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Structure of vacuum condensates
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It is essential to know the space-time structure of the nonlocal vacuum condensates for application to
medium energy processes. Using the Dyson-Schwinger formalism in the rainbow approximation for the quark
propagator, we study the nonlocal quark condensate and model forms for the nonperturbative gluon propagator
constrained by fits to local condensates and deep inelastic scattering with nucleon targets.
[S0556-28188)03103-3

PACS numbes): 24.85+p, 12.38.Aw, 12.38.Lg, 13.60.Hb

It has long been known that chiral symmetry breakingSchwinger(DS) equations[13,14]. Using the bare gluon-
requires a nonperturbative quark propagator with nonvanishquark vertex, defined as the rainbow approximation, the non-
ing vacuum matrix elements of normal ordered products operturbative(dressedl quark propagator is determined self-
quark field§ 1], called quark condensates. These condensatensistently with a model for the nonperturbatiidresseyl
would vanish in a perturbative vacuum but do not vanish ingluon propagatoDik;(q). A comprehensive review of this
the QCD vacuum, and are of central importance both for theéype of model is given in Ref15]. It has been shown that in
structure of hadronic matter and for the study of the earlythe rainbow approximation the value of the quark condensate
universe chiral phase transition. A systematic treatment 0[16,1ﬂ and the mixed quark condens#l] can be obtained
hadronic masses can be carried ¢R4] using operator ity suitable choices of the gluon propagator, which also
product expansions in terms of vacuum matrix elements ofqyides constraints for the present work. The gluon conden-
Iocgl operators, the vacuum cqnden;ates, .whose phenomenyie within this approach has been studied in Ré. Other
nglcal values have. been cor}flrmed in lattice gauge Calcu.laétudies use the DS formalism with different approximations
tlpns [5]. As was discussed in early vyork. on the magnetlc[zo] to attempt to determine the nonperturbative quark con-
dipole moments of nucleori$], for application to form fac- densates.

tors and transition matrix elements in the low to medium For hadronic properties such as the elastic and transition
momentum transfer region the operator product expansio fact prop ds the inf i valent to th
(OPB cannot be used, since long distance properties of no’_Eorm actors oné needs the information equivaient lo the
ound-state Bethe-SalpetéBS) equation. It has also been

local operators must be treated. ; i : ;
One approach to this problem of treating bilocal operatorsShowr.‘ that the rainbow DS model is consistent with nonto-
gplogical chiral quark modelg16] and low-momentum
ansfer meson form factoffR1]. For a treatment of form
actors over an extended range of momentum transfer light-
cone BS studies of the pion form factor have shd@2) that

introduced to represent the bilocal vacuum matrix element
needed for the pion wave functidid] and pion form factor

[8] for low to medium momentum transfer. In this method ) ;
nonperturbative as well as perturbative two-quark propaga-

one does not carry out an OPE for the vacuum matrix ele ded d that i cD ¢ K
ments of the bilocal operators, but introduces new phenomt-OrS are needed, and that in a Q treatment four-quar

enological functions needed to characterize the space-tim{@2irix €lements are also required. We plan a study of non-
structure of the nonlocal condensates. Both the forms o cal nonperturbative four-quark matrix elements within this

these functions and the parameters are found by fits to e)gpproach in the near future. . .
periment as well as considerations of analyticity. For ex- In t_he present vyork we use the rainbow Dyson-Schwinger
ample, in a study of parton distribution functiof@] the equation to investigate the forms of the nonloca_l guark con-
space-time scale of a honlocal condensate was determined ggnsate as We_" as the gluon propagators. Using the same
a fit of a monopole form in space-time to experimental dataP enome_znologlcal gluon propagators as were used in previ-
On the other hand, in a recent use of nonlocal condensates %' studies Of. the local condensaite6-18 we find that the
determine the values of vacuum susceptibili{i&8], which .'p°|e form with the p‘?‘famet.ef close to the one.found from
characterize the nonperturbative quark propagation in an e>I'—ts to the sea-quark dlstrl_bunc[@,lO] can be obtained.
ternal field[11], it was found that the monopole form did not The quark propagator is defined by
have suitable analytic properties, and a space-time dipole
form was used to fit the low-parton data. Although a sat- _
isfactory fit to the phenomenological pion susceptibifit] Sq(x)=(0|T[a(x)q(0)]|0), D)
was found, it is a good example of the importance of deter-
mining the structure of the nonlocal condensates for applica-
tion to transition matrix elements over a wide range of mo-whereq(x) is the quark field and the time-ordering opera-
mentum transfer. tor. For the physical vacuum the quark propag&gix) has

It is the goal of the present work to study the form of the a perturbative and a nonperturbative part. In the case of van-
nonlocal quark condensate using the the QCD Dysonishing current quark masses§=0) one can write
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It should be stressed that normal-ordered products, and

thereforeSE‘P, do not vanish in the nonperturbative vacuum.

For short distances, the OPE for the scalar parszfﬁ(x)
gives

(:a(x)a(0):)=(:q(0)q(0):)
2

_Xz<0|3a0)a‘ G(0)q(0):|0)+- - -,

)

in which the local operators of the expansion are the quarlé

condensate, the mixed condensate, and so forth.
In Ref. [10] it is shown that with a choice of nonlocal
condensate

(0]:a(x)a(0):]0)=g(x?)(0]:q(0)q(0):/0),  (4)
with
2y _ 1 _ - —x2al4
0= I axe? fo derf(a)e™ =
f(a)= iAaefz‘)‘/KZ, 5

K

and«x?=0.15...0.20 GeV, one can fit the lowk quark dis-
tributions and also the pion susceptibility.

In the Dyson-Schwinger formalisi&)" is related to the
quark self-energyy., by

Sy(p) " t=iy-p+(p). (6)

Using the bare quark gluon vertéthe rainbow approxima-
tion), I'(q,p)=7,(\22), =(p) satisfies the rainbow
Dyson-Schwinger equatidri4]:

b

qu 2~ab )\2 )\C
2(p)=f(277)493DMV(D—q)mgsq(q)vvy @)

with D2°(q) the gluon propagatoid the color SU(3) ma-
trix. In Euclidean space one can write

Sy(p) " t=iy-pA(p?) +B(p?). (8

The choice of the Landau gauge for the gluon propagator

9.9,
Di’l?(q)=5a'°( %—? D(g?) 9

leads to the set of coupled integral equations

d*q D(p— B(g?)
emt P Venqd B

B(p?) =492 f
10)

Mesonic bound states can be studied within this frame-
work by solvirg the ladder Bethe Salpeter equations for the

correspondingyg bound states. Various mesonic properties
have been studied in Refgl6]. In Ref.[17] a detailed in-
vestigation of the low energy sector was performed by de-
riving the general form of the effective chiral action for the
U(3) Goldstone bosons and determinifigand most of the
chiral low energy coefficients;, which, in turn, determines
the physics of ther, K and » mesons at low energig&3].

Because the form of the gluon propagai(s) in the IR
region is unknown, we must use model forms as input. Our
model ansatz is

X2
gSZD(s)=3w2Pe*S’A, 11

which determines the quark-quark interaction through a
strength parametey and a range parametér. Its form is
inspired by thes function ansatz of Ref24], which it ap-
proaches foA — 0.

The nonlocal quark condensateq(x)q(0):) is then
given by the scalar part of the Fourier transformed inverse
quark propagator:

— N d*p B(p?) o
a0 =(ano | e e
e 12 (= B(s)
= )16772fo dsssA2($)+BZ(s)
J1(\VsX)
V) | 12
[ N 1 12

At x=0 the expression for the local condensétqq:) is
recovered:

12
1672

fmdss& (13

(qaz)=(-) 0 sAs)+BX(s)

The nonlocalityg(x?) can be obtained immediately by divid-
ing Egs.(12) through Eq.(13).
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FIG. 1. The nonlocal quark condensafg) :(:q_(x)q(O):>/<:q_(0)q(0):) for the four sets of model gluon propagators mentioned in the
text compared with the dipole fit of Ref10].

Because the quark-quark interaction defined by @4)  limit f,=88 MeV. Moreover the values of the chiral
has a finite range in momentum space the momentum intgow energy coefficients; [23] are compatible with the

grals in Eqgs.(12) and (13) are finite. Our analysis ignores phenomenological values in both cases. Following RE]
effects from hard gluonic radiative corrections to the condenpne finds L;=0.86, Ls=—4.53, L;=0.78, Lg=0.84

sates which are connected to a possible change of the renqtx 107%) for set 1; L;=0.84, L;=—4.48, L;=0.88,

malization scalex at which the condensates are defined. ;=0.84(x1073) for set 2; andL,;=0.83, Ly=—4.42,

Those effects are of minor importance for our study of nonq .=0.92, L;=0.78(x10"%) for set 3.

perturbative effects ih thg low and medium energy rc_egio_ns. It~ Many of the works in Refs[15—1§ have used a model

should be stressed in this context that our interaction is nojnsatz for the gluon propagator

renormalizable because we are using the bare quark gluon

vertex. Therefore, instead of our condensates depending

logarithmically on the renormalization scalke] 25], the scale

at which a condensate is defined in our approach is a typical

hadronic scale, which is implicitly determined by the modelWhich is often referred to as the Feynman-like gauge. It is

gluon propagatog?D(s) and the solutions of the DS equa- however not identical to the Feynman gauge QCD, in which

tions (7). The situation is very similar to the determination of the dressed gluon propagator would have different longitudi-

vacuum condensates in the instanton liquid md@e,277  hal and transverse components. Therefore the ar(§&jz

where the scale is set by the inverse instanton size. should be regarded merely as a model form for the gluon 2
In order to check the sensitivity of our results on thePoint function. For our purpose it is, however, interesting to

model gluon 2 point functior(11) we try various sets of @sk if and how the nonlocal quark condensate depends on

parameterg andA and investigate the? dependence of the Choosing either Landau gau@® or the Feynman-like gauge

function g(x?) for these forms. We solve the set of integral (19 Therefore we perform the calculation for another pa-

equations(10) self-consistently for a given model form for fameter set:

gs2D(g?) obtaining the quark propagator functiodp?)

and B(p?), which, in turn will allow us to calculatgy(x?) Set4: A=2.0x10 % GeV?; y=1.23 GeV, (16

from Eq.(12). The result can then be compared to the dipole

fit of Ref. [10] with k?=0.15...0.20 Ge\. The parameter |hile using Eq. (15) instead of Eq.(9) for the gluon
sets we are using are propagator. Set 4 has the same range parametean set 1.

A _3 2. _ The strength parametey is slightly smaller in order to
Set1:A=2.0x10"" GeV x=1.40GevV, obtain the correct value of ;=88 MeV. The chiral low

D3%(q)= 6205, D(g?), (15

Set2: A=1.0x10"2 GeV? y=1.56GeV, energy coefficients are L;=0.85, L;=-4.46, Ls
X =0.82, Lg=0.93(x 10 %), values rather close to those ob-
Set3: A= 2.0x1072 Ge\? y=1.58GeV. tained with set 1. ,
(14) Figure 1 shows the results fo(x“) for the four param-

eter sets and compares with the dipole fit of R&D] with
These parameters have been chosen so that they reproduce=0.20 Ge\ (solid line). The result of Ref[10] is best
the correct value for the pion decay constant in the chirateached for a gluon propagator with a small range parameter
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A=0.002 GeV in the infrared. Larger values for the width ~ We conclude that the DS formalism is a valuable tool

parameterA lead to stronger deviations from the form of for the study of the nonlocal quark condensate, and expect

Ref.[10]. that the BS formalism will also prove to be useful for the
By comparing the curves for set 1 and set 4 we can demstudy of the nonlocal four-quark condensates, which provide

onstrate that the nonlocal condensate is very robust with renonperturbative QCD effects for hadron couplings and form

spect to using Landau gaug® or the Feynman-like gauge factors.

(15. The change between the two forms for the gluon 2

point function can be easily made up by a slight readjustment

of the parameters of the IR model ansatz without any signifi- 1hiS work was supported in part by the National Science
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