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Nuclear breakup of Borromean nuclei
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Institute for Nuclear Theory, University of Washington, Seattle, Washington 98195
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Physics Division, Argonne National Laboratory, Argonne, Illinois 60439
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We study the eikonal model for the nuclear-induced breakup of Borromean nuclei, using11Li and 6He as
examples. The full eikonal model is difficult to realize because of six-dimensional integrals, but a number of
simplifying approximations are found to be accurate. The integrated diffractive and one-nucleon stripping cross
sections are rather insensitive to the neutron-neutron correlation, but the two-nucleon stripping does show some
dependence on the correlation. The distribution of excitation energy in the neutron-core final state in one-
neutron stripping reactions is quite sensitive to the shell structure of the halo wave function. Experimental data
favor models with comparable amounts ofs andp waves in the11Li halo. @S0556-2813~98!03503-1#

PACS number~s!: 25.60.Gc, 25.70.Mn, 21.45.1v, 27.20.1n
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I. INTRODUCTION

Halo nuclei having a very weakly bound neutron pair~of-
ten referred to as Borromean nuclei! are interesting objects
but they are difficult to study experimentally. Secondary
teractions in radioactive beams have been an important
with Coulomb excitation providing quantitative data abo
the excitation properties@1,2#. Nuclear excitation is also im
portant from an experimental point of view, but the theor
ical interpretation of nuclear reaction cross sections dese
closer attention. In this work we attempt to make a link,
quantitative as possible, between the nuclear excitation
servables and the fundamental properties of a Borrom
nucleus. The fact that correlations can play an important
makes this goal more difficult than for a nucleus with
single-nucleon halo. On the experimental side, we have b
inspired by the work on11Li carried out at Ganil, NSCL,
RIKEN and most recently at GSI. The extremely large Co
lomb breakup cross section shows the halo character of
nucleus, but the details of its wave function have been c
troversial. Starting from the shell model, two of us@3# con-
structed a wave function that fits many Coulomb excitat
measurements@4#. It had a dominantp1/2

2 shell configuration,
as one expects from Hartree-Fock theory. However, sev
measurements~see, for example, Ref.@5#! and also the spec
troscopy of the nearby nucleus11Be suggest a leadings1/2

2

configuration in11Li.
In principle, a nuclear-induced breakup gives independ

information and so it is desirable to calculate the vario
cross sections and compare with experiment. A recent
periment @6# was carried out on a 12C target at
280 MeV/nucleon. At that energy it is justified to treat th
target-projectile interaction in the sudden approximation,
ing theNN forward scattering amplitude for the interactio
Thus we may neglect the evolution of the wave functi

*Present address: Department fu¨r Physik und Astronomy, Univer-
sität Basel, CH-4056 Basel, Switzerland.
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during the interaction time, provided we take the interact
from nucleon-nucleon scattering. The energy domain aro
250 MeV has an additional advantage from a theoret
point of view: The real part of theNN forward-scattering
amplitude goes through zero in this vicinity, so only the a
sorptive part of the interaction needs to be treated in
theory.

The nuclear excitation of Borromean nuclei have be
considered by a number of authors@7–14#. In treating the
differential cross sections, it is common to make a numbe
simplifying assumptions. We list them here.

(i) Ground state wave function.Neutron-neutron correla
tions were neglected in Ref.@8#. We shall apply wave func-
tions that have the full three-particle correlations. It turns o
that differential cross sections are quite insensitive to th
correlations, except the two-neutron stripping, which do
show an effect. Independent-particle models can only
scribe pure configurations, so a mixture ofs and p waves
requires a correlated model.

(ii) Reaction model.In this work we use an eikonal mode
description of the nuclear reaction, improving on the bla
disk model of Ref.@8#.

(iii) Neutron-core potential.It is important to include the
final-state neutron-core potential in calculating the energy
momentum spectra, as demonstrated in Refs.@11,14#. Refer-
ence @9# also included the final-state interaction, using
zero-range neutron-core potential. Our detailed models
scribed here use a realistic finite-range potential in both
initial and final states.

We shall investigate the validity of these as well as oth
approximations that are often made. Our main interest is
sensitivity of experiments to the properties of the ha
nucleus. In a previous work@15# we developed models of th
11Li ground-state wave function with differing amounts ofs
wave. One of our objectives is to see how well the amoun
s wave can be determined by the observables in a brea
reaction. The observables we consider are integrated c
sections for diffraction and one- and two-nucleon remo
and the differential cross section for the excitation energy
the 9Li1n final state when one neutron has been remov
1366 © 1998 The American Physical Society
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57 1367NUCLEAR BREAKUP OF BORROMEAN NUCLEI
II. REACTION MODEL

The sudden approximation leads to the eikonal model
nucleus-nucleus interactions. In previous studies, we h
applied the model to the nuclear-induced breakup of sin
nucleon halo nuclei@16#. Here we apply it to the breakup o
a two-neutron halo nucleus. The effect of the interaction w
the target is to multiply the halo wave function by the profi
functionsS(Ri) for each particle, whereRi denotes the im-
pact parameter of particlei with respect to a target nucleu
The halo nucleus11Li has two neutrons and a9Li core,
requiring two profile functionsSn and Sc associated with
neutrons and the core, respectively. There are three
grated cross sections that leave the core intact, namely
diffractive, the one-nucleon stripping, and the two-nucle
stripping cross sections. These can be written

sdi f5E d2Rcm$^@12Sc~Rc!Sn~R1!Sn~R2!#2&

2^@12Sc~Rc!Sn~R1!Sn~R2!#&2% , ~1a!

5E d2Rcm@^Sc
2~Rc!Sn

2~R1!Sn
2~R2!&

2^Sc~Rc!Sn~R1!Sn~R2!&2#, ~1b!

s1n-st52E d2Rcm^Sc
2~Rc!Sn

2~R2!@12Sn
2~R1!#&, ~2!

s2n-st5E d2Rcm^Sc
2~Rc!@12Sn

2~R1!#@12Sn
2~R2!#&,

~3!

whereRcm is the impact parameter of the halo nucleus w
respect to the target nucleus and^ & denotes a ground-stat
expectation value. Our ground-state wave functionC0 is ex-
pressed in terms of the relative neutron-core distancesr 1 and
r 2 . An example of the needed expectation values is the o
nucleon stripping integral

^Sc
2Sn

2~12Sn
2!&5E d3r 1d3r 2uC0~r 1 ,r 2!u2Sc

2~Rc!

3Sn
2~Rc1r 2'!@12Sn

2~Rc1r 1'!#. ~4!

The integrations are here performed for fixedRcm so Rc
depends on the integration variablesRc5Rcm2(r 1'

1r 2')/(Ac12), whereAc is the mass number of the cor
nucleus.

The six-dimensional integration in Eq.~4! is very time
consuming to carry out unless some simplifications are m
in the wave function or in the profile functions. We sha
consider two simplifying approximations. The first is theno-
recoil limit in which the impact parameter of the coreRc is
assumed to coincide with the impact parameterRcm of the
halo nucleus.1 The core profile functionSc can then be taken
outside the expectation value. In addition, the integrati

1As discussed later on, the no-recoil limit differs from the exa
calculation only in the case of diffraction.
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over r 1 and r 2 become independent in a shell-model rep
sentation ofC0 such as Eq.~11!. Another simplifying ap-
proximation is thetransparent limit, defined here by setting
the factorSn

2(R2) equal to one inside the expectation value
Eq. ~2!, thus neglecting the absorption of the second neutr
These two assumptions yield the cross section

s1n-st,trans52E d2R Sc
2~R!^12Sn

2~R1r 1'!&. ~5!

Note that this cross section is identical to the sum of
one-neutron-stripping cross section and two times the t
neutron-stripping cross section,

s1n-st,trans5s1n-st12s2n-st . ~6!

We will see later that the two-neutron-stripping cross sect
is rather small, so the transparent limit is a good approxim
tion for this cross section.

Of course, much more information about the halo is co
tained in differential cross sections. The diffractive cross s
tion has three particles in the final state, but that distribut
is beyond what we can calculate, requiring three-parti
continuum wave functions for many partial waves. The on
neutron stripping leaves two particles in the final state a
the differential cross section for that state is amenable
computation. The expression for the momentum distribut
associated with the relative motion of the two surviving p
ticles is

dsst

d3k
52E d2R1@12Sn

2~R1!#E d3r 2cuM ~R1 ,r 2c ,k!u2,

~7!

wherer 2c is the center-of-mass coordinate of the remain
neutron-core system with respect to the stripped neutron;
associated impact parameter with respect to the ta
nucleus is denoted byR2c , R2c5R11r 2c' . The amplitude
M is given by

M5E d3r 2ck* ~r 2!Sc~Rc!Sn~R2!C0~r 1 ,r 2!. ~8!

Hereck(r 2) is the continuum wave function of the survivin
neutron-core system, normalized to a plane wave at infin
The coordinatesRc , R2 , andr 1 are expressed in terms of th
integration variables asRc5R2c2r 2' /(Ac11), R25R2c
1r 2'Ac /(Ac11), andr 152r 2c1r 2 /(Ac11).

The numerical calculation of Eq.~8! is rather difficult
because of the form of the ground-state wave function t
we apply ~see the next section!. A major simplification is
achieved by adopting the approximationr 152r 2c in the
ground-state wave function. The amplitude is then given

M 85E d3r 2ck* ~r 2!Sc~Rc!Sn~R2!C0~2r 2c ,r 2!. ~9!

An even simpler approximation is to ignore the recoil co
rection in the argument of the core profile function, i.e.,
Rc5R2c , and use the transparent limit for the second n
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1368 57G. F. BERTSCH, K. HENCKEN, AND H. ESBENSEN
TABLE I. Parameter of the different models used in comparing the different cross sections. Th
model (p89) uses the same potential fors andp wave, whereas the other two use a deeper potential for
s wave~and all other evenL waves!. The strength of thep-wave potential is essentially fixed by the positio
of the p1/2 resonance. The lowest two entries give the properties of the uncorrelated pures- and p-wave
models described in the text.

Model EB Vs ~MeV! a0 ~fm! s1/2 ~%! p1/2 ~%! r 2 (fm2) (r 12r 2)2 (fm2) Sr11r2

2 D2

(fm2)

p89 20.295 235.4 11.7 4.5 89.1 29.4 42.8 18.7
s23 20.295 247.5 25.6 23.1 61.0 37.7 45.9 26.2
s50 20.292 251.5 290. 49.9 33.9 53.8 70.1 36.2
s 100 45.0 90.0 22.5
p 100 27.5 55.0 13.8
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tron, i.e., setSn(R2)51. We shall refer to these approxima
tions as theno-recoil transparent limit, where the amplitude
reduces to

M 95Sc~R2c!E d3r 2ck* ~r 2!C0~2r 2c ,r 2!. ~10!

This approximation is used in Refs.@9,14#. We will discuss
the validity of the various approximations in Sec. VI C b
low.

III. THE THREE-BODY WAVE FUNCTION

In Ref. @15# we constructed several three-body models
11Li. The models are based on Hamiltonians that all rep
duce the empirical neutron-neutron scattering length and
have a binding energy of the three-body system close to
empirical value of 295635 keV @17#. The single-particle po-
tentials and the density dependence of the neutron-neu
interaction are varied to produce different probabilities os
andp waves in the different models. Details of the procedu
and two of the models are given in Ref.@15#. The wave
functions are calculated in the form of single-particle sta
u(r ) and amplitudesa as

C0~rW1 ,rW2!5(
l , j

(
n,n8

a l jnn8ul jn~r 1!ul jn 8~r 2!@~ ls! j~ ls! j #0,

~11!

where rW1 and rW2 are neutron-core separation vectors. T
indices (ls) j label the single-particle, spin-angle wave fun
tions that are coupled to zero total angular momentum
indicated by the superscript on the bracket. The indicesn,n8
label the radial quantum numbers of the single-particle b
states. These states are discretized by putting the system
a spherical box of large radius~typically 40 fm!.

We will specifically examine the observables for mod
having 4.5%, 23%, and 50%s waves. Their characteristic
are given in Table I. The first modelp89 is similar to the one
used in Ref.@3#. The other modelss23 ands50 are con-
structed with a deeper neutron-core potential for even-pa
single-particle states to increase thes-wave component in the
ground-state wave function. An important property of t
Hamiltonian is thes-wave scattering length of neutrons o
the core nucleus. Within the constraints of our three-bo
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model, we can only produce wave functions that are p
dominantlys wave by using neutron-core potentials that pr
duce extremely larges-wave scattering lengths. The param
eters of the potential for the odd-parity states are fixed by
position of thep1/2 resonance, which we assume to be
Er5540 keV as suggested by measurements@18#. It should
be mentioned that other experiments@5,19,20# have extracted
different values for the resonance energy. In addition to
s-wave probability, these wave functions show significa
differences. The single-particle densities of the three mod
are shown in Fig. 1. It may be seen that the halo is m
extended the larger thes-wave probability. This is also ap
parent from the mean-square neutron radii computed
Table I.

The integrated dipole strength for Coulomb breakup
proportional to the mean-square radius of the two-neut
center of mass, given in the last column of Table I. The va
obtained with thep89 wave function is consistent with th
experimental Coulomb breakup, but thes50 value is much
too high. Thus we cannot regard that wave function as re
istic.

Another important property of the wave function is th
correlation between the two neutrons. The integrated dip
strength is proportional to the dineutron-core mean-squ
radius, which in turn depends on the matrix element
rW1•rW2 , as shown in@3#. In that work it was found that the

FIG. 1. Single-particle density of halo neutrons in various mo
els of 11Li.
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57 1369NUCLEAR BREAKUP OF BORROMEAN NUCLEI
correlation increased the dipole strength by 43%. This
hancement does not depend very much on the model;
the present wave functions it is in the range 30–40 %.

We also constructeds- and p-wave independent-particl
models for comparison purposes. In these models, the sin
particle potential is adjusted to match the exponential fal
of the single-particle density that is obtained with the thr
body models23 mentioned in Table I.

IV. PROFILE FUNCTIONS

We now specify the profile functionsSn and Sc that we
use for our cross-section calculations. The neutron pro
function Sn in the eikonal approximation is expressed
terms of the density of the targetr t and the nucleon-nucleo
cross sectionsnn as

S~b!5expF2
snn

2 E dz r t~Ab21z2!G . ~12!

We model the density of the12C target with the harmonic
oscillator fit to the charge density of Ref.@21#,

r~r !5r0@11a~r /a!2#e2~r /a!2
, ~13!

with a51.687 fm anda51.067. The nucleon-nucleon cros
section is taken from Ref.@22#; it is 29.2 mb at 280 MeV
beam energy.

The reliability of the model can be checked against
nucleon-carbon cross sections. The predicted reaction
elastic cross sections in the eikonal model are

s re5E d2b@12Sn
2~b!#, ~14!

sel5E d2b@12Sn~b!#2. ~15!
er
e
n

e

lle

n

r

-
th

le-
f
-

le

e
nd

These are compared with experiment in Fig. 2. The nucle
carbon reaction cross section is taken from the proton c
section data tabulated in Ref.@23#, quoting Ref.@24#. The
total cross section for nucleon-carbon scattering is ta
from the neutron measurements of Ref.@25#. The experimen-
tal elastic cross section is deduced from the difference
tween total and reaction cross sections. The agreemen
tween our parametrization ofSn and experiment is close
enough that we will not attempt to adjust the profile functi
to make a better fit. In Sec. V we will discuss how the cro
sections in halo nuclei depend on the nucleon-target c
sections.

The core-target profile function requires the convoluti
of both densities

FIG. 2. Cross sections for nucleon-12C scattering and for
9Li- 12C scattering. Experimental cross sections are shown on
left with an error band indicated by the thick line. On the right a
the cross sections computed with our profile functions.
Sc~b!5expF2
snn

2 E dx dyE dz rc@A~x2b!21y21z2#E dz8r t~Ax21y21z82!G .
d

mi

b
-

For the density of9Li, we note that it has the same numb
of neutrons as12C and we will accordingly take the sam
parameters for the neutrons. The proton density does
have as many particles in thep shell and we apply the pur
harmonic-oscillator model to determinea (51/3) and keep
a the same as in12C. The resulting9Li density is param-
etrized as in Eq.~13! with a51.687 anda50.726. This
model gives a rms charge radius of 2.28 fm, slightly sma
than the empirical charge radius of7Li, which is 2.39 fm.
However, the predicted cross section at 800 MeV/nucleo
840 mb ~assumingsnn540 mb!, just 5% larger than the
measured cross section of 79666 mb from Ref.@26#. The
cross section at 280 MeV/nucleon has been measured fo
ot

r

is

the

mirror nucleus9C by Blank et al. @27#. They find a cross
section of 812634 mb to be compared with 796 mb obtaine
by our model.

For the 4He core of6He we use a three-parameter Fer
density function@21#

rc~r !5~11wr2/c2!/$11exp@~r 2c!/z#%,

with w50.517, c50.964 fm, and z50.322 fm. At
800 MeV/nucleon we find a total cross section of 546 m
~486 at 280 MeV/nucleon!, again comparable with the ex
perimental result of 50365 mb @28#.
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V. INTEGRATED CROSS SECTIONS

In this section we examine the integrated cross sect
with the aim of understanding the dependence of the c
sections on the interaction and on the properties of the h
We first discuss some simple bounds and estimates for
various cross sections.

A. Cross-section bounds

Let us first consider the~unrealistic! limit where the core-
target interaction is ignored.2 For a single-nucleon halo th
stripping cross section would then be identical to the reac
cross sections re between the nucleon and the target. In t
case of a two-nucleon halo, the stripping cross section is
doubled. Split into 1n- and 2n-stripping components, the
relation is

s1n-st
0 12s2n-st

0 52s re . ~16!

The symbols0 is a reminder that the core shadowing
neglected, i.e., the factorSc is set equal to one. Equation~16!
is illustrated in Fig. 3, showing the comparison of the le
and right-hand sides of the equation for the case of11Li
breakup on a12C target. We used thes23 model to evaluate
the unshadowed cross section. The relative amounts on
and 2n stripping depend of course on the wave function a
details of the interaction; in the case considered here,
1n-stripping cross section is an order of magnitude lar
than the 2n stripping.

The diffractive cross section is much more difficult
bound or estimate without full calculation of the integrals.
the case of a one-nucleon halo, a bound can be obtaine
dropping the second term in the equation analogous to
~1a!. The first term is just the elastic nucleon-target cro
section, so the bound issdi f

0 <sel . For 11Be at 800 MeV/

2This is commonly referred to as the transparent limit, but
have reserved that concept for the transparency of the second
tron in a 1n-stripping reaction; cf. Sec. II.

FIG. 3. Breakup reaction cross sections for11Li- 12C scattering.
The left-hand histogram shows twice then-12C cross sections a
needed in Eqs.~16! and~18!. We compare them with the total cros
sections without core shadowing (s0) in the next histogram. The
shadowing reduces the cross section by a factor of'0.4 for single-
neutron stripping and diffraction and by a factor of'0.2 for two-
nucleon stripping, as shown by the diagram on the right-hand s
s
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nucleon and using the model of@16# we getsdi f
0 568 mb,

which is smaller than the boundsel585 mb. This shows
that the neglected term is not necessarily small. For the t
nucleon diffraction formula~1a! the first term does not re
duce to the elastic scattering, so no strict bound can be
tained this way.

Instead, we shall analyze diffractive cross section qual
tively using a gray-disk model for the nucleon-target inte
action. Thus we take the nucleon profile function to be of
form Sn(b)512tu(b02b), 0<t<1. We also need to as
sume that the two nucleons are uncorrelated in the halo w
function. The diffractive cross section may then be expres
as

sdi f
0 52selF12~112t2t2/2!a^r t&12ta2^r t

2&2
t2

2
a3^r t

3&G ,
~17!

where^r t
n& is thenth moment of the transverse nucleon de

sity in the halo3 anda5pb0
2. The leading term is twice the

nucleon-target elastic cross section and the corrections
controlled by the parametera^r t&. The coefficient of the first
correction is negative, so the first term gives a bound tha
valid for large halos and small targets,

sdi f
0 <2sel . ~18!

In the case of a12C target, the experimental elastic and r
action cross sections may be fit witha530 fm2 and t50.5.
The transverse halo density for the11Li wave functions has
the order of magnitudêr t&'1/100 fm22 and the second
term makes about a factor of 2 correction; the higher ter
are less important. The actual numbers for our model of
11Li- 12C reaction are shown in Fig. 3. We findsdi f

0

575 mb, reduced from 2sel by about a factor 2/3, as ex
pected from the above analysis.

B. Core shadowing

In this section we examine the effect of the core shado
ing on the cross sections and use again the models23 for the
ground-state wave function. Figure 3 shows on the rig

eu-

3More precisely, it is thenth moment of an averaged transver
density, the averaging being over the shape of the nucleon pr
function.

FIG. 4. Impact-parameter dependence of the 1n and 2n strip-
ping and the diffractive cross sections. Also shown is the squar
the profile function of the core-target interactionSc

2 .
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57 1371NUCLEAR BREAKUP OF BORROMEAN NUCLEI
hand side the shadowing effect of the carbon target in
11Li breakup reaction. The 1n-stripping cross section is re
duced to 43% of the unshadowed values1n-st

0 . The shadow-
ing factor for the diffractive cross section is very simil
~44%! to that for the 1n stripping.

The shadowing factor for two-nucleon stripping is mu
stronger than for the other processes; it reduces the c
section to 20% of the unshadowed value. The difference m
be understood qualitatively as follows. The one-nucle
stripping and the diffractive excitation require avoiding
absorptive interaction with at least one of the halo nucleo
favoring moderately large impact parameters. On the o
hand, the two-nucleon absorption has no such restriction
would be concentrated entirely at small impact parame
but for the presence ofSc . The different dependences o
impact parameter are shown in Fig. 4. Here we see that
2n-stripping probability is more concentrated at small im
pact parameter than the 1n stripping and the diffractive prob
abilities, which are very similar to each other.

The shadowing factor varies, of course, with target si
This dependence is illustrated in Fig. 5, where the tar
densities were taken from@21,29#. We see that the shadow
ing changes by a factor of 2 for both diffraction and 1n
stripping, going from a4He target to a heavy target, and b
a factor of 4 for the 2n stripping.

C. Wave-function sensitivity

We next consider the sensitivity of the cross sections
properties of the halo wave functions. The various cross s
tions for different models are given in Table II. For th
single-nucleon stripping cross section, the shadowing fa
varies depending on how extended the single-particle den
is. From Table I we see that the mean-square radius of
halo increases as thes-wave probability increases. Thus w
expect less shadowing and a larger cross section for the m
els with a largers wave. This is indeed borne out by th

FIG. 5. Shadowing factor as a function of target mass num
Shadowing factors are shown for 2n stripping, 1n stripping, and
diffractive cross sections at an energy of 280 MeV/nucleon.
e
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numbers in Table II. For the two-nucleon stripping, the c
relation between the neutrons should be important as wel
they must both interact with the target. Indeed, we see fr
Table II that the two-nucleon cross sections doubles go
from an uncorrelatedp-wave model to the model with cor
relations andp-wave dominance. This may be compar
with the effect of the correlations on the dipole transiti
strength, which, as was mentioned in Sec. III, gives onl
30–40 % enhancement.

D. 6He cross sections

Here we report corresponding cross sections for
breakup of6He on a12C target, using the6He wave function
from Ref.@15#, row 5 of Table II. The cross sections for tw
different beam energies are shown in Table III.6He is more
tightly bound than11Li, so the halo density does not exten
out as far. Another difference is that6He has a dominantp3/2
shell configuration, which allows a stronger spatial corre
tion; pures1/2 or purep1/2 configurations, on the other hand
have uncorrelated densities. The larger correlation imp
that the 2n stripping will be relatively stronger. This is in
deed seen to be the case in Table III; the 2n-stripping cross
sections is about a factor of 2 larger for6He than for 11Li.
Otherwise, the cross sections are about the same as for11Li.
The shadowing factors are similar, due to balancing featu
of a smaller core and a less extended halo.

VI. FORM OF THE STRIPPING SPECTRUM

In this section we discuss the form of the spectrum in
neutron-core system produced by the 1n-stripping reaction.
To treat the one-neutron removal from a Borromean nucle
we simply take the overlap of the initial ground-state wav
function with the continuum final state of the neutron-co
system@cf. Eq. ~10!#, fixing the positionr 152r 2c of the
stripped neutron. The stripping model assumes that the
cess is incoherent inr 1 . Thus we consider matrix elemen
of the form

M 9~r 1 ,k!5E d3r 2ck* ~r 2!C0~r 1 ,r 2! ~19!

and a probability distribution of the form

uM 9~r 1 ,k!u2dnk .

Here dnk;k2dk for a differential momentum distribution
anddnk;kdE for a differential distribution in excitation en
ergy of the neutron-core system.

Different partial waves of the continuum wave functio
are incoherent if we integrate over the direction of the de

r.
TABLE II. Integrated cross sections~mb! with different models of the halo nucleus11Li.

Channel Uncorrelateds Uncorrelatedp p89 s23 s50 Data@6# Modified data

diffraction 38 26 27 33 40 60620 94
1n stripping 174 123 121 137 162 170620 175
1n stripping ~transparent! 182 129 134 155 182
2n stripping 4 3 6 9 10 50610 11
2n removal 216 152 154 179 212 280630 280630
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TABLE III. Integrated cross sections~mb! for 6He breakup on12C. The experimental number is from
Ref. @37#.

240 MeV/nucleon 800 MeV/nucleon

Channel withSc without Sc with Sc without Sc

diffraction 32.3 64.5 ,2sel5119 42.7 89.7 ,2sel5168
1n stripping 136 286 144 319
1n stripping ~transparent! 170 409 '2s re5414 184 488 '2s re5493
2n stripping 16.7 61.6 19.8 84.1
s22n 185 206 sexpt5189614
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distribution. At low energies thes andp waves will be most
important. In principle, the stripping distributions are suf
ciently dissimilar that one can extract the ratio of probab
ties from experiment. The important question then ari
how this number reflects the probability in the wave fun
tion, which is the ultimate object of the measurement.
comparison of the two probabilities for various models
shown in Fig. 6. The amount ofs wave in the final-state
stripping distribution is systematically larger than in t
wave function of the initial state. This is to expected and
due to the larger extension of thes wave and consequen
decrease in the shadowing. This amounts to about 10% in
extracted probability.

Next we want to discuss analytic forms for the shape
the spectrum in the neutron-core final state produced by
1n-stripping reaction. The standard parametrization o
peaked distribution by the Breit-Wigner function is not ju
tified at energies close to zero or for the overlaps with
tended wave functions. We shall propose parametrizat
that take into account the threshold behavior and the h
character of the initial state. Throughout this section
make use of the no-recoil transparent limit defined in E
~10!.

A. s-wave distribution

The s-wave distribution can be described analytically
the limit where the wave functions are dominated by th
asymptotic behavior.4 The continuums wave is then given
by

ck~r !5
sin~kr1d!

kr
.

Hered is thes-wave phase shift; the scattering length is t
linear coefficient in the expansion

d52ak1O~k3!.

The two-particle initial-state wave function has no exact a
lytic limit, but the general exponential falloff at large dis
tances suggests the approximation

4The result~20! was first applied to the photodisintegration of th
deuteron at low energy, where it gives an excellent approxima
@30#.
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C0~r 1 ,r 2!' f ~r 1!
e2ar 2

r 2
.

Then the integral in Eq.~19! can be carried out to give

M 9~r 1 ,k!' f ~r 1!
cos~ka!2a/k sin~ka!

k21a2

and therefore the cross section for thes wave is given by

ds

dE
;uM 9u2k;kF 1

a21k2G2Fcos~ka!2
a

k
sin~ka!G2

.

~20!

This depends on the initial-state potential through the fall
parametera and on the final-state potential through the sc
tering lengtha. If the two potentials are the same, then t
orthogonality of initial and final states requires the mat
element to vanish. This comes about in Eq.~20! to leading
order in k by the well-known relation between the bindin
energy and scattering length@31#.

The s-wave energy distribution for11Li is shown in Fig.
7. Here we have fitted both parametersa anda to give the
best agreement with the calculated curve, which was
tained in the no-recoil transparent limit@cf. Eq. ~10!# using
the models23. In a one-nucleon haloa is related to the
binding energy by a'A2mEB. Our fit has a
524.5 MeV/c. The corresponding binding energy is 0.3
MeV, almost equal to the binding energy of the independe
particle model. Also our fitted valuea524.7 fm is very
close to the scattering length of the model,25.6 fm.

The distribution in Fig. 7 peaks at very low energies; t
peak position is close to the momentumk5a/2 for a fairly

n
FIG. 6. Percentage ofs and p waves in the various models

comparing the probabilities in the wave functions~wf! to the prob-
abilities in the neutron-core final states~s!.
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wide range of scattering lengthsa between21/a and 1/a.
This corresponds to an energy peakEpeak at

Epeak5EB/4.

With our theoretical fit,Epeak'0.08 MeV. It should also be
mentioned that for models with very large scattering lengt
such as thes50 model, the scattering length sets the mom
tum scale and the predicted peak is even lower in energ

The correspondings-wave distribution for6He is shown
in Fig. 8. Here the best-fit scattering length parameter ia
51.6 fm, to be compared with the actual scattering length
a52.4 fm associated with the5He potential. The best fi
value ofa is a555 MeV/c; this may be compared with th
binding energy estimateA2mEB543 MeV/c.

B. p-wave distribution

For thep-wave, measurements of the11B~7Li,8B!10Li re-
action have suggested the existence of a resonance at
540 keV@18#. In our recent study of the11Li wave function
we used this data to fix thep-wave potential for the neutron
core system. In this section we wish to establish a sim
function to represent the distributions that we calculate. A
trying different functional forms, we found that one cou
get acceptable fits with the Breit-Wigner resonance form
using a two-parameter energy-dependent width. The thr
old behavior of ap-wave resonance requires a width depen
ing on energy asG;E3/2. However, the width cannot con
tinue to grow as the 3/2 power at energies above

FIG. 7. The 11Li 1n-stripping energy distributions in the no
recoil transparent limit~solid curves! are compared to fits obtaine
from Eq. ~20! and Eqs.~21! and ~22! ~dashed curves!. Shown are
the s- andp-wave components of thes23 wave function.

FIG. 8. The6He 1n-stripping energy distributions calculated
the no-recoil transparent limit~solid curves! are compared to fits
obtained from Eq.~20! and Eqs.~21! and~22! ~dashed curves!. The
s-wave components have been scaled by a factor of 20.
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resonance. We shall account for this by using the form of
p-wave width obtained in potential scattering@32#

G5E3/2
g1

11g2E
. ~21!

The Breit-Wigner function for the decay of a resonance
then given by

ds

dE
5A

G

~E2ER!21G2/4
. ~22!

There are four parameters here, namely, the resonance
ergy ER , two width parametersg1 and g2 , and the overall
strengthA. One might think thatg1 andg2 could be deter-
mined by the radius of the potential forming the resonan
but because the initial state is a halo the length scales
larger than the nuclear radius. We shall treat them as ad
able parameters. Figure 7 shows a fit with parameter va
g152.74 MeV21/2 and g253.3 MeV21. When we make an
unconstrained fit, the parameterg2 becomes large, showing
that the functionG is close to theE1/2 dependence, except a
extremely low energies.

In Fig. 8 we show a similar comparison for6He stripping.
In this case, the peak of thep-wave distribution is located a
0.83 MeV, which corresponds quite well to the resonan
energy of thep3/2 scattering state~0.89 MeV!. Nevertheless,
the best fit again favors large values ofg2 , indicating that
the 3/2 power law for the width is only valid very close
the threshold.

C. Simplifying approximations

Since the full calculations with Eqs.~7! and ~9! are quite
time consuming, it is of interest to know how accurate si
plifying approximations are. We examine the transpar
limit, the no-recoil approximation, and the relation betwe
the stripping probability and wave function probability her

1. Transparent limit

The energy distribution in the no-recoil transparent lim
is compared to the full calculation in Fig. 9 for11Li strip-

FIG. 9. Comparison of thes- andp-wave distributions for trans-
parent limit with the complete calculation, including shadowing
the spectator neutron, for thes23 model.
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ping, using thes23 ground-state wave function. We see th
the effect of the neutron shadowing is to reduce the cr
section without affecting the energy distribution. Thus w
can use the transparent limit with confidence in describ
these distributions.

2. No-recoil approximation

The no-recoil approximation is exact for integrated str
ping cross sections, but it can in principle affect the diffe
ential stripping and both differential and integrated diffra
tive cross sections. For the integrated diffractive cro
section in 11Li, we find that the effect of the recoil is to
reduce the cross section by 20%. Since the corrections
expected to scale as 1/A, one should not ignore them fo
nuclei lighter than11Li.

In our calculations of stripping distributions, we have i
cluded the main recoil effect as described in Sec. II, Eq.~9!.
However, there is a residual recoil effect associated with
position of the stripped neutron; cf. Eq.~8!. We calculated a
spectrum from Eq.~8! in the independentp-wave model, at
fixed impact parameter. The approximation~9! was found to
be very accurate, with the deviation in the peak of the or
of 1/2% and the maximum deviation smaller than 3%.

VII. COMPARISON WITH EXPERIMENT

A. Integrated cross sections

In Table II we compare the integrated cross sections w
the experimental data of Ref.@6#, Table 3. The yields of
events having zero, one, or two neutrons in coincidence w
the 9Li fragment give, respectively, the cross sections
beled 2n stripping, 1n stripping, and diffraction. The firs
thing to note in the comparison with theory is that the to
two-neutron removal cross section measured, 280 mb
much larger than the eikonal model predicts. There are
data on the two-neutron removal cross section at 800 M
nucleon @33#. Applying the eikonal model.5 at this energy
gives a cross section of 187 mb~s23 wave function!, only
15% lower than the experimental value of 220610 mb. At
the lower energy thes23 model gives 179 mb. This is clos
to the theoretical value at the higher energy, which is c
tainly to be expected in view of the mild change in t
nucleon-nucleon cross section between the two energies.
direction of the change in both the nucleon-nucleon and
eikonal removal cross section is a decrease at the lower
ergy. In contrast, the experimental value is larger at the lo
energy. The theoretical two-neutron removal cross sec
behaves the same way in the case of6He, as may be seen i
the bottom row of Table III. Here also there is fair agreem
with the experimental value at the higher energy.

Let us now turn to the individual components. The d
fractive and 1n-stripping cross sections are within expe
mental error of the most extreme wave functions50, but the
2n-stripping cross section far exceeds any of the models
principle, additional contributions to the cross section co
come from processes outside the scope of the eikonal mo

5We note that Ref.@7# obtained 241 mb, i.e., 10% higher tha
experiment, in their eikonal model.
t
s

g

-
-
-
s

re

e

r

h

th
-

l
is

so
/

r-

he
e
n-

er
n

t

In
d
el.

The flux that is absorbed in the eikonal can reappear, e.g
multistep or rearrangement processes. This might first sh
up in cross sections that are very small in the eikonal mo
such as the 2n stripping. Another possibility is that the direc
connection between the different components of the
served cross section and the three reaction mechanisms
been distorted by the experimental acceptance. To correc
this distortion involves some uncertainty. We shall anyw
make a simple estimate that shows that it is possible to
duce the large discrepancy between the calculated and
measured 2n-stripping cross sections.

The experimental acceptance of neutrons was limited
transverse momenta up to 95 MeV/c and it was estimated
that only about 80% of the diffracted neutrons would
detected@6#. By extrapolating the measured transverse m
mentum distribution of neutrons shown in Fig. 3 of Ref.@34#
to large momenta, one also finds that about 80% of all n
trons have transverse momenta less than the 95 MeV/c ac-
ceptance. The detection efficiency for spectator neutr
~produced when the second neutron is either stripped or
fracted! may be higher, but let us just assume that it is a
80%. The relations between the measured cross sections8
and the full-acceptance cross sectionss are then sdi f8
5(0.8)2sdi f , s1n-st8 5(0.8)s1n-st12(0.8)(0.2)sdi f , and
s2n-st8 5s2n-st1(0.2)s1n-st1(0.2)2sdi f . Solving these
equations for the full-acceptance cross sections gives the
ues shown in the last column of Table II labeled ‘‘Modifie
data.’’

As may be seen from the table, adding the detector acc
tance correction explains the small 2n-stripping cross sec-
tion, but only at the expense of greater disagreement w
theory for the other two cross sections. Thus, for the diffr
tive cross section, we obtain less than half the experime
value. We believe that it is not possible to explain this d
crepancy within the framework of the eikonal model. Rec
that the unshadowed diffractive cross section has a qu
bound sdi f

0 ,2sel'120 mb valid for very extended halo
and the actually computed cross section is reduced from
by two factors of 2. The first reduction, seen in Eq.~17!, is
associated with the fact that the nucleon-target profile fu
tion blocks a significant fraction of the halo density. Th
second factor is the shadowing of the halo density by
core-target profile function. This shadowing is unavoida
and reduces the diffractive cross section by an additio
factor of 2.

For the 1n-stripping cross section with an assumed 20
acceptance correction, the eikonal model can explain
data, but only if thes-wave component is large. Howeve
we believe that the model that comes closest,s50, is unreal-
istic on other grounds.

B. Relative energy spectrum

In the analysis made in@6# two Breit-Wigner resonance
were fitted, at 0.2160.05 and 0.6260.10 MeV, and the rela-
tive amounts ofs and p waves in the wave function wer
extracted. Let us see how this compares with our anal
with the calculated distributions. As discussed in Sec. VI,
find a peak for the finals wave at a much lower energy tha
the experimental spectrum shows. However, the finite an
lar and energy resolution of the experimental detectors
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57 1375NUCLEAR BREAKUP OF BORROMEAN NUCLEI
inevitably smear out the distribution of the extracted relat
momentum or energy, shifting the apparent peak to hig
energy. This should be taken into account in comparing
spectrum with the experiments.

The authors of Ref.@6# give a table of transverse mome
tum and longitudinal velocity resolution widths and we ha
folded these widths with the theoretical spectra to comp
with experiment.6 The folding is done by Monte Carlo sam
pling. We generate events, sampling the theoretical distr
tion of E in the center-of-mass system of the neutron-c
system and assuming that the angular distribution is isotro
there. We add a Gaussian-distributed center-of-mass mom
tum. As we do not have any cuts in our simulation, th
center-of-mass momentum is not important. We transfo
then from the projectile frame to the laboratory frame, det
mining the transverse momentum as well as the Lorentzb in
the laboratory frame. To these we add random errors fro
Gaussian distribution with a full width at half maximum
given by Table 2 in@6#. The relative energy@Eq. ~3.2! of @6##
is reconstructed using these values, which are then bin
into the same energy intervals as the experiment.

Figure 10 shows the result of this procedure for thes23
model. The experimental resolution increases the positio
thes-wave peak from 0.08 MeV to 0.15 MeV, which is clos
to the value 0.2160.05 deduced by the Breit-Wigner fi
However, with our shapes for the individual components,
measured peak at 0.21 MeV is a combined effect of bots
andp waves. The individual spectra are strongly overlapp
and require a realistic model of the shapes to separate t
with confidence.

One of our main goals is to find out what we can conclu
from this spectrum about thes-wave contribution in the
ground state and also about the position of thep-wave reso-
nance. To investigate this, we tried to make a best fit o
theoretical spectrum to the data. The theoretical spectru
convoluted with a momentum resolution function as d
scribed earlier to generate a simulated experimental s
trum. We then make ax2 minimization with respect to the
parameters in the theory. The first fit was done in the fram
work of our Hamiltonian, allowing thes-wave potential and

6Reference@6# also quotes an energy resolution function (DE
;E0.75), but this does not go to a finite value nearE50, so we
prefer to construct the resolution as described.

FIG. 10. Energy distribution of thes23 wave function. The his-
togram is the calculated result including the experimental res
tion. The solid line is the result for all partial waves. Also show
are thes- and p-wave components~dashed and dotted lines!. The
data points are from Ref.@6#.
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the interior interaction to vary. The best fit, shown as a so
line in Fig. 11, is for a model with 35%s wave with a range
25–40 % giving similar quality fits. We see that the fit is n
entirely satisfactory, however, being flatter at the lowest
ergies than the first two data points require.

The second fit procedure was using the parametrizat
~20! and~22!, allowingER , a, and thes/p ratio to vary. The
p-wave width parameters were kept fixed to the values
Sec. VI B. This fit is better, as is to be expected with mo
parameters. In particular, the threshold region is well
scribed. The resonance energyER came out lower than we
assumed earlier; a good fit could be made withER in the
range 0.25–0.35 MeV. This corresponds more to the va
obtained by other experiments@19,20# than to the one we
used@18# in setting up our Hamiltonian. The fitted scatterin
length comes out rather small and attractive, in the range
21 to 22.5 fm. With a lowerp-wave resonance energy an
a weakly attractives wave, one might expect that thep com-
ponent would be dominant, but this is not the case. The
gives ans probability of 66% with good fits in the rang
60–70 %. It will be a challenge that we must leave for t
future to construct a realistic Hamiltonian that would repr
duce this behavior.

C. Transverse momentum distribution

In order to test our final-state spectrum, we also ma
comparisons to a measurement of the transverse mome
distribution of neutrons. Such a measurement has rece
been performed at the same energy@34#. In our analysis we
assume that the momentum distribution of the neutron
isotropic and identical to the relative momentum distributi
of the neutron and the core fragment. The relative ene
spectrum can then be transformed into a transverse mom
tum distribution

ds

d2k'

5E
0

`

dkl

1

2pmk

ds

dE
.

In Fig. 12 we compare the result of our ‘‘best’’ Hami
tonian model with the experimental result. In this figure w
made no attempt to include the experimental resolution in
theory curve. The agreement between theory and experim
is similar to the model fit in Fig. 11. The main part of th
cross section comes in the correct range of momentum,

-
FIG. 11. Fits of the energy distribution to the data of Ref.@6#,

including the experimental resolution. The solid line is obtain
from the best-fit Hamiltonian model. The dotted line is the res
from fitting Eqs. ~20! and ~22! with a521 fm, ER50.25 MeV,
and ans/p ratio corresponding to 66%s wave.
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1376 57G. F. BERTSCH, K. HENCKEN, AND H. ESBENSEN
the curve does not describe the very high and very low m
menta well. This disagreement may be partly due to diffr
tive effects@6#, which have been ignored here.

VIII. CONCLUSIONS AND OUTLOOK

In this paper we applied the eikonal theory to nucle
breakup of Borromean nuclei, with the object of developi
a quantitative tool for interpreting reaction cross sectio
Because the full theory is quite demanding from a numer
point of view, we examined the approximations that a
commonly made. In particular, the theory simplifies if o
neglects correlations in the ground-state wave function,
final-state interaction, the distortion effects of the profi
functions on unstripped particles, or the difference betw
vectors referred to various center-of-mass systems.

The easiest cross section to interpret is the one-par
stripping, which leaves a particle and the core in a final s
of low excitation energy. The integrated one-particle str
ping cross section can be calculated with rather rough
proximations. The correlations in the ground state play
role except to determine occupation probabilities for
shell orbitals. In the differential cross section, the distrib
tions of s andp waves are quite distinct, allowing the occ
pation probabilities of the11Li halo orbitals to be extracted
with 10–20 % accuracy. Many of the simplifying approx
mations can be used here without significant error. The
tortion introduced by the profile functions has practically
effect on the shape of the distributions and a moderate e
on the extracted relative probabilities. However, it is imp
tant to include the final-state interaction in the particle-pl
core system@14#. We proposed parametrizations of thes-
andp-wave distributions that take both the initial halo cha
acter and the final-state interaction into account. Thes-wave
distribution, given by Eq. ~20!, is derived from the
asymptotic wave functions. Thep-wave distribution, given
by Eqs.~21! and~22!, is in the form of a Breit-Wigner func-
tion with an energy-dependent width. The width varies w
energy asG;E3/2 at threshold, but the threshold region
very narrow due to the extended initial wave function.
higher energies the width grows more likeG;E1/2, which is
the characteristic behavior in the absence of a barrier.

The other two integrated cross sections are more sens
to the correlations in the wave function. The two-partic
stripping cross section is sensitive to the pairing correlati

FIG. 12. Transverse momentum distribution including all par
waves of the best-fit model. Shown are the results with 28%, 3
and 44%s-wave component in the final state, corresponding t
11Li ground-state component between 20% and 40%. The d
points are from Ref.@34#.
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nearly doubling when pairing is included. If the two-nucleo
stripping could be measured well, it could be used to stu
this aspect of the wave function. The other integrated cr
section, the diffractive cross section, is not only sensitive
the eikonal distortions, but we found that it changes sign
cantly if the recoil correlation is included in the wave fun
tion. The differential diffractive cross section is presen
beyond our computational powers.

As a specific example, we have applied the eikonal ana
sis to the data of Ref.@6#. The total two-neutron remova
cross section is larger than our calculation and also lar
than the experimental value at a higher ener
(800 MeV/nucleon!. This is surprising because the diffe
ence in nucleon-nucleon cross sections at the two ener
demands the opposite trend in the eikonal model. Our ca
lated one-neutron stripping and diffractive cross sections
only 75% and 50% of the measured values, respectively.
experimental diffractive cross section is nearly high enou
to be in conflict with the bound given by Eq.~18!.

In analyzing the differential cross section, we found so
general features that should be useful in future studies. F
of all, the approximations of no recoil and the transpar
limit give a rather good account of the one-particle strippi
distribution, justifying these approximations. Thes-wave
distribution can be fit very well by a simple formula based
the asymptotic wave functions~20!, which is quite different
from the Breit-Wigner distribution. Thep-wave cross section
can be reproduced by a Breit-Wigner distribution using
energy-dependent width.

In comparing the stripping distribution with experimen
we found that boths andp waves are needed to fit the da
of Ref. @6#. Ours distribution peaks at a very low energy an
the experiment does not show as much of a threshold
hancement as we predict. In our least constrained fit,
obtained ap-wave resonance near 0.3 MeV, lower than t
measurement of Ref.@18#. The experimental peak is at 0.
MeV and is most likely due to the combined effect ofs and
p waves. Our analysis with the Hamiltonian models gives
s-wave component of between 30% and 50% in the cr
section, which corresponds to ans-wave probability in11Li
between about 20% and 40%. Our least constrained fit h
high s-wave probability, 60–70 %. A number of other e
perimental @5,18,34,6,35# and theoretical studies@10,36#
have extracteds-wave probabilities of about 50%. An eve
larger value is apparently obtained by Garrido, Fedorov,
Jensen@14#, who report ap-wave probability of 26%. In
conclusion, the eikonal theory has considerable promise
interpreting the distributions and cross sections in nucl
breakup, but it has not yet proved to be a quantitative tool
the reaction we studied.
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