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In the framework of theQ-phonon scheme and the interacting boson model a description of the 21
1 and 22

1

states is obtained. The wave vectors are written as an expansion in multipleQ-phonon excitations of the
ground state. It is shown that the convergence of this expansion is fast and the main component already
provides a good approximation of the wave vector. The accuracy of such a leading-order description exceeds
90% of the wave vector. By taking into account twoQ-phonon configurations the accuracy of the description
of the 21

1 and 22
1 states is increased to 98%. This is true for all collective nuclei with the exception of some

rotors where the first excitedK50 band lies below or very close to theg band and, due to band mixing, the
wave vector of the 22

1 state contains higherQ-phonon excitations. An application to some decay transitions is
given. @S0556-2813~98!04501-4#

PACS number~s!: 21.60.Fw, 21.60.Ev, 21.10.Re
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I. INTRODUCTION

Collective nuclei can be classified according to the patt
of their lowest excitations. In the geometrical model of Bo
and Mottelson@1# they can be described in terms of vibr
tors, deformed rotors, and transitional cases as, e.g.,g-soft
nuclei @2#. The interpretation of the low-lying collective
states in nuclei depends on the model applied. For insta
in rotor nuclei the 21

1 state is interpreted as the rotation
state and the 22

1 state is identified with theK52 g vibration,
while in g-soft nuclei this state is the bandhead of the
called ‘‘quasi-g band.’’ In vibrators the 21

1 and 22
1 states are

considered as one- and two-quadrupole phonon states.
different names for these 21 states reflect the application o
different geometrical models. This is clearly justified b
cause the properties of these states~and others! differ in the
various geometrical models. On the other hand, the comm
properties of these states are hidden because of the diffe
descriptions. To investigate the common properties of
states one can consider algebraic models which contain
geometrical models as limits.

An outstanding model which can serve this aim is t
sd-interacting boson model~IBM ! @3,4#. The IBM is formu-
lated in terms ofs and d boson creation and annihilatio
operators. An extensively used form of the IBM is the fo
lowing four-parameter Hamiltonian:

H5kS e

k
nd1Qx

•Qx1
l

k
L•L D . ~1!

It contains ad boson energy term, a quadrupole-quadrup
interaction, and a rotational energy term. In the consistenQ
formalism ~CQF! @5# the quadrupole operator

Qx5s1 d̃1d1s1x~d1 d̃ !~2! ~2!

is proportional to theE2 transition operator

T~E2!5eB Q ~3!
570556-2813/98/57~1!/150~9!/$15.00
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~from now on we drop the superscriptx and denote the quad
rupole operator byQ!. We note that we use the extende
consistentQ formalism ~ECQF! with an nd term in the
Hamiltonian @6#. As a function of its parameters, the IBM
Hamiltonian has three analytically solvable limits—the d
namical symmetries—which in the geometrical model cor
spond to simple cases of the~an!harmonic vibrator~finite e,
k50, x50!, to the symmetric rotor~e50, x52A7/2!, and
to g-soft deformation~e50, x50!. Transitional nuclei lying
between the dynamical symmetries can be investigated
variation of the parameters. The wave vectors of the EC
Hamiltonian~1! depend on the two structural parameterse/k
andx only. The parameterk determines the absolute energ
scale and the rotational termL•L is diagonal and does no
affect the wave vectors. The wave vectors can thus be in
tigated as a function of the two structural parameterse/k and
x.

In Refs.@7–9# it has been shown that the wave vectors
the low-spin yrast states can be described to good accu
(.90% of the wave vector! by multiple Q-phonon excita-
tions of the ground state for nearly the whole parame
space

~4!

In the U~5! and O~6! dynamical symmetries Eq.~4! describes
the eigenstates exactly for the lowest collective excitatio
@10,11#. In the SU~3! dynamical symmetry only the groun
band is accessible. A detailed investigation for O~6! was
done in Ref.@11# as well as for its fermionic version@12#.
For the O~6! symmetry all eigenstates can be written
Q-phonon excitations of the ground state or of an appropr
excited 01 state. For the U~6/4! supersymmetry a simila
description has been given in Ref.@13# in the framework of
the interacting boson-fermion model@14#. Equation~4! rep-
resents an approximate description of the yrast states in
whole parameter space of the ECQF of the IBM. It is one
the aims of this work to obtain a similar universal express
150 © 1998 The American Physical Society
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1 STATES IN COLLECTIVE NUCLEI AS . . .
for the wave vector of the nonyrast 22
1 state. The expression

of the eigenstates in terms of multipleQ-phonon excitations
are useful for an intuitive and simple understanding of
E2 decay@10,15# and the quadrupole moment@16# in the
framework of the IBM.

II. Q-CONFIGURATIONS AND FIRST ORDER
APPROXIMATION

For analytical calculations the wave vectors in the IB
are usually expressed in terms of the U~5! basis. When the
wave vectors are expanded in the U~5! basis outside the U~5!
symmetry, many components contribute and the expan
may have a slow convergence. TheQ-phonon excitations
can be used as an alternative basis with a faster converg
~few important terms!. In the O~6! dynamical symmetry of
the IBM, which describesg-soft nuclei, all low-lying states
with the O~6! quantum numbers5N can be described a
multiple Q-phonon excitations of the ground state@11#. The
21

1 and 22
1 states in the O~6! dynamical symmetry are rep

resented by only one individual multipleQ-phonon excita-
tion. In general, however, multipleQ-phonon excitations are
not eigenstates of the Hamiltonian~1!. The wave vectors of
the lowest-lying eigenstates may then be approximated
series expansion in multipleQ-phonon excitations of the
ground state

uLi
1&'F (

k>L/2
ai ,k~Q1 . . . Qk!

~L !G u01
1&. ~5!

We will show that, for the Hamiltonian of Eq.~1!, the con-
vergence of this series is fast. This makes theQ-phonon
scheme a useful concept for semianalytical descriptions
side the dynamical symmetries of the IBM.
tio
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To begin with, we first define theQ configurations that
we will use in the following. It is much more convenient t
work with orthonormalized configurations instead of t
multiple Q-phonon excitations in Eq.~5!. We thus define the
orthonormalQ configurations

u2Q
1&5NQQu01

1&5(
i

a i u2i
1& ~6!

and

u2QQ
1 &5NQQ@~QQ!~2!2vQ#u01

1&5(
i

b i u2i
1&. ~7!

From the orthogonality condition

^2Q
1u2QQ

1 &50 ~8!

we obtain the constantv

v5
^01

1u~QQQ!~0!u01
1&

^01
1u~QQ!~0!u01

1&
. ~9!

The ~positively chosen! constantsNQ andNQQ are ob-
tained from the normalizations of theQ configurations

^2Q
1u2Q

1&515^2QQ
1 u2QQ

1 & ~10!

yielding the expressions

1

NQ
5A^01

1u~QQ!~0!u01
1& ~11!

and
1

NQQ
5A 1

A5
F ^01

1u~~QQ!~2!~QQ!~2!!~0!u01
1&2

^01
1u~QQQ!~0!u01

1&2

^01
1u~QQ!~0!u01

1& G . ~12!
m

the
The normalization constants are functions of the expecta
values of multiples of the quadrupole operator^01

1uQnu01
1&

up ton54 which are considered ‘‘shape invariants’’@17,18#.
Those shape invariants can approximately be calculated f
a few B(E2) values between low-lying states@19#.

The amplitudesa i andb i from Eqs.~6!,~7! represent the
overlaps of the eigenstates 2i

1 with theQ configurations and
can be given explicitly in terms of matrix elements of t
quadrupole operator

a i5^2i
1u2Q

1&5
^2i

1uQu01
1&

A^01
1u~QQ!~0!u01

1&

5
^2i

1uT~E2!u01
1&

A( j u^2 j
1uT~E2!u01

1&u2
~13!

and
n

m

b i5^2i
1u2QQ

1 & ~14!

5NQQF(
j

S ^2i
1uQu2 j

1&^2 j
1uQu01

1&

2
(k^01

1uQu2 j
1&^2 j

1uQu2k
1&^2k

1uQu01
1&

(k^01
1uQu2k

1&2 ^2i
1uQu01

1& D G ,

~15!

where theE2 matrix elements are calculated by the sameQ
operator as was used in the construction of theQ configura-
tions in the Eqs.~6!,~7!. Summations over magnetic quantu
numbersm are implied.

The 21
1 state is in first order approximated@7# by the 1-

Q-phonon configurationu2Q
1&. The 22

1 state will in first order
be approximated by the 2-Q-phonon configurationu2QQ

1 &. In
order to describe details of the wave functions such as
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152 57N. PIETRALLA et al.
relatively weakE2 decay transition strengthB(E2,22
1→01

1)
or the quadrupole momentQ(21

1) @16#, it will be necessary
to improve theQ-phonon description by going to the secon
order approximations

u21
1&2

Q5
1

Aa1
21b1

2 ~a1u2Q
1&1b1u2QQ

1 &) ~16!

and

u22
1&2

Q5
1

Aa2
21b2

2 ~a2u2Q
1&1b2u2QQ

1 &), ~17!

where the amplitudes involved are given by Eqs.~13!–~15!.
The second-order approximationsu21

1&2
Q andu22

1&2
Q represent

those normalized linear combinations of theQ configurations
u2Q

1& and u2QQ
1 & that have the largest possible overlaps w

the exact eigenstatesu21
1& and u22

1&. It is obvious from Eqs.
~16!,~17! how the approximations can be improved to high
order inQ-phonon excitations including 3-Q-, 4-Q-, . . . ex-
citations. In the following we will deal at most with th
second-order approximations.

Within the IBM Eqs.~16!,~17! are the most natural defi
nitions of the second-order approximations in terms
Q-phonon excitations. We will show below that they a
proximate the wave vectors of the 21

1 and the 22
1 eigenstates

to more than 97% in a large range of the structural para
eters. The overlap of the second-order approximati

2
Q^21

1u22
1&2

Q is thus less than 3%. But in general they are n
exactly orthogonal because of the presence of small com
nents of higher order inQ phonons. For comparison to ex
perimental data, however, it is more useful to require
thogonality in order to put an additional constraint on t
amplitudes involved in Eqs.~16!,~17!. We will later use sec-
ondQ-phonon approximations for the 21

1 and the 22
1 eigen-

states which are orthonormalized to each other

u21
1&2

Q'5
1

Aa1
21a2

2 @a1u2Q
1&1sgn~va1a2!a2u2QQ

1 &]

~18!

and

u22
1&2

Q'5
1

Aa1
21a2

2 @a2u2Q
1&2sgn~va1a2!a1u2QQ

1 &]

~19!

with v and a i from Eqs. ~9! and ~13!, respectively. The
approximations~18!,~19! have recently been used in Re
@16# for the prediction of the static quadrupole moment
the 21

1 stateQ(21
1) from other B(E2) values. The differ-

ences between the configurations from Eqs.~18!,~19! and
Eqs.~16!,~17! are quite small as will become evident belo
We will use expressions~18!,~19! later in order to obtain
approximate two-body creation operators for the 21

1 and the
22

1 states.
r

f

-
s
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f

We will first investigate to what extent the 22
1 state is

approximated by the 2-Q configurationu2QQ
1 &. By definition

~8! this configuration does not decay to the ground state
an E2 transition

^01
1uQu2QQ

1 &50. ~20!

TheQ configurationu2QQ
1 & is an exact eigenstate of the IBM

Hamiltonian for the U~5! and the O~6! dynamical symme-
tries but it cannot be an exact eigenstate over the wh
symmetry triangle. However, the exact eigenstateu22

1& can
be written as a sum of theQ configuration~7! and a rest term
which is orthogonal to it

u22
1&5b2u2QQ

1 &1ur & with ^2QQ
1 ur &50. ~21!

If the overlap of theu22
1& state withu2QQ

1 & is close to unity,
i.e., if the norm of the rest wave vector nearly vanish
R1

Q(22
1)5^r ur &'0, thenu2QQ

1 & approximately represents th
wave vector of theu22

1& state. To check the accuracy w
have considered the normR1

Q(22
1) of the rest wave vector

which can be calculated for the whole parameter space of
ECQF of the IBM by numerical diagonalization of th
Hamiltonian~1! and by the calculation of allE2 matrix ele-
ments between the 01 and the 21 states. The norm of the
rest wave vector from Eq.~21! is given by

R1
Q~22

1!512b2
2. ~22!

For boson numbersN57,10,12 we have calculatedR1
Q(22

1)
gridwise for the whole parameter space of the ECQF of
IBM. The results of the calculation with boson numberN
510 are shown in Fig. 1. The results for the boson numb
N57 andN512 are qualitatively the same. As can be se
from Fig. 1, the norm of the rest wave vectorR1

Q(22
1) is less

than 10% for a wide range of the structure parameters
particular foruxu<0.7 and arbitrarye/k.

The parameter range withuxu<0.7 is particularly impor-
tant for the description of actual nuclei with the exception
a few rotors where the 21 state of the first excitedK50
band lies below the 21 band head of theg band. For these
parametersuxu<0.7, theQ configurationu2QQ

1 & represents
an approximate, parameter-free, analytical expression for
wave vector of the 22

1 state. We denote this parameter regi
of the ECQF below the thick dashed line in Fig. 1, whe
R1

Q(22
1) is less than 10%, byregion I.

Let us consider the region in the parameter space wh
the Q configurationu2QQ

1 & does not describe theu22
1& state.

In Fig. 1 this parameter region is denoted byregion II. This
region corresponds to very large values ofuxu and finite val-
ues of ue/ku appropriate for the description of some roto
where theK50 band lies below or very close to theg band.
To clarify this point we consider a transition path betwe
region I and region II. We chosex521.25const close to
the SU~3! valuex52A7/2'21.32 and varye/k from 0 to
28. We denote the 21 state which has the larges
B(E2,2i

1→02
1) value by ‘‘2K50

1 ’’ and we denote that 21

state which has the largestB(E2,2i
1→31

1) value by ‘‘2g
1 . ’’

Figure 2 shows the level ordering of the 2K50
1 and the 2g

1
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1 AND 22

1 STATES IN COLLECTIVE NUCLEI AS . . .
states for this transition path. For small values ofue/ku the
2g

1 state is the 22
1 state. With increasingue/ku the 2g

1 state
and the 2K50

1 state approach each other and they start to m
For the parameter valuex521.2 the inversion of the state
2g

1 and 2K50
1 occurs close toe/k524. For values of the

parameterx which are closer to the SU~3! value the inver-
sion point occurs for smaller values ofue/ku until this inver-
sion point is reached forue/ku50 in the exact SU~3! dy-
namical symmetry where the 2K50

1 state and the 2g
1 are

degenerate. There, of course, the 2K50
1 state and the 2g

1 with
K52 do not mix becauseK is a good quantum number. Th
SU~3! dynamical symmetry is a singularity for theQ-phonon
description of states which do not belong to the ground-s
band because forx52A7/2 the CQF quadrupole operator
a generator of the SU~3! group and thus it does not induc
any E2 transition between the ground-state band and o
excited bands. Therefore, in the SU~3! dynamical symmetry
the normalization constantNQQ from Eq. ~12! becomes in-
finite. In the SU~3! dynamical symmetry the 21 states of the
K50 band and theg band are degenerate. Close to t
SU~3! limit the value ofuxu,A7/2 tends to lower theg band
versus theK50 band, while the parametere increases the
mixing between these bands until the inversion point
reached. Thus fore50, theQ configurationu2QQ

1 & describes
the wave vector of the 22

1 state, which is here the bandhea
of the g band, up to the SU~3! singularity. Forue/ku@1 a

FIG. 1. The squared normR1
Q(22

1) of the rest wave vectorur &
defined in Eq.~21! is given for a boson numberN510. Almost the
whole parameter space of the ECQF Hamiltonian~1! is surveyed
for the structural parameterse/k andx. In the physically important
parameter rangeuxu,1 the wave vector of the 22

1 state is approxi-
mated by theQ configuration of Eq.~7! by more than 90%. In the
following we denote the parameter region below the thick das
line whereR1

Q(22
1) is less than 10% withregion I. We denote the

parameter region above the thick dashed line byregion II.
x.

te

er

s

considerably smaller value ofuxu is necessary to avoid a
inversion or at least a strong mixing of theK50 band and
the g band.

Consequently, in the region II the 22
1 state belongs to the

K50 band and contains higherQ-phonon excitations neces
sary to describe this excitation and thus the simple desc
tion of the 22

1 state by the 2-Q configurationu2QQ
1 & fails. It is

interesting to clarify the following question: how man
eigenstates of the Hamiltonian~1! have a significant overlap
with the Q configurationu2QQ

1 &? Some results of the calcu
lations of the squares of the scalar products^2QQ

1 u2i
1& with

i 51,2,3,4 are presented in Table I for the boson numbeN
510. It is seen that in region I theQ configurationu2QQ

1 & is
dominated by the 22

1 state and in region II it is fragmente
mainly into two 21 eigenstates:u22

1& and u23
1&. For some

structure parameters the mixing of these two states is u
50% but their sum is close to 1. This is an interesting res
It means that even if it is impossible to describe the eig
states of the IBM Hamiltonian in region II by a singleQ
configuration, two will do. From the discussion above it
clear why theQ configurationu2QQ

1 & alone does not describ
the 22

1 state in the parameter region II: there additionally
Q-phonon description of the excitedK50 band based on the
02

1 state is necessary.
In the following we exclude the region II where th

Q-phonon description of the 22
1 state fails. Thus we exclude

from our discussion the parameter range which may desc
some rotors, e.g., in theA'150 region where the 21 state of
the K50 band lies below or close to the 2g

1 band head. We
emphasize that the failure of the simple description of the2

1

state by Eq.~21! reflects the interchange of the order of th
low-lying K50 and K52 rotational bands or the mixing
between them. In all other cases the wave vector of the2

1

state in collective even-A nuclei can analytically be written

d

FIG. 2. Level ordering of the 2g
1 state and the 2K50

1 state in a
transition path from parameter region I to region II. For the bos
numberN510 we keptx521.2 constant and we variede/k in the
ECQF Hamiltonian. We assignK50 to that 21 state which has the
largestB(E2,2i

1→02
1) value. We denote that 21 state by 2g

1 which
has the largestB(E2,2i

1→31
1) value to the first 31 state. In this

particular transition path between region I and region II 2g
1 state

and the 2K50
1 state cross close to the parameter valuee/k524.
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as in Eq.~21! with b2>0.95. For the 22
1 state theQ con-

figuration u2QQ
1 & represents a first-order approximation

terms of Q phonons which we denote byu22
1&1

Q5u2QQ
1 &.

Here, the subscriptu& i indicates the approximation order.
Analogously, the 42

1 and the 62
1 states can in first orde

be approximated by theQ configurations:

u4QQQ
1 &5NQQQF @Q~QQ!~4!#~4!

2
^01

1u~QQ~QQQ!~4!!~0!u01
1&

^01
1u~QQ~QQ!~4!!~0!u01

1&
~QQ!~4!G u01

1&

5u42
1&1

Q ~23!

and

u6QQQQ
1 &5NQQQQF @Q~QQQ!~6!#~6!

2
^01

1u~QQQ~QQQQ!~6!!~0!u01
1&

^01
1u~QQQ~QQQ!~6!!~0!u01

1&
~QQQ!~6!G

3u01
1&

5u62
1&1

Q . ~24!

Expanding theQ configurations in the eigenstates we obta
the norms of the corresponding rest wave vectorsR1

Q(42
1)

andR1
Q(62

1). These were also calculated forN510 bosons.
They are shown in the Fig. 3. In the parameter region I t
we discuss here Eqs.~4!, ~7!, ~23!, and~24! provide approxi-
mate analytic expressions for the lowest members of
‘‘ground’’ and ‘‘ g band.’’

TABLE I. Squared amplitudes of the 21 eigenstates to theQ
configurationu2QQ

1 & from Eq.~7! calculated for some ECQF param
eter combinations from the regions I and II outside of the dynam
symmetries.

x e/k Region b1
2 b2

2 b3
2 b4

2 R1
Q(22

1)

20.05 0 I 0.020 0.979 0.000 0.001 0.021
20.2 0 I 0.058 0.932 0.000 0.010 0.068
20.5 0 I 0.029 0.960 0.003 0.001 0.040
21.0 0 I 0.004 0.992 0.002 0.002 0.008
21.3 0 I 0.000 0.997 0.003 0.000 0.003
20.05 28 I 0.008 0.988 0.000 0.000 0.012
20.2 28 I 0.047 0.942 0.000 0.001 0.058
20.5 28 I 0.036 0.937 0.001 0.014 0.063
21.0 28 I 0.007 0.976 0.003 0.010 0.024
21.3 28 II 0.000 0.144 0.851 0.002 0.856
20.05 224 I 0.001 0.992 0.000 0.000 0.008
20.2 224 I 0.011 0.981 0.000 0.000 0.019
20.5 224 I 0.033 0.946 0.003 0.011 0.054
21.0 224 II 0.017 0.782 0.139 0.058 0.218
21.3 224 II 0.003 0.300 0.616 0.074 0.700
t

e

III. SECOND-ORDER APPROXIMATION

In the preceding section we have found an analytical
pression which is a first-order approximation to the 22

1 state
vector. The exact eigenstates of the lowest 21 states can thus
be written in terms of theQ configurationu2Q

1& and u2QQ
1 &.

The approximations by theseQ configurations are better tha
90% in squared amplitude and account for the dominant
tures of the 21

1 and 22
1 states. However, the detailed prope

ties of the states may be influenced by the missing 10%
the wave vector. For instance, these 10% are responsible
the ground-state decay of the 22

1 state.
We can get an improved expression for the 21 states by

including the next important term of theQ-phonon expan-
sion of Eq.~5!. We thus write the exact eigenstates in term
of the second-order approximations from Eqs.~16!,~17!

u21
1&5y1u21

1&2
Q1ur 18&5a1u2Q

1&1b1u2QQ
1 &1ur 18&,

R2
Q~21

1!5^r 18ur 18&512a1
22b1

2, ~25!

u22
1&5y2u22

1&2
Q1ur 28&5a2u2Q

1&1b2u2QQ
1 &1ur 28&,

R2
Q~22

1!5^r 28ur 28&512a2
22b2

2. ~26!

The rest wave vectorsur i8& are again defined to be orthogon
to the 1- and 2-Q configurationŝ r i8u2Q

1&50 and^r i8u2QQ
1 &

50 which yieldy15Aa1
21b1

2 andy25Aa2
21b2

2. The am-

FIG. 3. Squared norms of the rest wave vectors for the 42
1 state

and the 62
1 state calculated for a boson numberN510 as in Fig. 1.

In the physically important parameter region I~e.g., uxu,1! the
wave vectors of these states are approximated by theQ configura-
tions of Eqs.~23!,~24! by more than 90%.

l
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plitudesa1,2 andb1,2 are given by Eqs.~13!–~15!. The cal-
culated norms of the rest wave vectorsR2

Q(21
1) andR2

Q(22
1)

are shown in Figs. 4 and 5. For all parameter combinati
shown in Fig. 4 the 21

1 state wave vector has a squar
overlap 12R2

Q(21
1) of more than 98%. The 21

1 state is thus
described by the second-order approximationu21

1&2
Q within

an accuracy of 98% for all parameter combinations anal
cally.

Similarly in Fig. 5 for the 22
1 state, in the parameter re

gion I ~practically withuxu,1, ue/ku,10! the squared over
lap of the second-order approximation for the 22

1 state in
terms of Q-phonon excitations is 12R2

Q(22
1)>97%. The

quadratic norm of the rest term decreases by about an o
of magnitude by going from the first-order to the secon
order approximation.

For some applications it may be helpful to have an
plicit formulation of the creation operators of the 21

1 and the
22

1 states from the ground state. We derive approximate
ation operators in this paragraph. In parameter region I th
and 2-Q configurationsu2Q

1& andu2QQ
1 & exhaust the subspac

formed by the exact wave vectors of the 21
1 and 22

1 eigen-
states to more than 97%. An exact overlapping of the s
spaces would require the relationb1

25a2
2. In Fig. 6 it is

shown that this relation is fulfilled to a good accuracy. F
the construction of the approximate creation operators
now assume exact overlapping of these subspaces base
the wave vectors of the 21

1 and 22
1 eigenstates, on the on

hand, and based on the 1- and 2-Q configurationsu2Q
1& and

u2QQ
1 &, on the other hand. In addition we use the sign relat

FIG. 4. Squared normR2
Q(21

1) of the rest wave vectorur 18&
defined in Eq.~25! for a boson numberN510. For all parameters
the wave vector of the 21

1 state is approximated by the combinatio
of theQ configurationsu2Q

1& andu2QQ
1 & from Eq.~25! by more than

98%.
s
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er
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sgn~a1b1!52sgn~a2b2!5sgn~v !5sgn~x!. ~27!

This sign relation is invariant under a change of phases of
states involved. It was checked numerically in the IBM wi
the ECQF Hamiltonian from Eq.~1! with N59 andN510
bosons to hold true for the parameter range withuxu,1
which we are interested in here. The sign relation~27! has
been used for the definition of the orthonormalized seco
order approximationsu2i

1&2
Q' from Eqs.~18!,~19!. Thus the

two-body operator

G15~QQ!~2!2sgn~v !S uvu1x
NQ

NQQ
DQ ~28!

creates the 22
1 state to a high accuracy of>97% for the

physically relevant parameter region I:

u22
1&2

Q'52sgn~va2!
NQQ

A11x2
G1u01

1&'u22
1&. ~29!

Here the abbreviations v from Eq. ~9! and
x5AB(E2;01

1→22
1)/B(E2;01

1→21
1) have been used.

Similarly the second-order approximation to the 21
1 state

u21
1&2

Q'5sgn~a1!NQ

12xuvuNQQ /NQ

A11x2
%1u01

1&'u21
1&

~30!

FIG. 5. Squared normR2
Q(22

1) of the rest wave vectorur 28&
defined in Eq.~26! for a boson numberN510. In the physically
important parameter region I~e.g., uxu,1, ue/ku,10! the wave
vector of the 22

1 state is approximated by theQ configurationsu2Q
1&

and u2QQ
1 & from Eq. ~26! by more than 97%.
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is created by the operator

%15Q1sgn~v !
x

~NQ /NQQ!2xuvu ~QQ!~2!. ~31!

Equation~30! approximates the wave vector of the 21
1 state

with an accuracy of.98%. The expressions from Eq
~28!–~31! involve—besides the quadrupole operator—t
B(E2) values from the ground state to the 21

1 and the 22
1

states and the three shape invariants^01
1u(QQ)(0)u01

1&,
^01

1u(QQQ)(0)u01
1&, ^01

1u@(QQ)(2)(QQ)(2)# (0)u01
1&.

In Eqs.~29!,~30! there appear also the signs of the amp
tudesa1 and a2 which coincide with the signs of theE2
matrix elements between the ground state and the 21

1 and 22
1

states. The amplitudesa1 anda2 can always be chosen to b
positive by a convention for the phases of the 21

1 and 22
1

states. The sign ofv depends on the sign of the structur
parameterx according to Eq.~27!.

IV. ELECTRIC QUADRUPOLE TRANSITIONS

The ground-state decay of the 22
1 state is due to the ad

mixture of the 1-Q configurationu2Q
1& in Eq. ~26!. The rela-

tive E2 strength distribution from the ground state to t
lowest 21 states equals the squared amplitudes of the 1Q
configuration due to Eq.~13!

FIG. 6. Comparison of the squared amplitudes of the sec
importantQ configuration in the wave vectors of the exact 21

1 state
and 22

1 state. Their absolute values are approximately equal.
-

B~E2;01
1→22

1!

B~E2;01
1→21

1!
5

a2
2

a1
2 . ~32!

An alternative measure of this ratio is theE2 decay branch-
ing ratio of the 31

1 state~which can be approximated by a 3
Q configurationu31

1&'N3(QQQ)(3)u01
1& @8#! to the lower

lying 21 states

B~E2;31
1→21

1!

B~E2;31
1→22

1!
'

b1
2

b2
2 '

a2
2

a1
2 ~33!

if one assumes that anE2 transition between the 3-Q con-
figuration from Eq.~4! and the 1-Q configuration is forbid-
den and that possibleE2 decays from higher lying 31 states
are negligible. The second approximation in Eq.~33! is valid
due to the fact thata1

2'b2
2 anda2

2'b1
2 as has been shown i

Fig. 6. In @8# it was already demonstrated that the differe
E2 branching ratios~32!,~33! are correlated. From Eqs
~32!,~33! we can deduce a formula which allows us to es
mate the absoluteB(E2) value for the decay of the 22

1 state
from anE2 branching ratio and the absoluteB(E2) value of

d

FIG. 7. Test of the approximate relation~34! in the physically
important parameter region I. Experimental~top! and exactly calcu-
lated ~bottom! data points are plotted against the excitation ene
ratio E(41

1)/E(21
1) which is appropriate to scale a transition b

tween vibrators@E(41
1)/E(21

1)52.0# and rotors@E(41
1)/E(21

1)
53.3]. While theB(E2) ratios from Eqs.~32!,~33! can vary by an
order of magnitude their ratio is constant within a factor of 2. T
experimentalB(E2;01

1→21,2
1 ) data have been taken from Refs.@20,

21#. The decay branching ratios of the 31
1 states have been take

from the Nuclear Data Sheets assuming pureE2 transitions.
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the 21
1 state, both of which are often known. According

Eqs.~32! and ~33! the B(E2) value for the decay of the 22
1

state to the ground state can be written as

B~E2;22
1→01

1!'
B~E2;31

1→21
1!

B~E2;31
1→22

1!
B~E2;21

1→01
1!.

~34!

This relation allows the prediction of theE2 excitation
strength of the 22

1 state from the knowledge of the followin
two observables: theE2 branching ratio of the 31

1 state and
the lifetime of the first excited state. Equation~34! holds
exactly in all three dynamical symmetries of the IBM f
which the left-hand side~lhs! and the right-hand side~rhs!
vanish. As can be seen just below, exact numerical calc
tions show that outside of the dynamical symmetries the
of Eq. ~34! slightly overpredicts the lhs systematically.

It is interesting to compare Eq.~34! with the data. Figure
7 shows the ratio of the lhs over the rhs of Eq.~34! versus
the energy ratio of the lowest yrast states. The absciss
appropriate to scale a transition from vibrators to well d
formed rotors. TheB(E2;21,2

1→01
1) values have been take

from @20# and @21#, respectively. B(E2;31
1→21

1)/
B(E2;31

1→22
1) have been compiled from the relative dec

intensities given in Nuclear Data Sheets. In most cases
E2/M1 mixing ratiosd for the 31

1→21,2
1 transitions are not

known. We thus assumed pureE2 transitions. While the de
cay branching ratio of the 31

1 state and the ratio of theE2
excitation strengths of the ground state vary in these nu
by an order of magnitude, Eq.~34! is valid within a factor of
about 2. Equation~34! describes the data for all collectiv
nuclei considered: vibrators, rotors,g-soft nuclei, and differ-
ent types of transitional nuclei. In rotor nuclei the relati
decay intensity for the 31

1→2g
1 transition is rarely known

experimentally due to the low transition energy. But the d
from 168Er, which is one of the best studied rotors, supp
the validity of Eq.~34! in rotors. Equation~34! is an exact
relation in the rotor model of Bohr and Mottelson@1#. The
data and the numerical test presented above show that
relation is approximately valid for all quadrupole collectiv
nuclei discussed here.
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V. SUMMARY

We derived analytic expressions for the 22
1 ,42

1 ,62
1 , . . .

states in terms of multipleQ-phonon excitations. In the IBM
these expressions are approximately valid also in the reg
outside the dynamical symmetries where the exact wave
tors can be obtained only by numerical diagonalization of
Hamiltonian. Together with the even-spin and odd-spin yr
states@7,8# a complete approximate description of thegs
band and the~quasi-!g band in terms ofQ configurations is
thus given. With the ECQF Hamiltonian in Eq.~1! this is
true for uxu<0.7 and arbitrarye/k values. In some rotationa
nuclei where the 21 state of theK50 band lies below or
close to theg-band head theQ-phonon description of the 22

1

fails. Aside from this case, we demonstrated for the 21
1 and

22
1 states that the inclusion of the second-order term of

Q-phonon excitations increases the accuracy of the w
vector to about 98%. We derived a relation to estimate
B(E2) value for the ground-state decay of the 22

1 state from
theE2 branching ratio of the 31

1 to the lower lying 21 states
and the excitation strength of the 21

1 state. This relation is
valid within a factor of 2 for the collective nuclei considere
Such global relations can be found because theQ-phonon
description provides an universal description for the lo
lying quadrupole collective states. Considering the chang
the structure of the 31

1 state among vibrators, rotors,g-
unstable nuclei as well as transitional nuclei, the univer
relation in Eq.~34! holds remarkably well which indicate
the validity of theQ-phonon construction of the lowest tw
21 states.
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