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Ground state of N5Z doubly closed shell nuclei in correlated basis function theory
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The ground state properties ofN5Z doubly closed shell nuclei are studied within correlated basis function
theory. A truncated version of the Urbanav14 realistic potential, with spin, isospin, and tensor components, is
adopted, together with state-dependent correlations. Fermi hypernetted chain integral equations are used to
evaluate the density, distribution function, and ground state energy of16O and40Ca. The nuclear matter single
operator chain approximation is extended to finite nuclear systems, to deal with the noncommuting part of the
correlation operators. The results favorably compare with variational Monte Carlo estimates, when available,
and provide a first substantial check of the accuracy of the cluster summation method for state-dependent
correlations. We achieve in finite nuclei a treatment of noncentral interactions and correlations having, at least,
the same level of accuracy as in nuclear matter. This opens the way for a microscopic study of the medium
heavy nuclei ground state using present day realistic Hamiltonians.@S0556-2813~98!00104-6#

PACS number~s!: 21.60.Gx, 21.10.Dr, 27.20.1n, 27.40.1z
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I. INTRODUCTION

It is now a largely accepted fact that the wave function
strongly interacting nuclear systems shows large deviat
from independent particle models~IPM’s!. These effects
may be ascribed to the presence of correlations between
nucleons, coming from the nuclear interaction. Seve
nucleon-nucleon (NN) potentials are presently available, a
of them fitting the deuteron and theNN scattering data up to
energies of several hundred MeV. However, their com
cated structure and dependence on the state of the intera
nucleons has severely hindered the achievement of real
ab initio studies of most of the nuclear systems.

The situation is satisfactory for light nuclei. Faddeev@1#,
Green function Monte Carlo~GFMC! @2#, and correlated hy-
perspherical harmonics expansion~CHHE! @3# theories solve
exactly the Schro¨dinger equation in theA53,4 cases for re-
alistic Hamiltonians. Recently GFMC theory has been
tended up toA57 @4#. Moreover, these theories~particularly
Faddeev and CHHE! are now successfully used to study lo
energy reactions involving three nucleons@5#. Light nuclei
properties may be also described by variational Monte C
~VMC! @6# methods. If the spanned variational wave fun
tion space is large enough, then the description provided
variational approach is quite accurate~even if not exact!.
One of the major advantages of the VMC method is its lar
flexibility, resulting in the possibility of an extension t
heavier nuclei, such as16O @7#.

At the opposite asymptotic side of the nuclear table, in
nite nuclear matter has attracted the attention of researc
as it is thought to be a reliable model for the interior
nuclei. High density neutron matter and asymmetric nucl
matter are also objects of intensive investigations becaus
their astrophysical relevance. The equations of state~EOS!
of infinite systems of nucleons have been studied, in non
ativistic approaches and using realistic interactions, eithe
Brueckner-Bethe-Goldstone~BBG! perturbation theory@8,9#
570556-2813/98/57~4!/1668~13!/$15.00
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or correlated basis function~CBF! theory @10,11#. These
theories give consistent results at densities close to
nuclear matter empirical saturation density (rnm

50.16 fm23), whereas large discrepancies appear at hig
density values. A question still to be answered is the conv
gence of the hole line expansion, on which BBG theory
based, in the case of a continuous choice for the auxili
potential. Recent BBG results are all obtained within t
two-hole line approximation@9#. Attempts are under way to
evaluate the three-hole line contribution@12#.

CBF nucleonic EOS give a good microscopic descript
of nuclear matter around saturation and provide a descrip
of the neutron star structure in agreement with current ob
vational data @10#. Moreover, nuclear matter dynamica
quantities, such as electromagnetic responses@13,14# and
one-body Green functions@15#, may be accurately addresse
by CBF-based perturbative expansions.

Medium-heavy nuclei still lack microscopic studies wi
realistic Hamiltonians. In a series of papers, the authors s
ceeded in extending CBF approaches to the ground stat
doubly closed shell nuclei~both in ls and j j coupling! with
semirealistic, central interactions and simple two-body c
relations, depending only on the interparticle distances a
at most, on the isospin of the correlated pair@16–18#. Nuclei
ranging from4He to 208Pb were investigated in those pape
by model Hamiltonians. The aim of the present work is
extend those studies toNN interactions and correlations con
taining spin, isospin, and tensor components. We shall c
sider 16O and 40Ca nuclei, having doubly closed shells inls
coupling. We shall adapt to these systems the cluster s
mation technique, used in symmetric nuclear matter for st
dependent correlations. Modern interactions have also
portant spin-orbit parts, which are not included in the pres
treatment, as well as other remaining components. They
be the objects of future works. A first order cluster expans
has been recently used to study the influence of st
1668 © 1998 The American Physical Society
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57 1669GROUND STATE OFN5Z DOUBLY CLOSED SHELL . . .
dependent correlations on the one-body density matrix
closed shell nuclei@19#.

Our work is carried out in the framework of a nonrelati
istic description of the atomic nucleus with Hamiltonians
the type

H5
2\2

2m (
i

¹ i
21(

i , j
v i j 1 (

i , j ,k
v i jk . ~1!

The two- and three-nucleon potentialsv i j andv i jk are deter-
mined at large interparticle distances by meson excha
processes. The intermediate and short distance regime
usually treated in a semimicroscopic or purely phenome
logical fashion. We shall use a truncated version of the re
istic Urbanav14 model~U14! of theNN interaction@20# but
we shall not consider three-nucleon potentials. We shall a
present results for the central semirealistic interactionS3 by
Afnan and Tang,vS3 @21#, which reproduces thes-wave
two-body scattering data up to roughly 60 MeV and giv
values of the ground state properties of light nuclei and
nuclear matter close to those obtained by more realistic
teractions. TheS3 potential has been supplemented in t
odd channels, where it is not defined, with the repulsive te
of the even channels.

The full U14 model has the following parametrization:

v14,i j 5 (
p51,14

vp~r i j !Oi j
p , ~2!

with

Oi j
p51,145@1,s i•s j ,Si j ,~L•S! i j ,L2,L2s i•s j ,~L•S! i j

2 #

^ @1,t i•t j #, ~3!

Si j 5(3r̂ i j •s i r̂ i j •s j2s i•s j ) being the usual tensor operato
In the v6 truncation we shall retain components up to t
tensor ones, thus neglecting the spin-orbit and higher te
(p.6). S3 does not have thep53,6 tensor parts.

The ground-state-correlatedA-body wave function is
given, in our CBF approach, by

C~1,2, . . . ,A!5S S)
i , j

Fi , j DF~1,2, . . . ,A!, ~4!

where a symmetrized product of the two-body correlat
operatorsFi j acts on the mean field state,F(1,2, . . . ,A),
taken as a shell model wave function built up withfa( i )
single particle wave functions. Consistently with the intera
tion, Fi j is chosen of the form

Fi j 5 (
p51,6

f p~r i j !Oi j
p . ~5!

The tensor components ofFi j are omitted in theS3 case.
The f p(r ) functions contain a set of variational param

eters determined by minimizing the ground state expecta
value of the Hamiltonian,^H&5^CuHuC&/^CuC&. The
many-body integrals needed for the evaluation of^H&, as
well as of the expectation value of other operators, could
in principle sampled by Monte Carlo~MC! techniques. How-
ever, MC methods for realistic, state-dependent models
f
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be efficiently used only in light nuclei. An alternative ap
proach, suitable to heavier systems, is the cluster expan
and Fermi hypernetted chain~FHNC! @22# integral equa-
tions. The FHNC equation allows for summing infini
classes of Mayer-like diagrams and it has been widely
plied to both finite and infinite interacting systems with sta
independent~or Jastrow! correlations.

The strong state dependence ofFi j , needed for a realistic
description of nuclear systems and resulting in the nonco
mutativity of the correlation operators prevents the devel
ment of a complete FHNC theory for the correlated wa
function of Eq.~4! and forces one to look for suitable ap
proximations. The single operator chain~SOC! approxima-
tion presented in Ref.@23# @hereafter referred to as PW# for
the operatorial correlations, in conjunction with a full FHN
treatment of the scalar part, provides an apparently accu
description of infinite nuclear and neutron matter@10#. The
FHNC and SOC treatments are thought to effectively inclu
the contribution of many-body correlated clusters. Howev
no exact check for the FHNC and SOC treatments is p
ently available in nuclear matter, apart from the evaluation
some additional classes of diagrams. The estimated accu
in the ground state energy has been set to less than 1 Me
saturation density@24,10#.

We shall use FHNC-SOC theory to study the ground st
of 16O and 40Ca described by the correlated wave functi
~4!. The 16O results will be compared with the MC calcula
tions of Ref.@7#, where the scalar part of the correlation
exactly treated by the MC method, and the contribution
the operatorial components (p.1) is approximated by con
sidering up to four-body cluster terms. Higher order con
butions are then extrapolated.

The plan of the paper is the following: In Sec. II w
present the FHNC-SOC theory for the one-body dens
and the two-body distribution function; the ground state e
ergy calculation is discussed in Sec. III; the results obtain
for 16O and 40Ca are presented and discussed in Sec.
conclusions and future perspectives are given in Sec. V.

II. FHNC-SOC THEORY FOR FINITE SYSTEMS

In discussing the FHNC-SOC approach to the one- a
two-body densities,r1(r1) ~OBD! andr2

p(r1 ,r2) ~TBD!, de-
fined as

r1~r1!5K (
i

d~r12r i !L ~6!

and

r2
p~r1 ,r2!5K (

iÞ j
d~r12r i !d~r22r j !Oi j

p L , ~7!

we shall heavily rely on the formalism developed in PW a
in Ref. @16#, denoted as CO1 hereafter. Most of the quantit
we shall introduce and use in this section are described
those papers and will not be discussed here. Moreover,
various p51,6 components of the correlation~and other
quantities! will be often referred to asc(p51) and, with an
obvious notation, ass, t, andt ~tensor!.
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1670 57A. FABROCINI et al.
In Jastrow FHNC theory, the TBD is written in terms
the scalar correlationf c(r ) and of thenodal ~or chain! and
elementary~or bridge! functionsNxy(r1 ,r2) andExy(r1 ,r2),
representing the sums of the diagrams having those topo
cal structures, respectively. The diagrams are further cla
fied according to the exchange character (xy) of the external
points ~1,2! x(y)5d,e with d5direct and e5exchange.
(cc) (c5cyclic) diagrams are also present, whose exter
points are joined by a single, nonclosed exchange loop~see
CO1 for more details!.

When operatorial correlations are introduced, the no
functions becomeNxy

p (r1 ,r2), wherep denotes the state de
pendence associated with the function. A complete FH
treatment for the full, state-dependent TBD is not presen
possible, and so a SOC approximation was introduced
PW. It consists of summingp.1 chains, where each link
may contain just one operatorial element and central dr
ings at all orders. We recall that operatorial depende
comes also from the exchanges of two nucleons. In fact
every exchange line forming a closed loop but one is as
ciated the exchange operatorPi j 52(q5c,s,t,stOi j

q /4.
The FHNC-SOC integral equations forNxy

p (r1 ,r2), with
x(y)5d,e, are

Nxy
p ~1,2!5 (

x8y8
(
qr

E d3r 3j132
qrpXxx8

q
~1,3!Vx8y8

qr
~3!

3@Xy8y
r

~3,2!1Ny8y
r

~3,2!#. ~8!

The allowed (x8y8) combinations aredd, de, anded, and
the coordinater i is indicated asi . Vx8y8

qr (3) are vertex cor-
rections inr3 that will be discussed later;j132

qrp are angular
couplings given in PW@Eqs. ~5.6!–~5.11!#. Actually, they
were given only in the operatorial channels (p,q,r .1). In
the p51 channel, the coupling function is one ifq5r 51;
otherwise it is zero. TheXxy

c (1,2) links are defined in CO1
while, for p.1, we have

Xdd
p ~1,2!5hp~1,2!hc~1,2!2Ndd

p ~1,2!, ~9!

Xde
p ~1,2!5hc~1,2!$hp~1,2!Nde

c ~1,2!1@ f c~r 12!#
2Nde

p ~1,2!%

2Nde
p ~1,2!, ~10!

Xee
p ~1,2!5hc~1,2!„hp~1,2!@Nde

c ~1,2!Ned
c ~1,2!1Nee

c ~1,2!#

1@ f c~r 12!#
2$Nee

p ~1,2!1Nde
p ~1,2!Ned

c ~1,2!

1Nde
c ~1,2!Ned

p ~1,2!24@Ncc
c ~1,2!

2r0~1,2!#2Dp%…2Nee
p ~1,2!, ~11!

with

hp~1,2!5 f c~r 12!$2 f p~r 12!1 f c~r 12!Ndd
p ~1,2!%, ~12!

hc(1,2)5exp@Ndd
c (1,2)#, andDp51 for p5c,s,t,st; other-

wise it is zero.r0(1,2) is the IPM density matrix, given in
CO1, Ncc

c (1,2) is the centralcc nodal function, given later
and Xed

p (1,2)5Xde
p (2,1). The FHNC/0 approximation~cor-

responding to setting to zero the elementary diagrams! has
gi-
si-
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been assumed in the above equations. Its validity will
discussed in the results section.

For thecc-type nodals we have

Nxx
p ~1,2!5(

qr
E d3r 3j132

qrpXcc
q ~1,3!Vcc

qr~3!

3@Xcc
c ~3,2!1Nxx

c ~3,2!1Nrx
c ~3,2!#D r

1 (
qr.1

E d3r 3j132
qrpDqXcc

c ~1,3!Vcc
qr~3!

3@Xcc
r ~3,2!1Nxx

r ~3,2!1Nrx
r ~3,2!#, ~13!

Nxr
p ~1,2!5(

qr
E d3r 3j132

qrpXcc
q ~1,3!Vcc

qr~3!

3@2r0~3,2!1Nxr
c ~3,2!1Nrr

c ~3,2!#D r

1 (
qr.1

E d3r 3j132
qrpDqXcc

c ~1,3!Vcc
qr~3!

3@Nxr
r ~3,2!1Nrr

r ~3,2!#, ~14!

Nrr
p51~1,2!5E d3r 3@2r0~1,3!#Vcc

11~3!Nxr
c ~3,2!

1E d3r 3@2r0~1,3!#@Vcc
11~3!21#

3@2r0~3,2!1Nrr
c ~3,2!#, ~15!

Nrr
p.1~1,2!5(

qr
E d3r 3j132

qrp@2r0~1,3!Dq#Vcc
qr~3!Nxr

r ~3,2!

1(
qr

E d3r 3j132
qrp@2r0~1,3!Dq#

3@Vcc
qr~3!21#Nrr

r ~3,2!. ~16!

Again, Xcc
c (1,2) is defined in CO1, and

Xcc
p.1~1,2!5hp~1,2!hc~1,2!@Ncc

c ~1,2!2r0~1,2!#

1$@ f c~r 12!#
2hc~1,2!21%Ncc

p ~1,2!. ~17!

The x(r) subscript indicates that the external point is~not!
reached by anX link, Ncc

p 5Nxx
p 1Nxr

p 1Nrx
p 1Nrr

p and
Nrx

p (1,2)5Nxr
p (2,1).

Because in an exchange loop involving more than t
nucleons only one of the exchanged pairs does not have
operatorial link fromPi j and in the spirit of the SOC ap
proximation, thef p.1 correlations appear once in thecc
chains, just for that pair.

Single operator rings~SOR’s! were also approximately
included into the central chains in PW. SOR’s are clos
loops of operators having a nonzeroC part. A product of
operators can be expressed, by the Pauli identity, as the
of a spin- and isospin-independent piece~the C part! and a
remainder, linear ins i or t i . In nuclear matter, as well as i
the nuclei we are considering~doubly closed shell nuclei in
ls coupling!, the spin-isospin trace of the remainder va
ishes, leaving only theC part as the final contribution of the
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product. An example isO12
s O23

s O31
s , having aC part of 3.

SOR’s contribute top51 chains and were introduced by PW
in the definition ofXxy

c . A drawback of this approach is tha
touching SOR’s, i.e., SOR’s having a common vertex,
wrongly counted because commutators are neglected.
this reason, we do not follow PW and do not include SOR
in our treatment ofNxy

c . However, in one test case we ha
used the PW prescription to gauge the relevance of the m
ing contribution. The results will be presented later.

The OBD r1(r1) is computed following CO1. Its struc
ture results in

r1~r1!5r1
c~r1!@11Ud

op~r1!#1Ue
op~r1!Cd~r1!, ~18!

with

r1
c~r1!5@r0~r1!1Ue

c~r1!#Cd~r1!, ~19!

where r0(r1)5(aufa(1)u2 is the IPM density,
Cd(r1)5exp$Ud

c(r1)% and Ud(e)
c (r1) are the central vertex

corrections of CO1. They are solutions of two integral eq
tions ~A.19! and~A.20!, given in the Appendix of that pape
These equations must be modified because of the presen
operatorial correlations by the substitutionsjd(r2)→r1(r2)
andje(r2)→@11Ud

op(r2)#Cd(r2).
The SOC operatorial vertex correctionsUd(e)

op (r1) are so-
lutions of the equations

Ud
op~1!5 (

p.1
ApE d3r 2hc~1,2! f p~r 12!

3$@ f p~r 12!1 f c~r 12!Ndd
p ~1,2!#r1

c~2!

1@ f p~r 12!12 f c~r 12!Ndd
p ~1,2!#Nde

c ~1,2!Cd~2!

1 f c~r 12!Nde
p ~1,2!Cd~2!%, ~20!

Ue
op~1!5 (

p.1
ApE d3r 2hc~1,2! f p~r 12!

3„@ f p~r 12!12 f c~r 12!Ndd
p ~1,2!#$Ned

c ~1,2!r1
c~2!

1@Nde
c ~1,2!Ned

c ~1,2!1Nee
c ~1,2!#Cd~2!%

12 f c~r 12!$Nee
p ~1,2!Cd~2!1Ned

p ~1,2!

3@r1
c~2!1Nde

c ~1,2!Cd~2!#%…1Uc
op~1!, ~21!

whereAp51,651,3,6,3,9,18 and

Uc
op~1!528(

p.1
ApDpH E d3r 2hc~1,2! f p~r 12! f c~r 12!

3@2r0~1,2!1Ncc
c ~1,2!#2Cd~2!1E d3r 2

3E d3r 3gcc
c ~1,2!gcc

c ~1,3!hc~2,3! f p~r 23! f c~r 23!

3@2r0~2,3!1Ncc
c ~2,3!#Cd~2!Cd~3!J , ~22!

with gcc
c ( i , j )5@ f c(r i j )#2hc( i , j )@2r0( i , j )1Ncc

c ( i , j )#.
e
or

s

s-

-

of

The vertex corrections of the nodal equations,Vxy
qr , can be

expressed in terms of the OBD and of theU functions. For
the central, p51 chains we haveVdd

qr511( i )5r1( i ) and
Vde,ed,ee,cc

qr511 ( i )5Cd( i )@11Ud
op( i )#. As far as the p.1

chains are concerned, we insert central vertex correct
only: Vdd

qr ( i )5r1
c( i ) andVde,ed,ee,cc

qr ( i )5Cd( i ).

III. ENERGY EXPECTATION VALUE

In order to evaluatêH&, we use the Jackson-Feenbe
identity @25# for the kinetic energy, with the result

^T&5TJF5Tf1TF , ~23!

with

Tf52A
\2

4m
^F* G2¹1

2F2~¹1F* !G2~¹1F!& ~24!

and

TF52A
\2

4m
^F* @G¹1

2G2¹1G•¹1G#F&, ~25!

whereG5SPFi j . In turn, Tf is written as

Tf5Tf
~1!1Tf

~2!1Tf
~3! . ~26!

TheTf
(n) terms correspond to contributions where the kine

energy operator acts on a nucleon not involved in any
change (n51) or belonging to a two-body (n52) or to a
many-body (n53) exchange loop.

For Tf
(1) we obtain

Tf
~1!52

\2

4m E d3r 1rT1~r1!Cd~r1!@11Ud
op~r1!# ~27!

andrT1(r1) is given in CO1.
For the remaining parts ofTJF , as well as for the two-

body potential energŷv&5V2 , we are faced with comput
ing the expectation values of specific two-body operat
~apart a small three-body term, inTf

(3) , which will be dis-
cussed separately!.

We start withTF1V25W, also called theinteraction en-
ergy in PW, and defineHJF

i jk(r 12) as

HJF
i jk~r 12!52

\2

2m
d j 1$ f i~r 12!¹

2f k~r 12!2¹ f i~r 12!•¹ f k~r 12!%

1 f i~r 12!v
j~r 12! f k~r 12!. ~28!

In FHNC-SOC theory,W is split into four parts,

W5W01Ws1Wc1Wcs , ~29!

where W0 is the sum of the diagrams with only centr
chains between the interacting points~IP’s!, connected by
HJF . Ws sums diagrams having SOR’s touching the IP’s a
central chains;Wc contains diagrams with one SOC betwe
the IP’s andWcs contains both SOR’s at the IP’s and SOC
between them.

W0 is given by
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W05
1

2 E d3r 1E d3r 2HJF
i jk~r 12!h

c~1,2!„Ki jkAk$r1
c~1!r1

c~2!1r1
c~1!Cd~2!Nde

c ~1,2!1Cd~1!r1
c~2!Ned

c ~1,2!1Cd~1!Cd~2!

3@Nee
c ~1,2!1Ned

c ~1,2!Ned
c ~1,2!#%24Ki jl KlkmAmDmCd~1!Cd~2!@Ncc

c ~1,2!2r0~1,2!#2
…. ~30!

A sum over repeated indices is understood and the matrixKi jk is given in PW.
The presence ofWs is due to the noncommutativity of the correlations. In nuclear matter and for state-indepe

correlations, this term is absent because of the complete cancellation of the separable diagrams~see PW for a more complet
discussion of this point!. We obtain

Ws5
1

2 E d3r 1E d3r 2HJF
i jk~r 12!h

c~1,2!H Ki jkAkS 11
Dil 1D jl 1Dkl

4 D „@r1
c~2!1Cd~2!Nde

c ~1,2!#@r1
c~1!Md

l ~1!1Cd~1!Me
l ~1!#

1$r1
c~2!Ned

c ~1,2!1Cd~2!@Nee
c ~1,2!1Ned

c ~1,2!Nde
c ~1,2!#%Cd~1!Md

l ~1!1@r1
c~2!1Cd~2!Nde

c ~1,2!#Cd~1!

3[2Mc1
l ~1!1Mc2

l (1)]…24Ki jl KlkmAmDmS 11
D jn1Dmn12Dln

4 DCd~1!Cd~2!@Ncc
c ~1,2!2r0~1,2!#2Md

n~1!11
2J .

~31!

Di j are given in Eq.~5.23! of PW and we consider only terms linear in theMx
l vertex corrections, taken of the simplified form

Md
l .15AlE d3r 2@ f l~r 12!#

2hc~1,2!$r1
c~2!1Cd~2!Nde

c ~1,2!%, ~32!

Me
l .15AlE d3r 2@ f l~r 12!#

2hc~1,2!$r1
c~2!Ned

c ~1,2!1Cd~2!@Nee
c ~1,2!1Nde

c ~1,2!Ned
c ~1,2!#%, ~33!

Mc1
l .1524AlD lE d3r 2f c~r 12! f l~r 12!h

c~1,2!Cd~2!@Ncc
c ~1,2!2r0~1,2!#2, ~34!

Mc2
l .1524AlE d3r 2@ f l~r 12!#

2hc~1,2!Cd~2!@Ncc
c ~1,2!2r0~1,2!#2. ~35!

Contributions from SOC’s have not been inserted intoMx
l . In Wc we must keep track of the order of the operators both in

IP’s and in the SOC’s. Its expression is quite lengthy and it is given in the Appendix. Because of the large number of i
operators,Wcs is the messiest term among all, and the smallest: so we approximateWcs

j ;Wc
j @Ws

j /W0
j #, where thej index

refers to thej component ofHJF
i jk . A more involved factorization approximation toWcs was used in PW and its validity wa

set to within;0.2 MeV. We have checked our approximation against the PW one in nuclear matter and found agree
to the second decimal digit.

The decomposition~29! can be carried on also forTf
(2) andTf

(3,2) ~the two-body part ofTf
(3)!. The result is

Tf,0
~2!52

\2

m E d3r 1E d3r 2rT2~1,2!Cd~1!$KiklAlD lCd~2!@ f i~r 12! f k~r 12!h
c~1,2!2d i1dk1#1Cd~2!21%, ~36!

Tf,0
~3,2!522

\2

m E d3r 1E d3r 2rT3~1,2!Cd~1!$KiklAlD lCd~2!Ncc
c ~1,2!@ f i~r 12! f k~r 12!h

c~1,2!2d i1dk1#1Cd~2!

3@Nxx
c ~1,2!1Nrx

c ~1,2!#1[Cd~2!21]@Nxr
c ~1,2!1Nrr

c ~1,2!#%, ~37!

Tf,s
~2! 52

\2

m E d3r 1E d3r 2rT2~1,2!Cd~1!H KiklAlD l S 11
Dim1Dkm1Dlm

4 DCd~2!@ f i~r 12! f k~r 12!h
c~1,2!2d i1dk1#

3@Md
m~1!1Md

m~2!#1Ud
op~1!@Cd~2!21#1Cd~1!Ud

op~2!J , ~38!

Tf,s
~3,2!522

\2

m E d3r 1E d3r 2rT3~1,2!Cd~1!H KiklAlD l S 11
Dim1Dkm1Dlm

4 DCd~2!Ncc
c ~1,2!@ f i~r 12! f k~r 12!h

c~1,2!2d i1dk1#

3@Md
m~1!1Md

m~2!#1Cd~2!Ncc
c ~1,2!@Ud

op~1!1Ud
op~2!#2Ud

op~1!@Nxr
c ~1,2!1Nrr

c ~1,2!#J . ~39!
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rT2,3 are defined in CO1. Again we giveTf,c
(2) and Tf,c

(3,2) in the Appendix and thecs terms are evaluated according to th
approximation used forWcs .

A three-body termTf
(3,3) originates from¹1F* •¹1F in Eq. ~24!. It was not computed in CO1 because it is known

provide a small contribution in nuclear matter@10#. Here we include it, adopting the Kirkwood superposition approximat
~KSA! for the three-body distribution functions@26# and considering only thep51 correlations contribution. Following thes
prescriptions, we obtain

Tf
~3,3!522

\2

m E d3r 1E d3r 2E d3r 3¹1r0~1,2!•¹1r0~1,3!Cd~1!„Cd~2!Cd~3!gdd
c ~1,2!gdd

c ~1,3!

3$[gdd
c ~2,3!21]@Ncc

c ~2,3!2r0~2,3!#1Nxx
c ~2,3!%1$Cd~2!gdd

c ~1,2!Nxr
c ~2,3!@gdd

c ~1,3!Cd~3!21#12
3%

1@Nrr
c ~2,3!2r0~2,3!#@gdd

c ~1,3!Cd~3!21#@gdd
c ~1,2!Cd~2!21#…, ~40!
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c ( i , j )5@ f c(r i j )#2hc( i , j ).

IV. RESULTS

All the results presented in this section have been
tained with the single particle wave functionsfa( i ) gener-
ated by a harmonic oscillator well with oscillator leng
b5A\/mv. In principle,b could be considered as a vari
tional parameter; however, we kept it fixed, atb51.543 fm
for 16O andb51.654 fm for 40Ca, because our aim here
to develop and assess the finite nuclei FHNC-SOC the
rather than to perform a fully variational calculation, to
compared with experimental data. This problem will be ta
led when the complete, realistic Hamiltonian will be with
reach of our approach.

The best choice for the correlation operatorFi j is ob-
tained by the free minimization of the FHNC-SOC ener
functional and the solution of the corresponding Euler eq
tions @d^H&/dFi j 50#. This method is not practicable fo
realisticNN potentials and one has to resort to less ambiti
ones. In CO1 two types of correlations were investigated
simple, two-parameter Gaussianf G(r ) and a more effective
Euler function f Eul(r ), obtained by minimizing the energ
evaluated at the lowest order of the cluster expansion,^H2&.
The latter was also adopted in the nuclear matter studie
PW. Here we shall use the Euler correlation correspondin
Eq. ~5!, thus extending to the state-dependent, finite sys
case the approach of CO1 and PW.

Without going into many details, the correlation is com
puted in the (T,a) channels, witha5(S,t), whereT andS
denote the total isospin and spin of the pair andt the tensor
part ~S51 for thet channel!. In theS50 case,f T0(r ) is the
solution of the Schro¨dinger-like equation

2
\2

m
¹2FT0~r 12!1@V̄T0~r 12!2lT0#FT0~r 12!50, ~41!

whereFTa(r 12)5 f Ta(r 12) P̄TS
1/2(r 12),

PTS~1,2!5r0~1!r0~2!216r0
2~1,2!~2 !T1S, ~42!

QTS~1,2!5
1

2
vTS~r 12!PTS~1,2!1

\2

m
rT2~1,2!~2 !T1S,

~43!
-

y,

-

-

s
a

of
to
m

and

V̄TS~r 12!5
1

4P̄TS~r 12!
H 2Q̄T2~r 12!1

\2

4m

3S ¹2P̄TS~r 12!2
@¹ P̄TS~r 12!#

2

P̄TS~r 12!
D J . ~44!

X̄TS(r 12), with X5(Q,P), is defined as in Eq.~3.10! of
CO1.

The S51 correlations are solutions of two coupled equ
tions

2
\2

m
¹2FT1~r 12!1@V̄T1~r 12!2lT1#FT1~r 12!

18@vTt~r 12!2lTt#FTt~r 12!50 ~45!

and

2
\2

m
¹2FTt~r 12!

1F V̄T1~r 12!22vTt~r 12!1
\2

m

6

r 12
2 12lTt2lT1GFTt~r 12!

1@vTt~r 12!2lTt#FT1~r 12!50. ~46!

These equations are solved under the healing condit
f TS(r>dTS)51, f Tt(r>dTt)50, and f Ta8 (r 5dTa)50,
wheredTa play the role of variational parameters. Thef p(r )
correlation functions are then obtained byf Ta(r ) ~see PW!.

In nuclear matter only two healing distances are useddc
anddt , for the central (dTS) and tensor (dTt) channels, re-
spectively. We make here the same choice. Additio
nuclear matter variational parameters are the quenching
tors ap of the NN potentials in the Euler equations. As i
PW, we takea151 andap.15a. We have already state
that, for the time being, we are not interested in a full var
tional search, and so we have taken the nuclear matter
rameters given in Ref.@11# for U14. They aredc52.15 fm,
dt53.43 fm, anda50.8.

The 40Ca correlation functions are shown in Fig. 1 an
compared with the corresponding nuclear matter functio
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FIG. 1. Euler correlation functions in40Ca and nuclear matter~nm! at saturation density. In the right panel, lines are the40Ca correlations
and symbols are the nm ones.
ge
d

th
ly

a
r

ar

ad

th

ex-
that
k,

s
xi-

for

-
r-
n
ase
in

ns,
xi-

n

-

n

,

cle
at saturation density. They are similar, especially the lon
ranged tensor ones. The most visible differences are foun
the s andt components and in the shortest range part off c.
We stress that additional differences could arise from
minimization process, as the energy minimum will probab
correspond to a different choice of the parameters.

A measure of the accuracy of the FHNC-SOC approxim
tion is how well the densities normalization sum rules a
satisfied:

S15E d3r 1r1~r1!5A, ~47!

S25
1

A~A21!
E d3r 1E d3r 2r2

c~r1 ,r2!51, ~48!

St5
1

3A E d3r 1E d3r 2r2
t~r1 ,r2!521. ~49!

The spin saturation sum ruleSs521, holds only in the ab-
sence of tensor correlations@27#. Both the TBD and its sum
rules are evaluated following the decomposition~29!.

Deviations of the sum rules from their exact values
due to~i! the FHNC/0 scheme and~ii ! the SOC approxima-
tion. The influence of the elementary diagrams was
dressed in CO1. It was found thatEee

exch, i.e., the sum of the
ee elementary diagrams whose external points belong to
same exchange loop, may substantially contribute to bothSt

TABLE I. 16O and 40Ca sum rules for U14 with different cor
relations. Thef c line corresponds to the Jastrow model; thef 6(4)

line gives results with~without! tensor correlations. Numbers i
parentheses are obtained in the FHNC-1 approximation.

S1 S2 St

f c 16.00 0.998~1.002! 21.057 (21.001)
16O f 4 16.03 0.988~1.001! 20.980 (20.965)

f 6 16.01 1.051~1.054! 20.943 (20.930)

f c 40.00 0.999~1.001! 21.067 (21.002)
40Ca f 4 40.03 1.005~1.007! 21.074 (21.056)

f 6 39.86 1.089~1.091! 20.997 (20.981)
r
in

e

-
e

e

-

e

and to the potential energy, if the potential has large
change terms. This fact can be understood if we consider
a four-point elementary diagram, linear in the central lin
@ f c#221, is contained inEee

exch, as well as diagrams linear in
the operatorial linkf cf l .1. The insertion of these diagram
in the FHNC equations was termed as the FHNC-1 appro
mation, and we shall keep this terminology.

Results for the sum rules are presented in Table I
different models of the correlation:f c ~Jastrow,p51 com-
ponent only! and f 4 and f 6 ~without and with tensor corre
lations, respectively!. The table shows also the FHNC-1 co
rections. In all cases,S1 shows a largest error of less tha
1%. This is also the accuracy that we find in the Jastrow c
for S2,t , in the FHNC-1 approximation, as already noticed
CO1. The situation is worst for the operatorial correlatio
where FHNC-SOC theory violates the sum rules by a ma
mum amount of;9%, similar to what was already found i
nuclear matter in Ref.@10#.

TABLE II. Contributions to the energy per nucleon, in MeV
for 16O with the truncated U14 potential, thep51, Jastrow part of
the Euler correlation, and the harmonic oscillator single parti
wave functions discussed in the text. TheEee

exch column gives the
FHNC-1 correction.

0 1s 1c 1cs 1Eee
exch CMC

Tf
(1) 14.32

Tf
(2) 3.90

Tf
(3,2) 0.73

Tf
(3,3) 0.07

TF 5.59

^T& 24.61 24.33~21!

^vc& 0.84 0.88 0.93~28!

^vs& 1.28 1.25 1.27~08!

^vt& 2.46 2.40 2.43~12!

^vst& 227.34 226.59 226.24(26)

^v2& 222.76 222.07 221.56(25)

^H&/A 1.78 2.54 2.77~09!

Tc.m./A 0.82
Eg.s./A 1.72
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TABLE III. As in Table II, for the f 4 correlation model.

0 1s 1c 1cs 1Eee
exch CMC

Tf
(1) 14.41

Tf
(2) 4.98 4.97 4.97 4.97

Tf
(3,2) 1.44 1.44 0.05 0.05

Tf
(3,3) 0.07

TF 8.09 8.28 7.80 7.79

^T& 29.00 29.17 27.30 27.29 26.15~31!

^vc& 3.04 3.13 2.43 2.41 2.41 2.72~37!

^vs& 2.27 2.26 2.07 2.07 2.02 2.07~10!

^vt& 2.38 2.35 2.35 2.35 2.28 2.40~12!

^vst& 234.42 234.56 232.82 232.81 232.10 231.76(33)

^v2& 226.73 226.82 225.96 225.98 225.39 224.58(29)

^H&/A 2.26 2.36 1.34 1.31 1.90 1.57~09!

Tc.m./A 0.82
Eg.s./A 1.08
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The ground state energies are displayed in Tables II
for 16O and Tables V–VII for 40Ca, for each correlation
model. The columns (0,s,c,cs) show the contributions to the
two-body operator expectation values, as given in Eq.~29!.
The 16O results are compared with the calculations of Pie
@28# with the cluster Monte Carlo~CMC! method of Ref.@7#.
As already outlined, in the CMC approach the Jastrow p
of the correlation is exactly treated by MC sampling and
remaining operatorial contributions are evaluated by the
method up to four-nucleon clusters. The fourth order clus
expansion seems to be enough to provide a reliable con
gence and to consider the CMC numbers as a benchmar
FHNC theory. The tables also contain the FHNC-1 corr
tions.
V

r

rt
e
C
r

er-
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-

The ground state energy mean valueEg.s. is then given by
Eg.s.5^H&2Tc.m., whereTc.m. is the center-of-mass kineti
energy, whose calculation is discussed in CO1.

For the Jastrow correlation, FHNC theory shows an er
of 1–2 % for^T& and^v2& in 16O. The total energy percen
tile error is bigger (;9%) as^H& is given by the cancella-
tion of two large numbers. We meet the same situation in
f 4 and f 6 models. The kinetic and potential energy errors a
3–4 % in the first case and 5–7 % in the latter. The abso
error in ^H& is considerably less than 1 MeV in all model
Again, this finding is consistent with the estimated accura
of FHNC-SOC theory in nuclear matter. We notice that m
of the binding is given by the OPE parts of the potential,vst

andv tt. In absence of the last component,16O is not bound
TABLE IV. As in Table II, for the f 6 correlation model.

0 1s 1c 1cs 1Eee
exch CMC

Tf
(1) 14.75

Tf
(2) 5.04 4.95 4.93 4.93

Tf
(3,2) 1.33 1.29 20.04 0.00

Tf
(3,3) 0.07

TF 11.45 12.22 11.46 11.41

^T& 32.63 33.28 31.16 31.16 29.45~33!

^vc& 3.03 3.31 2.41 2.33 2.33 2.35~43!

^vs& 2.17 2.13 2.02 2.02 1.97 2.00~13!

^vt& 2.34 2.26 2.36 2.36 2.29 2.23~14!

^vst& 233.79 234.25 232.71 232.69 232.03 230.12(42)
^v t& 0.31 0.30 0.26 0.26 0.25 0.27~01!

^v tt& 211.42 211.82 210.41 210.36 210.28 29.77(09)

^v2& 237.37 238.07 236.07 236.08 235.47 233.03(31)

^H&/A 24.74 24.80 24.91 24.92 24.33 24.59(10)
Tc.m./A 0.82
Eg.s./A 25.15
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in our model. The same holds in40Ca, where the introduc
tion of tensor correlations and potentials increases the kin
energy by;5.6 MeV, compensated by an additional pote
tial energy contribution of;213.6 MeV, providing a bound
nucleus in thef 6 case. For the sake of curiosity, we rec
that the experimental binding energies per nucleon
27.72 MeV in 16O and 28.30 MeV in 40Ca, to be com-
pared with the computed valuesEg.s.525.15 MeV (16O)
and27.87 MeV (40Ca).

In Table VIII we compare the expectation values of t
components of the potential with the nuclear matter resu
within the same FHNC-SOC approximation and in thef 6

model. It is interesting to notice a kind of convergence w
A for the potential energies, in particular for the large OP
related components, whose contributions, in40Ca, are al-
ready very close to the nuclear matter values. We stress

TABLE V. As in Table II, for 40Ca.

0 1s 1c 1cs 1Eee
exch

Tf
(1) 14.81

Tf
(2) 5.00

Tf
(3,2) 1.74

Tf
(3,3) 0.72

TF 8.29

^T& 30.55

^vc& 21.45 21.41
^vs& 1.60 1.57
^vt& 3.06 2.99
^vst& 233.30 232.40

^v2& 230.09 229.26

^H&/A 0.47 1.30
Tc.m./A 0.28
Eg.s./A 1.01

TABLE VI. As in Table V, for the f 4 correlation model.

0 1s 1c 1cs 1Eee
exch

Tf
(1) 14.92

Tf
(2) 6.06 6.06 6.06 6.06

Tf
(3,2) 2.74 2.75 1.05 1.04

Tf
(3,3) 0.73

TF 11.72 12.08 11.39 11.37

^T& 36.17 36.54 34.15 34.12

^vc& 1.16 1.21 0.18 0.14 0.14
^vs& 2.78 2.77 2.45 2.45 2.38
^vt& 2.94 2.90 2.83 2.83 2.74
^vst& 242.69 242.92 239.78 239.76 238.92

^v2& 235.80 236.04 234.33 234.34 233.66

^H&/A 0.36 0.49 20.18 20.22 0.46
Tc.m./A 0.28
Eg.s./A 0.18
tic
-

re

s,

-

at

TABLE VII. As in Table V, for the f 6 correlation model.

0 1s 1c 1cs 1Eee
exch

Tf
(1) 15.37

Tf
(2) 6.12 6.07 6.07 6.07

Tf
(3,2) 2.50 2.49 0.92 0.93

Tf
(3,3) 0.70

TF 16.27 15.63 16.66 16.62

^T& 40.96 42.47 39.72 39.69

^vc& 1.13 1.29 20.03 20.22 20.21
^vs& 2.61 2.54 2.35 2.35 2.30
^vt& 2.83 2.69 2.79 2.79 2.71
^vst& 241.41 242.27 239.54 239.48 238.73
^v t& 0.37 0.35 0.30 0.30 0.29
^v tt& 215.43 216.23 213.72 214.22 214.14

^v2& 249.91 251.61 247.85 248.48 247.28

^H&/A 28.95 29.15 28.13 28.79 27.59
Tc.m./A 0.28
Eg.s./A 27.87

TABLE VIII. Breakup of the FHNC-SOC potential energies i
MeV per nucleon for16O, 40Ca, and nuclear matter~nm! in the f 6

model.

16O 40Ca nm

^vc& 2.33 20.21 23.04
^vs& 1.97 2.30 2.46
^vt& 2.29 2.71 2.84
^vst& 232.03 238.73 237.69
^v t& 0.25 0.29 0.32
^v tt& 210.28 214.14 214.06

Eg.s./A 25.15 27.87 213.16

TABLE IX. Contributions in MeV to the 16O energy per
nucleon with and without SOR insertions and in the CMC meth

SOC SOC1SOR CMC

f 4

^T& 27.29 27.25 26.15~31!

^vc& 2.41 2.00 2.72~37!

^vs& 2.02 2.02 2.07~10!

^vt& 2.28 2.30 2.40~12!

^vst& 232.10 232.01 231.76(33)

f 6

^T& 31.16 31.08 29.45~33!

^vc& 2.33 1.92 2.35~43!

^vs& 1.97 1.96 2.00~13!

^vt& 2.29 2.30 2.23~14!

^vst& 232.03 231.81 230.12(42)
^v t& 0.25 0.26 0.27~01!

^v tt& 210.28 210.21 29.77(09)
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FIG. 2. One-body densities in16O ~left! and 40Ca ~right!. The solid lines correspond to thef 6 model, the dashed line to the Jastro
model, and the dot-dashed line to the IPM.
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a more meaningful comparison would imply the use
Hartree-Fock single particle wave functions or, at least
minimization on the single particle potential parameters.

In Table IX we show the influence of the SOR’s in16O.
SOR’s have been inserted according to PW. In general,
contribute less than 1% of the FHNC-SOC value, with t
exception of̂ vc&, where they give a 17–18 % contributio
actually worsening the agreement with the CMC method

The effects of the correlations on the ground state str
ture are shown in Figs. 2 and 3, giving the OBD’s and
two-particle distribution functionsr2(r12), defined as

r2~r12!5
1

A E d3R12r2
c~r1 ,r2!, ~50!

where R125
1
2 (r11r2) is the center-of-mass coordinate.

both figures, thef 6, the Jastrow, and the independent parti
models are compared

A large part of the reduction with respect to the IPM
due to the Jastrow, short range correlations. The operat
correlations slightly enhance the OBD’s, as in the first or
cluster analysis of Ref.@19#. They have the same effect i
r2(r12), where the dip at short distances is due to the rep
sive core in the nuclear interaction, as already found
A53,4 nuclei in Ref.@29#.

At the beginning of this section we have explained w
we did not look for a variational minimum for the truncate
f
a

ey
e

c-
e

ial
r

l-
r

version of U14. However, it is certainly of interest to try
understand how reliable are the nuclear matter parameter
ues and how far they are from the true minimum. To this a
we have minimized, with respect todc , the energy for the
S3 model described in the Introduction~keeping the same
harmonic oscillator wells as U14!. The results are displaye
in Table X. The first row corresponds to the U14 nucle
matterdc52.15 fm, whereas the second gives the compu
minima. The minimization produces a small gain in the bin
ing energy andS3 appears to provide two nuclei underbou
of ;1 MeV.

V. CONCLUSIONS

In this article the FHNC technology developed in CO1
describe finite nuclear systems has been extended to s
dependent correlations containing up to tensor compone
As in infinite nucleon matter, the noncommutativity of th
two-body correlation operators does not allow for a compl
FHNC treatment, which is instead possible for purely sca
Jastrow-type correlations. The single operator chain appr
mation scheme~which is effectively employed in nuclea
and neutron matter! has been extended to the finite case. T
resulting set of integral equations has been solved eithe
neglecting the class of the elementary diagrams~FHNC/0
approximation! or by considering only the lowest order e
ementary contribution in the dynamical correlation~FHNC-
FIG. 3. Two-particle distribution functions in16O ~left! and 40Ca ~right!. As in Fig. 2.
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1!. As an application, we have studied the ground state p
erties of the doubly closed shell nuclei in thels coupling
scheme,16O and 40Ca, interacting by the central and tens
components of the realistic Urbanav14 nucleon-nucleon po-
tential.

The analysis of the sum rules shows that the FHNC-S
equations provide a considerably accurate one-body den
whose normalization is violated by much less than 1%
comparably good accuracy is obtained for the normaliza
of the central component of the two-body density~S251
sum rule! when tensor correlations are not included. If th
are considered, then the excellent fulfillment ofS2 obtained
with purely central correlations slightly worsens. The inc
sion of the first order Jastrow elementary diagram in
FHNC-1 approximation does not improve the outcome.
clusion of analogous diagrams, linear in the operatorial c
relations, is presently under consideration. In any case,
worst violation of the sum rule is;9%, close to what was
found in nuclear matter. A similar situation is met for th
isospin saturation,St521, sum rule.

The various energy contributions in16O have been com
pared with those obtained within the cluster Monte Ca
approach. The maximum disagreement with the CMC res
varies from;2% for the Jastrow model to;7% for the

TABLE X. Energies per nucleon~in MeV! and central healing
distances~in fm! for the S3 interaction in thef 4 model.

16O dc Eg.s./A
40Ca dc Eg.s./A

2.15 26.08 2.15 27.37
1.96 26.27 2.02 27.50
p-

C
ty,

n

-
e
-
r-
he

ts

tensor model. The absolute error in the ground state ene
per nucleon is always well less 1 MeV, compatible with t
estimated accuracy of the FHNC-SOC approach in nuc
matter at saturation density.

The same truncatedv14 interaction has been also used
study the ground state of40Ca. We have verified that fo
both 16O and 40Ca only the insertion of the long-range on
pion exchange parts of the potential~and related correla-
tions! binds the nuclei.

No minimization along the correlation and single partic
potential variational parameters has been carried on, bu
have rather taken the nuclear matter values. We have p
poned this task to future works, when a completely realis
Hamiltonian will be within reach of our method. However,
partial minimization on the correlation healing distancedc
for the simpler, central Afnan-Tang potential seems to po
to little variation of the parameters in going from the infini
to the finite case.

Even if this is still an intermediate step towards a fu
microscopic description of intermediate and heavy nuc
our results are very promising. In fact, we may conclude t
the FHNC-SOC approach to finite nuclei shows at least
same degree of accuracy estimated in the best variati
nuclear matter studies. In this respect, we consider as m
datory the inclusion of spin-orbit terms in both the intera
tion and correlation, as well as the extension to thej j cou-
pling scheme, in order to cover all the range of the dou
closed shell nuclei.
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APPENDIX

In this appendix we give theWc , Tf,c
(2) , andTf,c

(3,2) expressions.Wc is given by the sum

Wc5Wc~dd!1Wc~de!1Wc~ed!1Wc~ee!1Wc~cc!, ~A1!

with

Wc~dd!5
1

2 E d3r 1E d3r 2HJF
i jk~r 12!h

c~1,2!Ndd
l .1~1,2!H $r1

c~1!r1
c~2!1r1

c~1!Cd~2!Nde
c ~1,2!1Cd~1!r1

c~2!Ned
c ~1,2!

1Cd~1!Cd~2!@Nee
c ~1,2!1Ned

c ~1,2!Ned
c ~1,2!#%

1

24
~11Ki jmKklmAm15Ki jmLklm15K jkmLilm13KikmL jlm!

24Cd~1!Cd~2!@Ncc
c ~1,2!2r0~1,2!#2DnF1

8
~K jkmKnim8Lm8 lm1Ki jmKmkm8Lnlm81KknmKmim8L jlm8

1Ki jmKknm8Lm8 lm!1
1

12
~4KnlmKi jm8Kmm8kAk1K jkmKmnm8Lilm81KnimKm jm8Lklm8!G J , ~A2!

Wc~de!5Wc~ed!5
1

2 E d3r 1E d3r 2HJF
i jk~r 12!h

c~1,2!Nde
l .1~1,2!$r1

c~1!Cd~2!1Cd~1!Cd~2!Ned
c ~1,2!%

3
1

4
~2Ki jmKklmAm1Ki jmLklm1K jkmLilm!, ~A3!

Wc~ee!5
1

2 E d3r 1E d3r 2HJF
i jk~r 12!h

c~1,2!Nee
l .1~1,2!Cd~1!Cd~2!Ki jmKklmAm, ~A4!
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Wc~cc!5
1

2
~28!E d3r 1E d3r 2HJF

i jk~r 12!h
c~1,2!Cd~1!Cd~2!@Ncc

c ~1,2!2r0~1,2!#DnH Ncc,int
l .1 ~1,2!K jkmKimm8Lm8nl

1@Ncc,R
l .1 ~1,2!1Ncc,L

l .1 ~1,2!#
1

8
~K jkmKmnm8Kim8 lAl1K jkmKmnm8Lim8 l1K jkmKinm8Kmm8 lAl

1K jkmKinm8Lmm8 l12K jkmKimm8Lnm8 l1Ki jmKnmm8Lm8kl1Ki jmKnkm8Lm8ml!J . ~A5!

In the last equation,Ncc,L(R)
l .1 arecc nodal functions having theXcc

l link reaching the left~right! external point.Ncc,int
l .1 hasXcc

l

as an internal link.
Ncc,L

l .1 is given by

Ncc,L
l .1 ~1,2!5Nxx,L

l .1 ~1,2!1Nxr,L
l .1 ~1,2!, ~A6!

whereNxx,L
l .1 andNxr,L

l .1 are solutions of

Nxx,L
l .1 ~1,2!5(

qr
E d3r 3j132

qrl Xcc,L
q ~1,3!Vcc

qr~3!@Xcc
c ~3,2!1Nxx

c ~3,2!1Nrx
c ~3,2!#D r , ~A7!

Nxr,L
l .1 ~1,2!5(

qr
E d3r 3j132

qrl Xcc,L
q ~1,3!Vcc

qr~3!@2r0~3,2!1Nxr
c ~3,2!1Nrr

c ~3,2!#D r , ~A8!

and

Xcc,L
l .1 ~1,2!5hl~1,2!hc~1,2!@Ncc

c ~1,2!2r0~1,2!#1$@ f c~r 12!#
2hc~1,2!21%Ncc,L

l ~1,2!. ~A9!

For the other functions, we haveNcc,R
l .1 (1,2)5Ncc,L

l .1 (2,1) andNcc,int
l .1 5Ncc

l .12Ncc,L
l .1 2Ncc,R

l .1 .
Finally, Tf,c

(2) andTf,c
(3,2) are given by

Tf,c
~2! 52

\2

m E d3r 1E d3r 2rT2~1,2!Cd~1!Cd~2! f i~r 12! f k~r 12!h
c~1,2!Ndd

l .1~1,2!Dn

3F1

8
~KnimLmlk1KikmLnlm1KknmKmilAl1KknmLmli!1

1

12
~4KnlmKmikAk1KknmLilm1KinmLklm!G , ~A10!

Tf,0
~3,2!52

\2

m E d3r 1E d3r 2rT3~1,2!Cd~1!Cd~2!DnH 2 f i~r 12! f k~r 12!h
c~1,2!Ndd

l .1~1,2!Ncc
c ~1,2!

3F1

8
~KnimLmlk1KikmLnlm1KknmKmilAl1KknmLmli!1

1

12
~4KnlmKmikAk1KknmLilm1KinmLklm!G

1@ f i~r 12! f k~r 12!h
c~1,2!2d i1dk1#F @Ncc,L

l .1 ~1,2!1Ncc,R
l .1 ~1,2!#

1

4
~KknmKimlAl1KknmLiml1KinmKkmlAl1KinmLkml

12KikmLnml1KnimLmkl1KnkmLmil!1Ncc,int
l .1 ~1,2!KikmLnmlG J

22
\2

m E d3r 1E d3r 2rT3~1,2!Cd~1!AlD l$Cd~2!@Nxx,int
l .1 ~1,2!1Nrx,int

l .1 ~1,2!#1@Cd~2!21#Nxr,int
l .1 ~1,2!%. ~A11!

The Li jk matrix is given in PW.
ys
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