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Phase transition in a statistical model for nuclear multifragmentation
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~Received 28 August 1997!

We use a simplified model which is based on the same physics as inherent in most statistical models for
nuclear multifragmentation. The simplified model allows exact calculations for thermodynamic properties of
systems of large number of particles. This enables us to study a phase transition in the model. A first order
phase transition can be tracked down. There are significant differences between this phase transition and some
other well-known cases.@S0556-2813~98!02803-9#

PACS number~s!: 25.70.Pq, 24.10.Pa, 64.60.My
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I. INTRODUCTION

Imagine that thermalization is obtained in heavy ion c
lisions because of two-body collisions. The compound s
tem expands, reaches a volume larger than normal nuc
volume and finally dissociates. This dissociation will car
the signatures of a thermalized system at this expanded
ume. This simple picture has been used to describe data
tained in heavy ion collisions many times, sometimes w
additional inputs. In the late seventies it was first used
describe composite production in the Bevalac data@1#. At the
Bevalac energy the numbers of composites were small
one was content to calculate cross sections of light m
nuclei @2#. As experimental studies of heavy-ion collisions
lower energy progressed such models could be teste
much greater details. This prompted many detailed
elaborate calculations. Today large codes exist which
calculate cross sections of composites. We mention two
view articles@3,4# which provide relevant details and add
tional references.

Another issue that has attracted a great deal of attentio
whether or not heavy ion collisions provide a window
opportunity for studying phase transitiions in nuclei. Me
field calculations@5# show that nuclear matter has Van d
Waal gas type behavior and thus in thep2r plane there
would be regions of liquid-gas coexistence. It was conj
tured that during disassembly the nucleus could be in
coexistence region@6#. Much of the interest in studying
heavy ion collisions rests on the hope that one may disc
signatures of liquid-gas phase transition in the data. The
cently developed lattice gas model for nuclear disassem
addresses both the issues of fragment distributions~the major
achievemnt of standard statistical model alluded above! and
liquid-gas phase transition in a unified picture@7#.

The purpose of the present work is to investigate the p
sibility of a phase transition in a simplified version of th
statistical model@3#. Given that the model with its man
elaborate features is able to reproduce significant detail
data it is still an interesting question to ask: does this h
much relevance to a phase transition which is one of
issues considered to be of primary interest in heavy ion
lisions. This was briefly addressed in a recent paper@8# but
we deal with this issue here with more rigor and in f
greater detail. Using a technique developed in a recent p
570556-2813/98/57~3!/1361~5!/$15.00
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@9# we are able to get exact results for systems as larg
2000 particles or more. Another interesting feature is that
will be able to study ‘‘percolative properties’’ of the standa
statistical model. By this we mean the ‘‘second momen
and the size of the largest cluster, quantities which are
relevance in a percolation model and the study of which
often very revealing@10#.

II. THE MODEL AND THE CALCULATIONAL TOOLS

In the simplified model investigated here we can ha
monomers or composites ofk nucleons. The composite
have ground state energy2W0k1s(T)k2/3. The first term is
the volume energy, withW0516 MeV. The second term is
the surface tension term taken here as in@3# to be tempera-
ture dependent: s(T)5s0@(Tc

22T2)/(Tc
21T2)#5/4 with

s0518 MeV andTc518 MeV. In most of the calculations
reported in this papers is temperature dependent. Howev
we also have done calculations withs temperature indepen
dent at constant value 18 MeV and although values of s
cific heat, ‘‘boiling temperature,’’ etc. change, no qualitati
changes are found. At a finite temperature the composite
be in the ground or one of its excited states. Excited state
composites are taken into account using the Fermi
model. The internal energy of a composite at temperaturT
is 2W0k1s(T)k2/31T2k/e0 where the last part comes from
the population of excited states of the composite. The va
of e0 in the above expression is taken to be 16 MeV. T
intrinsic partition function of a composite ofk nucleons at
temperatureT is exp(TS2E)/T and in the usual Fermi-ga
approximation is

zk5exp@~W0k2sk2/31T2k/e0!/T#. ~2.1!

It is assumed that the freeze-out density is small so tha
disassembly different composites do not interact with e
other ~except through excluded volume effect!.

In the grand canonical ensemble, the average numbe
composite ofk nucleons is given by

^nk&5ebmkvk ~2.2!

with

vk5
Vf

h3 ~2pmT!3/2k3/23zk ~2.3!
1361 © 1998 The American Physical Society
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1362 57S. DAS GUPTA AND A. Z. MEKJIAN
where for k.1, zk is given by Eq.~2.1! and z151. The
chemical potential m is fixed from the condition
(k51

A knk5A.
Although not crucial for the work done in this paper w

want to comment on the volume parameterVf which appears
in Eq. ~2.3!. We distinguish here between the volumeV to
which the compound system has expanded and the vol
Vf which is the available volume for the composite ofk
nucleons to move around. For thermodynamics it isVf rather
thanV which is to be used. The two volumes are related
each other but are not identical. We assume that compo
appear with their normal volume. Thus the volume which
composite of k nucleons occupies isk/r0 where
r050.16 fm23. It then follows that if the total number o
nucleons fragmenting isA, the excluded volumeVex is A/r0
and we take the available volume for thermalization to
Vf5V2Vex. We show most of the calculations fo
r5A/V50.05 fm23. This means calculations are done wi
r̃ 5A/Vf5 r/(12r/0.16)50.0727 fm23.

We wrote down the average number of particles acco
ing to the grand canonical ensemble. We will howev
mostly use the canonical ensemble using a technique de
oped in@9#. The canonical partition functionZA for A par-
ticles is given by@11#

ZA5( )
k>1

vk
nk

nk!
~2.4!

wherenk is the number of composites which hask nucleons
and the sum above goes over all the partitions which sat
(knk5A. The probability that a given admissible partitio
P(nW )5P(n1 ,n2 ,n3 . . . ) is obtained is given by

P~nW !5
1

ZA
)

vk
nk

nk!
. ~2.5!

The partition functionZA can be built by recursion relation
Starting withZ051 one can build all higher ones using

Zp5
1

p (
k51

p

kvkZp2k . ~2.6!

Thus one has Z15v1 , Z25 1
2 v1

21v2, and

Z35 1
6 v1

31v2v11v3 and so on. The average value
composite number in the canonical ensemble is readily
tained @this is to be compared with Eq.~2.2! of the grand
canonical ensemble#. We have ^nk&5(P(nW )3nk5 (1/
ZA)(P (v i

ni/ni !) nk which leads to^nk&5vk (ZA2k /ZA).
These results apply to any choice ofvk but in this paper we
will focus only on the choice of Eq.~2.3!. We like to em-
phasize that here the calculations in the canonical ensem
are done without any Monte-Carlo sampling to obtain va
ous quantities of interest.

In the canonical ensemble it is straightforward to isol
the largest cluster for each ‘‘event.’’ Calculations in which
‘‘tag’’ is kept on the largest cluster proved to be of signi
cance in percolation model analysis of data. It is possible
us to calculatêkmax&, the average size of the largest clust
This should be scaled by the size of the system thus
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compute^kmax&/A. This turns out to be a very interestin
quantity even in the statistical model. Campi defined redu
moments as moments in which the largest cluster is
cluded. Thus the second moment isM25(kk

2nk2kmax
2 . To

compute expectation values in which the largest cluste
fixed we need to compute the partition function of such e
sembles. Clearly this partition function is given by all th
terms in the partition function which havevkmax

as the high-

estvk in the term. Consider

DZA~kmax![ZA~v1 , . . . ,vkmax
,0,0, . . .!

2ZA~v1 , . . . ,vkmax21
,0,0, . . .!. ~2.7!

We see thatDZA is the partition function for ensembles wit
fixed maximum cluster sizekmax, since the first term collects
all terms withvkmax

or lower, and the second term eliminate

those terms which do not have anvkmax
. From this we can

determinePr(kmax), the probability of obtaining a distribu
tion whose largest cluster iskmax @9#,

Pr~kmax!5
DZA~kmax!

ZA~v1 , . . . ,vA!
. ~2.8!

It is now straightforward to computêkmax& or the reduced
moments.

Before we leave this section we would like to comme
on two of the possible shortcomings of the model. One is
assumption that different composites at the time of disso
tion are on the average far enough that they do not inte
with each other. The only effect that can be easily taken i
account is through the excluded volume effect but the sim
correction that we have alluded to above is really very
proximate and certainly not rigorous. Trying to take intera
tions between different composites would change all
equations for the partition function. We cannot correct t
by simply deciding to take an arbitrarily large freeze-out v
ume so that interactions between different composites
indeed negligible because the major part of the physics
have been already decided and that may pertain to a sm
volume. In some sense, the lattice gas model@7# does a better
job of interactions between different composites. The ot
approximation is in the assumption that the internal partit
function is given by Eq.~2.1!. That equation uses expres
sions for excitation energy and entropy per particle which
valid only in the infinite noninteracting nuclear matter lim
Thus there will be prefactor before the exponential in E
~2.1! which may completely mask thek3/2 factor in Eq.~2.3!.
Other choices for thek dependence have been consider
@12#.

III. THE FREE ENERGY, THE LARGEST CLUSTER,
AND THE SPECIFIC HEAT

The free energy of a system ofA particles is given by
F52T ln ZA . The canonical partition function is directl
calculated by the recurrence method of Eq.~2.6! and thus the
free energy is readily available. For a system of 2800 a
1400 particles this is shown in Fig. 1 as a function of te
perature. The figure suggests that there is break in the
derivative in F which occurs at about 7.3 MeV for 280
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57 1363PHASE TRANSITION IN A STATISTICAL MODEL FOR . . .
particles and at 7.15 MeV for 1400 particles. This mea
there is a first order transition here. There will be a sudd
jump in entropy accompanied by an infinite specific hea
the ‘‘boiling temperature.’’ Of course although 2800 is
large number it is not the thermodynamic limit thus the s
cific heat would be large and proportional toA but not infi-
nite. The behavior of the specific heat as the system
grows is shown in Fig. 2. Notice the peak becomes prog

FIG. 1. The free energy per particle for~a! a system of 2800
particles and~b! a system of 1400 particles plotted as a function
temperature. The curves suggest that a break in the first deriv
occurs at 7.3 MeV and at 7.15 MeV, respectively.

FIG. 2. Curves forCv for 700~dash-dot!, 1400~dash!, and 2800
~solid! particles as a function of temperature. The maxima occu
6.95 MeV, 7.15 MeV, and 7.3 MeV and coincide with what visua
appear to be near breaks in the first derivatives of free ene
Notice that as the particle numbers increase, the heights of
peaks increase and the widths narrow.
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sively high and narrow as the system grows larger. This h
jump in specific heat at the ‘‘boiling point’’ is readily under
stood if we consider the behavior of^kmax&/A for various size
systems as function of temperature. Starting from a va
higher than 0.5 it quickly drops to much lower value as t
‘‘boiling point’’ is traversed. This drop becomes progre
sively sharper as the system size grows. Calculations w
finite systems~Fig. 3! suggest that for infinite system
^kmax&/A will drop from about 0.5 to at least very close t
zero at the boiling point. It is the sudden disappearance
the large blob at the ‘‘boiling point’’ that is responsible fo
the specific heat going to infinity.

IV. ABSENCE OF A POWER LAW, EFFECTIVE t,
AND THE SECOND MOMENT

In a percolation model a power law emerges near
critical point. The yieldsY(A) of the composites obey
Y(A)}A2t. In the lattice gas model there is a continuo
line in r2T plane where such a power law emerges. S
Ref. @8# for the prescription how the yieldsY(A) are calcu-
lated in the lattice gas model. The interested reader will a
find in the same reference the well-known prescription
calculatingY(A) in the bond percolation model. Althoug
the power law is expected to emerge only in the neighb
hood of percolation point an effectivet can always be de-
duced from the data using@13#

(n1
n2AY~A!

(n1
n2Y~A!

5
(n1

n2AA2t

(n1
n2A2t . ~4.1!

f
ve

t

y.
he

FIG. 3. Curves for̂ kmax&/A as a function of the scaled variabl
T/Tb where boiling temperatureTb is the temperature at whichCv
is maximum. The cases shown are for 700 particles~dash-dot!,
1400 particles~dash!, and 2000 particles~solid line!. The boiling
temperatures in the respective cases are 6.97 MeV, 7.15 MeV,
7.225 MeV. Notice that the steepness of fall increases as the
ticle number increases. This sudden fall begins at about 0.5
^kmax&/A.
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1364 57S. DAS GUPTA AND A. Z. MEKJIAN
We have takenn155 andn2530 which is similar to values
used in other analyses. In the model pursued here we do
find the emergence of a power law. This is not just beca
we are using a finite number of particles. One sees a m
clearer emergence of a power law in the lattice gas mo
even with smaller particle number than what is conside
here. An example of yieldsY(A) in the model is demon-
strated in Fig. 4. In spite of a lack of a power law below,
or above the boiling temperature deducing an effectivet us-
ing formula ~4.1! is useful. As the temperature changes t
value of the effectivet will go through a minimum as shown
in Fig. 5. The minimum value depends upon the freeze-
density r̃ used for the calculation. For the case shown
Figs. 4 and 5 the value of thetmin was 1.84 but a lower value
is found if a larger value of the freeze-out density is us
correspondingly a larger value is obtained if a lower free
out density is used. We also recall when a true power
emerges at a critical point the value oft is restricted to be
between 2 and 3@14#. There is no such restriction here b
cause there is no power law.

We now consider the second momentM2 . This will go
through a maximum as the temperature changes. The m
mum of M2 and the minimum ofteff are very close to each
other and they both occur close to the maximum ofCv ~Fig.
5!. Since experimentally a measurement ofCv is rather hard
~see however@15#! it is easier to locate approximately th
‘‘boiling point’’ by the minimum of teff or the maximum of
M2 . The value ofM2 does not grow with particle numbe
but saturates around 11.6.

V. BOILING POINT FOR INFINITE MATTER

We return to Figs. 1 and 2. While the figures clearly sh
evidence of the occurence of a first-order transition and
ever increasing values of the specific heat it is difficult fro

FIG. 4. Curves for yieldsY(A) againstA at various tempera-
tures. The disassembling system chosen has 200 particles. The
peratures chosen are 6.2 MeV~dash!, 6.7 MeV ~solid! ~at this tem-
perature the effectivet is lowest!, and 7.2 MeV~dash-dot!.
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these figures to determine the value of the boiling point
the infinite matter limit. This limit is more easily obtaine
from the grand canonical ensemble and using the knowle
gained from Fig. 3 that as one crosses the ‘‘boiling point’
large blob of the size'A/2 suddenly disappears. Equation
~2.1!, ~2.2!, and~2.3! are combined to give

^nk&5
Vf

h3 ~2pmT!3/2k3/2eb„mk1W0k1T2k/e02s~T!k2/3
…

~5.1!

for k.1 and ^n1&5ebm (Vf /h3) (2pmT)3/2. In the infinite
limit the term proportional tok in the exponent must disap
pear at the ‘‘boiling point.’’ Hence we should have

15
1

r̃ h3
~2pmT!3/2Febm1(

2

`

k5/2e2bs~T!k2/3G ~5.2!

where m52W02T2/e0 . This gives for r̃ 50.07273 the
boiling temperature is 8.187 MeV. The boiling temperatu
increases with increasing freeze-out density in this mode

There is at least one@15# published work on experimenta
extraction of the caloric curve. This curve suggests tha
peak inCv is seen around 5 MeV for some finite nuclei. O
the theory side the percolation model has often been app
but there is noCv in percolation model since there is n
Hamiltonian. The phase transition in that model is a contin
ous transition and rather different from the first order tran
tion considered here. However Ref.@8# shows that the per-
colation model is one limit of the lattice gas model whic
does have a Hamiltonian and which has several featu
which can be compared with the model investigated he
More of this comparison appears in our next section, ho
ever, in the lattice gas model also one predicts that the

m-
FIG. 5. For a system of 200 particles curves for effectivet,

specific heat, and the second moment as a function of tempera
Notice that the minimum oft and the maximum ofM2 are close to
the maximum ofCv .
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57 1365PHASE TRANSITION IN A STATISTICAL MODEL FOR . . .
will likely see a first order transition@16# and in that respec
it is similar to the prediction here.

VI. SUMMARY AND DISCUSSION

We have taken a basic statistical model for nuclear m
tifragmentation and have searched and found a first-o
phase transition in the model. This phase transition is q
distinct. Here theCv goes to infinity at the ‘‘boiling point’’
and the second momentM2 reaches a maximum which i
finite in the thermodynamic limit. This is to be contrast
with first order transition in the lattice gas model. In th
model the second moment goes to infinity butCv merely
goes through a discontinuous jump. Insofar as the lattice
model~which can be mapped onto an Ising model! is a more
standard description of liquid-gas phase transition, this p
ticular model considered here is quite distinct. O
hallmark of this distinctiveness comes from the sudden
appearance of̂ kmax&/A which jumps from about 0.5 to
nearly, if not exactly, zero as the boiling temperature is t
versed. If we identify the large cluster as a liquid then
have to say, looking at Fig. 3, that we can have a mix
phase in which half or more of the total number of partic
are in a liquid phase and the rest in gaseous phase; or, we
have all the particles in a gas phase but we cannot, for
ample, have one-third of the particles in the liquid phase
,
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the rest in the gaseous phase. One has to remind onesel
interactions in the model are treated in a rather undemocr
fashion. Interactions within particles in a composite a
treated~witness the appearance of binding energy, surf
terms, and excited states of the composite! but interactions
between composites are treated less stringently. This wo
make the model quite unrealistic for high values of free
out density but of course the model is designed for l
freeze-out densities.

We find it satisfying that the maximum ofM2 and the
minimum of teff appear at a temperature close to that of
maximum ofCv . Since the measurement ofCv is hard this
means one may still locate approximately the ‘‘boiling tem
perature’’ by indirect means. This remains true in the latt
gas model in spite of rather different character of the ph
transition there. Thus this seems to be a characteristic sh
by many models.
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