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Structure of vacuum condensates
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~Received 20 June 1997!

It is essential to know the space-time structure of the nonlocal vacuum condensates for application to
medium energy processes. Using the Dyson-Schwinger formalism in the rainbow approximation for the quark
propagator, we study the nonlocal quark condensate and model forms for the nonperturbative gluon propagator
constrained by fits to local condensates and deep inelastic scattering with nucleon targets.
@S0556-2813~98!03103-3#

PACS number~s!: 24.85.1p, 12.38.Aw, 12.38.Lg, 13.60.Hb
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It has long been known that chiral symmetry breaki
requires a nonperturbative quark propagator with nonvan
ing vacuum matrix elements of normal ordered products
quark fields@1#, called quark condensates. These condens
would vanish in a perturbative vacuum but do not vanish
the QCD vacuum, and are of central importance both for
structure of hadronic matter and for the study of the ea
universe chiral phase transition. A systematic treatmen
hadronic masses can be carried out@2–4# using operator
product expansions in terms of vacuum matrix elements
local operators, the vacuum condensates, whose phenom
logical values have been confirmed in lattice gauge calc
tions @5#. As was discussed in early work on the magne
dipole moments of nucleons@6#, for application to form fac-
tors and transition matrix elements in the low to mediu
momentum transfer region the operator product expan
~OPE! cannot be used, since long distance properties of n
local operators must be treated.

One approach to this problem of treating bilocal operat
has been the use of nonlocal condensates, which have
introduced to represent the bilocal vacuum matrix eleme
needed for the pion wave function@7# and pion form factor
@8# for low to medium momentum transfer. In this metho
one does not carry out an OPE for the vacuum matrix e
ments of the bilocal operators, but introduces new phen
enological functions needed to characterize the space-
structure of the nonlocal condensates. Both the forms
these functions and the parameters are found by fits to
periment as well as considerations of analyticity. For e
ample, in a study of parton distribution functions@9# the
space-time scale of a nonlocal condensate was determine
a fit of a monopole form in space-time to experimental da
On the other hand, in a recent use of nonlocal condensat
determine the values of vacuum susceptibilities@10#, which
characterize the nonperturbative quark propagation in an
ternal field@11#, it was found that the monopole form did no
have suitable analytic properties, and a space-time dip
form was used to fit the low-x parton data. Although a sat
isfactory fit to the phenomenological pion susceptibility@12#
was found, it is a good example of the importance of de
mining the structure of the nonlocal condensates for appl
tion to transition matrix elements over a wide range of m
mentum transfer.

It is the goal of the present work to study the form of t
nonlocal quark condensate using the the QCD Dys
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Schwinger~DS! equations@13,14#. Using the bare gluon-
quark vertex, defined as the rainbow approximation, the n
perturbative~dressed! quark propagator is determined se
consistently with a model for the nonperturbative~dressed!
gluon propagatorDmn

ab(q). A comprehensive review of this
type of model is given in Ref.@15#. It has been shown that in
the rainbow approximation the value of the quark condens
@16,17# and the mixed quark condensate@18# can be obtained
with suitable choices of the gluon propagator, which a
provides constraints for the present work. The gluon cond
sate within this approach has been studied in Ref.@19#. Other
studies use the DS formalism with different approximatio
@20# to attempt to determine the nonperturbative quark c
densates.

For hadronic properties such as the elastic and transi
form factors one needs the information equivalent to
bound-state Bethe-Salpeter~BS! equation. It has also bee
shown that the rainbow DS model is consistent with non
pological chiral quark models@16# and low-momentum
transfer meson form factors@21#. For a treatment of form
factors over an extended range of momentum transfer lig
cone BS studies of the pion form factor have shown@22# that
nonperturbative as well as perturbative two-quark propa
tors are needed, and that in a QCD treatment four-qu
matrix elements are also required. We plan a study of n
local nonperturbative four-quark matrix elements within th
approach in the near future.

In the present work we use the rainbow Dyson-Schwin
equation to investigate the forms of the nonlocal quark c
densate as well as the gluon propagators. Using the s
phenomenological gluon propagators as were used in pr
ous studies of the local condensates@16–18# we find that the
dipole form with the parameter close to the one found fro
fits to the sea-quark distribution@9,10# can be obtained.

The quark propagator is defined by

Sq~x!5^0uT@q~x!q̄~0!#u0&, ~1!

whereq(x) is the quark field andT the time-ordering opera
tor. For the physical vacuum the quark propagatorSq(x) has
a perturbative and a nonperturbative part. In the case of v
ishing current quark masses (m050) one can write
1528 © 1998 The American Physical Society
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Sq~x!5Sq
PT~x!1Sq

NP~x!, Sq
PT~x!5

1

2p2

g•x

x4
,

Sq
NP~x!5~2 !

1

12
„^:q̄~x!q~0!:&

1xm^:q̄~x!gmq~0!:&…. ~2!

It should be stressed that normal-ordered products,
thereforeSq

NP, do not vanish in the nonperturbative vacuu
For short distances, the OPE for the scalar part ofSq

NP(x)
gives

^:q̄~x!q~0!:&5^:q̄~0!q~0!:&

2
x2

4
^0u:q̄~0!s•G~0!q~0!:u0&1•••,

~3!

in which the local operators of the expansion are the qu
condensate, the mixed condensate, and so forth.

In Ref. @10# it is shown that with a choice of nonloca
condensate

^0u:q̄~x!q~0!:u0&5g~x2!^0u:q̄~0!q~0!:u0&, ~4!

with

g~x2!5
1

~11k2x2/8!2
5E

0

`

da f ~a!e2x2a/4,

f ~a!5
4

k4
ae22a/k2

, ~5!

andk250.15. . . 0.20 GeV2, one can fit the low-x quark dis-
tributions and also the pion susceptibility.

In the Dyson-Schwinger formalismSq
NP is related to the

quark self-energy,S, by

Sq~p!215 ig•p1S~p!. ~6!

Using the bare quark gluon vertex~the rainbow approxima-
tion!, Gn

b(q,p)5gn(lc
b/2), S(p) satisfies the rainbow

Dyson-Schwinger equation@14#:

S~p!5E d4q

~2p!4
gs

2Dmn
ab~p2q!gm

lc
a

2
Sq~q!gn

lc
b

2
~7!

with Dmn
ab(q) the gluon propagator,lc

a the color SU(3) ma-
trix. In Euclidean space one can write

Sq~p!215 ig•pA~p2!1B~p2!. ~8!

The choice of the Landau gauge for the gluon propaga

Dmn
ab~q!5dabS dmn2

qmqn

q2 D D~q2! ~9!

leads to the set of coupled integral equations
nd
.

rk

or

@A~p2!21#p2

5
4

3
gs

2E d4q

~2p!4
D~p2q!

A~q2!

q2A2~q2!1B~q2!2

3F p•q12
~p•q2q2!~p22p•q!

~p2q!2 G ,

B~p2!54gs
2E d4q

~2p!4
D~p2q!

B~q2!

q2A2~q2!1B~q2!2
.

~10!

Mesonic bound states can be studied within this fram
work by solving the ladder Bethe Salpeter equations for
correspondingq̄q bound states. Various mesonic properti
have been studied in Refs.@16#. In Ref. @17# a detailed in-
vestigation of the low energy sector was performed by
riving the general form of the effective chiral action for th
SU~3! Goldstone bosons and determiningf p and most of the
chiral low energy coefficientsLi , which, in turn, determines
the physics of thep, K andh mesons at low energies@23#.

Because the form of the gluon propagatorD(s) in the IR
region is unknown, we must use model forms as input. O
model ansatz is

gs
2D~s!53p2

x2

D2
e2s/D, ~11!

which determines the quark-quark interaction through
strength parameterx and a range parameterD. Its form is
inspired by thed function ansatz of Ref.@24#, which it ap-
proaches forD→0.

The nonlocal quark condensatê:q̄(x)q(0):& is then
given by the scalar part of the Fourier transformed inve
quark propagator:

^:q̄~x!q~0!:&5~24Nc!E d4p

~2p!4

B~p2!

p2A2~p2!1B2~p2!
eipx

5~2 !
12

16p2E0

`

dss
B~s!

sA2~s!1B2~s!

3F2
J1~Asx2!

Asx2 G . ~12!

At x50 the expression for the local condensate^:q̄q:& is
recovered:

^:q̄q:&5~2 !
12

16p2E0

`

dss
B~s!

sA2~s!1B2~s!
. ~13!

The nonlocalityg(x2) can be obtained immediately by divid
ing Eqs.~12! through Eq.~13!.
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FIG. 1. The nonlocal quark condensateg(x)5^:q̄(x)q(0):&/^:q̄(0)q(0):& for the four sets of model gluon propagators mentioned in
text compared with the dipole fit of Ref.@10#.
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Because the quark-quark interaction defined by Eq.~11!
has a finite range in momentum space the momentum i
grals in Eqs.~12! and ~13! are finite. Our analysis ignore
effects from hard gluonic radiative corrections to the cond
sates which are connected to a possible change of the re
malization scalem at which the condensates are define
Those effects are of minor importance for our study of no
perturbative effects in the low and medium energy regions
should be stressed in this context that our interaction is
renormalizable because we are using the bare quark g
vertex. Therefore, instead of our condensates depen
logarithmically on the renormalization scalem @25#, the scale
at which a condensate is defined in our approach is a typ
hadronic scale, which is implicitly determined by the mod
gluon propagatorgs

2D(s) and the solutions of the DS equa
tions~7!. The situation is very similar to the determination
vacuum condensates in the instanton liquid model@26,27#
where the scale is set by the inverse instanton size.

In order to check the sensitivity of our results on t
model gluon 2 point function~11! we try various sets of
parametersx andD and investigate thex2 dependence of the
function g(x2) for these forms. We solve the set of integr
equations~10! self-consistently for a given model form fo
gs

2D(q2) obtaining the quark propagator functionsA(p2)
and B(p2), which, in turn will allow us to calculateg(x2)
from Eq.~12!. The result can then be compared to the dip
fit of Ref. @10# with k250.15 . . .0.20 GeV2. The parameter
sets we are using are

Set 1: D52.031023 GeV2; x51.40 GeV,

Set 2: D51.031022 GeV2; x51.56 GeV,

Set 3: D5 2.031022 GeV2; x51.58 GeV.
~14!

These parameters have been chosen so that they repro
the correct value for the pion decay constant in the ch
e-

-
or-
.
-
It
ot
on
ng

al
l

l

e

uce
l

limit f p588 MeV. Moreover the values of the chira
low energy coefficientsLi @23# are compatible with the
phenomenological values in both cases. Following Ref.@17#
one finds L150.86, L3524.53, L550.78, L850.84
(31023) for set 1; L150.84, L3524.48, L550.88,
L850.84(31023) for set 2; andL150.83, L3524.42,
L550.92, L850.78(31023) for set 3.

Many of the works in Refs.@15–18# have used a mode
ansatz for the gluon propagator

Dmn
ab~q!5dabdmn D~q2!, ~15!

which is often referred to as the Feynman-like gauge. I
however not identical to the Feynman gauge QCD, in wh
the dressed gluon propagator would have different longitu
nal and transverse components. Therefore the ansatz~15!
should be regarded merely as a model form for the gluo
point function. For our purpose it is, however, interesting
ask if and how the nonlocal quark condensate depends
choosing either Landau gauge~9! or the Feynman-like gauge
~15!. Therefore we perform the calculation for another p
rameter set:

Set 4: D52.031023 GeV2; x51.23 GeV, ~16!

while using Eq. ~15! instead of Eq.~9! for the gluon
propagator. Set 4 has the same range parameterD than set 1.
The strength parameterx is slightly smaller in order to
obtain the correct value off p588 MeV. The chiral low
energy coefficients are L150.85, L3524.46, L5
50.82, L850.93(31023), values rather close to those ob
tained with set 1.

Figure 1 shows the results forg(x2) for the four param-
eter sets and compares with the dipole fit of Ref.@10# with
k250.20 GeV2 ~solid line!. The result of Ref.@10# is best
reached for a gluon propagator with a small range param
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D50.002 GeV2 in the infrared. Larger values for the widt
parameterD lead to stronger deviations from the form
Ref. @10#.

By comparing the curves for set 1 and set 4 we can d
onstrate that the nonlocal condensate is very robust with
spect to using Landau gauge~9! or the Feynman-like gaug
~15!. The change between the two forms for the gluon
point function can be easily made up by a slight readjustm
of the parameters of the IR model ansatz without any sign
cant change of the final result.
l.

s.
-
e-

2
nt
-

We conclude that the DS formalism is a valuable to
for the study of the nonlocal quark condensate, and exp
that the BS formalism will also prove to be useful for th
study of the nonlocal four-quark condensates, which prov
nonperturbative QCD effects for hadron couplings and fo
factors.
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