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Spin dependence of intra–ground-state-bandE2 transitions in the SU„3… limit of the sdg
interacting boson model

G. L. Long1,2 and H. Y. Ji1
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B(E2, L12→L) transitions in thesdg interacting boson model SU~3! limit are studied with a generalE2
transition operator. Analytical expressions are obtained using a group theoretic method. It is found that when
using transition operators of the form (d†g̃1g†d̃)2 or (g†g̃)2, the B(E2, L12→L) values in the ground-
state band have anL(L13) dependent term. AsL increases, theB(E2) values can be larger than the rigid
rotor model value. Application to236,238U is discussed.
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I. INTRODUCTION

In deformed nuclei, the spectrum exhibits rotational str
tures. The energy levels have theL(L11) dependence. The
B(E2, L12→L) in the ground-state band has the for
15/32pe2Q0

2(L12)(L11)/„(2L13)(2L15)… in the rigid
rotor model@1#. As L increases,B(E2) approaches a con
stant, 15e2Q0

2/128p. If higher order effects are considere
the B(E2) formula should be modified in two ways:~1! a
cutoff due to finite number effect;~2! band-mixing effect due
to rotation. The latter induces anL(L13) dependence
B(E2, L 1 2→L) 5 (L 1 2)(L 1 1)„M 1 1 M2L(L 1 3)…2 /
(2L13)(2L15) @1#. Before the 1980s, experimental da
on these values were not accurate enough to check
L(L13) dependence. With the development of experimen
techniques, data for higher spin are available. For instanc
236,238U, there are data forL;30. This effect becomes quit
appreciable.

In algebraic models, rotational nuclei are described by
SU~3! group @2–4# in a first approximation. There are tw
effects due to the finiteness of the particle number: the cu
and falloff effects in theB(E2) values. TheB(E2) must
vanish at a truncation angular momentum where no hig
angular momentum is allowed in the model. This is the c
off effect. As L increases from zero,B(E2) increases, then
B(E2) reaches its peak at about one quarter of the maxim
angular momentum~or cutoff angular momentum!. After
that B(E2) decreases approximately parabolically to ze
Specifically, if theE2 transition operator is taken as th
generator of the SU~3! group, the B(E2, L12→L)
}(L12)(L11)(l2L)(l1L13)/(2L13)(2L15), where l is
the SU~3! irreducible representation label (l0). This is true
for the Elliott SU~3! model @2#, the sd interacting boson
model~IBM ! @3# andsdg-IBM @5#, and the pseudosymplec
tic model@4#. Experimentally, some deformed nuclei inde
obey this predicted behavior@4,6#. Some nuclei do not, and
the SU~3! prediction underestimates the data@6–8#. For in-
stance in 236U, as L increases,B(E2) is ever increasing
B(E2) increases even forL at 30. Moreover it is greater tha
the rigid rotor model value. In order to make theB(E2) not
to fall with L in SU~3! based models, one has to make t
570556-2813/98/57~4!/1686~5!/$15.00
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observedB(E2)’s to be withinL<Lmax/45l/4, or in other
words, to increasel. In boson models, this can be done b
putting more pairs of nucleons into the system~more boson
numbers! or by including higher spin nucleon pairs~higher
spin bosons!, as pointed out in Ref.@4#. This means that one
has to include 35 bosons in thesdg-IBM, or 14 bosons in a
boson model withs, d, . . . , up tol 510 bosons. It is unrea
sonable to include a number of bosons greater than ha
the valence nucleons. Besides, there has been no experi
tal information that bosons higher thang should be included.

In practice, the SU~3! is broken@9,10#. One can depart
from the SU~3! limit both in the Hamiltonian and in theE2
transition operator in the consistentQ formalism~CQF! @11#,
where theQ operator in theE2 transition is taken the sam
as that in the Hamiltonian. This has been done in the 1N
expansion technique by Kuyucak and Morrison@12#. They
have shown that as the system deviates from the SU~3! limit,
the resultingB(E2) indeed produces anL(L13) dependent
term. Li and Kuyucak@6# applied the results to various de
formed nuclei with success.

If the SU~3! symmetry breaking is not big, we can use t
SU~3! limit to study the effects of differentE2 transition
operators. The Hamiltonian is in the SU~3! limit, but theE2
transition operator is no longer the SU~3! generator. We can
derive analytical expressions for them. In thesd-IBM, Van
Isacker@13# has studied theE2 transitions in the SU~3! limit
using a generalE2 operator. In thesd-IBM, this generalE2
transition operator induces transitions between differ
SU~3! irreducible representations. For the ground-state ba
the L dependence is the same as that obtained using
SU~3! generator. Its effect is a renormalization of the effe
tive charge. In thesdg-IBM, analytical expressions for the
B(E2)8 using a generalE2 operator is still missing due to it
complexity@5#. The generalE2 operator contains four terms
(s†d̃1H.c.!, (d†d̃)2, (d†g̃)21H.c., and (g†g̃)2 ~called sd,
dd, dg, andgg term, respectively, hereafter!. They can also
be combined to form SU~3! tensors of rank (11), (22), (33)
and (44). The (11) tensor is just the SU~3! generator, and an
analytical expression is known for this tensor@5#. In this
paper, we study analytically theE2 transition matrix ele-
ments in the ground-state band. The results show that wit
1686 © 1998 The American Physical Society
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57 1687SPIN DEPENDENCE OF INTRA–GROUND-STATE-BAND . . .
E2 transition operator involving theg boson, theL depen-
dent term comes out. Applications to236,238U of the formula
are also discussed. The paper is organized as follows. In
II, we give the method of calculation and list the results.
Sec. III, we discuss the application to236,238U. We discuss
the effects of the transition operator on ground-state-b
transitions using the analytical results derived here. Effe
of the operators on interband transitions are discussed in
1/N expansion formalism. In Sec. IV, we give a discussi
and summary. In the Appendix, we give a comparison of
exact result with the 1/N expansion results.

II. THE METHOD AND RESULTS

The most generalE2 operator in thesdg-IBM can be
written as

T~E2!5e2@~s†d̃1d†s!21x1~d†d̃ !21x2~d†g̃1g†d̃ !2

1x3~g†g̃ !2#. ~1!

For the SU~3! generator, x152 11
7 A 5

32 , x25 9
7, and

x352 3
28A55. In this special case, one can apply the Elli

formula @2# to give analytical matrix elements. In order
calculate the matrix elements for each term in the generalE2
operator, we use the standard group theoretical method.
we notice that the creation operatorss†, d†, andg† can be
put into one symbolblm

† , with l 50,2,4 for s and d and g
bosons.blm

† is a U~15! tensor operator and transforms lik
the stateu@1#(4 0)lm&. By applying the generalized Wigner
Eckart theorem, we can write the matrix element as
ec.

d
ts
he

e

t

rst

^@n#~lm!Libl
†i@n21#~l8m8!L8&

5A~2L11!^@n#iub†iu@n21#&

3K @n21# @1#

~l8m8! ~4 0!
U @n#

~l,m!L K ~l8m8! ~4 0!

L8 l
U~lm!

L L ,

~2!

where^ (l8m8)
[n21]

(4 0)
@1] u(l,m)

@n] & is the U~15!.SU(3) reduction isos-

calar factor, and̂ L8
(l8m8)

l
(4 0)u L

(lm)& is the SU(3).O(3) reduc-
tion isoscalar factor. The former can be found in Ref.@14#,
and the latter can be found in Ref.@15#. The triple barred
quantity is the U~15! reduced matrix elements. It can be ea
ily obtained as ^@n#iub†iu@n21#&5An, whereas
b̃ lm5(21)l 2mbl 2m behaves as (0 4) tensor. To calcula
the matrix elements ofb̃ lm , we use the reciprocal relation,

^Li b̃ l iL8&5~21!L2L82 l^L8ibl
†iL&. ~3!

The matrix elements of the composite operators can be
culated by

^@n#~lm!Li~bl 1
† b̃ l 2

!2i@n#~l8m!L8&

5A5 (
~l9m9!L9

^@n#~lm!Libl 1
† i@n21#~l9m9!L9&

3^@n21#~l9m9!L9i b̃ l 2
i@n#~l8m8!L8&

3H l 1 l 2 2

L8 L L9
J . ~4!

We have given the matrix elements of each term for
ground-state band. They are
^@n#~4n0!L12i~s†d̃1d†s!2i@n#~4n0!L&5A3~4n2L !~4n1L13!~L11!~L12!

280~2L13!

~4n1L11!~4n2L22!~8n25!

~4n23!~4n22!~4n21!
,

~5!

^@n#~4n0!L12i~d†d̃ !2i@n#~4n0!L&52A3~4n2L !~4n1L13!~L11!~L12!

7~2L13!

~4n2L22!~4n1L11!~4n24!

7~4n23!~4n22!~4n21!
,

~6!

^@n#~4n0!L12i~d†g̃1g†d̃ !2i@n#~4n0!L&

5A3~4n2L !~4n1L13!~L11!~L12!

70~2L13!

~8n21!@12~4n24!217L~L13!#18~4n24!@4L~L13!19#

42~4n23!~4n22!~4n21!
, ~7!

^@n#~4n0!L12i~g†g̃ !2i@n#~4n0!L&52A2~4n2L !~4n1L13!~L11!~L12!

231~2L13!

2~n21!~4~4n24!221613L~L13!!

7~4n23!~4n22!~4n21!
.

~8!
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It is interesting to study theL dependence of each term. W
have plotted the quantity ^L12iT(E2)iL&/A2L15
}AB(E2, L12→L) in Fig. 1 for each term forN514. The
relevant quantity for the SU~3! generator is also drawn. It i
seen that thesd and dd terms increase withL rapidly for
small L ~about 4!, then they reach their peak, and then
down with L. The (g†g̃)2 term is small, and theL(L13)
term in it is weak. It is nearly a straight flat line. Thedg term
rises sharply withL. Its saturation point is much to the righ
and is now at about 0.7Lmax. WhenL is much smaller than
4n, the dg and gg terms can be written a
}M11M2L(L13), which is the form of a Mikhailov plot.

When the contributions are combined in the SU~3! gen-
erator form, we recover the familiar known result. This is

FIG. 1. u^L12iT(E2)iL&u/A2L15 for each term~labels sd,
dd, dg, gg) in the generalE2 operator. The one labeled by SU~3!
is the one for the SU~3! generator.
e
th
i-

s

good check on the correctness of the calculation. The te
can also be combined to form other forms of SU~3! tensors.
In Table I, we give the combination coefficients for differe
SU~3! tensors.

When they are combined in this way, we obtain analyti
formulas for them,

^@n#~4n0!L12iT~11!i@n#~4n0!L&

5A3~L11!~L12!~4n2L !~4n1L13!

280~2L13!
5, ~9!

^@n#~4n0!L12iT~22!i@n#~4n0!L&

5A3~L11!~L12!~4n2L !~4n1L13!

280~2L13!

15~8n13!

11~4n21!
,

~10!

TABLE I. Combination coefficients for different SU~3! tensor
operators.

(s†d̃1d†s)2 (d†d̃)2 (d†g̃1g†d̃)2 (g†g̃)2

(11) 1
2

11
7
A5

8

9
7 2

3A55
14

(22) 1
2

2A40
77

9
7

36
7
A 5

11

(33) 1
2

11
7
A5

8
2

17
14

A55
28

(44) 1 4A10
7

2
1
7 2

4
7
A 5

11
^@n#~4n0!L12iT~33!i@n#~4n0!L&5A3~L11!~L12!~4n2L !~4n1L13!

280~2L13!

5„8n~4n13!27L~L13!220…

12~4n21!~2n21!
,

~11!

^@n#~4n0!L12iT~44!i@n#~4n0!L&5A3~L11!~L12!~4n2L !~4n1L13!

280~2L13!

5~8n13!„2n~4n13!2L~L13!25…

33~4n21!~2n21!~4n23!
.

~12!
re
-

es-
ant
ot

-
t

nsi-
It can be seen that~11! and ~22! tensors do not have th
L(L13) dependence. But (33) and (44) tensors have
explicit L(L13) dependence. This is different from Yosh
naga’s numerical results@5# where noL dependence wa
found for intraband transitions.

III. APPLICATION TO 236,238U

We applied the results to236,238U. For simplicity, we used
the following E2 operator:

T~E2!5e2@T~11!1a~d†d̃ !21b~g†d̃1d†g̃ !2#, ~13!
e
whereT(11) is the SU~3! generator. The effective chargee2

and the structure constanta andb are determined by fitting
to experimental data. If only the intraband transitions a
concerned,T(11) anddg terms are enough for a good de
scription of the data. However, a non-SU~3! E2 operator will
give rise to interrepresentation transitions. Analytical expr
sions are absent, since its calculations involve relev
SU(3).O(3) reduction isoscalar factors which are n
available. We have used the 1/N expansion formalism@16# to
get the effects of thedd anddg operators on interband tran
sitions ~a comparison of the 1/N expansion and the exac
results derived in Sec. II is given in the Appendix!. The
T(11) term does not contribute to interrepresentation tra
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57 1689SPIN DEPENDENCE OF INTRA–GROUND-STATE-BAND . . .
tions. Thedg term alone givesb→g.s. transitions stronge
than theg→g.s. transitions. This is in contradiction with th
experiment. Thedd term is necessary to reproduce the da
To see the effects more clearly, we look at the matrix e
ments in 238U(N515):

^2giT~E2!i0g&524.2899e224.4630e2a15.2987e2b,

^2biT~E2!i0g&520.2320e2a22.0867e2b,

^2giT~E2!i0g&50.8082e2a11.1925e2b,

^26giT~E2!i24g&595.2220e2213.8126e2a129.8849e2b.
~14!

We see that whenE2 is taken as the SU~3! generator, the
interrepresentation matrix elements are zero. As thedd term
enters in, interrepresentation transitions appear. The tra
tion from 2g to ground state is stronger than the transiti
from 2b to ground state. This is the same as in thesd-IBM
@17#. Different from thesd-IBM, the dd term also influences
the intraband transitions. Its effect can be seen from theg
→0g and 26g→0g matrix elements. The contributions o
T(11) are 24.2899e2 to 2g→0g transition matrix elemen
and 95.2220e2 to 26g→0g , a factor of 3.92 increase. Th
contributions of thedd term are24.4630e2a to 2g→0g
transition matrix element and213.8126e2a to 26g→0g , a
factor of 3.1 increase. Ife2a is positive, thedd term sub-
tracts more from 2g→0g than from 26g→0g . This effec-
tively increases the ratio of the two matrix elements. Thedd
term givesg→g.s. transitions stronger thanb→0g transi-
tions. Thedg term adds more to the 26g→0g matrix element
than to the 2g→0g matrix element. This also increases t
ratio of these two matrix elements. Thedg term givesb
→g.s. transitions stronger thang→0g transitions. A bal-
anced choice of the parameters can give a good descrip
of the E2 data both at low spin and high spin. We ha
determined the three parameters for238U by fitting 3 matrix
elements: 2g→0g , 2b→0g , and 26g→24g . This gives
e250.1828 e b, a52.0, andb50.36. The resulting matrix
element̂ 2giT(E2)i0g& is 0.39 e b, which is in agreemen
with experimental data: 0.36(4)e b. We also determined
the parameters for236U. There are no data for interband tra
sitions. We require thatu^2giT(E2)i0g&u/^2biT(E2)i0g&
51.5. This givese250.2203 e b, a52.96, andb50.70.
The calculated matrix elements arê2giT(E2)i0g&
50.71 e b and^2biT(E2)i0g&50.47 e b. This is a factor
of 2 larger than that in238U. This remains to be checked b
experiment. A summary of the matrix elements calculatio
is given in Table II. The calculated intraband transitions
236U and 238U are compared with experiments in Fig. 2 a

TABLE II. E2 transition matrix elements ine b.

^2giT(E2)i0g& ^2biT(E2)i0g& ^2giT(E2)i0g&

236U Calc. 3.26 0.47 0.71
Expt. 3.26~7!

238U Calc. 3.38 0.23 0.39
Expt. 3.38~3! 0.23~3! 0.36~4!
.
-

si-

on

s

Fig. 3, respectively. The experimental data are taken fr
Refs.@18,19#, respectively. It can be seen that the rising tre
with L is reproduced well.

The above discussion is only for illustration. In realit
SU~3! symmetry is broken. For instance in the systema
study @6#, the SU~3! symmetry in 236,238U is broken by de-
viation of Q from the SU~3! generator and the addition ofed
andeg terms in the Hamiltonian. SU~3! breaking introduces
mixing of the states in different bands. It brings changes
the correspondingE2 transitions. However, the above di
cussions point out that a careful choice of the parameter
the E2 operator can improve the agreement with data, es
cially for the high spin transitions.

IV. DISCUSSION AND SUMMARY

We have calculated the matrix elements for a generalE2
operator for the ground-state band in the SU~3! limit of the
sdg IBM. Analytical expressions are given for each of th
four terms. It is found that thedg andgg terms can produce
anL(L13) dependence. ThisL(L13) is consistent with the
band-mixing results in the geometric model in general. T
L dependence can delay theB(E2) saturation point to 70%
of the cutoff angular momentum, and alleviated the need
introduce more and higher bosons in the boson model.

In this study, we have departed from the consistentQ•Q

FIG. 2. Comparison ofB(E2, L12→L) for 236U.

FIG. 3. The same as Fig. 2 but for238U.
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formalism. The consistentQ•Q formalism is simple and el-
egant, and has gained great success in many phenomeno
cal studies. TheB(E2) in many deformed nuclei indeed be
haves in a way this formalism has predicted. But it is n
necessarily to choose them as equal@10#. The spectrum of
rotational nuclei are similar, but theirB(E2) behaves quite
differently, especially at high spins@4#. B(E2) in some nu-
clei agrees with the SU~3! prediction, and in some nucle
B(E2) becomes smaller than the SU~3! result. While in
some other nuclei,B(E2) is greater than the SU~3! results.
Specifically this corresponds to 0, negative and positive v
ues for thea andb in Eq. ~13!. It will be interesting to study
microscopically the parameters in theE2 transition operator.

Finally, we want to mention that the problem ofB(E2)
reduction can also be solved by including multi-ph excita-
tions in the core-excited IBM@20#. This model is the exten
sion of the idea of introducing 2p-2h excitations in the mo
space of the IBM@21,22#. In this model, besides the ordinar
space ofu(sd)N0&, there are alsou(sd)N012& . . . spaces. As
the d boson energy for different configuration changes d
ferently, the cutoff angular momentum can be adjusted
very high values.

The authors are grateful to Professor Iain Morrison
helpful discussions despite his tight schedule during his
cent visit to China. We thank him for suggesting a compa
son of the exact formula derived in this work with that of t
1/N expansion results. The authors acknowledge the fin
cial support of the National Natural Science Foundation
China, China National Education Committee, the Scie
Fund of China Nuclear Industry.
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APPENDIX: COMPARISONS WITH THE 1/ N
EXPANSION

In the text we have applied the 1/N expansion for inter-
band transitions. Intraband transitions can also be obta
from the 1/N expansion formalism. It is meaningful to com
pare the exact results obtained in this work to the res
from the 1/N expansion to see the goodness of the 1/N ex-
pansion. In Table III, we give comparisons for the intraba
transition matrix elements of thesd term for different values
of N andL. We see even withN510, the 1/N expansion still
gives a very good value forL520. AsN goes up to 14, the
1/N expansion can reproduce the exact value quite accura
for L530. WhenN520, the 1/N expansion is nearly exact
Comparisons of other terms yield similar results. 1/N expan-
sion is indeed a powerful tool for handling systems w
large particle numbers.

TABLE III. Comparisons of^L12i(s†d̃1d†s)2iL& between
the 1/N expansion and the exact results.

N L50 L52 L510 L520 L530

10 1/N 7.4374 11.8247 19.4039 18.1519 5.647
Exact 7.4693 11.8659 19.3127 18.0870 8.621

14 1/N 10.1419 16.1905 28.0298 32.3535 27.504
Exact 10.1643 16.2215 27.9954 32.1999 28.04

20 1/N 14.2141 22.7400 40.4450 51.0424 53.737
Exact 14.1986 22.7176 40.4506 51.1477 53.75
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