PHYSICAL REVIEW C VOLUME 57, NUMBER 1 JANUARY 1998

27 and 2; states in collective nuclei as multipleQ-phonon excitations
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In the framework of the&Q-phonon scheme and the interacting boson model a description of ta@@ 2
states is obtained. The wave vectors are written as an expansion in mQ@tphonon excitations of the
ground state. It is shown that the convergence of this expansion is fast and the main component already
provides a good approximation of the wave vector. The accuracy of such a leading-order description exceeds
90% of the wave vector. By taking into account t@ephonon configurations the accuracy of the description
of the 27 and Z states is increased to 98%. This is true for all collective nuclei with the exception of some
rotors where the first exciteld=0 band lies below or very close to theband and, due to band mixing, the
wave vector of the 2 state contains highé®-phonon excitations. An application to some decay transitions is
given.[S0556-28188)04501-4

PACS numbgs): 21.60.Fw, 21.60.Ev, 21.10.Re

I. INTRODUCTION (from now on we drop the superscriptand denote the quad-
rupole operator byQ). We note that we use the extended

Collective nuclei can be classified according to the patterrtonsistentQ formalism (ECQBP with an ny term in the
of their lowest excitations. In the geometrical model of BohrHamiltonian[6]. As a function of its parameters, the IBM
and Mottelsor[1] they can be described in terms of vibra- Hamiltonian has three analytically solvable limits—the dy-
tors, deformed rotors, and transitional cases as, g-gaft  namical symmetries—which in the geometrical model corre-
nuclei [2]. The interpretation of the low-lying collective spond to simple cases of tlfi@nharmonic vibrator(finite ¢,
states in nuclei depends on the model applied. For instance=0, y=0), to the symmetric rotote=0, y = — \/7/2), and
in rotor nuclei the 2 state is interpreted as the rotational to y-soft deformatior(e=0, y=0). Transitional nuclei lying
state and the 2 state is identified with th& =2 vy vibration,  between the dynamical symmetries can be investigated by a
while in y-soft nuclei this state is the bandhead of the so-variation of the parameters. The wave vectors of the ECQF
called “quasi band.” In vibrators the 2 and 2 states are Hamiltonian(1) depend on the two structural parametefs
considered as one- and two-quadrupole phonon states. Ti&d x only. The parametek determines the absolute energy
different names for these'2states reflect the application of scale and the rotational terin- L is diagonal and does not
different geometrica| models. This is C|ear|y justified be- affect the wave vectors. The wave vectors can thus be inves-
cause the properties of these statmsd othersdiffer in the  tigated as a function of the two structural parametérsand
various geometrical models. On the other hand, the commox:
properties of these states are hidden because of the different In Refs.[7—9] it has been shown that the wave vectors of
descriptions. To investigate the common properties of thdhe low-spin yrast states can be described to good accuracy
states one can consider algebraic models which contain tHe>90% of the wave vectorby multiple Q-phonon excita-
geometrical models as limits. tions of the ground state for nearly the whole parameter

An outstanding model which can serve this aim is theSpace
sd-interacting boson modéIBM) [3,4]. The IBM is formu- L 3
lated in terms ofs and d boson creation and annihilation |L{) = N*™(Q...Q)|0}) with n =2+ [1-(-1)*] T
operators. An extensively used form of the IBM is the fol- n
lowing four-parameter Hamiltonian: 4

c N In the U5) and Q6) dynamical symmetries E¢4) describes
H=x|—ng+QX- QX+ —L-L|. ) the eigenstates exactly for the lowest collective excitations
K K [10,11). In the SU3) dynamical symmetry only the ground
] band is accessible. A detailed investigation fof6Owas
It contains ad boson energy term, a quadrupole-quadrupolejone in Ref[11] as well as for its fermionic versiofL2].
interaction, and a rotational energy term. In the consis@ent gqr the ae) symmetry all eigenstates can be written as

formalism (CQF) [5] the quadrupole operator Q-phonon excitations of the ground state or of an appropriate
_ _ excited 0" state. For the (6/4) supersymmetry a similar
Q¥=s"d+d"s+x(d"d)? (2)  description has been given in REL3] in the framework of
the interacting boson-fermion model4]. Equation(4) rep-
is proportional to theée2 transition operator resents an approximate description of the yrast states in the
whole parameter space of the ECQF of the IBM. It is one of
T(E2)=eg Q (3)  the aims of this work to obtain a similar universal expression
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for the wave vector of the nonyras} tate. The expressions ~ To begin with, we first define th® configurations that
of the eigenstates in terms of multipg@phonon excitations we will use in the following. It is much more convenient to
are useful for an intuitive and simple understanding of thework with orthonormalized configurations instead of the
E2 decay[10,15 and the quadrupole momefit6] in the = multiple Q-phonon excitations in Eq5). We thus define the
framework of the IBM. orthonormalQ configurations

Il. Q-CONFIGURATIONS AND FIRST ORDER i . N
APPROXIMATION |2Q>:NQQ|01>:Ei ai|2]) (6)

For analytical calculations the wave vectors in the IBM
are usually expressed in terms of théSWbasis. When the and
wave vectors are expanded in thé&lbasis outside the (3)
symmetry, many components contribute and the expansion |25Q>=NQQ[(QQ)(2)—UQ]|01+>=E Bl2"y. (@)
may have a slow convergence. TRephonon excitations i
can be used as an alternative basis with a faster convergen
(few important termp In the Q6) dynamical symmetry of
the IBM, which describeg-soft nuclei, all low-lying states (2512¢)=0 @)
with the Q(6) quantum numberr=N can be described as QI*QQ
multiple Q-phonon excitations of the ground stafd]. The  \ye obtain the constant
2] and 2 states in the @) dynamical symmetry are rep-
resented by only one individual multipl@-phonon excita- (0 (QQQ)?|07)
tion. In general, however, multipl®-phonon excitations are v= (071(QQ) 07 9
not eigenstates of the Hamiltonidh). The wave vectors of . !
the lowest-lying eigenstates may then be approximated by The (positively chosen constants\ and Ngq are ob-
series expansion in multipl@-phonon excitations of the tained from the normalizations of ti@ configurations

ground state
<25|25>:1:<25Q|25Q> (10

e . "
Igrom the orthogonality condition

AP ) WL |oF
L) kg:‘/z Q1 - Q0™ |101). ®) yielding the expressions
We will show that, for the Hamiltonian of Eq1), the con- 1 T AT
vergence of this series is fast. This makes @ghonon /\TQ_\/<01 [(QQ)'™[01) (1)
scheme a useful concept for semianalytical descriptions out-
side the dynamical symmetries of the IBM. and

(0;1(QQQ |07 )?
(07 1(QQ)@|07)

(071((QQ®(QQ)®) @07 ) — (12)

1 _\/1
NQQ \/g

The normalization constants are functions of the expectatiogzgi :<2i+|25Q> (14)
values of multiples of the quadrupole operat6i |Q"|0;)
up ton=4 which are considered “shape invariantst7,1§.
Those shape invariants can approximately be calculated from =Ngq
a fewB(E2) values between low-lying stat€$9].

The amplitudesy; and 8; from Egs.(6),(7) represent the s (010122 ol2: Y2 1oloF
overlaps of the eigenstates 2vith the Q configurations and - <0119 1 X < Ql f>2< < QI01) <2i+|Q|01+))
can be given explicitly in terms of matrix elements of the 2401 1Ql12¢)
quadrupole operator (15

> (<2ﬁ|Q|2r><2f|Q|0I>

]

(21Q[07) where theE2 matrix elements are calculated by the sdage

ai=(2i+|25>= — ' t) — operator as was used in the construction of@heonfigura-

\/(01 [(QQ)?|07) tions in the Eqs(6),(7). Summations over magnetic quantum
+ + numbersm are implied.

= (27T(E2)10,) (13) The 2] state is in first order approximatgd] by the 1-
VEi(2] | T(E2)|07)/? Q-phonon configuratiot2). The 2 state will in first order

be approximated by the @-phonon configurationhZS@. In

and order to describe details of the wave functions such as the
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relatively weakE2 decay transition streng®(E2,2;, —0;) We will first investigate to what extent the, 2state is
or the quadrupole mome(2;) [16], it will be necessary approximated by the B configuration|25Q). By definition
to improve theQ-phonon description by going to the second- (8) this configuration does not decay to the ground state by

order approximations anE2 transition
+ +
1 (071Q[250)=0. (20
120)8 == (1|2} + B1]250)) (16) o .
vait By TheQ conflguratlon|2QQ) is an exact eigenstate of the IBM
Hamiltonian for the W5) and the @) dynamical symme-
and tries but it cannot be an exact eigenstate over the whole

symmetry triangle. However, the exact eigensi@g) can

1 be written as a sum of th@ configuration(7) and a rest term

|2;>§:—2 ,82<a2|25>+ﬁ2|25Q>)’ (17)  which is orthogonal to it
+

a;p 2

+\ + . + _
where the amplitudes involved are given by EG)—(15). 122)=B2l290)*Ir) with (2qqIr)=0. 23

The second-order gpproximat'io|rP§f>8 and|2§>§"repre§ent If the overlap of thd2;) state with|24,) is close to unity,
these normi\hzed linear combinations of Q&:onflguratlons. i.e., if the norm of the rest wave vector nearly vanishes
|25) and|250) that have the largest possible overlaps with RQ(23)=(r|r)~0, then|25Q) approximately represents the
the exact eigenstat¢2; ) and|2;). Itis obvious from Eqs. yaye vector of the2; ) state. To check the accuracy we
(12)'(1_7) ho"r‘i the apperX|tr_nat|o'nslczn be |m2roved to higheryave considered the norRY(27) of the rest wave vector
oraer inQ-p ohnor; e”xm ations |nc.|lIJ Ing I@" Q- ﬁx'h which can be calculated for the whole parameter space of the
C|tat|ogs. :jn the following we will deal at most with theé ecoF of the IBM by numerical diagonalization of the
second-order approximations. Hamiltonian(1) and by the calculation of alE2 matrix ele-

. .Withmfthi IBM Eqsd(16()j,(17) are the most na_ltural defi- fments between the'0and the 2 states. The norm of the
nitions of the second-order approximations in terms of oot \wave vector from Eq21) is given by

Q-phonon excitations. We will show below that they ap-
proximate the wave vectors of thg 2and the 2 eigenstates Qb )
to more than 97% in a large range of the structural param- R1(2;)=1-p> (22

%tezrf'thg. ot\;erlalp ofththegsecBontd_-order a:){)r:oxmatlont]s__or boson numbersl=7,10,12 we have calculat@f(Zg)
2021 |2;)3 is thus less than 3%. But in general they are no ridwise for the whole parameter space of the ECQF of the

exactly orthogonal because of the presence of small compgz: . .
. . . BM. The results of the calculation with boson numbsr
nents of higher order iQ phonons. For comparison to ex- =10 are shown in Fig. 1. The results for the boson numbers

perimental data, however, it is more useful to require O'\1=7 andN=12 are qualitatively the same. As can be seen
thogonality in order to put an additional constraint on the, " © N d Y O/ mta
from Fig. 1, the norm of the rest wave vecRP(2;) is less

amplitudes involved in Eq16),(17). We will later use sec- than 10% for a wide range of the structure parameters in
ond Q-phonon approximations for the;2and the Z eigen- . ? .
Q-p bproximat G 2 eig particular for|y|<0.7 and arbitrary/ «.

states which are orthonormalized to each other . ) . .
The parameter range wifly|<0.7 is particularly impor-
tant for the description of actual nuclei with the exception of

1 a few rotors where the 2 state of the first excitedk =0
+\Q + +
127)," = \/—7+—z [a1]25) +sgrv aa,) as|250)] band lies below the 2 band head of the band. For these
ajtay (18 parameterg y|<0.7, theQ configuration|25Q> represents
an approximate, parameter-free, analytical expression for the
and wave vector of the 2 state. We denote this parameter region

of the ECQF below the thick dashed line in Fig. 1, where
RY(27) is less than 10%, byegion |.
12; Q _ 1 [as|25) — st Yy 280)] Let us consider the region in the parameter space where
272 7 o+ o2 @2leq) T SGMv e az)@ilcqq the Q configuration|25) does not describe th@; ) state.
(19) In Fig. 1 this parameter region is denotedregion Il. This
region corresponds to very large valuesfand finite val-
with v and a; from Egs. (9) and (13), respectively. The Ues of | e/ x| appropriate for the description of some rotors
approximations(18),(19) have recently been used in Ref. where theK=0 band lies below or very close to theband.
[16] for the prediction of the static quadrupole moment of To clarify this point we consider a transition path between
the 27 stateQ(2;) from otherB(E2) values. The differ- region | and region Il. We chosg= —1.2=const close to
ences between the configurations from E¢8),(19) and  the SU3) value y=— 7/2~—1.32 and varye/ « from 0 to
Egs.(16),(17) are quite small as will become evident below. —8. We denote the 2 state which has the largest
We will use expression$l8),(19) later in order to obtain B(E2,2"—0,) value by “2;_,” and we denote that 2
approximate two-body creation operators for te@hd the  state which has the largeB(E2,2"—37) value by “2 .”
2, states. Figure 2 shows the level ordering of th¢ 2, and the 2
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FIG. 2. Level ordering of the 2 state and the 2_ state in a
080 X transition path from parameter region | to region Il. For the boson
numberN=10 we kepty= —1.2 constant and we variedx in the
-0.30 ECQF Hamiltonian. We assigi=0 to that 2" state which has the
UG) largestB(E2,2"—0;) value. We denote that'2state by 2 which
<1% — : 3 000 has the largesB(E2,2"—37) value to the first 3 state. In this
-30.00 -20.00 -10.00 000 ()(6) particular transition path between region | and region ;II State
ek and the Z_, state cross close to the parameter vatlie= —4.

FIG. 1. The squared norR¥(25) of the rest wave vectdr)
defined in Eq(21) is given for a boson numbét=10. Almost the
whole parameter space of the ECQF Hamilton{anis surveyed  considerably smaller value df| is necessary to avoid an
for the structural parametee¢« andy. In the physically important  jnyersion or at least a strong mixing of tie=0 band and
parameter rangy|<1 the wave vector of the 2 state is approxi-  the y band.
;“ﬁ“ed by the?j Cor‘tﬁgt‘::ation of th(7) by m%rel tha?h90t‘;@. lindtheh Consequently, in the region Il thej 2state belongs to the
ollowing we denote the parameter region below the tnic asheq, . : o
e TS (21 ' e 10 wiion | Wo Gt o o0 S0 CONIBS HOh@ phaion ecltons neces
parameter region above the thick dashed linadxion II. tion of the 2; state by the 2 configuratiordng) fails. It is
interesting to clarify the following question: how many
eigenstates of the Hamiltonidf) have a significant overlap
with the Q configurati0n|25Q>? Some results of the calcu-
lations of the squares of the scalar produ@gq|2;") with

states for this transition path. For small values &f«| the

2, state is the 2 state. With increasinge/ | the 2 state
and the Z _, state approach each other and they start to mix
For the parameter valyg=— 1.2 the inversion of the states 1=1,2,3,4 are presented in Table | for the boson nuntber
23 and 2{_, occurs close toe/ k= —4. For values of the =10. Itis seen that in region | th@ configuration|2) is
parametery which are closer to the S8) value the inver- dominated by the 2 state and in region Il it is fragmented
sion point occurs for smaller values [aff x| until this inver-  mainly into two 2" eigenstates{2;) and|23). For some
sion point is reached fofe/x|=0 in the exact S(B) dy-  structure parameters the mixing of these two states is up to
namical symmetry where thezzo state and the 2 are 50% but their sum i; qlo_se_ to 1. T_his is an intgresting rgsult.
degenerate. There, of course, the_g state and the?with It means that even if it is impossible to describe the eigen-
K =2 do not mix becausk is a good quantum number. The States of the IBM Hamiltonian in region Il by a single
SU(3) dynamical symmetry is a singularity for ti@phonon configuration, two will do. From the discussion above it is
description of states which do not belong to the ground-statélear why theQ configuration|25) alone does not describe
band because fop= — \/7/2 the CQF quadrupole operator is the 2, state in the parameter region II: there additionally a
a generator of the S@) group and thus it does not induce Q-phonon description of the excitéd=0 band based on the
any E2 transition between the ground-state band and othed, state is necessary.

excited bands. Therefore, in the &)Y dynamical symmetry In the following we exclude the region Il where the
the normalization constant,q from Eq.(12) becomes in-  Q-phonon description of the,2state fails. Thus we exclude
finite. In the SU3) dynamical symmetry the 2 states of the  from our discussion the parameter range which may describe
K=0 band and they band are degenerate. Close to thesome rotors, e.g., in the~ 150 region where the 2 state of
SU(3) limit the value of| x| < \/7/2 tends to lower theeband the K=0 band lies below or close to the;erand head. We
versus theK=0 band, while the parameterincreases the emphasize that the failure of the simple description of the 2
mixing between these bands until the inversion point isstate by Eq(21) reflects the interchange of the order of the
reached. Thus foe=0, theQ configuration|25Q> describes low-lying K=0 and K=2 rotational bands or the mixing
the wave vector of the 2 state, which is here the bandhead between them. In all other cases the wave vector of the 2
of the y band, up to the S(3) singularity. For|e/x|>1 a  state in collective eveA nuclei can analytically be written
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TABLE |. Squared amplitudes of the™2eigenstates to th@

configuration|25o) from Eq.(7) calculated for some ECQF param-
eter combinations from the regions | and Il outside of the dynamical

symmetries.

X €lx Regon g7 g5 p5 B RR(23)
—0.05 0 I 0.020 0.979 0.000 0.001 0.021
-0.2 0 I 0.058 0.932 0.000 0.010 0.068
-0.5 0 I 0.029 0.960 0.003 0.001 0.040
-1.0 0 I 0.004 0.992 0.002 0.002 0.008
-1.3 0 I 0.000 0.997 0.003 0.000 0.003
-0.05 -8 | 0.008 0.988 0.000 0.000 0.012
-0.2 -8 | 0.047 0.942 0.000 0.001 0.058
-0.5 -8 | 0.036 0.937 0.001 0.014 0.063
-1.0 -8 | 0.007 0.976 0.003 0.010 0.024
-1.3 -8 Il 0.000 0.144 0.851 0.002 0.856
—-0.05 —-24 | 0.001 0.992 0.000 0.000 0.008
-02 -24 | 0.011 0.981 0.000 0.000 0.019
-05 -24 | 0.033 0.946 0.003 0.011 0.054
-10 -24 Il 0.017 0.782 0.139 0.058 0.218
-13 -24 Il 0.003 0.300 0.616 0.074 0.700

as in Eq.(21) with 8,=0.95. For the 2 state theQ con-

figuration |25Q) represents a first-order approximation i

terms of Q phonons which we denote b3 )?=[2%).
Here, the subscrigh; indicates the approximation order.

Analogously, the 4 and the § states can in first order

be approximated by th@ configurations:

14500 =Nogg [QIQQ) W™

~{071(QQ(QQQ*) @0y
(071(QQIQQ)*) @07

(QQ)™|{|07)

=143)2 (23)
and
|66QQQ>:NQQQQ[[Q(QQQ)(G)](G)
(071(QQQIQQRQRQY™) o) ®
(071(QQQ(QQQY®)?|07) (QQQ
[
=165)%. (24)

Expanding theQ configurations in the eigenstates we obtain

the norms of the corresponding rest wave veci@fﬂg)

andRY(6;). These were also calculated fidr=10 bosons.
They are shown in the Fig. 3. In the parameter region | that
we discuss here Eq&}), (7), (23), and(24) provide approxi-
mate analytic expressions for the lowest members of théo the 1- and 2 configurations(r{[25)=0 and(r{|250)
=0 which yieldy,= \/a21+ ,821 andy,= \/a22+ ﬂzz. The am-

“ground” and *“ y band.”
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FIG. 3. Squared norms of the rest wave vectors for fiestate

n and the § state calculated for a boson numidés+= 10 as in Fig. 1.

In the physically important parameter region(d.g., |x|<1) the

wave vectors of these states are approximated bytlenfigura-
tions of Egs.(23),(24) by more than 90%.

Ill. SECOND-ORDER APPROXIMATION

In the preceding section we have found an analytical ex-
pression which is a first-order approximation to the ate
vector. The exact eigenstates of the lowests?ates can thus
be written in terms of th& configuration|25) and|245e).

The approximations by the€@ configurations are better than
90% in squared amplitude and account for the dominant fea-
tures of the ¢ and 2 states. However, the detailed proper-
ties of the states may be influenced by the missing 10% of
the wave vector. For instance, these 10% are responsible for
the ground-state decay of thg Ztate.

We can get an improved expression for the &tates by
including the next important term of th®@-phonon expan-
sion of Eq.(5). We thus write the exact eigenstates in terms
of the second-order approximations from E¢5),(17)

127y =y4120)3+r )= ] 28) + B1l25g) +r 1),
RY(2])=(r{lry=1-ai—p3, (25

|22+>=Y2|22+>(23+|r§>=az|25>+,32|25<g>+|r£>a

RS(23)=(rjlrp)=1-a5— 5.

The rest wave vectots; ) are again defined to be orthogonal
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FIG. 4. Squared nornR3(2;) of the rest wave vectofr}) FIG. 5. Squared nomRY(2;) of the rest wave vectofr})

defined in Eq.(25) for a boson numbeN=10. For all parameters geafined in Eq.(26) for a boson numbeN=10. In the physically
the wave vector of the 2 state is approximated by the combination important parameter region (e.g., |x|<1, |e/x|<10) the wave
of theQ configurationgd24) and|2gq) from Eq.(25) by more than  yector of the 2 state is approximated by ti@ configurationg2/,)
98%. and|24) from Eq. (26) by more than 97%.

plitudesa; , and B, , are given by Eqs(13)—(15). The cal- sgn@1B1)= —sgnayB,)=sgnv)=sgnx). (27
culated norms of the rest wave vect®$(2;) andR3(2,)

are shown in Figs. 4 and 5. For all parameter combinationd Nis sign relation is invariant under a change of phases of the
shown in Fig. 4 the ? state wave vector has a Squaredstates involved. It was checked numerically in the IBM with

overlap 1- RS(ZI) of more than 98%. Thefz state is thus the ECQF Hamiltonian from Eq1) with N=9 andN=10

. oL " bosons to hold true for the parameter range wjth<1
described by the second-order approximafiaii)? within  \ynich we are interested in here. The sign relatigi) has

an accuracy of 98% for all parameter combinations analytiheen ysed for the definition of the orthonormalized second-

cally. P +,Q)
order approximation$2; from EqQs.(18),(19). Thus the
Similarly in Fig. 5 for the 2 state, in the parameter re- two-bodpypoperator 2 )2 gs-(18.(19

gion | (practically with|x|<1, | e/ k| <10) the squared over-

lap of the second-order approximation for thg 2tate in
terms of Q-phonon excitations is 4R3(2;)=97%. The
guadratic norm of the rest term decreases by about an order

of magnitude by going from the first-order to the second-
order approximation. creates the R state to a high accuracy ¢£97% for the

For some applications it may be helpful to have an exPhysically relevant parameter region I:
plicit formulation of the creation operators of thg 2nd the
2, states from the ground state. We derive approximate cre-

|v|+X&)Q (28)

I =(QQ)? =sgrto)| lol +x 57~

. . 9 ) N
ation operators in this paragraph. In parameter region | the 1- |25Y9 = — sgn(v ay) _Q |0 )~|27). (29
and 2Q configuration325> and|25Q> exhaust the subspace 22 N ! 2

formed by the exact wave vectors of th¢ 2nd 2 eigen- o

states to more than 97%. An exact overlapping of the subtiere __the abbreviations v from Eg. (9) and
spaces would require the relatig8f=a2. In Fig. 6 it is X=VB(E2;0] —2;)/B(E2;0; —2) have been used.
shown that this relation is fulfilled to a good accuracy. For ~Similarly the second-order approximation to thg &tate
the construction of the approximate creation operators we

now assume exact overlapping of these subspaces based on

the wave vectors of the;2and 25 eigenstates, on the one |2+)Qi=sgr(a Yy 1-x|v|Ngo/Ng 07107)~|2;)
hand, and based on the 1- an@2eonfigurationg24) and 12 vee V1+x? ! !
|25Q>, on the other hand. In addition we use the sign relation (30
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FIG. 6. Comparison of the squared amplitudes of the second

importantQ config_uration in the wave vectors of_ the exagt State FIG. 7. Test of the approximate relati@¢d4) in the physically

and Z state. Their absolute values are approximately equal. important parameter region |. Experimentp) and exactly calcu-
lated (bottom data points are plotted against the excitation energy
ratio E(4;)/E(2]) which is appropriate to scale a transition be-
tween vibrators[ E(47)/E(27)=2.0] and rotors[ E(47)/E(2])

is created by the operator =3.3]. While theB(E2) ratios from Eqs(32),(33) can vary by an
order of magnitude their ratio is constant within a factor of 2. The
experimentaB(E2;0; —2; ,) data have been taken from Reff20,

X 21]. The decay branching ratios of thg’ 3tates have been taken
0" =Q+sgnv) (QQ)?. (381) from the Nuclear Data Sheets assuming pEgetransitions.
(NQ/NQQ) _X|U|

Equation(30) approximates the wave vector of thg 2tate b At 2

: : B(E2;0; —2;) a5
with an accuracy of>98%. The expressions from Egs. — =,
(28)—(31) involve—besides the quadrupole operator—the B(E2;0; —2;) a3

B(E2) values from the ground state to th¢ 2nd the 2 _ o
states and the three shape invarial(1t§+|(QQ)(°)|01+), An alternative measure of this ratio is t&2 decay branch-

o+ )0+, (0F (2) (270)] 9+, ing ratio of the 3 state(which can be approximated by a 3-
< 1Ir|1((qu(?°,.?)29),|(31O§ tr<1er1e|[a$§)(§<)ar asl(sg(?t)he]siglegf the ampli-Q confi+guration|31*)~N3(QQQ)(3)|01+> [8]) to the lower
tudes, and a, which coincide with the signs of the2 ~ ¥ing 2" states
matrix elements between the ground state and thard 2 ot o+ 2 2
states. The amplitudes, anda, can always be chosen to be m~ '6_;~ a_g
positive by a convention for the phases of thg and 2 B(E2;3; —2;) B3 a1
states. The sign of depends on the sign of the structural
parametery according to Eq(27).

(32

(33

if one assumes that aB2 transition between the @ con-
figuration from Eq.(4) and the 1Q configuration is forbid-
den and that possibE2 decays from higher lying B states
are negligible. The second approximation in E2g) is valid
due to the fact that?~ 83 and a3~ 2 as has been shown in
The ground-state decay of thg Xtate is due to the ad- Fig. 6. In[8] it was already demonstrated that the different
mixture of the 1Q configuration|25) in Eg. (26). The rela- E2 branching ratios(32),(33) are correlated. From Egs.
tive E2 strength distribution from the ground state to the(32),(33) we can deduce a formula which allows us to esti-
lowest 2" states equals the squared amplitudes of ti@ 1- mate the absolutB(E2) value for the decay of the,2state
configuration due to Eq13) from anE2 branching ratio and the absollB¢E2) value of

IV. ELECTRIC QUADRUPOLE TRANSITIONS
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the 2] state, both of which are often known. According to V. SUMMARY
Egs.(32) and(33) the B(E2) value for the decay of the;2

: We derived analytic expressions for thg 2, 6, , ...
state to the ground state can be written as y P § 2, .6

states in terms of multipl®-phonon excitations. In the IBM
these expressions are approximately valid also in the regions
B(E2;3; —27) L outside the dynamical symmetries where the exact wave vec-
B(EZ2.3/ —20) B(E2;2) —07). tors can be obtained only by numerical diagonalization of the
L2 (34) Hamiltonian. Together with the even-spin and odd-spin yrast
states[7,8] a complete approximate description of ths
) i - _ band and théquasijy band in terms of) configurations is
This relation allows the prediction of th&2 excitation g given. With the ECQF Hamiltonian in E€L) this is
strength of the 2 state from the knowledge of the following e for| x|<0.7 and arbitrary/ « values. In some rotational
two observables: thE2 branching ratio of the 3 state and  pyclei where the 2 state of theK=0 band lies below or
the lifetime of the first excited state. Equati¢84) holds  ¢jpse to they-band head th@-phonon description of the;2
exactly in all three dynamical symmetries of the IBM for ¢4;5 Aside from this case, we demonstrated for theahd

which the left-hand sidelhs) and the right-hand sidehs) 2, states that the inclusion of the second-order term of the

vanish. A n nj low, ex numerical calculg= o .
anis $ can be seen just below, exact numerical calcu aQ-phonon excitations increases the accuracy of the wave

tions show that outside of the dynamical symme_tries the rh?‘/ector to about 98%. We derived a relation to estimate the
of Eq. (34) slightly overpredicts the Ihs systematically. B(E2) value for the ground-state decay of thg &ate from

It is interesting to compare E@34) with the data. Figure ) ; ‘
7 shows the ratio of the Fhs ovfthe ths of E84) versus the E2 branching ratio of the 3 to the lower lying 2° states

. . + . . .
the energy ratio of the lowest yrast states. The abscissa fd the excitation strength of the Zstate. This relation is
appropriate to scale a transition from vibrators to well de-Vvalid within a factor of 2 for the collective nuclei considered.
formed rotors. Th8(E2;2; ,—07) values have been taken Such global relations can be found because @phonon
from [20] and [21] fespectively B(E2:3; —21)/ description provides an universal description for the low-
B(E2:3/ —2;) have been compiled from the ,reTativeldecaylying quadrupole collective states. Considering the change of

intensities given in Nuclear Data Sheets. In most cases thtge structure of the 3 state among vibrators, rotors;

E2/M1 mixing ratiosé for the 3} —>21f , transitions are not ?;Zii)br:emmédeéi)s r\]’\é ?gsafegz?sg;)?n%;ﬁ:/ﬁi};:}h?n(ljjirc“a\ftirssal
known. We thus assumed puE? transitions. While the de- g y

. . . h lidity of theQ-ph i f the |
cay branching ratio of the ;3 state and the ratio of thE2 the validity of theQ-phonon construction of the lowest two

- . 27" states.
excitation strengths of the ground state vary in these nuclei

by an order of magnitude, Eq34) is valid within a factor of
about 2. Equation34) describes the data for all collective
nuclei considered: vibrators, rotorg;soft nuclei, and differ-
ent types of transitional nuclei. In rotor nuclei the relative  For fruitful discussions we thank Professor R. F. Casten,
decay intensity for the 3—27 transition is rarely known Professor A. Gelberg, and Dr. K. H. Kim. This work has
experimentally due to the low transition energy. But the datébeen partly supported by the Deutsche Forschungsgemein-
from ®Er, which is one of the best studied rotors, supportschaft under Contracts No. Br 799/6-2, Br 799/8-1, by the
the validity of Eq.(34) in rotors. Equation(34) is an exact cooperation agreement of the Deutsche Forschungsgemein-
relation in the rotor model of Bohr and Mottelsph]. The  schaft and the Japan Society for the Promotion of Sciences,
data and the numerical test presented above show that thiyy Grant-in-Aid for Scientific Research on International Sci-
relation is approximately valid for all quadrupole collective entific Research PrograitNo. 0804 405§ from MESC in
nuclei discussed here. Japan.

B(E2;2; —0])~
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