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Nuclear breakup of Borromean nuclei
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We study the eikonal model for the nuclear-induced breakup of Borromean nuclei, ‘dsirand 6He as
examples. The full eikonal model is difficult to realize because of six-dimensional integrals, but a number of
simplifying approximations are found to be accurate. The integrated diffractive and one-nucleon stripping cross
sections are rather insensitive to the neutron-neutron correlation, but the two-nucleon stripping does show some
dependence on the correlation. The distribution of excitation energy in the neutron-core final state in one-
neutron stripping reactions is quite sensitive to the shell structure of the halo wave function. Experimental data
favor models with comparable amountssandp waves in the!'Li halo. [S0556-28188)03503-1]

PACS numbses): 25.60.Gc, 25.70.Mn, 21.45v, 27.20+n

I. INTRODUCTION during the interaction time, provided we take the interaction
from nucleon-nucleon scattering. The energy domain around

Halo nuclei having a very weakly bound neutron fafr 250 MeV has an additional advantage from a theoretical
ten referred to as Borromean nuglare interesting objects, point of view: The real part of th& N forward-scattering
but they are difficult to study experimentally. Secondary in-amplitude goes through zero in this vicinity, so only the ab-
teractions in radioactive beams have been an important toosorptive part of the interaction needs to be treated in the
with Coulomb excitation providing quantitative data abouttheory.
the excitation propertiefl,2]. Nuclear excitation is also im- The nuclear excitation of Borromean nuclei have been
portant from an experimental point of view, but the theoret-considered by a number of authdrd-14. In treating the
ical interpretation of nuclear reaction cross sections deservedifferential cross sections, it is common to make a number of
closer attention. In this work we attempt to make a link, asSimplifying assumptions. We list them here.
quantitative as possible, between the nuclear excitation ob- (i) Ground state wave functioNeutron-neutron correla-
servables and the fundamental properties of a Borromea}ionS Were neglected in Refig]. We shall apply wave func-
nucleus. The fact that correlations can play an important roldons that ha\(e the full threg—parhcle cqrre}aﬂons_. .It turns out
makes this goal more difficult than for a nucleus with athat differential cross sections are quite insensitive to these

single-nucleon halo. On the experimental side, we have beesogvila;':nesf}ei)t(c?ﬁééhgng’g}r_}e::trig?e nggé?g’cg:'gzldofes_
inspired by the work ontlLi carried out at Ganil, NSCL, ' P P y

scribe pure configurations, so a mixture ©fand p waves
RIKEN and most recently at GSI. The extremely large Cou-requires a correlated model.

lomb breakup cross section shows the halo character of the (ii) Reaction modelln this work we use an eikonal model
nucleu;, but th(_a details of its wave function have been Cc’ndescription of the nuclear reaction, improving on the black
troversial. Starting from the shell model, two of L& con-  4isk model of Ref[8].

measurementdl]. It had a dominanp,, shell configuration,  final-state neutron-core potential in calculating the energy or
as one expects from Hartree-Fock theory. However, severghomentum spectra, as demonstrated in Réfs,14). Refer-
measurementsee, for example, Ref5]) and also the spec- ence[9] also included the final-state interaction, using a
troscopy of the nearby nucleu$Be suggest a leading?,, zero-range neutron-core potential. Our detailed models de-
configuration in*Li. scribed here use a realistic finite-range potential in both the
In principle, a nuclear-induced breakup gives independeniitial and final states.
information and so it is desirable to calculate the various We shall investigate the validity of these as well as other
cross sections and compare with experiment. A recent exapproximations that are often made. Our main interest is the
periment [6] was carried out on a'’C target at sensitivity of experiments to the properties of the halo
280 MeV/nucleon. At that energy it is justified to treat the nucleus. In a previous wofd 5] we developed models of the
target-projectile interaction in the sudden approximation, us+!Li ground-state wave function with differing amountsof
ing the NN forward scattering amplitude for the interaction. wave. One of our objectives is to see how well the amount of
Thus we may neglect the evolution of the wave functions wave can be determined by the observables in a breakup
reaction. The observables we consider are integrated cross
sections for diffraction and one- and two-nucleon removal
*Present address: Departmeitt Rhysik und Astronomy, Univer- and the differential cross section for the excitation energy in
sitat Basel, CH-4056 Basel, Switzerland. the °Li+n final state when one neutron has been removed.
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Il. REACTION MODEL overr, andr, become independent in a shell-model repre-

The sudden approximation leads to the eikonal model forc,entgtlon Of\.PO such as Eq(ll_). _Anot_her simplifying ap-
roximation is thetransparent limit defined here by setting

nucleus-nucleus interactions. In previous studies, we hav!

applied the model to the nuclear-induced breakup of singIeJE e factorS; (R,) equal to one inside the expectation value of

nucleon halo nucleil6]. Here we apply it to the breakup of Eq. (2), thus neglecting the absorption of the second neutron.

a two-neutron halo nucleus. The effect of the interaction withThese two assumptions yield the cross section

the target is to multiply the halo wave function by the profile

functionsS(R;) for each particle, wher&; denotes the im- Uln—st,transzzf 2R X(RN(1-S4R+r1,)). (5
pact parameter of particiewith respect to a target nucleus.

The halo nucleus'Li has two neutrons and dLi core, . S

requiring two profile functionsS, and S, associated with Note that this cross section is identical to the sum of the
neutrons and the core, respectively. There are three int&n€-neutron-stripping cross section and two times the two-
grated cross sections that leave the core intact, namely, tH¥Utron-stripping cross section,

diffractive, the one-nucleon stripping, and the two-nucleon

stripping cross sections. These can be written T1n-sttrans= O1n-stT 202 st- (6)
B s ) We will see later that the two-neutron-stripping cross section
ogit= | d"Renf{[1—Se(Re)Sn(R1)Sh(R2) %) is rather small, so the transparent limit is a good approxima-
5 tion for this cross section.
—([1—Se(R)Sh(R1)Sh(R2) )%} (1a) Of course, much more information about the halo is con-

tained in differential cross sections. The diffractive cross sec-
tion has three particles in the final state, but that distribution
is beyond what we can calculate, requiring three-particle
continuum wave functions for many partial waves. The one-
neutron stripping leaves two particles in the final state and
the differential cross section for that state is amenable to

— 2 2 2 2 computation. The expression for the momentum distribution
Tinest zf A Rem(Se(Re)S(RIIL =SR], () associated with the relative motion of the two surviving par-

= f d2Renf (SA(R:)SA(Ry)SA(Ry))

_<Sc( Rc)sn(Rl)Sn(R2)>2]: (1b)

ticles is
Tana= | PR SR SR SR, o
S
3 W=2Jd2Rl[1—Sﬁ<Rl>]f o M(Ry. o012,
whereR,,, is the impact parameter of the halo nucleus with @)

respect to the target nucleus afidenotes a ground-state wherer . is the center-of-mass coordinate of the remaining

e;(gsscetzt'im;ﬂgeéf?ﬁé ?é?;%tﬂ:ﬁpgﬁg:g%?ggfg& neutron-core system with respect to the stripped neutron; the
P £ associated impact parameter with respect to the target

r,. An exar_npl_e of_ the needed expectation values is the ON&: cleus is denoted BRyc. Rpo=Ry+ 15, . The amplitude
nucleon stripping integral

M is given by

$2S2(1-S2 =Jd3r d3r,|Wo(ry,ry)|2S2(R
(SS78) = ] Fndralolra PSR M= [ (S RISRI V(i) (8)
X SR+ 12 )[1=Si(R+r11)]. (4)

Here ,(r>,) is the continuum wave function of the surviving
The integrations are here performed for fixBgd,, so R; neutron-core system, normalized to a plane wave at infinity.
depends on the integration variableR;=R.n,—(r1,  The coordinate®;, R,, andr, are expressed in terms of the
+1,,.)/(Ac+2), whereA. is the mass number of the core integration variables afR.=R,.— 5, /(A.+1), Ry,=Ry
nucleus. +ro, Ac/(Act+1), andri=—ry.+ry/(A+1).

The six-dimensional integration in E¢4) is very time The numerical calculation of Eq8) is rather difficult
consuming to carry out unless some simplifications are madgecause of the form of the ground-state wave function that
in the wave function or in the profile functions. We shall we apply (see the next sectionA major simplification is
consider two simplifying approximations. The first is the-  achieved by adopting the approximation=—r,. in the

recoil limit in which the impact parameter of the cdRg is  ground-state wave function. The amplitude is then given by
assumed to coincide with the impact paramd®gy, of the

halo nucleus. The core profile functiors, can then be taken ) 5
outside the expectation value. In addition, the integrations M ZJ Ao (r2) Se(Re) Sh(R)Wo( —rac,r2). (9

An even simpler approximation is to ignore the recoil cor-
IAs discussed later on, the no-recoil limit differs from the exactrection in the argument of the core profile function, i.e., set
calculation only in the case of diffraction. R.=R,., and use the transparent limit for the second neu-
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TABLE I. Parameter of the different models used in comparing the different cross sections. The first
model (p89) uses the same potential foandp wave, whereas the other two use a deeper potential for the
s wave(and all other eveh waves. The strength of the-wave potential is essentially fixed by the position
of the p,,, resonance. The lowest two entries give the properties of the uncorrelated-pane p-wave
models described in the text.

Model Esg Vs (MeV) ag (fm) 51, (%)  p1p (%) 12 (fm?)  (ri—r)* (fm?)  (r +r,)2
2]
(fm?)
p89 —0.295 —35.4 +1.7 4.5 89.1 29.4 42.8 18.7
s23 —0.295 —47.5 —5.6 23.1 61.0 37.7 45.9 26.2
s50 —0.292 —51.5 —90. 49.9 33.9 53.8 70.1 36.2
S 100 45.0 90.0 225
p 100 27.5 55.0 13.8

tron, i.e., setS,(R,) = 1. We shall refer to these approxima- model, we can only produce wave functions that are pre-
tions as theno-recoil transparent limitwhere the amplitude dominantlys wave by using neutron-core potentials that pro-

reduces to duce extremely large-wave scattering lengths. The param-
eters of the potential for the odd-parity states are fixed by the
M”=S.(R d3r. U W o(=Toe . To). 10 position of thep,,, resonance, which we assume to be at
2 2°)J F2¥ic (2) Vol ~F2c.r2) (10 E, =540 keV as suggested by measurem¢n&. It should

) S ) o be mentioned that other experimefisl 9,20 have extracted
This approximation is used in Ref,14]. We will discuss  ifferent values for the resonance energy. In addition to the
the validity of the various approximations in Sec. VI C be- g \yave probability, these wave functions show significant
low. differences. The single-particle densities of the three models

are shown in Fig. 1. It may be seen that the halo is more
ll. THE THREE-BODY WAVE FUNCTION extended the larger thewave probability. This is also ap-

In Ref.[15] we constructed several three-body models Of'ﬁ)g[)elgtl from the mean-square neutron radii computed in

11 ; ;
Li. The models are based on Hamiltonians that all repro- . . .
duce the empirical neutron-neutron scattering length and all The integrated dipole strength for Coulomb breakup is

rave a g sy of e e oy Syse oss fo nECRErna © e e suare adus of e et
empirical value of 29% 35 keV[17]. The single-particle po- 9 :

tentials and the density dependence of the neutron—neutro%btalned with thep89 wave function is consistent with the

interaction are varied to produce different probabilitiess of '?OX(?%?T1er'll:[r?ll,|sc\(/)vlélc::r;]r?ng:er2k:% ?#;tﬂ\?vﬁa?vgeghunectliinm;;rr]eal-
andp waves in the different models. Details of the procedurelstiC n. 9
and two of the models are given in Réfl5]. The wave ’

: : ; . Another important property of the wave function is the
functions are calculated in the form of single-particle states : . ,
; correlation between the two neutrons. The integrated dipole
u(r) and amplitudesr as

strength is proportional to the dineutron-core mean-square
radius, which in turn depends on the matrix element of

‘I’O(Flfz):zj 2’ @jnnUijn () Uy (r2)[(18) (1)1, r1-T», as shown in3]. In that work it was found that the
Jonon
11

wherer, and Fz are neutron-core separation vectors. The
indices (s)’ label the single-particle, spin-angle wave func-
tions that are coupled to zero total angular momentum as
indicated by the superscript on the bracket. The indices

label the radial quantum numbers of the single-particle basis
states. These states are discretized by putting the system into
a spherical box of large radiugypically 40 fm).

We will specifically examine the observables for models
having 4.5%, 23%, and 50% waves. Their characteristics
are given in Table I. The first modpB9 is similar to the one
used in Ref.[3]. The other models23 ands50 are con-
structed with a deeper neutron-core potential for even-parity,
single-particle states to increase si@ave component in the
ground-state wave function. An important property of the
Hamiltonian is thes-wave scattering length of neutrons on  FIG. 1. Single-particle density of halo neutrons in various mod-
the core nucleus. Within the constraints of our three-bodyels of *Li.

r(fm)
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correlation increased the dipole strength by 43%. This en- : 845
hancement does not depend very much on the model; witt 796

the present wave functions it is in the range 30—40 %.

We also constructed- and p-wave independent-particle
models for comparison purposes. In these models, the single
particle potential is adjusted to match the exponential falloff 285
of the single-patrticle density that is obtained with the three-
body models23 mentioned in Table I.

261
Gel G

1-s2
(1-5)?
217

re

206
IV. PROFILE FUNCTIONS

We now specify the profile functionS, and S, that we
use for our cross-section calculations. The neutron profile
function S, in the eikonal approximation is expressed in
terms of the density of the targgt and the nucleon-nucleon
cross sectiorr,, as

2
re -85

nl2c oLi 12
280 MeV/n 800 MeV/n

. . . FIG. 2. Cross sections for nucledfC scattering and for
We model the density of thé’C target with the harmonic 9| j12c scattering. Experimental cross sections are shown on the

oscillator fit to the charge density of R¢R1], left with an error band indicated by the thick line. On the right are
the cross sections computed with our profile functions.

. (12

S(b)=ex;{ - % f dz py( Vo2t 2)

p(r)=po[ 1+ a(r/a)2]e "2, (13
These are compared with experiment in Fig. 2. The nucleon-
with a=1.687 fm andae=1.067. The nucleon-nucleon cross carbon reaction cross section is taken from the proton cross
section is taken from Ref22]; it is 29.2 mb at 280 MeV section data tabulated in R3], quoting Ref.[24]. The
beam energy. total cross section for nucleon-carbon scattering is taken
The reliability of the model can be checked against thefrom the neutron measurements of R@b|. The experimen-
nucleon-carbon cross sections. The predicted reaction ardl elastic cross section is deduced from the difference be-
elastic cross sections in the eikonal model are tween total and reaction cross sections. The agreement be-
tween our parametrization df, and experiment is close
enough that we will not attempt to adjust the profile function

are=J dzb[l—Sﬁ(b)], (14)  to make a better fit. In Sec. V we will discuss how the cross
sections in halo nuclei depend on the nucleon-target cross
sections.
The core-target profile function requires the convolution
— 2 _ 2
Tel= J d"bl1=Sq(b)]% 19 of both densities

sc(b)=exp[—%fdx dyf deC[\/(x—b)2+y2+zz]fdz’pt(\/x2+y2+z’2) .

For the density of’Li, we note that it has the same number mirror nucleus?C by Blank et al. [27]. They find a cross
of neutrons as'?C and we will accordingly take the same section of 812-34 mb to be compared with 796 mb obtained
parameters for the neutrons. The proton density does ndty our model.

have as many particles in thpeshell and we apply the pure For the “He core of®He we use a three-parameter Fermi
harmonic-oscillator model to determine(=1/3) and keep density function21]

a the same as in“C. The resulting®Li density is param-
etrized as in Eq(13) with a=1.687 anda=0.726. This
model gives a rms charge radius of 2.28 fm, slightly smaller
than the empirical charge radius 6ki, which is 2.39 fm.
However, the predicted cross section at 800 MeV/nucleon igjith w=0.517, ¢=0.964 fm, and z=0.322 fm. At
840 mb (assumingo,,=40 mb), just 5% larger than the 800 MeV/nucleon we find a total cross section of 546 mb
measured cross section of 796 mb from Ref.[26]. The (486 at 280 MeV/nucleogn again comparable with the ex-
cross section at 280 MeV/nucleon has been measured for theerimental result of 5085 mb[28].

p(r)=(1+wr?/c?)/{1+exd (r—c)/z]},
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'y 1 — ™ ™
I.’ Diffraction
20,7=110mb 0.8 i L-n Stripping - 1
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e 06f 87 ——em 1
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02
0 . .
0 5 10 15 20
b (fin)
. , . FIG. 4. Impact-parameter dependence of timeahd 2n strip-
n- IZC no core shadowing with core shadowing P P P P

ping and the diffractive cross sections. Also shown is the square of
FIG. 3. Breakup reaction cross sections fdki- 1C scattering.  the profile function of the core-target interactisf.
The left-hand histogram shows twice the?C cross sections as
needed in Eqg16) and(18). We compare them with the total cross nucleon and using the model pf6] we getol =68 mb,
sections without core shadowing{) in the next histogram. The which is smaller than the bounet,;=85 mb. This shows
shadowing reduces the cross section by a facter 0f4 for single-  that the neglected term is not necessarily small. For the two-
neutron stripping and diffraction and by a factor-eD.2 for two-  pycleon diffraction formulag1a) the first term does not re-
nucleon stripping, as shown by the diagram on the right-hand sideyyce to the elastic scattering, so no strict bound can be ob-
tained this way.
V. INTEGRATED CROSS SECTIONS Instead, we shall analyze diffractive cross section qualita-

In this section we examine the integrated cross sectiondVely using a gray-disk model for the nucleon-target inter-

with the aim of understanding the dependence of the croséction. Thus we take the nucleon profile function to be of the
sections on the interaction and on the properties of the hald®™ Sh(P)=1—t6(bo—b), O<t<1. We also need to as-

We first discuss some simple bounds and estimates for thgHMe that the two nucleons are uncorrelated in the halo wave
various cross sections. function. The diffractive cross section may then be expressed

as

A. Cross-section bounds 0 oo 1o (14ot—120 ol o? t? . .
O4ii=20 —(1+2t—t a +2ta ——=a ,
Let us first consider théunrealistig limit where the core- dif el ( Jalpy {Pr) 2 Y
target interaction is ignoredFor a single-nucleon halo the 17
stripping cross section would then be identical to the reaction m
cross sectionr,, between the nucleon and the target. In the'Vhere(py) is thenth momeznt of the transverse nucleon den-
case of a two-nucleon halo, the stripping cross section is justity in the hald anda=wbg. The leading term is twice the
doubled. Split into - and 2n-stripping components, the nucleon-target elastic cross section and the corrections are
relation is controlled by the parametex p). The coefficient of the first

correction is negative, so the first term gives a bound that is
U?n—st+ 208n_st=2crre. (16)  valid for large halos and small targets,

0
The symbola® is a reminder that the core shadowing is TAit=20el- (18)

neglected, i.e., the fact@ is set equal to one. Equati¢h6)
is illustrated in Fig. 3, showing the comparison of the left-
and right-hand sides of the equation for the case''nf

In the case of &%C target, the experimental elastic and re-
action cross sections may be fit wigh=30 fn? andt=0.5.

242G The transverse halo density for tH&.i wave functions has
breakup on target. We used thg23 model to evaluate the order of magnitudd p,)~1/100 fm2 and the second

the unshadowed cross section. The relative amountsnof 1y makes about a factor of 2 correction: the higher terms
and 2 stripping depend of course on the wave function and, e |ess important. The actual numbers for our model of the
detalls_ 01_‘ the interaction; in the case conS|der(_ed here, they ; 12- \caction are shown in Fig. 3. We find,,
tlhrgr?t?hpepggst?irss; gsectmn is an order of magnitude larger_ 75 mb, reduced from @ by about a factor 2/3, as ex-
The diffractive cross section is much more difficult to pected from the above analysis.

bound or estimate without full calculation of the integrals. In
the case of a one-nucleon halo, a bound can be obtained by
dropping the second term in the equation analogous to Eq. In this section we examine the effect of the core shadow-
(1a). The first term is just the elastic nucleon-target crossng on the cross sections and use again the msgifor the
section, so the bound i8};;<o,,. For 'Be at 800 MeV/  ground-state wave function. Figure 3 shows on the right-

B. Core shadowing

2This is commonly referred to as the transparent limit, but we 3More precisely, it is thexth moment of an averaged transverse
have reserved that concept for the transparency of the second nedensity, the averaging being over the shape of the nucleon profile
tron in a In-stripping reaction; cf. Sec. Il. function.



57 NUCLEAR BREAKUP OF BORROMEAN NUCLEI 1371

0 3 g wreny numbers in Table Il. For the two-nucleon stripping, the cor-
sof 7 relation between the neutrons should be important as well, as
they must both interact with the target. Indeed, we see from
Table Il that the two-nucleon cross sections doubles going
from an uncorrelateg-wave model to the model with cor-
relations andp-wave dominance. This may be compared
0} with the effect of the correlations on the dipole transition
0 . . strength, which, as was mentioned in Sec. lll, gives only a

10 100 30-40 % enhancement.
A

40
30
20

% core-shadowing

FIG. 5. Shadowing factor as a function of target mass number. D. ®He cross sections
Shadowing factors are shown fonXtripping, In stripping, and

. : . Here we report corresponding cross sections for the
diffractive cross sections at an energy of 280 MeV/nucleon. P P 9

breakup of°He on a*C target, using théHe wave function
from Ref.[15], row 5 of Table II. The cross sections for two
Bifferent beam energies are shown in Table fHe is more
tightly bound than'!Li, so the halo density does not extend
out as far. Another difference is théiHe has a dominar,
shell configuration, which allows a stronger spatial correla-

. S tion; pures,, or purepy» configurations, on the other hand,
The shadowing factor for two-nucleon stripping is muchy,, o™ neorrelated densities. The larger correlation implies

stronger than for the other processes; it reduces the Cro$8at th o ; ; i
. . ripping will relativel ronger. This is in-
section to 20% of the unshadowed value. The difference maaea;dt SZ;]] ts; gg th% casgein ?FZE)I:IBIII 'S:higsppingscrcs)ss

be understood qualitatively as follows. The one—nucleonSections is about a factor of 2 larger féile than for ILi
stripping and the diffractive excitation require avoiding an G erwise. the cross sections are about the same ziél_fbr

absorptive interaction with _at least one of the halo nucleonsrhe shadowing factors are similar, due to balancing features
favoring moderately large impact parameters. On the othe(_r) a smaller core and a less exter;ded halo

hand, the two-nucleon absorption has no such restriction an
would be concentrated entirely at small impact parameters
but for the presence oB.. The different dependences on

impact parameter are shown in Fig. 4. Here we see that the |n this section we discuss the form of the spectrum in the
2n-stripping probability is more concentrated at small im- neutron-core system produced by the-dtripping reaction.
pact parameter than theaktripping and the diffractive prob-  To treat the one-neutron removal from a Borromean nucleus,
abilities, which are very similar to each other. we simply take the overlap of the initial ground-state wave-
The shadowing factor varies, of course, with target sizefunction with the continuum final state of the neutron-core
This dependence is illustrated in Fig. 5, where the targe§ystem[cf. Eq. (10)], fixing the positionr;= —r,, of the
densities were taken frofi21,29. We see that the shadow- stripped neutron. The stripping model assumes that the pro-

ing changes by a factor of 2 for both diffraction and 1 cess is incoherent in,. Thus we consider matrix elements
stripping, going from a*He target to a heavy target, and by of the form

a factor of 4 for the B stripping.

hand side the shadowing effect of the carbon target in th
1 i breakup reaction. The ri-stripping cross section is re-
duced to 43% of the unshadowed vals, .,. The shadow-
ing factor for the diffractive cross section is very similar
(44%) to that for the h stripping.

VI. FORM OF THE STRIPPING SPECTRUM

M”(rlik):f d®r oy () Wo(ry,ro) (19

We next consider the sensitiv_ity of the cross sections tQq g probability distribution of the form
properties of the halo wave functions. The various cross sec-
tions for different models are given in Table Il. For the |M”(r1,k)|2dnk.
single-nucleon stripping cross section, the shadowing factor
varies depending on how extended the single-particle densitfere dn,~k?dk for a differential momentum distribution
is. From Table | we see that the mean-square radius of thenddn,~kdE for a differential distribution in excitation en-
halo increases as tleewave probability increases. Thus we ergy of the neutron-core system.
expect less shadowing and a larger cross section for the mod- Different partial waves of the continuum wave function
els with a largers wave. This is indeed borne out by the are incoherent if we integrate over the direction of the decay

C. Wave-function sensitivity

TABLE II. Integrated cross sectior(snb) with different models of the halo nucleddLi.

Channel Uncorrelated Uncorrelatedp p89 s23 s50 Data[6] Modified data
diffraction 38 26 27 33 40 66820 94

1n stripping 174 123 121 137 162 1720 175

1n stripping (transparent 182 129 134 155 182

2n stripping 4 3 6 9 10 56810 11

2n removal 216 152 154 179 212 28G0 280+ 30
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TABLE III. Integrated cross sectiongnb) for ®He
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breakup ont’C. The experimental number is from

Ref.[37].
240 MeV/nucleon 800 MeV/nucleon

Channel withS, without S; with S, without S,

diffraction 32.3 645 <20,=119 42.7 89.7 <20,=168

1n stripping 136 286 144 319

1n stripping (transparent 170 409 ~20,,=414 184 488 ~20,,=493

2n stripping 16.7 61.6 19.8 84.1

0 _on 185 206 Oexp=189+ 14
distribution. At low energies the andp waves will be most —ary

important. In principle, the stripping distributions are suffi-
ciently dissimilar that one can extract the ratio of probabili-

Wo(ry,ra)~f(ry) r

ties from experiment. The important question then arise§pep the integral in Eq(19) can be carried out to give

how this number reflects the probability in the wave func-
tion, which is the ultimate object of the measurement. A
comparison of the two probabilities for various models is
shown in Fig. 6. The amount of wave in the final-state

cogka)— a/k sin(ka)

M"(ry,k)~f(ry) R

stripping d_|str|but|on 1S _systematlca}lly larger than in thg and therefore the cross section for thevave is given by
wave function of the initial state. This is to expected and is

due to the larger extension of tteewave and consequent
decrease in the shadowing. This amounts to about 10% in the
extracted probability.

Next we want to discuss analytic forms for the shape of
the spectrum in the neutron-core final state produced by thﬁ:

1n-stripping reaction. The standard parametrization of a his depends on the ini;ial-state potentigl through the falloff
peaked distribution by the Breit-Wigner function is not jus- parameter and on the final-state potential through the scat-

2 2

cogka) % sinka) | .
(20)

g MnZk k
g~ M

a’+k?

tified at energies close to zero or for the overlaps with exering Ieng.tha. lf.th? two po'gennals are the same, then th_e
grthogonahty of initial and final states requires the matrix

lement to vanish. This comes about in E20) to leading
rder ink by the well-known relation between the binding
energy and scattering lengt81].

The s-wave energy distribution fof!Li is shown in Fig.
7. Here we have fitted both parameteranda to give the
best agreement with the calculated curve, which was ob-

tended wave functions. We shall propose parametrization
that take into account the threshold behavior and the hal

character of the initial state. Throughout this section w

make use of the no-recoil transparent limit defined in Eq.

(10).

A. s-wave distribution

e

(0]

tained in the no-recoil transparent linfitf. Eq. (10)] using

The s-wave distribution can be described analytically in theé models23. In a one-nucleon hala is related to the

the limit where the wave functions are dominated by theifbinding —energy by a~2mE;g.

asymptotic behaviot.The continuums wave is then given
by

sin(kr + &)

l//k(r): Kr

Here § is thes-wave phase shift; the scattering length is the
linear coefficient in the expansion

5=—ak+0(k3).

The two-particle initial-state wave function has no exact ana-

lytic limit, but the general exponential falloff at large dis-
tances suggests the approximation

“The result(20) was first applied to the photodisintegration of the

Our fit has «
=24.5 MeVic. The corresponding binding energy is 0.32
MeV, almost equal to the binding energy of the independent-
particle model. Also our fitted valua=—4.7 fm is very
close to the scattering length of the model5.6 fm.

The distribution in Fig. 7 peaks at very low energies; the
peak position is close to the moments «/2 for a fairly
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FIG. 6. Percentage of and p waves in the various models,

deuteron at low energy, where it gives an excellent approximatiortomparing the probabilities in the wave functidmg) to the prob-

[30].

abilities in the neutron-core final statas).
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FIG. 7. The YLi 1n-stripping energy distributions in the no-
recoil transparent limitsolid curve$ are compared to fits obtained
from Eq. (20) and Egs.(21) and (22) (dashed curvgs Shown are
the s- and p-wave components of the?3 wave function.
wide range of scattering lengtlzsbetween— 1/ and 1k. FIG. 9. Comparison of the- andp-wave distributions for trans-
This Corresponds to an energy p%ak at parent limit with the Complete CalCUlatiOn, inCluding ShadOWing of

the spectator neutron, for tle23 model.

Epeak= Es/4. . .
resonance. We shall account for this by using the form of the

With our theoretical fitFEyea~0.08 MeV. It should also be P-Wave width obtained in potential scatterif@g]

mentioned that for models with very large scattering lengths,

such as the50 model, the scattering length sets the momen- = E3/2L_ (21)

tum scale and the predicted peak is even lower in energy. 1+9:E

The corresponding-wave distribution for®He is shown
in Fig. 8. Here the best-fit scattering length parametea is
=1.6 fm, to be compared with the actual scattering length o

The Breit-Wigner function for the decay of a resonance is
Fhen given by

a=2.4 fm associated with th€He potential. The best fit do T
value ofa is «=55 MeV/c; this may be compared with the d_E:A(E— E?+T24" (22

binding energy estimatg2mEz=43 MeV/c.

S There are four parameters here, namely, the resonance en-
B. p-wave distribution ergy Er, two width parameterg; andg,, and the overall

For thep-wave, measurements of tH&B("Li,®B)Li re- strengthA. One might think thagy,; andg, could be deter-
action have suggested the existence of a resonance at abétined by the radius of the potential forming the resonance,
540 keV[18]. In our recent study of thé'Li wave function but because the initial staFe is a halo the length scales_ are
we used this data to fix the-wave potential for the neutron- larger than the nucl_ear radius. We shall treat them as adjust-
core system. In this section we wish to establish a simpl@ble parameters. Figure 7 shows a fit with parameter values
function to represent the distributions that we calculate. Afte91=2.74 MeV 2 andg,=3.3 MeV ™. When we make an
trying different functional forms, we found that one could Unconstrained fit, the parametgy becomes large, showing
get acceptable fits with the Breit-Wigner resonance form buthat the functiorl” is close to theE dependence, except at
using a two-parameter energy-dependent width. The thresi@xtremely low energies.
old behavior of g-wave resonance requires a width depend-  In Fig. 8 we show a similar comparison féHe stripping.
ing on energy ag'~E®2 However, the width cannot con- In this case, the peak of thpwave distribution is located at

tinue to grow as the 3/2 power at energies above th&-83 MeV, which corresponds quite well to the resonance
energy of thep,,, scattering stat€0.89 Me\). Nevertheless,

P —— the best fit again favors large values @f, indicating that
. Fi the 3/2 power law for the width is only valid very close to
the threshold.

C. Simplifying approximations

o(E,,p) (arb. units)

Since the full calculations with Eq$7) and (9) are quite
time consuming, it is of interest to know how accurate sim-
) ) . : plifying approximations are. We examine the transparent
0 05 1 15 2 25 limit, the no-recoil approximation, and the relation between

E;y (MeV) the stripping probability and wave function probability here.

FIG. 8. The®He 1n-stripping energy distributions calculated in
the no-recoil transparent limisolid curve$ are compared to fits
obtained from Eq(20) and Eqs(21) and(22) (dashed curvesThe The energy distribution in the no-recoil transparent limit
s-wave components have been scaled by a factor of 20. is compared to the full calculation in Fig. 9 fdtLi strip-

1. Transparent limit
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ping, using thes23 ground-state wave function. We see thatThe flux that is absorbed in the eikonal can reappear, e.g., by
the effect of the neutron shadowing is to reduce the crosmultistep or rearrangement processes. This might first show
section without affecting the energy distribution. Thus weup in cross sections that are very small in the eikonal model,
can use the transparent limit with confidence in describinguch as the & stripping. Another possibility is that the direct

these distributions. connection between the different components of the ob-
_ o served cross section and the three reaction mechanisms has
2. No-recoil approximation been distorted by the experimental acceptance. To correct for

The no-recoil approximation is exact for integrated strip-this distortion involves some uncertainty. We shall anyway
ping cross sections, but it can in principle affect the differ-make a simple estimate that shows that it is possible to re-
ential stripping and both differential and integrated diffrac-duce the large discrepancy between the calculated and the
tive cross sections. For the integrated diffractive crosgneasured &-stripping cross sections.
section in 1Li, we find that the effect of the recoil is to The experimental acceptance of neutrons was limited to
reduce the cross section by 20%. Since the corrections ateansverse momenta up to 95 MeVvand it was estimated
expected to scale asA/ one should not ignore them for that only about 80% of the diffracted neutrons would be
nuclei lighter than®Li. detected 6]. By extrapolating the measured transverse mo-

In our calculations of stripping distributions, we have in- mentum distribution of neutrons shown in Fig. 3 of R&#4]
cluded the main recoil effect as described in Sec. Il,([@y. to large momenta, one also finds that about 80% of all neu-
However, there is a residual recoil effect associated with th&ons have transverse momenta less than the 95 Mex/f
position of the stripped neutron; cf. E@). We calculated a ceptance. The detection efficiency for spectator neutrons
spectrum from Eq(8) in the independenp-wave model, at  (produced when the second neutron is either stripped or dif-
fixed impact parameter. The approximati® was found to  fracted may be higher, but let us just assume that it is also
be very accurate, with the deviation in the peak of the ordeB0%. The relations between the measured cross seatibns

of 1/2% and the maximum deviation smaller than 3%. and the full-acceptance cross sectionsare then o
=(08F0air, o= (08010 5+ 2(08) (0.2, and
VIl. COMPARISON WITH EXPERIMENT Oon-st= Ozn-stT (0.2)01n 51+ (0.2)°0gis . Solving  these
. equations for the full-acceptance cross sections gives the val-
A. Integrated cross sections ues shown in the last column of Table Il labeled “Modified
In Table Il we compare the integrated cross sections wittflata.” )
the experimental data of Ref6], Table 3. The yields of As may be seen from the table, adding the detector accep-

events having zero, one, or two neutrons in coincidence withance correction explains the smalh-3tripping cross sec-
the °Li fragment give, respectively, the cross sections la-tion, but only at the expense of greater disagreement with
beled  stripping, In stripping, and diffraction. The first theory for the qther two cross sections. Thus, for the (_1|ffrac-
thing to note in the comparison with theory is that the totaltive cross section, we obtain less than half the experimental
two-neutron removal cross section measured, 280 mb, ¥alue. We believe that it is not possible to explain this dis-
much larger than the eikonal model predicts. There are alsé'epancy within the framework of the eikonal model. Recall
data on the two-neutron removal cross section at 800 MeVjhat the unshadowed diffractive cross section has a quasi-
nucleon[33]. Applying the eikonal modél.at this energy bound o§;;<20~120 mb valid for very extended halos
gives a cross section of 187 nfs23 wave functioly, only and the actually computed cross section is reduced from this
15% lower than the experimental value of 2200 mb. At by two factors of 2. The first reduction, seen in E#j7), is

the lower energy the23 model gives 179 mb. This is close associated with the fact that the nucleon-target profile func-
to the theoretical value at the higher energy, which is certion blocks a significant fraction of the halo density. The
tainly to be expected in view of the mild change in the second factor is the shadowing of the halo density by the
nucleon-nucleon cross section between the two energies. Ti@re-target profile function. This shadowing is unavoidable
direction of the change in both the nucleon-nucleon and th@nd reduces the diffractive cross section by an additional
eikonal removal cross section is a decrease at the lower efgctor of 2.

ergy. In contrast, the experimental value is larger at the lower For the In-stripping cross section with an assumed 20%
energy. The theoretical two-neutron removal cross sectioAcceptance correction, the eikonal model can explain the
behaves the same way in the cas€lde, as may be seen in data, but only if thes-wave component is large. However,
the bottom row of Table IlI. Here also there is fair agreementve believe that the model that comes closss6), is unreal-

with the experimental value at the higher energy. istic on other grounds.
Let us now turn to the individual components. The dif-
fractive and h-stripping cross sections are within experi- B. Relative energy spectrum

mental error of the most extreme wave functgs0, but the In the analysis made if6] two Breit-Wigner resonances

2n-stripping cross section far exceeds any of the models. It)are fitted at 0.240.05 and 0.62 0.10 MeV. and the rela-
principle, additional contributions to the cross section could; ; ’

. X %ve amounts ofs and p waves in the wave function were
come from processes outside the scope of the eikonal mod xtracted. Let us see how this compares with our analysis

with the calculated distributions. As discussed in Sec. VI, we

find a peak for the finat wave at a much lower energy than
SWe note that Ref[7] obtained 241 mb, i.e., 10% higher than the experimental spectrum shows. However, the finite angu-
experiment, in their eikonal model. lar and energy resolution of the experimental detectors will
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FIG. 10. Energy distribution of the23 wave function. The his- FIG. 11. Fits of the energy distribution to the data of Héf,

togram is the calculated result including the experimental resoluincluding the experimental resolution. The solid line is obtained
tion. The solid line is the result for all partial waves. Also shown from the best-fit Hamiltonian model. The dotted line is the result
are thes- and p-wave componentgdashed and dotted linesThe  from fitting Egs. (20) and (22) with a= —1 fm, Eg=0.25 MeV,
data points are from Ref6]. and ans/p ratio corresponding to 66% wave.

inevitably smear out the distribution of the extracted relativeyhe interior interaction to vary. The best fit, shown as a solid
momentum or energy, shifting the apparent peak to highefine in Fig. 11, is for a model with 35% wave with a range
energy. This should be taken into account in comparing oups_40 9 giving similar quality fits. We see that the fit is not

spectrum with the experiments. entirely satisfactory, however, being flatter at the lowest en-
The authors of Re{6] give a table of transverse momen- grgies than the first two data points require.

tum and Iongitu_dinal V(_elocity resolutipn widths and we have The second fit procedure was using the parametrizations
folded these widths with the theoretical spectra to compareon) and(22), allowing Eg, a, and thes/p ratio to vary. The
with experiment. The folding is done by Monte Carlo sam- ,, \yave width parameters were kept fixed to the values in
pllng. We_generate events, sampling the theoretical distribugec v B. This fit is better, as is to be expected with more
tion of E in the center-of-mass system of the neutron-coréarameters. In particular, the threshold region is well de-
system and assuming that the angular distribution is isotropigsriped. The resonance enerBy came out lower than we
there. We add a Gaussian-distributed center-of-mass momeRQzsmed earlier: a good fit could be made vk in the
tum. As we do not have any cuts in our simulation, this;ange 0.25-0.35 MeV. This corresponds more to the value
center-of-mass momentum is not important. We transformypisined by other experimenf49,2q than to the one we
then from the projectile frame to the laboratory frame, deterygeq[18] in setting up our Hamiltonian. The fitted scattering
mining the transverse momentum as well as the LOr@ite  |ength comes out rather small and attractive, in the range of
the laboratory frame. To these we add random errors from a 1"ty —2 5 fm. With a lowerp-wave resonance energy and

Gaussian distribution with a full width at half maximum a weakly attractives wave, one might expect that tiecom-
given by Table 2 ir6]. The relative energlEq. (3.2 of [6]]  ponent would be dominant, but this is not the case. The fit
is reconstructed using these values, Whlch.are then bmne&ves ans probability of 66% with good fits in the range
into the same energy intervals as the experiment. 60—70 %. It will be a challenge that we must leave for the

Figure 10 shows the result of this procedure for 828 1,16 1o construct a realistic Hamiltonian that would repro-
model. The experimental resolution increases the position o ;e this behavior.

thes-wave peak from 0.08 MeV to 0.15 MeV, which is close
to the value 0.2 0.05 deduced by the Breit-Wigner fit.
However, with our shapes for the individual components, the
measured peak at 0.21 MeV is a combined effect of lsoth ~ In order to test our final-state spectrum, we also make
andp waves. The individual spectra are strongly overlappingcompal’isons to a measurement of the transverse momentum
and require a realistic model of the shapes to separate theftistribution of neutrons. Such a measurement has recently
with confidence. been performed at the same enef84]. In our analysis we
One of our main goals is to find out what we can concludeassume that the momentum distribution of the neutrons is
from this spectrum about the-wave contribution in the isotropic and identical to the relative momentum distribution
ground state and also about the position of pheave reso-  Of the neutron and the core fragment. The relative energy
nance. To investigate this, we tried to make a best fit of &pectrum can then be transformed into a transverse momen-
theoretical spectrum to the data. The theoretical spectrum #&!m distribution
convoluted with a momentum resolution function as de-
scribed earlier to generate a simulated experimental spec- =
trum. We then make &2 minimization with respect to the dk,
parameters in the theory. The first fit was done in the frame-
work of our Hamiltonian, allowing the-wave potential and In Fig. 12 we compare the result of our “best” Hamil-

tonian model with the experimental result. In this figure we
made no attempt to include the experimental resolution in the
®Reference[6] also quotes an energy resolution functiohE(  theory curve. The agreement between theory and experiment
~E®7™), but this does not go to a finite value néar0, so we IS Similar to the model fit in Fig. 11. The main part of the
prefer to construct the resolution as described. cross section comes in the correct range of momentum, but

C. Transverse momentum distribution

do dek 1 do
0 |27kaﬁ.
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nearly doubling when pairing is included. If the two-nucleon
stripping could be measured well, it could be used to study
this aspect of the wave function. The other integrated cross
section, the diffractive cross section, is not only sensitive to
the eikonal distortions, but we found that it changes signifi-
cantly if the recoil correlation is included in the wave func-
tion. The differential diffractive cross section is presently
beyond our computational powers.

As a specific example, we have applied the eikonal analy-
sis to the data of Ref6]. The total two-neutron removal

FIG. 12. Transverse momentum distribution including all partial CTOSS Section is larger than our calculation and also larger
waves of the best-fit model. Shown are the results with 28%, 35%han the —experimental value at a higher energy
and 44%s-wave component in the final state, corresponding to a(800 MeV/nucleon This is surprising because the differ-

1 i ground-state component between 20% and 40%. The dat&NCe in nucleon-nucleon cross sections at the two energies
points are from Ref{34]. demands the opposite trend in the eikonal model. Our calcu-

lated one-neutron stripping and diffractive cross sections are

the curve does not describe the very high and very low moonly 75% and 50% of the measured values, respectively. The
menta well. This disagreement may be partly due to diffracexperimental diffractive cross section is nearly high enough

tive effects[6], which have been ignored here. to be in conflict with the bound given by E(L8).
In analyzing the differential cross section, we found some

general features that should be useful in future studies. First
Viil. CONCLUSIONS AND OUTLOOK of all, the approximations of no recoil and the transparent

In this paper we applied the eikonal theory to nuclear"mitlgiV? a ra_lthe.r good account of the on.e-particle stripping
breakup of Borromean nuclei, with the object of developingdistribution, justifying these approximations. Trsewave
a quantitative tool for interpreting reaction cross sectionsdistribution can be fit very well by a simple formula based on
Because the full theory is quite demanding from a numericajh® a@symptotic wave functiort20), which is quite different
point of view, we examined the approximations that areffom the Breit-Wigner distribution. The-wave cross section
commonly made. In particular, the theory simplifies if oneCan be reproduced by a Breit-Wigner distribution using an
neglects correlations in the ground-state wave function, th€nergy-dependent width. _ .
final-state interaction, the distortion effects of the profile N comparing the stripping distribution with experiment,
functions on unstripped particles, or the difference betweeN@ found that botts andp waves are needed to fit the data
vectors referred to various center-of-mass systems. of Ref.[6]. Ours distribution peaks at a very low energy and

The easiest cross section to interpret is the one-particlhe experiment does not show as much of a threshold en-
stripping, which leaves a particle and the core in a final stat#ancement as we predict. In our least constrained fit, we
of low excitation energy. The integrated one-particle strip-obtained ap-wave resonance near 0.3 MeV, lower than the
ping cross section can be calculated with rather rough apnheasurement of Ref18]. The experimental peak is at 0.2
proximations. The correlations in the ground state play ndieV and is most likely due to the combined effectsoand
role except to determine occupation probabilities for theP Wwaves. Our analysis with the Hamiltonian models gives an
shell orbitals. In the differential cross section, the distribu-S-wave component of between 30% and 50% in the cross

tions of s andp waves are quite distinct, allowing the occu- S€ction, which corresponds to aawave probability in*'Li
pation probabilities of the'!Li halo orbitals to be extracted Petween about 20% and 40%. Our least constrained fit has a
with 10—20 % accuracy. Many of the simplifying approxi- high s-wave probability, 60—70 %. A number of other ex-
mations can be used here without significant error. The disPerimental [5,18,34,6,3% and theoretical studie$10,36
tortion introduced by the profile functions has practically nohave extracteg-wave probabilities of about 50%. An even
effect on the shape of the distributions and a moderate effed@rger value is apparently obtained by Garrido, Fedorov, and
on the extracted relative probabilities. However, it is impor-Jensen[14], who report ap-wave probability of 26%. In
tant to include the final-state interaction in the particle-plus-conclusion, the eikonal theory has considerable promise for
core systen[14]. We proposed parametrizations of tae  interpreting the distributions and cross sections in nuclear
andp-wave distributions that take both the initial halo char- breakup, but it has not yet proved to be a quantitative tool for
acter and the final-state interaction into account. $heave the reaction we studied.
distribution, given by Egq.(20), is derived from the
asymptotic wave functions. The-wave distribution, given
by Egs.(21) and(22), is in the form of a Breit-Wigner func- ACKNOWLEDGMENTS
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