then derive analytical expressions for them. In thé-IBM, Van
B(E2) reaches its peak at about one quarter of the maximurtsacker|13] has studied th&2 transitions in the S(3) limit
angular momenturror cutoff angular momentum After ~ Using a generd2 operator. In thesd-IBM, this generalE2
that B(EZ) decreases approximate]y parabo"ca”y to Zero_tranSition Operator induces transitions between different
Specifically, if the E2 transition operator is taken as the SU(3) irreducible representations. For the ground-state band,
generator of the SB) group, the B(EZ, L+2_>|_) the L dependence is the same as that obtained Using the
a(L+2)(L+1)A—L)(\+L+3)/(2L+3)(2L+5), where \ is SU(3) generator. Its effect is a renormalization of the effec-
the SU3) irreducible representation label ). This is true  tive charge. In thesdg-IBM, analytical expressions for the
for the Elliott SU3) model [2], the sd interacting boson B(E2)" using a generdE2 operator is still missing due to its
model (IBM) [3] andsdgIBM [5], and the pseudosymplec- complexity[5]. The generaE2 operator contains four terms:
tic model[4]. Experimentally, some deformed nuclei indeed (s'd +H.c.), (dd)?, (d'g)?+H.c., and ¢'g)? (calledsd,
obey this predicted behavig#4,6]. Some nuclei do not, and dd, dg, andgg term, respectively, hereafjeiThey can also
the SU3) prediction underestimates the d§6-8]. For in-  be combined to form S(3) tensors of rank (11), (22), (33),
stance in?%%U, asL increasesB(E2) is ever increasing. and (44). The (11) tensor is just the @Jgenerator, and an
B(E2) increases even fdr at 30. Moreover it is greater than analytical expression is known for this tendd&]. In this
the rigid rotor model value. In order to make tBéE2) not  paper, we study analytically thE2 transition matrix ele-
to fall with L in SU(3) based models, one has to make thements in the ground-state band. The results show that with an
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E2 transition operator involving thg boson, thel. depen- ([n]()\,u)L||b|T||[n—1]()\’,u’)L’)

dent term comes out. Applications %230 of the formula

are also discussed. The paper is organized as follows. In Sec= /(2L + 1){[n]|||b]||[[n—1])

I, we give the method of calculation and list the results. In .

Sec. Ill, we discuss the application t3%23%. We discuss y [(h=1] [1] | [n] \/(N'u") (4 0)|(Ap)

the effects of the transition operator on ground-state-band (N ') (4 0)|(Np) L’ I L/’

transitions using the analytical results derived here. Effects @)

of the operators on interband transitions are discussed in the

1/N expansion formalism. In Sec. IV, we give a discussionwhere<E;,‘:,])(z[llgﬂ&%) is the U15)DSU(3) reduction isos-

and summary. In the Appendix, we give a comparison of the hy .

exact result \ilvith the Npgxpansion rgsults. P c.alar. factor, ane{“‘ L )(4'0)|()\'-M)> Is the SU(BDO@) reduc-
tion isoscalar factor. The former can be found in Ré&#],

and the latter can be found in R¢fl5]. The triple barred

quantity is the W15) reduced matrix elements. It can be eas-

ily obtained as ([n]|b'|l[[n—1])=Vn, whereas

The most generaE2 operator in thesdgIBM can be Em:(—l)"mb,,m be_rjaves as (0 4) tensor. To calculate

Il. THE METHOD AND RESULTS

written as the matrix elements of,,,, we use the reciprocal relation,
191 qte)2 13,2 12 1T 2 (LIByfLy=(=1)- " 1L |bf|L). 3
T(E2)=¢e,[(s'd+d"s)“+ x,(d"d)*+ x,(d"g+g'd)
_ The matrix elements of the composite operators can be cal-
+x3(9"9)?]. (1) culated by

([nIO )Ll (b By )N L)
For the SU3) generator,xl=—%\/§, X2=12, and

X3=— 2/55. In this special case, one can apply the Elliott =\V5 2 ([n](vw)Llb] [[n—1](\"w")L")
formula[2] to give analytical matrix elements. In order to (" )L"

calculate the matrix elements for each term in the geri&2al nomy | N
operator, we use the standard group theoretical mgethod. First X([n=1J(V"w)L ||b,2||[n]()\ rOLY)
we notice that the creation operata@’s d', andg' can be o1, 2

put into one symbob], with 1=0,2,4 fors andd andg [ , ,,].
bosons.b/ is a U15) tensor operator and transforms like Lo Lt

the statd[1](4 0)Im). By applying the generalized Wigner- We have given the matrix elements of each term for the
Eckart theorem, we can write the matrix element as ground-state band. They are

4

3(4n—L)(4n+L+3)(L+1)(L+2) (4n+L+1)(4n—L—2)(8n—5)

([n1(4n0)L +2||(s"d +d"s)?|[n](4n0)L) = \/

280(2L +3) (4n—3)(4n—2)(4n—-1)
5
- 3(4n—L)(4n+L+3)(L+1)(L+2) (4n—L—2)(4n+L+1)(4n—4)
<[”](4”°)'-+2”(de)2”[”](4”°)”:_\/ 7(2L+3) 7(4n—3)(4n—2)(4n—1) '
(6)
([n](4n0)L+2(d"g+g"d)?[n](4n0O)L)
_\/3(4n—L)(4n+L+3)(L+1)(L+2)(8n—1)[12(4n—4)2+7L(L+3)]+8(4n—4)[4L(L+3)+9]
- 70(2L+3) 42(4n—3)(4n—2)(4n—1) (D

(4n+L+3)(L+1)(L+2)2(n—1)(4(4n—4)2—16+3L(L+3))
231(2L +3) 7(4n—3)(4n—2)(4n—1)

~ 2(4n—L
<[n](4n0>L+2||<g*g>2||[n]<4n0)L>:—\/ (4n-1)
®8)
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‘ T T TABLE I. Combination coefficients for different SB) tensor

operators.
SU(3)

2

1/

(s'd+d's)*>  (d'd)> (d'g+g'd)*  (g'09)’

10k i
?
=
= 8 1 (11) 1 11\F 9 3\55
= .l | 7 V8 7 14
& dg
= sd (22) 1 2,40 9 36 [5
g 4r 1 77 7 7 V11
N _ (33) 1 11\F 17 V55
7 V8 14 28
O_\ [ B | \gg\ I R T N S B | |_ (44) 1 4\/E _l _f i
0 4 8 121620 24 28 32 36 40 44 48 52 56 7 7 7 V11

L

FIG. 1. |[(L+2|T(E2)|L)|/\2L+5 for each term(labelssd, ~ good check on the correctness of the calculation. The terms
dd, dg, gg) in the generaE2 operator. The one labeled by &)  can also be combined to form other forms of (Stensors.
is the one for the S(B) generator. In Table I, we give the combination coefficients for different
SU(3) tensors.
It is interesting to study the dependence of each term. We  When they are combined in this way, we obtain analytical
have plotted the quantity (L+2|T(E2)|[L)/{2L+5  formulas for them,
«B(E2, L+2—L) in Fig. 1 for each term foN=14. The

relevant quantity for the S@3) generator is also drawn. It is ([n](4n0)L+2|T(1D)|[n](4n0O)L)

seen that thesd and dd terms increase witth. rapidly for

small L (about 4, then they reach their peak, and then go B \/3(L+1)(L+2)(4n—L)(4n+ |-+3)5 9
down with L. The (@'g)? term is small, and thé (L +3) 280(2L +3) O

term in it is weak. It is nearly a straight flat line. Thg term

rises sharply with_. Its saturation point is much to the right,

and is now at about 0L7,,,. WhenL is much smaller than ([n](4n0)L +2[T(22)|[n](4n0)L)

4n, the dg and gg terms can be written as 3(L+1)(L+2)(4n—L)(4n+L+3) 158n+3)

«M;+M,L(L+3), which is the form of a Mikhailov plot. = 2802L 1 3) 11(4n—1)
When the contributions are combined in the (SJUgen-

erator form, we recover the familiar known result. This is a (10

3(L+1)(L+2)(4n—L)(4n+L+3)5(8n(4n+3)—7L(L+3)—20)

2802L +3) 12(4n—1)(2n—1) ’
(11

([n](4n0)L +2||IT(33)[[n](4n0O)L)= \/

3(L+1)(L+2)(4n—L)(4n+L+3)5(8n+3)(2n(4n+3)—L(L+3)—5)
2802L +3) 33(4n—1)(2n—1)(4n—3)

([n](4n0)L +2[IT(44)[[n](4n0O)L)= \/
(12

It can be seen thdill) and(22) tensors do not have the whereT(11) is the SW3) generator. The effective charge
L(L+3) dependence. But (33) and (44) tensors have thend the structure constaatand 8 are determined by fitting
explicit L(L +3) dependence. This is different from Yoshi- to experimental data. If only the intraband transitions are
naga’s numerical resultss] where noL dependence was concernedT(11) anddg terms are enough for a good de-
found for intraband transitions. scription of the data. However, a non-&YE2 operator will

give rise to interrepresentation transitions. Analytical expres-
23623 sions are absent, since its calculations involve relevant
lll. APPLICATION TO U SU(3)D0(3) reduction isoscalar factors which are not
We applied the results 23U, For simplicity, we used available. We have used theNLéxpansion formalisriil6] to
the following E2 operator: get the effects of theld anddg operators on interband tran-
sitions (a comparison of the ¥ expansion and the exact
results derived in Sec. Il is given in the AppendiXhe
T(E2)=e,[T(11)+ a(d"d)?2+ B(gTd +d'g)?], (13)  T(11) term does not contribute to interrepresentation transi-
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TABLE Il. E2 transition matrix elements ia b. 16 T T T :

(24l T(E2)I|0g) (24| T(E2)[0g) (2,[T(E2)]0g)

ol
By cale. 3.26 0.47 0.71 “o ol ]
Expt. 3.267) =
2y calc. 3.38 0.23 0.39 & °r 1
Expt. 3.383) 0.233) 0.364) 5 er i
m AL e} |
tions. Thedg term alone giveg3— g.s. transitions stronger L © @ |
than they—g.s. transitions. This is in contradiction with the
experiment. Theld term is necessary to reproduce the data. LT R T———

To see the effects more clearly, we look at the matrix ele-
ments in>*3U(N=15):
FIG. 2. Comparison oB(E2, L+2—L) for 23%.
(24lIT(E2)[|0g) =24.289%,— 4.463@,+ 5.2987%,3,
Fig. 3, respectively. The experimental data are taken from
Refs.[18,19, respectively. It can be seen that the rising trend
with L is reproduced well.
The above discussion is only for illustration. In reality,

_ B SU(3) symmetry is broken. For instance in the systematic

(26, T(E2)[245) = 95.222@,~ 13.812@, + 29.884@,8. dy[6]. the SU3) symmetry in2234 is broken by de-
(14) viation of Q from the SU3) generator and the addition ef

We see that wheiE2 is taken as the SB3) generator, the ande, terms in the Hamiltonian. S@3) breaking introduces
interrepresentation matrix elements are zero. Aditieerm  mixing of the states in different bands. It brings changes to
enters in, interrepresentation transitions appear. The trandhe correspondinde2 transitions. However, the above dis-
tion from 2, to ground state is stronger than the transitioncussions point out th_at a careful choice of the_parameters in
from 2, to ground state. This is the same as in #telBM the E2 operator can improve the agreement with data, espe-
[17]. Different from thesd-IBM, the dd term also influences cially for the high spin transitions.
the intraband transitions. Its effect can be seen from the 2
—>Og and 2@—>Og matrix elements. The contributions of IV. DISCUSSION AND SUMMARY
T(11) are 24.2898, to 2,— 04 transition matrix element .
and 95.2226, to 26,—0,, a factor of 3.92 increase. The ~ We have calculated the matrix elements for a genégal
contributions of thedd term are —4.463@,a to 2,0,  operator for the ground-state band in the(SUimit of the
transition matrix element anet 13.812@, to 26,—0,, a  SdgIBM. Analytical expressions are given for each of the
factor of 3.1 increase. 1&,a is positive, thedd term sub- ~ four terms. Itis found that thég andgg terms can produce
tracts more from g—0, than from 2§—0,. This effec- anL(L+3) dependence. This(L +3) is consistent with the -
tively increases the ratio of the two matrix elements. @de ~ band-mixing results in the geometric model in general. This
term givesy—g.s. transitions stronger thaB—0, transi- L dependence can delay tB¢E2) saturation point to 70%
tions. Thedg term adds more to the 26-0, matrix element of the cutoff angular momentum, and alleviated the need to
than to the 2—0, matrix element. This also increases the introduce more and higher bosons in the boson model.
ratio of these two matrix elements. Thig term givespB In this study, we have departed from the consis@n@
—g.s. transitions stronger thap— Q4 transitions. A bal-
anced choice of the parameters can give a good description
of the E2 data both at low spin and high spin. We have 551 o
determined the three parameters f8fU by fitting 3 matrix
elements: 2—04, 25;—04, and 2§—24,. This gives
e,=0.1828 e b, =2.0, andB=0.36. The resulting matrix a5t .
element(2, [ T(E2)||0) is 0.39 e b, which is in agreement
with experimental data: 0.36(4¢ b. We also determined 40 1
the parameters fof*®U. There are no data for interband tran- s %
sitions. We require tha{(2,|T(E2)[04)|/(24| T(E2)[0g) ‘ g
=1.5. This givese,=0.2203 e b, «=2.96, and3=0.70. 301 .
The calculated matrix elements aré2,|T(E2)||0g)
=0.71 e b and(2,4| T(E2)||04)=0.47 e b. This is a factor
of 2 larger than that irf38U. This remains to be checked by 2.0 S S S
experiment. A summary of the matrix elements calculations 0 s e 20 es %0
is given in Table Il. The calculated intraband transitions in
238 and 2%8U are compared with experiments in Fig. 2 and FIG. 3. The same as Fig. 2 but f8#%U.

24| T(E2)[04) = —0.232@,a— 2.086 8,43,
B g

(2,)|T(E2)[04)=0.8082,a +1.192%;,,

6.0 T T T T T T

50 J

2

B(EZ,L+2->L) (& b )

25k 4
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formalism. The consister®®- Q formalism is simple and el- TABLE Ill. Comparisons of(L+2[(s"d+d"s)?|L) between
egant, and has gained great success in many phenomenolotjie 1N expansion and the exact results.

cal studies. Th&(E2) in many deformed nuclei indeed be-
haves in a way this formalism has predicted. But it is notN L=0 L=2 L=10 L=20 L=30
necessarily to choose them as eqld]. The spectrum of

rotational nuclei are similar, but theB(E2) behaves quite 17 1N 74374 11.8247 194039 18.1519 5.6477

differently, especially at high spirfg]. B(E2) in some nu- Exact 7.4693 11.8659 193127 18.0870 8.6216
clei agrees with the S@) prediction, and in some nuclei 1, 1N 101419 16.1905 28.0298 32.3535 27.5049
B(E2) becomes smaller than the &) result. While in Exact 10.1643 16.2215 27.9954 32.1999 28.0434
some other nUCleiB(EZ) is greater than the SB) results. 20 1N 142141 22.7400 40.4450 51.0424 53.7372
SpeCiﬁca"y this Corresponds to 0, negative and pOSitive val- Exact 14.1986 22.7176 40.4506 51.1477 53.7556
ues for thew and g in Eq. (13). It will be interesting to study
microscopically the parameters in tB transition operator.
Finally, we want to mention that the problem BfE2)
reduction can also be solved by including mydt- excita-
tions in the core-excited IBNI20]. This model is the exten-
sion of the idea of introducing 2p-2h excitations in the model |n the text we have applied theNl/expansion for inter-
space of the IBM21,22. In this model, besides the ordinary pand transitions. Intraband transitions can also be obtained
space off(sd)™o), there are als¢(sd)"o*?) ... spaces. AS from the 1N expansion formalism. It is meaningful to com-
the d boson energy for different configuration changes dif-pare the exact results obtained in this work to the results
ferently, the cutoff angular momentum can be adjusted tG,qm the 1N expansion to see the goodness of the k-

very high values. pansion. In Table Ill, we give comparisons for the intraband
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1/N expansion results. The authors acknowledge the finarfor L=30. WhenN=20, the 1N expansion is nearly exact.
cial support of the National Natural Science Foundation ofComparisons of other terms yield similar resultdN Bxpan-
China, China National Education Committee, the Sciencesion is indeed a powerful tool for handling systems with
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