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Ground state of N=2Z doubly closed shell nuclei in correlated basis function theory
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The ground state properties Nf=Z doubly closed shell nuclei are studied within correlated basis function
theory. A truncated version of the Urbang, realistic potential, with spin, isospin, and tensor components, is
adopted, together with state-dependent correlations. Fermi hypernetted chain integral equations are used to
evaluate the density, distribution function, and ground state eneréi0oand*°Ca. The nuclear matter single
operator chain approximation is extended to finite nuclear systems, to deal with the noncommuting part of the
correlation operators. The results favorably compare with variational Monte Carlo estimates, when available,
and provide a first substantial check of the accuracy of the cluster summation method for state-dependent
correlations. We achieve in finite nuclei a treatment of noncentral interactions and correlations having, at least,
the same level of accuracy as in nuclear matter. This opens the way for a microscopic study of the medium
heavy nuclei ground state using present day realistic Hamiltonj&8&56-28138)00104-9

PACS numbd(s): 21.60.Gx, 21.10.Dr, 27.28n, 27.40+z

I. INTRODUCTION or correlated basis functiofCBF) theory [10,11]. These
theories give consistent results at densities close to the
It is now a largely accepted fact that the wave function ofnuclear matter empirical saturation density p,§
strongly interacting nuclear systems shows large deviations-0.16 fm %), whereas large discrepancies appear at higher
from independent particle modeldPM’s). These effects density values. A question still to be answered is the conver-
may be ascribed to the presence of correlations between thfance of the hole line expansion, on which BBG theory is
nucleons, coming from the nuclear interaction. Severahased, in the case of a continuous choice for the auxiliary
nucleon-nucleonNIN) potentials are presently available, all potential. Recent BBG results are all obtained within the

of the_m fitting the deuteron and tieN scattering da’ga up to two-hole line approximatiofi9]. Attempts are under way to
energies of several hundred MeV. However, their compli-q\51uate the three-hole line contributifte].
cated structure and dependence on the state of the interacting cgr nucleonic EOS give a good microscopic description

nucleons has severely hindered the achievement of reallsngf nuclear matter around saturation and provide a description

ab_l'_rr]]'t'o ;‘“‘i;eﬁ ?f m(t)iS:‘ ofttr;e fm:CI:eﬁ: ﬁysﬁeiml‘? ddday of the neutron star structure in agreement with current obser-
€ situation 1S satistactory for ig uciel. -a ' vational data[10]. Moreover, nuclear matter dynamical

Green function Monte Carl@GFMC) [2], and correlated hy- quantities, such as electromagnetic resporfa@sid and

erspherical harmonics expansi@HHE) [ 3] theories solve .
ExacE[)Iy the Schiginger equ%tionﬁhé\)=[3]4 cases for re- one-body Green functiorf45], may be accurately addressed
’ by CBF-based perturbative expansions.

alistic Hamiltonians. Recently GFMC theory has been ex ) S X i ) ,
tended up tA=7 [4]. Moreover, these theorigparticularly MeQ|um—h¢avy nuclei still Igck microscopic studies with
Faddeev and CHHEare now successfully used to study low realistic .Ham|lton|.ans. In a series of papers, the authors suc-
energy reactions involving three nucleof. Light nuclei ~ ceeded in extending CBF approaches to the ground state of
properties may be also described by variational Monte Carlgloubly closed shell nucleboth inls andjj coupling with
(VMC) [6] methods. If the spanned variational wave func-Semirealistic, central interactions and simple two-body cor-
tion space is large enough, then the description provided by &glations, depending only on the interparticle distances and,
variational approach is quite accuraf@ven if not exagt ~ at most, on the isospin of the correlated gaé—18. Nuclei
One of the major advantages of the VMC method is its largeranging from*He to 2°%b were investigated in those papers
flexibility, resulting in the possibility of an extension to by model Hamiltonians. The aim of the present work is to
heavier nuclei, such a¥0 [7]. extend those studies toN interactions and correlations con-
At the opposite asymptotic side of the nuclear table, infi-taining spin, isospin, and tensor components. We shall con-
nite nuclear matter has attracted the attention of researchegider 1°0 and “°Ca nuclei, having doubly closed shellsla
as it is thought to be a reliable model for the interior of coupling. We shall adapt to these systems the cluster sum-
nuclei. High density neutron matter and asymmetric nucleamation technique, used in symmetric nuclear matter for state-
matter are also objects of intensive investigations because ofependent correlations. Modern interactions have also im-
their astrophysical relevance. The equations of sta@S portant spin-orbit parts, which are not included in the present
of infinite systems of nucleons have been studied, in nonreltreatment, as well as other remaining components. They will
ativistic approaches and using realistic interactions, either bpe the objects of future works. A first order cluster expansion
Brueckner-Bethe-GoldstorlBG) perturbation theory8,9] has been recently used to study the influence of state-

0556-2813/98/5(4)/166813)/$15.00 57 1668 © 1998 The American Physical Society



57 GROUND STATE OFN=Z DOUBLY CLOSED SHEL . . . 1669

dependent correlations on the one-body density matrix obe efficiently used only in light nuclei. An alternative ap-

closed shell nucl€i19]. proach, suitable to heavier systems, is the cluster expansion
Our work is carried out in the framework of a nonrelativ- and Fermi hypernetted chaifFHNC) [22] integral equa-

istic description of the atomic nucleus with Hamiltonians oftions. The FHNC equation allows for summing infinite

the type classes of Mayer-like diagrams and it has been widely ap-
42 plied to both finite and infinite interacting systems with state-
__ 2 independentor Jastrow correlations.
= 4 . i o
H=om El Vi |Z<, Vil i<j2<k Viik @D The strong state dependencergf, needed for a realistic

description of nuclear systems and resulting in the noncom-
The two- and three-nucleon potentials andv; are deter- mutativity of the correlation operators prevents the develop-
mined at large interparticle distances by meson exchanggent of a complete FHNC theory for the correlated wave
processes. The intermediate and short distance regimes &tection of Eq.(4) and forces one to look for suitable ap-
usually treated in a semimicroscopic or purely phenomenoproximations. The single operator chai8OC approxima-
logical fashion. We shall use a truncated version of the realtion presented in Ref23] [hereafter referred to as PMbr
istic Urbanav 14, model(U14) of the NN interaction[20] but  the operatorial correlations, in conjunction with a full FHNC
we shall not consider three-nucleon potentials. We shall alsoreatment of the scalar part, provides an apparently accurate
present results for the central semirealistic interac88rby  description of infinite nuclear and neutron matf&6]. The
Afnan and Tangwss [21], which reproduces ths-wave  FHNC and SOC treatments are thought to effectively include
two-body scattering data up to roughly 60 MeV and givesthe contribution of many-body correlated clusters. However,
values of the ground state properties of light nuclei and oho exact check for the FHNC and SOC treatments is pres-
nuclear matter close to those obtained by more realistic inently available in nuclear matter, apart from the evaluation of
teractions. TheS3 potential has been supplemented in thesome additional classes of diagrams. The estimated accuracy
odd channels, where it is not defined, with the repulsive ternin the ground state energy has been set to less than 1 MeV at

of the even channels. saturation density24,10.
The full U14 model has the following parametrization: We shall use FHNC-SOC theory to study the ground state
of %0 and “°Ca described by the correlated wave function
16 . .
o P(r..)OP 2 (4). The ~°O results will be compared with the MC calcula-
v14jj Emv (1) O @ tions of Ref.[7], where the scalar part of the correlation is

. exactly treated by the MC method, and the contribution of
with the operatorial componentp¥$ 1) is approximated by con-
- sidering up to four-body cluster terms. Higher order contri-
Of ""=[10i-0,j.(L-9);j L% L20i-0y,(L- 9] butions are then extrapolated.
®[L7- 7], (3) The plan of the paper is the following: In Sec. Il we
present the FHNC-SOC theory for the one-body density
S;=(3rij- ailij- 0j— 0y o) being the usual tensor operator. and the two-body distribution function; the ground state en-

In the vg truncation we shall retain components up to the€9Y calculation is discussed in Sec. lll; the results obtained
. . ' . 16 40 ; . _
tensor ones, thus neglecting the spin-orbit and higher term@ O and “"Ca are presented and discussed in Sec. IV;

(p>6). S3 does not have the=3,6 tensor parts. conclusions and future perspectives are given in Sec. V.
The ground-state-correlated\-body wave function is
given, in our CBF approach, by Il. FHNC-SOC THEORY FOR FINITE SYSTEMS
In discussing the FHNC-SOC approach to the one- and
V(L2,...A)= SL[J, Fij|P(1,2,...A), (4) two-body densitiespy(ry) (OBD) andp)(ry.r) (TBD), de-
fined as
where a symmetrized product of the two-body correlation
operatorsF;; acts on the mean field stat(1,2,...A), B _
taken as a shell model wave function built up with,(i) pi(ry)= 2| o(ry—ry) (6)
single particle wave functions. Consistently with the interac-
tion, Fj; is chosen of the form and
Fi= > fP(r;)OP. (5)
e T ph(rir)={ 2 8ri=1)8ro=r)Of ). (7

The tensor components &f; are omitted in theS3 case.

The fP(r) functions contain a set of variational param- we shall heavily rely on the formalism developed in PW and
eters determined by minimizing the ground state expectatioin Ref.[16], denoted as CO1 hereafter. Most of the quantities
value of the Hamiltonian(H)=(W|H|¥)/(¥|¥). The we shall introduce and use in this section are described in
many-body integrals needed for the evaluation(ldfy, as those papers and will not be discussed here. Moreover, the
well as of the expectation value of other operators, could b&arious p=1,6 components of the correlatio@and other
in principle sampled by Monte Carld1C) techniques. How- quantitieg will be often referred to as(p=1) and, with an
ever, MC methods for realistic, state-dependent models cadbvious notation, as, 7, andt (tensoj.
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In Jastrow FHNC theory, the TBD is written in terms of been assumed in the above equations. Its validity will be
discussed in the results section.
For thecc-type nodals we have

the scalar correlatiofi®(r) and of thenodal (or chain and
elementary(or bridge) functionsN,(r,r,) andE,(rq,r»),
representing the sums of the diagrams having those topologi-
cal structures, respectively. The diagrams are further classi-
fied according to the exchange charactey)(of the external
points (1,2 x(y)=d,e with d=direct and e=exchange.
(cc) (c=cyclic) diagrams are also present, whose external
points are joined by a single, nonclosed exchange [cep
CO1 for more details

When operatorial correlations are introduced, the nodal
functions becomdéxlpy(rl,rz) wherep denotes the state de-
pendence associated with the function. A complete FHNC
treatment for the full, state-dependent TBD is not presently
possible, and so a SOC approximation was introduced in
PW. It consists of summing>1 chains, where each link
may contain just one operatorial element and central dress-
ings at all orders. We recall that operatorial dependence
comes also from the exchanges of two nucleons. In fact, to
every exchange line forming a closed loop but one is asso-
ciated the exchange operatey, = —Eq:C,U,TWOf}M.

The FHNC-SOC integral equations fNﬁy(rl,rz), with
x(y)=d,e, are

NEy(12=2 , < Jd3r3§‘l‘§‘§ o (LIV5(3)
x"y

r r
X[X)y (3.2 + Ny, (3,2]. (8)
The allowed &'y") combinations areld, de, anded, and
the coordinate; is indicated as. vgfy,(s) are vertex cor-
rections inr5 that will be discussed lateg{35 are angular
couplings given in PWEGgs. (5.6)—(5.11)]. Actually, they
were given only in the operatorial channels,§,r>1). In
the p=1 channel, the coupling function is onegt&r=1
otherwise it is zero. The(f(y(l,Z) links are defined in CO1,
while, for p>1, we have

X§4(1,2=hP(1,2h%(1,2 = Ngy«(1,2), ©)

h%(1,2){hP(1,2)N§e(1,2) +[f(r 1) 1*NE(

Xge(1,2= 1,2}

—Nge(1.2), (10

NB(1,2)=> f d3raE7iBX

N(1.2=3 [ ofredtex
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2 (1.3VE(3)

X[XEu(3,2 +N5(3,2) + N,°3X(3,2)]Ar

+ X

qr>1

d*ra&fHAIXC(1,3VE(3)
X[Xee(3.2 +NJ(3,2 +N(,(3,2], (139

a(1,3VE(3)
qr
X[ = po(3,2+NE,(3,2+ NS (3,2]A"

+

2 | ECralBANCLIVEED)

X[N},(3,2+N] (3,2)], (14)

ND-4(1,2)= f Aol — po(1,3TVE(3ING,(3,2

+ [ - pe131vE® - 11

X[~ po(3,2+N5,(3,2)], (15

1(1,2)= f A3 36958 — po( LIAVIY3)NL(3,2

+3 | @ragm-po(1.9%

X[VI(3) - 1IN' (3,2). (16)

Again, XZ(1,2) is defined in CO1, and

XP=1(1,2=hP(1,2)h%(1,2[NE(1,2 — po(1,2)]
+H{[f%(r1»1?h%(1,2 - 1}NE(1,2. (17

The x(p) subscript indicates that the external point(i®t)

XP(1,2)=he(1,2) (hP(1,2[NSe(1,2NS(1,2)+ N°(1,2)]

reached by anX link, NE.=NE+NF +Nb +NP " and

with

+[F(r 19 J{NES1,2) + NB(L,INE (1,2
+NSo(L2NE( 1,2~ 4[NE(1,2
—po(1,212AP)—N2(1,2), (1)

hP(1,2)=f5(ri{2 fP(rip) +1(r1)NGy(1,2}, (12

h¢(1,2)=exdNi4(1,2)], andAP=1 for p=c,o,r,07; other-
wise it is zero.pg(1,2) is the IPM density matrix, given in
CO1, N (1,2) is the centratc nodal function, given later,
and X84(1,2)=X{4(2,1). The FHNC/O approximatiofcor-
responding to setting to zero the elementary diagjdmas

Npx P(1,2)=N p(2 1).

Because in an exchange loop involving more than two
nucleons only one of the exchanged pairs does not have any
operatorial link fromP;; and in the spirit of the SOC ap-
proximation, thefP~?! correlatlons appear once in thee
chains, just for that pair.

Single operator ringgSOR’S were also approximately
included into the central chains in PW. SOR’s are closed
loops of operators having a nonze@® part. A product of
operators can be expressed, by the Pauli identity, as the sum
of a spin- and isospin-independent pigtlee C parp and a
remainder, linear ir; or 7;. In nuclear matter, as well as in
the nuclei we are consideringoubly closed shell nuclei in
Is coupling, the spin-isospin trace of the remainder van-
ishes, leaving only th€ part as the final contribution of the
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product. An example i©7,05:03;, having aC part of 3. The vertex corrections of the nodal equatioviy,, can be
SOR'’s contribute t@=1 chains and were introduced by PW expressed in terms of the OBD and of thefunctions. For

in the definition ofX§, . A drawback of this approach is that the central,p=1 chains we havevy, (i) =p,(i) and
touching SOR’s, i.e., SOR’s having a common vertex, arevyy ih. (i) =Cy(i)[1+USP(i)]. As far as the p>1
wrongly counted because commutators are neglected. Fehains are concerned, we insert central vertex corrections
this reason, we do not follow PW and do not include SOR’sonly: Vi) =pS(i) andvdeed eecc(i) =Cq(i).

in our treatment oy, . However, in one test case we have

used the PW prescription to gauge the relevance of the miss- IIl. ENERGY EXPECTATION VALUE
ing contribution. The results will be presented later.
The OBD p,(r;) is computed following CO1. Its struc- In order to evaluat€H), we use the Jackson-Feenberg

ture results in identity [25] for the kinetic energy, with the result

pa(r)=pS(r)[1+UgP(r) 1+ UP(r)Cy(ry), (18 (M=Tor=Ty+ Tk, (23
with with

C _ [ flz
p1(ri)=[po(r) +Ug(r1)1Cq(ry), (19 T¢,=—AR(QD*GZV%I)—(Vl(I)*)GZ(V1CI>)> (24)

where  po(r)=2,|d.(1)|> is the IPM density,
Cy(ri)=explUi(ry)} and Ug(e)(rl) are the central vertex and
corrections of CO1. They are solutions of two integral equa- 52
tions (A.19) and(A.20), given in the Appendix of that paper. Te= —A—(@*[GVZG—VlG-VlG]d)) (25)
These equations must be modified because of the presence of 4m ! ’
—

gggrgaetgr:;’;ll_::[o:{f{ilég:;?édt(r:ezz)'substltutloﬁ;(rz) pa(r2) whereG=JSIIF;; . In turn, T is written as

The SOC operatorial vertex correctiotjg(pe)(r 1) are so-

7O T@ 4T3
lutions of the equations Te=Ty +Ty +T5". (26)

The Tg‘) terms correspond to contributions where the kinetic

USP(1)= >, Apf d3r,h¢(1,2)fP(r ) energy operator acts on a nucleon not involved in any ex-
p>1 change (=1) or belonging to a two-bodyn(=2) or to a
XATEP(r 10+ FE(r 1) NBL(1,2105(2) many-body (=3) exchange loop.

For T4 we obtain
+[fP(ri)+21%(rqy) Ngd(l,Z)]Nge(l,Z)Cd(Z)

h2
+o(rm)NB(1,2Cy(2)}, (20) T$)=—mfd3r1pT1(r1)Cd(r1)[1+U8p(r1)] (27)

and pt4(r,) is given in CO1.

For the remaining parts of ;r, as well as for the two-
body potential energyv)=V,, we are faced with comput-
X ([fP(rip)+2f9(r1m9NE4(1,2{Ngy(1,2p3(2) ing the expectation values of specific two-body operators

(apart a small three-body term, >, which will be dis-

+[NGo( L2NGH( 1,2+ N(1,21C4(2)} cussed separataly o
+2F5(r19)INP(1,2C4(2) + NP (1,2) We start withTg+V,=W, also called thénteraction en-
12H{Nee ‘ o ergyin PW, and definé—l”k(rlz) as

U= AP f Ar,hS (L2 1(r 1)
p>1

X[p1(2)+Nge(1,2Cy(2)]D+UP(D), (2D ﬁz

whereAP=16=1 3 6.3,9,18 and HYE(r )= — = Sja{f’ "(r1)V2K(rp) = Vi (ryp) - Vi)

+fi(r12)Uj(r12)fk(r12)- (28

UoP(1)= —82 APAP{ f d3r,he(1,2)fP(r 1) FO(r 1)
In FHNC-SOC theoryW is split into four parts,

x[—p0(1,2)+Ngc(l,z)]zcd(2)+f d®r, W=Wy+ W+ W, +W,s, (29

. where W is the sum of the diagrams with only central
XJ d°r306(1,296(1,3h%(2,3) fP(r 29 F°(r 53) chains between the interacting poirt®’s), connected by
H;e. W, sums diagrams having SOR'’s touching the IP’s and
c central chainsW, contains diagrams with one SOC between
X[=po(2,3+ N00(2’3)]Cd(2)cd(3)]' (22) the IP’s andW,, contains both SOR'’s at the IP’s and SOC's
between them.

with gge(i,§) =[F°(r;)1h°(, )0 = poli, i)+ NEe(i,i)]. Wo is given by
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1 . .
Wo=> f d°ry J d3roHIE(r 181,22 (KTRAR pS(1) p5(2) + pS(1) C(2)NGe( 1,2 + Cy(1) p§(2)NE((1,2) + Cy(1)Cy(2)
X[Ng(1,2) + NEH(1,2Ng (1,2 T} — 4K KIKMAMAMC 4(1) Cy(2)[NE(1,2) — po( 1,2 17). (30

A sum over repeated indices is understood and the mittixis given in PW.

The presence ofV; is due to the noncommutativity of the correlations. In nuclear matter and for state-independent
correlations, this term is absent because of the complete cancellation of the separable disegdPW¥ for a more complete
discussion of this point We obtain

1 . ) D;+D;+D . . .
Wy=5 f dr,y f d3rzH5"é<r12>h°<1,2>[K"kAk(1+%) ([p5(2)+ Co(2ING(L2][pS(IMy(1) + Co(1My(1)]

+{pH(2)NEH(1,2)+ C4(2)[NE 1,2+ NE( L,2NG(1,2 T Ca( L)Mg(1) +[p§(2) + Ca(2)NGe(1,2]1C4(1)

Djn+Dmnt+ 2Dy

X[2MEy (1) +Mpp(1)]) — 4K T K kmAmA™ 4

1+

)cd<1>cd(2>[N§c<1,2>—po<1.2>]2M3<1>+1:2 .
(31)

Dj; are given in Eq(5.23 of PW and we consider only terms linear in tMéK vertex corrections, taken of the simplified form

Mg t=A f d®r o[ f'(r12)1%n%(1,2{p$(2) + Ca(2)NGe(1,2)}, (32)

Mg t=A J d®ro[f'(r121°h%(1,2{p§(2)Ng(1,2) + Cq(2)[NS( 1,2 + NGe(1,2NE(1,2)T}, (33
M '=—4A'A" f d*rofe(r 1) f(r1)h%(1,2 Ca(2)[NE(1,2) — (1,212, (34)

Mg '=—4A f d®r o[ (112 12h%(1,2 C4(2)[NE( 1,2~ po( 1,212 (35)

Contributions from SOC's have not been inserted Mt'p In W, we must keep track of the order of the operators both in the
IP's and in the SOC'’s. Its expression is quite lengthy and it is given in the Appendix. Because of the large number of involved
operators\W, is the messiest term among all, and the smallest: so we approxiMateW.[ W./W}], where thej index
refers to the) component oH'J{ . A more involved factorization approximation W, was used in PW and its validity was
set to within~0.2 MeV. We have checked our approximation against the PW one in nuclear matter and found agreement up
to the second decimal digit.

The decompositiori29) can be carried on also far'?) and T2 (the two-body part off?)). The result is

h? . _
Too=~ 1 f dry f dr2p12(12Ca(D{KMAAICY(2)[F(r ) H(r1)h*(1,29 = udal+Cy(2) -1}, (36)

h? , A
Too="25 J dry J dr2pra(1,2 Co( DK MAIACING( L2 F(r12) K121, — i1 8] + Ca(2)
X[Nix(1,2)+Nj(1,2]+[Cy(2) ~ 1]ING, (12 +N; (L2}, (37

Dim+ ka+ Dlm

2
T(qsz,)s: - % f dsflJ derPTZ(lyz)Cd(l)[ KiklAIAI( 1+ 2 Ca(2)[f'(r1) f (r1h%(1,2) = 818 ]

X[Mg(1)+Mg(2)]+ USp(l)[Cd(Z)—1]+Cd(l)U3p(2)} ) (39

Dim+Dim+ Dim . . ’
1+ —— | Ca(2IN (L[ (r 1) F(r1)h(1,2) = 6164

h? .
Toe=—2 f o, f d3r2pT3<1,2>cd(1>{K'“A'A'

X[M(1)+Mg(2)]+ Ca(2)Ne(1,2[UgP(1) +UgP(2)] = UGP(1)[N, (1,2 + N,C)p(l,Z)]]- (39
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pr23 are defined in CO1. Again we givE}), and T$}2) in the Appendix and thes terms are evaluated according to the
approximation used fow,,.

A three-body termiT$? originates fromV,&* - V& in Eq. (24). It was not computed in CO1 because it is known to
provide a small contribution in nuclear mat{di0]. Here we include it, adopting the Kirkwood superposition approximation
(KSA) for the three-body distribution function6] and considering only thp=1 correlations contribution. Following these
prescriptions, we obtain

h2
Te?=-2 f d°ry f d°r, J 0r3V1p0(1,2)- V1po(1,3Ca( 1) (Ca(2)Ca(3)9Ge( 1,295(1,3

%{[93a(2,3) = 11INC(2,3) = po(2,9 T+ N3(2,3)} +{Cu(2) 95a( 1. 2N, (2,3[ 9g(1,3) Cy(3) — 1] +2=3}

+[N7,(2,3 = po(2,3][9534(1,3)Cy(3) — 11[944(1,2) C4(2) — 11), (40)
|
whereggq(i,j)=[f(r;)1?h%(i,j). and
_ 1 _ h?
V- RESULTS Vidli)=——— [ 2Qm(r+—
All the results presented in this section have been ob- 4P1d(r12) 4m
tained with the single particle wave functiogs,(i) gener- _
ated by a harmonic oscillator well with oscillator length «| vom: B [VPrs(ri2)]? ”
b=\#A/mw. In principle,b could be considered as a varia- Ts(r12) P - (49
tional parameter; however, we kept it fixed, st 1.543 fm TSt
for %0 andb=1.654 fm for “°Ca, because our aim here is o , _ . , .
to develop and assess the finite nuclei FHNC-SOC theoryéggrlz)’ with X=(Q,P), is defined as in Eq(3.10 of
rather than to perform a fully variational calculation, to be THe S=1 correlations are solutions of two coupled equa-
compared with experimental data. This problem will be '[ack-tions P q
led when the complete, realistic Hamiltonian will be within
reach of our approach. 52 o
The best choice for the correlation operatey is ob- — —V2F(r1) +[Vra(r1p = A lFra(r12)
tained by the free minimization of the FHNC-SOC energy
functional and the solution of the corresponding Euler equa- +8[vr((r19) —A]Fre(r12) =0 (45)

tions [ §(H)/6F;;=0]. This method is not practicable for

realisticNN potentials and one has to resort to less ambitiousnd

ones. In CO1 two types of correlations were investigated: a

simple, two-parameter Gaussidg(r) and a more effective h? 2

Euler function fg,(r), obtained by minimizing the energy — V()

evaluated at the lowest order of the cluster expansgidn).

The latter was also adopted in the nuclear matter studies of Vi

PW. Here we shall use the Euler correlation corresponding to Vru(ri2) =2vrdrad + o r_'f2+ At A | Frdrag)

Eq. (5), thus extending to the state-dependent, finite system

case the approach of CO1 and PW. +lot(r12) = NedFra(ri) =0. (46)
Without going into many details, the correlation is com- ) ) »

puted in the T,a) channels, withe=(S,t), whereT andS These equations are solved under the healing conditions

denote the total isospin and spin of the pair aritle tensor  frs(r=drgd=1, fr(r=d)=0, and fra(r=dr)=0,

part (S: 1 for thet Channe). In theS=0 Case’f_ro(r) is the WheredTa play the role of variational parameters. Tfﬁ{r)

hZ

solution of the Schidinger-like equation correlation functions are then obtained by, (r) (see PW.
In nuclear matter only two healing distances are uskd:
52 andd;, for the central §15) and tensor d;) channels, re-

- EVZFTO(rlz)+[\7I'O(r12)_)\TO]FTO(r12):01 (41)  spectively. We make here the same choice. Additional
nuclear matter variational parameters are the quenching fac-
tors P of the NN potentials in the Euler equations. As in

_ 5172
whereFra(r12) = fra(r12 Prs(rid), PW, we takea'=1 andaP”'=a. We have already stated
_ 2 T+s that, for the time being, we are not interested in a full varia-
Prs(1,2=po(1)po(2) — 1605(1,2(=) "> (42 ional search, and so we have taken the nuclear matter pa-
52 rameters given in Refll] for U14. They ared,=2.15 fm,
1 d;=3.43 fm, ande=0.8
- - _\T+S t= o , -O.
Qrs(19 =3 vrsrPre(1.2+ 10 pr2(1.2(=) 75 The “°Ca correlation functions are shown in Fig. 1 and

(43 compared with the corresponding nuclear matter functions,



1674 A. FABROCINI et al. 57

T " T 0.04

0.02 t
0.00 &

-0.02

0.0 ;

-0.04
0
r (fm) r (fm)

FIG. 1. Euler correlation functions iffCa and nuclear matténm) at saturation density. In the right panel, lines aret!@a correlations
and symbols are the nm ones.

at saturation density. They are similar, especially the longeand to the potential energy, if the potential has large ex-
ranged tensor ones. The most visible differences are found ichange terms. This fact can be understood if we consider that
the o and 7 components and in the shortest range parft®of a four-point elementary diagram, linear in the central link,
We stress that additional differences could arise from théf°]2—1, is contained IrES", as well as diagrams linear in
minimization process, as the energy minimum will probablythe operatorial linkf®f'>1. The insertion of these diagrams
correspond to a different choice of the parameters. in the FHNC equations was termed as the FHNC-1 approxi-
A measure of the accuracy of the FHNC-SOC approximamation, and we shall keep this terminology.
tion is how well the densities normalization sum rules are Results for the sum rules are presented in Table | for
satisfied: different models of the correlatiorf® (Jastrow,p=1 com-
ponent only and f and f® (without and with tensor corre-
lations, respectively The table shows also the FHNC-1 cor-
“47) rections. In all cases$; shows a lar
. 1 gest error of less than
1%. This is also the accuracy that we find in the Jastrow case
1 3 3 c for S, ., in the FHNC-1 approximation, as already noticed in
Szzm f d rlf d°rapy(rir2)=1, (48 Cco1. The situation is worst for the operatorial correlations,
where FHNC-SOC theory violates the sum rules by a maxi-
mum amount of~ 9%, similar to what was already found in

1 :
ST:ﬁ d3rlf d3rop3(ry,ry)=—1. (49)  nuclear matter in Ref.10].

TABLE II. Contributions to the energy per nucleon, in MeV,
The spin saturation sum ru,= —1, holds only in the ab- for *°0 with the truncated U14 potential, tipe=1, Jastrow part of
sence of tensor correlatiof@7]. Both the TBD and its sum the Euler correlation, and the harmonic oscillator single particle
rules are evaluated following the decompositi@8). wave functions discussed in the text. TBE" column gives the
Deviations of the sum rules from their exact values are"HNC-1 correction.
due to(i) the FHNC/O scheme an() the SOC approxima-
tion. The influence of the elementary diagrams was ad-
dressed in CO1. It was found th&fX", i.e., the sum of the T 143>

Si= f dripi(ry) =A,

0 +s +c +cs +EZ"  cMmC

ee elementary diagrams whose external points belong to the() 3.90
same exchange loop, may substantially contribute to Bpth Tig'z) 0.73
TE3 007

TABLE I. %0 and“%Ca sum rules for U14 with different cor- _¢
relations. Thef® line corresponds to the Jastrow model; #f&" Te 5.59
line gives results with(without) tensor correlations. Numbers in (T) 24.61 24.3%1)
parentheses are obtained in the FHNC-1 approximation.

(v°) 0.84 0.88 0.9298
S S, S, (v%) 1.28 1.25 1.2708)
T 2.46 2.40 2.4@12
f© 1600  0.9981.002  —1.057 (—1.001) EZ% o7 aa o650 26 246(126)3)
160 f4  16.03  0.9881.00)  —0.980 (—0.965) i i '
f©  16.01  1.051(1.054  —0.943 (—0.930) (v,) —22.76 —22.07 —21.56(25)
f¢  40.00 0.9991.00) —1.067 (—1.002) (H)IA 1.78 2.54 2.7109)
4ca f4  40.03  1.0051.009 —1.074 (—1.056) Tem/A 082

f6 3986  1.0891.09)  —0.997 (-0.981)  E, /A 1.72




[28] with the cluster Monte Carl(CMC) method of Ref[7].
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TABLE Ill. As in Table Il, for the f* correlation model.

0 +s +c +cs +ESCh CcMC
T 14.41
T 4.98 4.97 4.97 4.97
T3 1.44 1.44 0.05 0.05
TG 0.07
Te 8.09 8.28 7.80 7.79
(T) 29.00 29.17 27.30 27.29 26(F)
(v°) 3.04 3.13 2.43 2.41 2.41 2.7
(v) 2.27 2.26 2.07 2.07 2.02 2.(00)
(v7) 2.38 2.35 2.35 2.35 2.28 2.41)
(v7) —34.42 —34.56 —32.82 —32.81 —32.10 —31.76(33)
(vy) —26.73 —26.82 —25.96 —25.98 —25.39 —24.58(29)
(HY/A 2.26 2.36 1.34 1.31 1.90 1.6M)
Tem/A 0.82
Egs/A 1.08

The ground state energies are displayed in Tables 1I-IV  The ground state energy mean vakg; is then given by
for 10 and Tables V-VII for“’Ca, for each correlation Egs=(H)—T.m, WhereT,, is the center-of-mass kinetic
model. The columns (8,c,cs) show the contributions to the energy, whose calculation is discussed in CO1.

two-body operator expectation values, as given in 2§).
The %0 results are compared with the calculations of Piepepf 1-2 % for(T) and(v,) in *°O. The total energy percen-
tile error is bigger -9%) as(H) is given by the cancella-
As already outlined, in the CMC approach the Jastrow partion of two large numbers. We meet the same situation in the
of the correlation is exactly treated by MC sampling and thef* andf® models. The kinetic and potential energy errors are
remaining operatorial contributions are evaluated by the MG—4 % in the first case and 5—7 % in the latter. The absolute
method up to four-nucleon clusters. The fourth order clusteerror in(H) is considerably less than 1 MeV in all models.
expansion seems to be enough to provide a reliable conveAgain, this finding is consistent with the estimated accuracy
gence and to consider the CMC numbers as a benchmark fof FHNC-SOC theory in nuclear matter. We notice that most
FHNC theory. The tables also contain the FHNC-1 correc-of the binding is given by the OPE parts of the potend,
andv'”. In absence of the last componefQ is not bound

tions.

For the Jastrow correlation, FHNC theory shows an error

TABLE IV. As in Table II, for the f® correlation model.

0 +s +c +cs +ESCh CMC
T 14.75
TP 5.04 4.95 4.93 4.93
T¢? 133 1.29 —0.04 0.00
TEd 0.07
Te 11.45 12.22 11.46 11.41
(T) 32.63 33.28 31.16 31.16 2983
(v 3.03 3.31 2.41 2.33 2.33 2.68)
(v 2.17 2.13 2.02 2.02 1.97 2.09)
(") 2.34 2.26 2.36 2.36 2.29 2.08)
(v -3379 3425  -3271  —-3269  —3203  —30.12(42)
") 0.31 0.30 0.26 0.26 0.25 0.an)
(") -11.42  -11.82  -1041  -10.36  —10.28 —9.77(09)
(v2) -37.37  —-38.07  —36.07  -36.08 —3547  —33.03(31)
(H)IA ~4.74 ~4.80 ~4.91 ~4.92 ~4.33 —4.59(10)
Tem/A 0.82
Eqs/A ~5.15
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TABLE V. As in Table II, for “°Ca. TABLE VII. As in Table V, for thef® correlation model.
0 +s +c +cs  +ES 0 +s +c +cs  HEZC
T 14.81 T 15.37
¢ 5.00 T 612 607 607  6.07
T3 1.74 L 2.50 2.49 0.92 0.93
TEI 0.72 T 0.70
Te 8.29 Te 16.27 1563 16.66  16.62
(T) 30.55 (T) 4096 4247  39.72  39.69
(v° —-1.45 -141  (v9 1.13 129 -0.03 -022 -0.21
(v°) 1.60 157  (v°) 2.61 2.54 2.35 2.35 2.30
(v") 3.06 299  (v7) 2.83 2.69 2.79 2.79 2.71
(v7) —33.30 —-32.40 (v —41.41 —42.27 —39.54 —39.48 —38.73
2009 2026 (vY 0.37 0.35 0.30 0.30 0.29
{v2) : : (v'7) —-15.43 -16.23 —13.72 —-14.22 —14.14
(H)IA 0.47 1.30 (vy) —4991 —51.61 —47.85 —48.48 —47.28
Tem/A 028
Egs/A 1.01  (H)/A -895 -915 -813 -879 -—7.59
Tem/A 0.28
Egs/A -7.87

in our model. The same holds #Ca, where the introduc-
tion of tensor correlations and potentials increases the kinetic
energy by~5.6 MeV, compensated by an additional poten-

TABLE VIII. Breakup of the FHNC-SOC potential energies in

tial energy contribution of- —13.6 MeV, providing a bound MeV per nucleon for®0, *°Ca, and nuclear matténm) in the f6

nucleus in thef® case. For the sake of curiosity, we recall model.

that the experimental binding energies per nucleon are

—7.72 MeV in %0 and —8.30 MeV in “°Ca, to be com- 0 “ca nm
pared with the computed valuds, s=—5.15 MeV *50) (0% 233 —0.21 ~3.04
and —7.87 MeV (*°Ca). () 197 230 246
In Table VIII we compare the expectation values of the<UT> 2'29 2'71 2'84
components of the potential with the nuclear matter results< o) _32'03 _3g '73 _37 ('59
within the same FHNC-SOC approximation and in tife Ut ' ' .
model. It is interesting to notice a kind of convergence with<vt2 0.25 0.29 0.32
A for the potential energies, in particular for the large ope{?) —10.28 —1414 —14.06
related components, whose contributions, “ica, are al- Egs/A -5.15 —7.87 ~13.16

ready very close to the nuclear matter values. We stress that-

TABLE VI. As in Table V, for thef* correlation model.

TABLE IX. Contributions in MeV to the %0 energy per

0 +s +c +cs  +EZ"  nucleon with and without SOR insertions and in the CMC method.

TG 1492 soc SOG-SOR cMC

T 6.06 606 606  6.06 "

T3 274 275 1.05 1.04 f

T3 073 (T) 27.29 27.25 26.131)

C

T, 1172 1208 1139  11.37 (0% 2.41 2.00 2.7837)
(v%) 2.02 2.02 2.07L0)

(T) 36.17 36.54 3415 3412 (v™ 2.28 2.30 2.4012)

(v°) 116 121 018 014 014 °77 ~3210 —3201 —31.76(33)

(v%) 278 277 245 245 238 {6

(v7) 294 290 283 283 274 (T) 31.16 31.08 29.433)

77 —42.69 —42.92 —-39.78 —39.76 —38.92 (v°) 2.33 1.92 2.3813)

(va) 3580 —36.04 —34.33 —34.34 —3366 (U 1.97 1.96 2,003
(v7) 2.29 2.30 2.2a4)

(H)/IA 036 049 -018 -022 046 (v°7) -32.03 -31.81 —30.12(42)

Tem/A  0.28 (0" 0.25 0.26 0.2{01)

Egs/A 018  (v') —10.28 -10.21 —9.77(09)
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FIG. 2. One-body densities itfO (left) and “°Ca (right). The solid lines correspond to tf& model, the dashed line to the Jastrow
model, and the dot-dashed line to the IPM.

a more meaningful comparison would imply the use ofversion of Ul4. However, it is certainly of interest to try to
Hartree-Fock single particle wave functions or, at least, ainderstand how reliable are the nuclear matter parameter val-
minimization on the single particle potential parameters.  ues and how far they are from the true minimum. To this aim

In Table IX we show the influence of the SOR’s1fO.  we have minimized, with respect ., the energy for the
SOR'’s have been inserted according to PW. In general, theg3 model described in the Introductidkeeping the same
contribute less than 1% of the FHNC-SOC value, with theharmonic oscillator wells as U14The results are displayed
exception of(v°), where they give a 17—18 % contribution, in Table X. The first row corresponds to the U14 nuclear
actually worsening the agreement with the CMC method. matterd.=2.15 fm, whereas the second gives the computed

The effects of the correlations on the ground state strucminima. The minimization produces a small gain in the bind-
ture are shown in Figs. 2 and 3, giving the OBD’s and theing energy and3 appears to provide two nuclei underbound
two-particle distribution functiong,(rq,), defined as of ~1 MeV.

1
Pz(rlz):K f d3Rzp5(r1,12), (50) V. CONCLUSIONS

In this article the FHNC technology developed in COL1 to
where Ry,=3(r;+r,) is the center-of-mass coordinate. In describe finite nuclear systems has been extended to state-
both figures, thd®, the Jastrow, and the independent particledependent correlations containing up to tensor components.
models are compared As in infinite nucleon matter, the nhoncommutativity of the

A large part of the reduction with respect to the IPM is two-body correlation operators does not allow for a complete
due to the Jastrow, short range correlations. The operatori®@ HNC treatment, which is instead possible for purely scalar,
correlations slightly enhance the OBD’s, as in the first ordeJastrow-type correlations. The single operator chain approxi-
cluster analysis of Ref19]. They have the same effect in mation schemgwhich is effectively employed in nuclear
p2(rq12), where the dip at short distances is due to the repuland neutron mattghas been extended to the finite case. The
sive core in the nuclear interaction, as already found foresulting set of integral equations has been solved either by
A=3,4 nuclei in Ref[29]. neglecting the class of the elementary diagrafffsNC/0

At the beginning of this section we have explained whyapproximation or by considering only the lowest order el-
we did not look for a variational minimum for the truncated ementary contribution in the dynamical correlatig?HNC-

™\
L 7NN
i AN
0.10 —- b 0.10 r / \ |
[ / N\
= \\\
= \\
L | \\\ ]
0.05 [ 1 0.05 \\ :
A\
Xy
0.00 000 Lt w0
0 7 0 1 2 3 4 5 6 7 8
r (fm) r (fm)

FIG. 3. Two-particle distribution functions itfO (left) and “°Ca (right). As in Fig. 2.
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TABLE X. Energies per nucleotin MeV) and central healing tensor model. The absolute error in the ground state energy

distanceg(in fm) for the S3 interaction in thef* model. per nucleon is always well less 1 MeV, compatible with the
) o estimated accuracy of the FHNC-SOC approach in nuclear
0 dc Egs/A Ca de Egs/A matter at saturation density.
215 _6.08 215 737 The same truncategl, interaction has been also used to

study the ground state of’Ca. We have verified that for
both 80 and °Ca only the insertion of the long-range one-
pion exchange parts of the potenti@nd related correla-
o . tions) binds the nuclei.
1). As an application, we have studied the ground state prop- N minimization along the correlation and single particle
erties of the doubly closed shell nuclei in the coupling  hotential variational parameters has been carried on, but we
scheme,*®0 and *’Ca, interacting by the central and tensor haye rather taken the nuclear matter values. We have post-
components of the realistic Urbana, nucleon-nucleon po- poned this task to future works, when a completely realistic
tential. _ Hamiltonian will be within reach of our method. However, a
The analysis of the sum rules shows that the FHNC-SOGartial minimization on the correlation healing distardie
equations provide a considerably accurate one-body densityy the simpler, central Afnan-Tang potential seems to point
whose normalization is violated by much less than 1%. Ay jittle variation of the parameters in going from the infinite
comparably good accuracy is obtained for the normalizatioRg the finite case.
of the central component of the two-body densig=1 Even if this is still an intermediate step towards a full
sum rulg when tensor correlations are not included. If theymicroscopic description of intermediate and heavy nuclei,
are considered, then the excellent fulfilmentSfobtained gy results are very promising. In fact, we may conclude that
with purely cgntral correlations slightly worsens. The i.nclu—«[he FHNC-SOC approach to finite nuclei shows at least the
sion of the first order Jastrow elementary diagram in thesame degree of accuracy estimated in the best variational
FHNC-1 approximation does not improve the outcome. In-n,clear matter studies. In this respect, we consider as man-
clusion of analogous diagrams, linear in the operatorial coryatory the inclusion of spin-orbit terms in both the interac-
relations, is presently under consideration. In any case, thgon and correlation, as well as the extension to jtheou-

worst violation of the sum rule is-9%, close to what was pjing scheme, in order to cover all the range of the doubly
found in nuclear matter. A similar situation is met for the ¢|gsed shell nuclei.

isospin saturation$S,= —1, sum rule.
The v_arious energy _contrib_uti_ons O have been com- ACKNOWLEDGMENTS
pared with those obtained within the cluster Monte Carlo
approach. The maximum disagreement with the CMC results The authors are deeply indebted to Steven Pieper for pro-
varies from~2% for the Jastrow model te-7% for the  viding the CMC results inte0.

1.96 -6.27 2.02 —7.50

APPENDIX
In this appendix we give th&/;, T?), and T2 expressionsw, is given by the sum
We=Wc(dd)+W(de) +Wc(ed) +Wc(ee)+W(cc), (A1)

with
1 .
W)= [ 6 | QI DN LN (S AS2) AR CUDING 12+ C DA 2INE( L2
+Ca(1)Cu(2)[Nego( 1,2+ Ney(1,2Ng (1,2 1} 5, (LIKIMKHMAM RUML KM SRIkmLIm 4 3K HmLIim)

1 . P 7 e ’ Ay H ’
_4Cd(1)cd(2)[NgC(1’2)_pO(l,Z)]zAn[g(KkaK”'m Lm Im_ Kumekm(Lnlm +Kkanm|m Lj|m
+Kijkanm’Lm’Im)+%2(4KnlmKijm’Kmm’kAk+ KjkamnnfLiIm’+Knimejm’LkIm’)H, (AZ)

1 .
We(de)=We(ed = 5 [ ar, [ dr,HIE N (LDNG (1.2 p1)Co(2)+ C1)Co 2N 1.2)]
1 . .
XZ (2K|JkaImAm+ Kl]mLkIm+ K]klelm)! (A3)

W _1 d3r, [ d3r,HUK he(1,2N=>1(1,2)Cy(1)Cy(2)KIMKKIMaM A4
(ee) > My roH3E(ri2h%(1,2)Nge (1,2 Cy(1)Cy(2) ) (A4)
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1 .. H B ! ’
W(co)=5(~8) J dr, f d3r2H5'.E(r12>h°(1,2>cd(1>cd(2>[NEc<1,2>—po<1,2>]A“[ N int( 1,2 KIKmKImm L m'n!

+[N|>1(1;2)+Nlc|_(1 2)] (Kjkamnn'{Kim’IAl+KjkamnnfLim’l+Kjkainm’Kmm’IAI

cc,R
+Kjkainm’me’I+2Kjkaimm’an’I+KijmKnmm'Lm’kI+KijmKnkm’Lm’ml)]_ (A5)

In the last equation, |, arecc nodal functions having thi, link reaching the lefiright) external pointNeg i, hasX
as an |nternal link.
N1 is given by

Neel (L2 =N (L2 +Ny 1(12), (A6)
whereN, 1 andN, 1 are solutions of
NZL(1,2= 2 fdsrggqr' 9oL (LAVI(B)XC(3,2) + NS(3,2 +NS(3,21AT, (A7)
NS (1,2=2 fd3r3§qu o L(LAVI(B)[ — pg(3,2+NE, (3,2 +NC (3,2]A", (A8)
and
Xee1(1,2=h"(1,2h%(1,2[NE(1,2) = po( 1,2 +{[(r 121*n(1,2 — 1IN (1,2). (A9)

For the other functions, we haw._ k(1,2)=Ni;1(2,1) andNi; i =N =N 1 - NG R
Finally, T?, and 7?2 are given by

T;L=—— f d3r1fd r2p12(1,2C4(1)Cy(2)Fi(r 1) FH(r1h%(1,2)Nyg'(1,2) A"

1 ) . ) ) 1 : . )
X g(KmmLmlk-i- K|kanIm+ KkanmllAI+ KknmLmI|)+ 1_2(4KnIme|kAk+ KknmL|Im+K|nmLkIm)}, (AlO)

T<;02>=——fd3rlf d3r,prs(1, 2)Cd(1)Cd(2)A”(2f(rlz)fk(rlz)hc(l INLTH(1,2NEL(1,2)

1 : ) : : 1 . ) )
X g(KmmLmlk-i- KlkanIm+ KkanmllAI+KknmLmI|)+ 1_2(4KnIme|kAk+ KknmL|Im+ KlnmLkIm)}

) 1 ) ) ) )
+[fl(r12)fk(r12)hc(112)_5i16k1][[NlczlL(l!2)+Nl:i,]li(lvz)] Z(KkanlmlA|+Kknleml+ KlankmlA|+K|nmLkm|
cc,int

4 oK ikmp nml yenimp mkl KnkmLmiI)+Nl>i_L (1 Z)KikanmIH

hZ
-2 f dry f d%r2p13(1,2Co( DA A Cy(2)[Nigin(1.2 + N i 1.21+[Co(2) — 1IN 11(1,2}. (AL1D)

The L'k matrix is given in PW.
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