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The sensitivity of nucleon-nucleus elastic scattering observables to the off-shell structure of nucleon-nucleon
t matrices, derived from realistldN potentials, is investigated within the context of a full-folding model based
on the impulse approximation. Our study uses recently develdpedpotential models, which describe a
subset of theNN data base with a2 per datum~1, which means that thBIN t matrices are essentially
on-shell equivalent. We calculate proton-nucleus elastic scattering observab®é®fdCa, and?*®b be-
tween 100 and 200 MeV laboratory energy. We find that the elastic scattering observables are insensitive to
off-shell differences of the employedN t matrices. A more detailed investigation of the scattering equation
and the optical potential as given in a factorized approximation reveals that the elastic scattering observables
do not sample th& N t matrices very far off-shell where they exhibit differenc$0556-281®8)03903-X]

PACS numbgs): 25.40.Cm, 21.30.Fe, 24.10.Ht

[. INTRODUCTION potential models for thé&IN interaction recently developed
by the Nijmegen groupl] and the charge-dependei@D)
y jmegen g g p
Theoretical investigations of nucleon-nucledw) tran- ~ Bonn potential[2]. With NN transition amplitudes derived
sition amplitudes in their off-shell domain have a long his-from these potentials we calculate full-folding optical poten-
tory in the study of few and many-nucleon systems. Often%'als and elastic scattering observables for proton scattering

: P ; ; rom a variety of nuclei in the energy regime between 100
thc;se tl_n\llestlr?_aaogs We.Le '?ﬁs lr\1|c|ubs ve dlg? 0 ththaGN er and 200 MeV projectile energy. Although the off-shell struc-
potentials which describe observables with equally e of theNN t matrices is an important ingredient in the

high accuracy. Current interest in this issue is driven by th g cyations, we find that off-shell differences between the
recent development dN potentials which below pion pro-  mqodels are not discernible ByA elastic scattering.
duction threshold describe th¢N data base with &? per In order to understand this result and obtain more insight
datum~1 [1-3]. Transition amplitudes derived from these as to which regions of the off-sheéllN t matrix are sampled
potentials can be considered on-shell equivalent. Their difin a calculation ofNA elastic scattering observables, we use
ferent theoretical derivation gives rise to different off-shellthe optimum factorized or off-shellp formulation of the
extrapolations. optical potential. This formulation, quite a good approxima-
At intermediate energies elastic nucleon-nucled&d)  tion in the energy regime around 200 MeV and higher, has
scattering can be successfully described by the leading terthe advantage that the fully off-sheNN t matrix enters
in the spectator expansion of multiple scattering thddry ~ together with an on-shell density. _ _
6]. Here an optical potential is derived, which in its most ~ he structure of this article is as follows. First we review
general form is given by the expectation value of il in Sec: Il the reIevant expressions for the full-folding optical
transition amplitude and the ground state of the targepoter)tlal as u;ed in our calculations. In Sgc. Il we present
nucleus. This “full-folding” optical potential involves the elastic scattering results _for proton scattering from a variety
convolution of the fully off-shellNN scattering amplitude ©n Nuclei based on the Nijmegen and CD-Bonn potentials. In
with a realistic single particle nuclear density matrix. Sec. IV we present a detailed study on which off-shell re-
Recently, significant advances have been made in acc@©ns of theNN t matrix are sampled in a calculation of the
rately handling these off-shell degrees of freedom in elasti€@Stic scattering observables. This study is based on the fac-
NA scattering 7—11. Those studies have demonstrated thaf©fiZ€dtp approximation to the full-folding optical potential
an accurate treatment of the off-shell structure of tg  @nd is carried out at 200 MeV projectile energy. We end with
transition amplitude is needed for a proper account of th&oncluding remarks in Sec. V.
theory. In order to cleanly determineNfA elastic scattering
observables are sensitive to different off-shell structures of
realistic NN transition amplitudes, it is necessary to start
from NN potentials which describe tHéN data base with a The transition amplitude for elastic scattering of a projec-
high degree of accuracy. Our present study is based on th#e from a target nucleus is given 8]

Il. THEORETICAL FRAMEWORK FOR THE OPTICAL
POTENTIAL
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Tg=PUP+PUGH(E)T, (2.1 kﬁnﬁ%{""("‘%‘%” 26
where P is the projector on the ground sta®,) of the
target, P=|q)A><(DA|/<q)A|q)A>, Go(E)z(E_H0+i8)71, and
andU represents the optical potential. For the scattering of a
single particle projectile from aA particle target nucleus the g K
free Hamiltonian is given by,=h,+H,, whereh, is the kNNZE[k_ P+ E_K) (2.7)

kinetic energy operator for the projectile ahi}, stands for
the target Hamiltonian. In the spirit of the spectator expan-are the nonrelativistic final and initial nuclear momentum in
sion the target Hamiltonian is viewed a‘BA:hi"‘Zj;tiUij the zero momentum frame of tiéN system, and(:%(k'
+H', whereh; is the kinetic energy operator for théh  +k). The factory(P,q,K) is the Mdler factor for the frame
target nucleony;; the interaction between target nuclebn transformation{13], and p; represents the density matrix of
and the other target nucleorjs andH' is an (A-1)-body the target for either protons or neutrons. Evaluating the
operator containing all higher order effects. In a mean fieldpropagatoiy;(E) of Eg. (2.2) in the nucleon-nucleus center-
approximation®; .jv;j~W, , whereW,; is assumed to depend of-mass frame vyields for the energy arguménof the NN
only on theith particle coordinate. In this present work we gmplituder,; of Eq. (2.5
want to concentrate only on the impulse approximation,
which is a good approximation in the intermediate energy [(A—1)/AK +P]?
regime (around 200 MeV projectile energy and higher E=Ena— .
where the influence oV, can be neglectef6]. Thus the
propagatoiGo(E) in the impulse approximation is given as HereE,, is the total energy in thBlA center-of-mass frame
_ _ i T andmy is the nucleon mass. The second term corresponds to

Go(BE)~Gi(B)=[(E-E)—ho—hi+ie]™%. (22 0NN center-of-mass energy. The expression for the optical
HereH', having no explicit dependence on ik particle, is ~ Potential as given in Eq2.5 shows that the evaluation of
replaced by an average enefy In the present calculations the full-folding integral requires th&IN t matrix fully off-
we setE'=0. In the energy regime considered in this work, Shell as well as at positive energies frdy, to negative
the effect of a value of' of the order of the separation energies7,8,11.
energy of a nucleon from a nucleus is negligifld,12.

The driving term of Eq(2.1) denotes the optical potential,  [ll. PROTON ELASTIC SCATTERING OBSERVABLES

which in first order is given as

amy (2.9

In this paper the study of elastic scattering of protons
/ (L’ from spin zero target nuclei at energies between 100 and 200
(k' [{PA[PUP[®)]k)=U (K" k) MeV incident projectile energy is strictly first order based on
- the impulse approximation. The full-folding optical poten-
:i;n:p (K'[( D al 70i ()| P p)[K). tials are calculated according to E@.5). The details of the
' calculations are given in Ref§10,11]. As a model for the
(2.3 density matrix for the target nucleus we employ a Dirac-
Hartree(DH) calculation[14]. The Fourier transform of the

!
Here k” and k are the external momenta of the system.ecior densityo(r’,r), serves as our nonrelativistic single

70i(€) represents thalN transition operator particle densityf10]. The crucial ingredient under investiga-
. . tion here is the fully off-sheINN t matrix. The calculations
T0i(E) =v0i +v0i0i(E) 70i(E), (2.4 presented here empldyN t matrices based on two different

. . . , potentials given by the Nijmegen grod@ip] and the charge-
with g;(E) given in Eq.(2.2) andvy representing thé&iN  genandent Bonn potentif2]. All three potentials are fitted
interaction. The sum over in Eg. (2.3 indicates the WO  +5 describe the Nijmegen data base with%per datum~1.
different cases, namely, when the target nucleon is or& of ap essential difference between the two Nijmegen models is

protons, and when it is one & neutrons. The energy is  he presence of a momentum dependent, nonlocal term in the
the relative energy of the interacting two-nucleon systemg.qpiral piece of the Nijml potential, whereas the Nijmli

Inserting a complete set of momenta for the struck target,,qel is strictly local. Both Nijmegen potentials haveca

0<q,K>=i2 dePmP.q.K)%m

nucleon before apd after t_he col!ision anpl evaluating_the MOber datum=1.03 with respect to both the neutron-proton and
mentum co_nservm@ functlon_s gives as final expression for proton-proton data base. The CD-Bonn potential is non-
the full-folding optical potentia[10,12 local due to the structure of the relativistic meson-nucleon

1/A+1 vertices. An additional nonlocality is contained due to the

q'E(TK_P) ,g}, so-called rr_unlr_nal relat|V|t_y_fa_ctors/_ m/_E, Wh|ch_are neces-

=n.p sary to maintain the relativistic unitarity condition. The CD-
Bonn potential also describes the Nijmegen data base with a

p.( p_ A-lgq = A-1 9) 2.5 x? per datum=1.03. All three potential models describe the
! A 2’ A 2) ' Nijmegen data base with the same high degree of accuracy,

R thus theNN t matrices can be considered on-shell equiva-
Here the arguments of theéN amplitude ry; areq=k’ —k lent. From their different theoretical derivation it can be ex-
=k{n—Knn @nd 3(kyn+kan) = 3[(A+1)/AK—P], where  pected that they have different extrapolations off-shell.
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do/dw(mb/sr)

A.Y

0 20 40 60 80 o
0.m (deg)

FIG. 1. The angular distribution of the differential cross section 1.0 F L
(do/dQ), analyzing powerA,), and spin rotation function) are '
shown for elastic proton scattering frotfO at 200 MeV laboratory 0 20 40 60
energy. The solid line represents the calculation performed with a Hc‘m'(deg)
first-order full-folding optical potential based on the DH density
[14] and the CD-Bonn moddR]. The dashed line uses the Nijml FIG. 2. Same as Fig. 1, except that the target nucled&Gs.
model instead, the dash-dotted line the Nijmll mofdgl The data  The data are taken from Rd20].
are taken from Refl19].

R proton scattering from*®0 at 135 MeV. Again, all three
When calculatingJ (q,K) as given in Eq(2.9), itisto be  potential models lead to nearly identical results.
understood that all spin summations are carried out. This We do not want to carry out further studies at lower en-
reduces the requireN t matrix elements to a spin inde- ergies, since it is well known that the impulse approximation
pendent componer(corresponding to the Wolfenstein am- alone is not adequate to describe the scattering observables at
plitude A) and a spin-orbit componeftorresponding to the lower energie$6,7,11. We prefer to pursue further investi-
Wolfenstein amplitudeC). Since we are assuming that we gations to find out why expected off-shell differences in the
have spin saturated nuclei, the components ofNbhet ma-
trix depending on the spin of the struck target nucleon van- __
ish. The Coulomb interaction between the projectile and the
target is included using the exact formulation of Ré5]. }
At first we want to concentrate on proton scattering from g
different target nuclei at 200 MeV projectile energy. In Fig. 5
e,
~
S
<

1 we display the differential cross sectidr/d(), the ana-

lyzing powerA, , and the spin rotation functio for elastic

proton scattering fromt®0. The solid line represents a cal-
culation employing the CD-Bonrt matrix as input, the
dashed line is based on the one derived from the Nijml po-
tential and the dash-dotted line the one derived from the _#
NijmIl model. All three calculations are remarkably close to
each other, and all three fail to describe the dips in the ana-
lyzing power. The same statement is true for proton scatter-
ing from #%Ca at 200 MeV, which is displayed in Fig. 2. In

Fig. 3 we show the elastic scattering observables for proton
scattering from?°%Pb at 200 MeV. Again, all thredIN po-

tential models give nearly identical results, however the spin &
observables are described slightly better &iPb.

At lower energies the scattering observables may exhibit a
somewhat larger sensitivity to the energy dependence of the
NN t matrix due to the closer proximity of the deuteron pole
and the virtual'S, state. In order to study the sensitivity of 2 (deg)
the NA scattering observables to differeNN t matrices at e
lower energies we show in Fig. 4 the observables for proton FIG. 3. Same as Fig. 1, except that the target nucled&Rb.
scattering from*°Ca at 160 MeV and in Fig. 5 the ones for The data are taken from RdR0].
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1 ki 1 [(A+1)/Aky]?
&= EO—Z oy 2 2 . 4.9
Herek,,, andk, are the on-shell momenta in the laboratory
and NA system, respectively, anthy is the mass of a
nucleon. Second, thdN t matrix and the Mder factor are
expanded inP around a fixed valud,, determined by the
requirement that the contribution of the first derivative term
is minimized. For elastic scattering the contribution vanishes
if Py is chosen to be zerfd6,17]. With these assumptions,
the expression for the optical potential in the optimum fac-
torized form is given as

N “ A+1
Ufac(q,K)=_2 U(qu)TOi(quKyEO)Pi(q)-
i=p.,n
(4.2

In this form the nonlocal character of the optical potential is
solely determined by the off-sheMN t matrix and the

FIG. 4. Same as Fig. 2, except that the projectile energy is 16Mdller factor. If we now consider the integral equation for

MeV. The data are taken from RgR21].

potential models are not visible in the elasNA observ-
ables.
IV. INVESTIGATION OF OFF-SHELL DIFFERENCES

In the full-folding optical potential as given in E42.5
the energy of propagation in tiéN t matrix is coupled to

elasticNA scattering as given in Eq2.1), we see that only
the second term in the right-hand side of Eg.1) contains
the integration over the optical potential. The driving term,
Ufac(k(’),ko,E) contains theNN t matrix evaluated at the
fixed momenta; andkg, multiplied with the density profile
pi(q). In this case the momentum vectagsand K are q
=ky—ko andK = 3 (k{+ko).

In order to study off-shell effects, we define the following

the integration variable. This makes it difficult to access ef-duantity:

fects resulting from the off-shell structure of thEN t ma-

trices separately. For this reason, we prefer to carry out the
following study using the optimum factorized form of the
optical potential, which has been shown to be quite a good
approximation to the full-folding expression at projectile en-

= o Urdkp K" E)T(K" Ko, E)
d k//
0

B(kj,ko,E)= lim
(Ko-ko.E) E—E(K")+ie

e—0

4.3

ergies of 200 MeV and highgf 1]. The optimum factorized whereT(k” kq,E) is the solution of Eq(2.1), obtained us-
form is characterized by two approximations. First, the ening the optical potential in the factorized form. Here

ergy £ of the NN t matrix in Eq. (2.5 is fixed at half the
projectile energy(in the laboratory frame

B(kg.ko,E) represents the integral on the right-hand side of
Eqg. (2.1), and thus the quantity in which the optical potential
U enters off-shell when calculating,. Since the nuclear
density in momentum space is a function strongly peaked for
small momenta, we may conjecture that the density will
dominate the falloff behavior dfi;,(kj.k”,E) for large val-

ues of the integration variable’. To investigate this more
closely, we write Eq(4.3) as

Kmax
B(k(l)akOaE): lim f dQ”J' dk"an
0

e—0

X&ﬁ%xmanwxma
E-E(K')+ie

, (4.9

and study the behavior &(k;,kq,E) as a function ok .
SinceB(kg,kq,E) depends on vector variables, we actually
haveB(kg,kq, 6,E), whered is the angle betweeky, andkg.

In Fig. 6 we show the real part B¢k, .k, 8,E) for different
values ofkpay for neutron scattering front®0 at 200 MeV
projectile energy, and in Fig. 7 for neutron scattering from

FIG. 5. Same as Fig. 1, except that the projectile energy is 135°Zr at the same energy. We see that in the casé®@fan

MeV. The data are taken from RgR2].

integration up tKya= ko+ 1.0 fm™ 1 is already sufficient to
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2.0x107 . . . . . 1.6x10% . ; ;

—— full calculation s
—— = Ky =k, + 1.0 fm" 1.2x10°

full calculation

: ——— Ky =k, +1.0fm"]
—-— k,, =k +05fm’ max g
mas = K + —-—- Kk, =ky+05fm’
_ e K = Ky +.125 fm
' >
> < 80 x10% L 1
2 *0 (n,n) at 200 MeV &
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S 1.0x107 . <
& e *Zr (n,n) at 200 MeV
& 2 40x10°} .
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e o
o
0.0x10° |
4.0 x10°® . \ . . . .
0.0 x10” : ' ' : 0x10 0 100 200 300 400 500 600 700
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FIG. 6. Th | ¢ the functidb(k. k- 6.E) as defined i FIG. 7. Same as Fig. 6 that the nucleus’i&r. The solid line
- 6. The real part of the functidB(ko,Ko, 0,E) as defined in o, 0 sants the full calculation, the dashed line, which coincides with

3 (S
Eqg. (4'4)1{? nelf_téolr_] scattering fronLOfa}l 20? Nlle\_/ Iabﬁratgryh H:e solid line, represents the calculation with an upper lipi, in
energy. The solid line represents the full calculation, the dasheg, . integration ofka= Ko+ 1.0 fm~1, while the dot-dashed line

line, which coincides with the solid line, represents the (:alculationrepresents a calculation usikg,,=ko+0.5 fm L. For the dotted
with an upper limitk,,,., in thek integration ofk .= ko+ 1.0 fm 2, line K= ko+0.125 i ! was lj;edo ' '
max . .

while the dot-dashed line represents a calculation ukjpg= kg
+0.5 fm L.

obtain the full result. In the case 8fZr one only needs to

integrate tokma,= Ko+ 0.5 fm~ ! to have a result identical to 1010
the complete integral. In both cases~3 fm~1. When con-

sidering the imaginary part &(kq,kq, 6,E) we arrive at the

same conclusion. We carried out similar tests at different

energies and arrived essentially at the same valuek,fgr oo |-

for the two different nuclei. Assuming that the nuclear den-
sity is responsible for the fast falloff of the optical potential —
as function ofk’, this finding is not surprising. From Figs. 6 7,
and 7 we also see that for a heavier nucleus the contributior
beyond the on-shell valuk, is much less than for a light g
nucleus. Again, this is not too surprising, when one recalls <.
the functional form of the nuclear density profiles. The den- 5
sity profile p,(q) for the proton distribution of'°O has its
first minimum atq~ 2 fm~!, whereas the proton distribution
of 9Zr has its first minimum ag~1 fm™ 2.

In order to verify that the functional form of the density is
the limiting factor for the range of the integration, we iden-
tify in Eq. (4.4) T(K" ,ko,E) as well asU(ko,k”,E) with
the densityp(|k” —ko|)==i_p npi(|K”"—Ko|) to obtain

Kmax 30110 0.0 16 0 26 0 36 0 46 0 56 0 66 0 70.0
B’(ké,ko,E)=|imfdQ”f0 dK'K"2 0 100 200 300 400 500 600 70

"®0 (n,n) at 200 MeV

-1.0x10™

—— full calculation
= ——- k,,, =k, +1.5fm”
o —-— Kk, =k, +1.0fm"
o

20x10™ |

0., [degrees]

e—0

FIG. 8. The real part of the functioB’ (kq,kq, 6,E) as defined

XP(|k"— ko) p(|k"—kol) 4.5 in Eq. (4.5 for %0 at 200 MeV laboratory energy. The solid line

E-E(k")+ie ' represents the full calculation. The dash-dotted line represents the
calculation with an upper limik,4 in the k integration ofk,x
and repeat the above study, namely, consii€k, kg, 6,E) =Kko+1.5 fm~1, while the dashed line represents a calculation us-

as a function ofk,,. In Fig. 8 we plot the real part ing kya=Kko+1.0 fm 2.
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FIG. 9. The Wolfenstein amplitude Rékyy.knn,Eo) for np FIG. 10. The difference of the Wolfenstein amplitudes

scattering at 200 MeV obtained from the Nijml poten{ia]l. The  ReA(k{y.Knn:Eq) Obtained by subtraction the amplitude obtained
angle betweelkyy andky, is chosen to be zero. The contour lines from the CD-Bonn potential2] from the one obtained from the
represent steps of 0.2 MeV finThe “skew box” represents the Nijml potential[1]. The angle betweekyy andkyy is chosen to be
region of momenta, which is accessed by a calculation ofNlle  zero. The contour lines represent steps of 0.2 MeV. fm

scattering observables as described in the text.

, o _ _ at kyn=Kk{ny=1.55 fm 1. The region which enters a calcu-
ReB’ (ko ko, 0,E) using different integration ranges. The re- o0 of N A scattering observables is again indicated by a
sultis similar to the one in Figs. 6 and 7. Considering Fig. 8.skew box.” Within this box there are essentially no differ-

Lhi fgpff_?og‘d fotrh th_etlnte(_i]r_al Ecaz be_ constraT(_ad tcénces between the amplitudes. The largest difference is lo-
o+ 1.5 fm™". Since the integral in EqA4.5) is symmetric cated in the upper right corner of the “skew box” almost

about the qn—shell value, theillower bou.nd of mtegratlon. Carbpposite the on-shell point, and is about 6% of the total value
be constrained tky,—1.5 fm™*. An estimate of approxi- of ReA

mately the same size was reported in Hé8], where the

h der the falloff behavior of th wm di In Fig. 11 we show the difference between the real parts
authors consider e falloft behavior of the momentum diS<n¢ yhe \yolfenstein amplitudes derived from the Nijml and
tribution of their off-shell density matrix to arrive at their

. Nijmll potentials. These two amplitudes show off-shell dif-
conclusion.

After having found that only a limited region of tieN t ferencei of 1 Mev frh and larger for values oknn=Kyy
. : ; . ~4 fm~*, which corresponds to a difference of about 160%
matrix enters a calculation o A elastic scattering observ-

ables, we need to project this region, naméys 1.5 fm- 1 in the two amplitudes. However, in the region which is
on théNN t matricgs é\nd see if gtJhterr’1atrices gm. lo ed’in sampled byNA scattering calculationg 'skew box”) both

our calculations differ in this restricted regionp T>;1us we amplitudes are nearly identical in the lower left half around
show first in Fig. 9 the real part of the off-shell Wolfenstein the on-shell value. Larger differences between those two po-

: , . tentials are located in the upper right corner furthest away
amp"t,‘,ideA’ Reo‘,(kNN'kNN’EP)’ at 200 Mev Iobtamed ffoM  ¢rom the on-shell value. For the other Wolfenstein ampli-
the Nijml potential as function okyy and k. Here the

X tude, which enters our calculations of eladtlé\ scattering
angle betweetkyy andkyy is chosen to be zero. The value gpservables, we obtain similar conclusions. A close inspec-
of the on-shell momentum is located Bf\=kyn=1.55 tion of the scattering observables for the light nucf® and
fm~ 2. It should be noted that the values of R the plotted  40C3 in Figs. 1 and 2 shows that the dash-dotted curves
domain range between 0.6 and3 MeV fm®. Since the representing the calculations with the Nijmll model can be

study of the integration bounds in the integBtk,,ko,0,E)  distinguished from the other two curves, especially at larger
was carried out using momenta defined in & system, we

use Eqgs(2.6) and(2.7) to transform the bounds to momenta
given in theNN system. As a reminder, since we work in the
optimum factorized form, the momentufin Egs.(2.6) and
(2.7) is zero. Using these transformations, which are explic-
ity given as k{y=3[(L/A+3)k{+(LA—-1)k"] and kyy
=3[ (L/A—1)ky+ (L/A+3)k"], we obtain the “skew box”
given in Fig. 9 as region of thBIN t matrix whose values
enter theNA scattering equation.

Next, we display in Fig. 10 the difference between the
real parts of the Wolfenstein amplitudesA&R&yy ,Knn,Eo)
given by the Nijml and CD-Bonn potentials, again as func-
tion of kyn, kyy and the angle between the two vectors
being zero. First we notice that within the plotted region the
off-shell differences between the two amplitudes is relatively Fjg. 11. Same as Fig. 10, except that here the real part of the
small. Only for kyy=Kkyn~5 fm~* there is a difference wolfenstein amplitude: obtained from the Nijmll potential is sub-
larger than 0.2 MeV fri Again, the on-shell value is located tracted from the one obtained from the Nijml potential.
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angles. However, the differences in the observables are stiitudy the regions of theN t matrices, which are sampled in
quite small, indicating the calculations are dominated by the calculation ofNA elastic scattering observables within the
area around the on-shell value. Thus we can see, that abff-shelltp or optimum factorized approximation to the full-
though the Wolfenstein amplitudésandC derived from the  folding optical potential. In this approximation the off-shell
different NN potentials under study exhibit differences for character of the optical potential is solely determined by the
large off-shell momenta, the off-shell region which is off-shell NN t matrix. This feature allows us to determine
sampled inNA elastic scattering calculations is restricted towhich region of off-shell momenta for a fixed energy slice of
an area close to the on-shell value and thus does not prollee NN t matrix enter the calculation. Our investigation of
those far off-shell regions where the larger differences occurthe rescattering term of the Lippmann-Schwinger equation
shows that the off-shell dependence of the optical potential is
V. SUMMARY AND CONCLUSION limited by the nuclear density, which in momentum space is
) i a strongly peaked function for small momenta. It is well
In this paper we addressed the question of whethegnown that the heavier the nucleus becomes, the stronger is
nucleon-nucleus elastic scattering observables are sensitiygat forward peaking. This property of the nuclear density
to different off-shell structures dfiiN transition amplitudes prevents far off-shell momenta of theN t matrix from en-
derived from realistidNN potentials. Our study is based on tering the optical potential and thus theA scattering ob-
the recently developed potential models Nijml and Nijmll by servaples. The coincidence of the calculations based on the
the Nijmegen group1] and the charge dependent Bonn po-gitterent realisticNN potentials strongly indicates that only
tential[2]. All three potentials models describe the Nijmegeny_shell momenta close to the on-shell value of &l t
NN data base with &2 per datum=1.03. Thus the transi- ayrix are relevant foNA scattering. In this region the dif-

tion matrices derived from these models can be consideregl en potentials still give very similar results for theN t
on-shell equivalent. The Wolfenstein amplitudes, which eNnatrix.

ter our NA calculations, show considerable differences for Comparing our calculations of elastic scattering observ-

large off-shell momenta. However, these differences are no{pjes to experimental data, we still find some systematic in-
visible in theNA elastic scattering observables. abilities of the first order full-folding optical potential to de-
We _calculated elastic scatterlnglobservables for ProtoRcrine certain details for théNA scattering data in the
scattering from*®0, “°Ca, and®**b in the energy regime considered energy regime. However, we find the limitations
between 100 and 200 MeV projectile energy. Here we calyt the first order optical potential cannot be attributed to

culated the full-folding integral for the first order optical po- ncertainties associated with the off-shell behavior of the
tential using the impulse approximation within the frame- oqjistic NN t matrices employed.

work of the spectator expansion of multiple scattering
theory. In addition to th&N t matrices from the three above
mentioned potential models our optical potentials employ a
Dirac-Hartree model for the nuclear density matrix. Recoil The authors want to thank W. Gikle for many stimulat-
and frame transformation factors are implemented in the caling, helpful, and critical discussions during this project. This
culation in their complete form. We find that the elastic scat-work was performed in part under the auspices of the U. S.
tering observables based on the three different potentidbepartment of Energy including Contract No. DE-FG02-
models are almost identical. A very similar result has beer®3ER40756 with Ohio University. One of {®.H.) would
obtained in Ref[7]. This work employs different density like to thank the Deutsche Forschungsgemeinschaft for their
matrices and is based on the Paris potential and inversiosupport. We thank the Ohio Supercomputer Ceti@80
potentials which are constructed to be phase-shift equivalerfor the use of their facilities under Grant No. PHS206 as well
to the Paris potential as well as to the experimentally exas the National Energy Research Supercomputer Center
tracted phase shifts. (NERSQ for the use of their facilities under the FY1997

In order to better understand our numerical results, weMassively Parallel Processing Access Program.
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