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Phase transition in a statistical model for nuclear multifragmentation
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We use a simplified model which is based on the same physics as inherent in most statistical models for
nuclear multifragmentation. The simplified model allows exact calculations for thermodynamic properties of
systems of large number of particles. This enables us to study a phase transition in the model. A first order
phase transition can be tracked down. There are significant differences between this phase transition and some
other well-known case$S0556-28188)02803-9

PACS numbds): 25.70.Pq, 24.10.Pa, 64.60.My

[. INTRODUCTION [9] we are able to get exact results for systems as large as
2000 particles or more. Another interesting feature is that we
Imagine that thermalization is obtained in heavy ion col-will be able to study “percolative properties” of the standard
lisions because of two-body collisions. The compound sysstatistical model. By this we mean the “second moment”
tem expands, reaches a volume larger than normal nucleand the size of the largest cluster, quantities which are of
volume and finally dissociates. This dissociation will carryrelevance in a percolation model and the study of which is
the signatures of a thermalized system at this expanded vopften very revealing10].
ume. This simple picture has been used to describe data ob-
tained in heavy ion collisions many times, sometimes with !l THE MODEL AND THE CALCULATIONAL TOOLS
additional inputs. In the late seventies it was first used to

describe composite production in the Bevalac §afaAtthe 0 omers or composites df nucleons. The composites

Bevalac energy the numbers of composites were small anﬁave ground state energyWok+ o(T)k?3. The first term is
one was content to calculate cross sections of light masg,. \olume energy wittWO=016 MeV. The second term is

nuclei[2]. As experimental studies of heavy-ion collisions atihe surface tension term taken here a$dhto be tempera-
lower energy progressed such models could be tested i re dependent: a'(T)=0’0[(T2—T2)/(T2+T2)]5/4 with
" Cc C

much greater details. This prompted many detailed an ,=18 MeV andT,=18 MeV. In most of the calculations

elaborate calculations. Today large codes exist which will” R ;
. : . reported in this papes is temperature dependent. However
calculate cross sections of composites. We mention two re-

. ; ) ) ; . we also have done calculations withtemperature indepen-

view articles[3,4] which provide relevant details and addi-

. dent at constant value 18 MeV and although values of spe-

tional references. o s Y o

. . cific heat, “boiling temperature,” etc. change, no qualitative

Another issue that has attracted a great deal of attention | . .
. o i ) Changes are found. At a finite temperature the composite can

whether or not heavy ion collisions provide a window of

: ; o : . be in the ground or one of its excited states. Excited states of
opportunity for studying phase transitiions in nuclei. Mean

field calculationg5] show that nuclear matter has Van dercomposnes are taken into account using the Fermi gas
. : model. The internal energy of a composite at temperature
Waal gas type behavior and thus in the-p plane there

. o . - is —Wok+ o(T)k?3+ T2k/ €, where the last part comes from
would be regions of liquid-gas coexistence. It was conjec- . : ;

) . . the population of excited states of the composite. The value
tured that during disassembly the nucleus could be in the

coexistence regiori6]. Much of the interest in studying Of € in the above expression is taken to be 16 MeV. The

heavy ion collisions rests on the hope that one may discer etrrr:nzlrcat%arlgll'“?sn ;‘)l:nctécinEC}fl_aaﬁgn?r?c;ﬁléeufur;llJclz:IZ?rrrl]?_ aatls
signatures of liquid-gas phase transition in the data. The re- P T ) 9

cently developed lattice gas model for nuclear disassembl?pprox'mat'on IS

In the simplified model investigated here we can have

addresses both the issues of fragment distributitiresmajor 7= exl (Wok— ak?3+T2k/ €0)/T]. (2.1
achievemnt of standard statistical model alluded apavel
liguid-gas phase transition in a unified pictu. It is assumed that the freeze-out density is small so that at

The purpose of the present work is to investigate the posdisassembly different composites do not interact with each
sibility of a phase transition in a simplified version of the other(except through excluded volume effect
statistical model[3]. Given that the model with its many  In the grand canonical ensemble, the average number of
elaborate features is able to reproduce significant details gfomposite ok nucleons is given by
data it is still an interesting question to ask: does this have

— @Buk
much relevance to a phase transition which is one of the (M =" o 22
issues considered to be of primary interest in heavy ion colwith
lisions. This was briefly addressed in a recent papébut v
we deal with this issue here with more rigor and in far _Vt 3/2,,3/2
greater detail. Using a technique developed in a recent paper “k h3(277mT) KXz 23
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where fork>1, zis given by Eq.(2.1) andz;=1. The = compute(kn./A. This turns out to be a very interesting
chemical potential » is fixed from the condition quantity even in the statistical model. Campi defined reduced
8 kn=A. moments as moments in which the largest cluster is ex-
Although not crucial for the work done in this paper we cluded. Thus the second momenmlg:Ekkznk—kfnax_ To
want to comment on the volume parame¥gwhich appears compute expectation values in which the largest cluster is
in Eq. (2.3). We distinguish here between the voluMeto  fixed we need to compute the partition function of such en-
which the compound system has expanded and the volumgmbles. Clearly this partition function is given by all the
V¢ which is the available volume for the composite lof terms in the partition function which have, _ as the high-
nucleons to move around. For thermodynamicsisather g, in the term. Consider
thanV which is to be used. The two volumes are related to

each other but are not identical. We assume that composites AZp(Kmad =Za(@1, ... 0k 00,...)
appear with their normal volume. Thus the volume which a
composite of k nucleons occupies isk/p, where —Zp(wq, - .. ,wkmax_l,o,o,. ). 29

po=0.16 fri 3. It then follows that if the total number of
nucleons fragmenting i8, the excluded volum¥, is A/p, = We see thal\Z, is the partition function for ensembles with
and we take the available volume for thermalization to befixed maximum cluster sizk,,,,, since the first term collects
Vi=V—Ve,. We show most of the calculations for all terms withw, _orlower, and the second term eliminates
p=A/V=0.05 fm 3. This means calculations are done with those terms which do not have an__. From this we can
p=AIV;= p/(1-pl/0.16)=0.0727 fm>. determinePr (ks the probability of obtaining a distribu-
We wrote down the average number of particles accordtion whose largest cluster kg [9],
ing to the grand canonical ensemble. We will however
mostly use the canonical ensemble using a technique devel- AZa(Kimay
oped in[9]. The canonical partition functio@, for A par- Pr(Kmax) = m- 2.8
ticles is given by[11]
e It is now straightforward to computék,,, or the reduced
o, moments.
ZA:2 kﬂl m 2.4 Before we leave this section we would like to comment
- on two of the possible shortcomings of the model. One is the

wheren, is the number of composites which hasiucleons —assumption that different composites at the time of dissocia-
and the sum above goes over all the partitions which satisf{ion are on the average far enough that they do not interact

Skn,=A. The probability that a given admissible partition With each other. The only effect that can be easily taken into
P(R)=P(n;,n,,n . ..) is obtained is given by account is through the excluded volume effect but the simple

correction that we have alluded to above is really very ap-
1 o™ proximate and certainly not rigorous. Trying to take interac-
- k . . .
PM=-—]] —. (2.5  tions between different composites would change all the
Za Nk equations for the partition function. We cannot correct this
by simply deciding to take an arbitrarily large freeze-out vol-
ume so that interactions between different composites are
indeed negligible because the major part of the physics will
p have been already decided and that may pertain to a smaller
> konZp_ (2.6  Volume. In some sense, the lattice gas m¢detioes a better
k=1 P job of interactions between different composites. The other
approximation is in the assumption that the internal partition
Thus one has Z;=wq, Zf%w'er w3, and function is given by Eq(2.1). That equation uses expres-

Zs= %wf+w2w1+w3 and so on. The average value of sions for excitation energy and entropy per particle which is

composite number in the canonical ensemble is readily Ob\_/alld only in the infinite noninteracting nuclear matter limit.

tained|this is to be compared with Eq2.2) of the grand ;rzhi)svmghel;’]‘gg/ ESmpp:gga(I:;tlo%gseliotheé"’tpgcetéf?nneEgng é;‘ Ea.
canonical n'ensemb]e We have (ng=2P(n)xn,= (1/ Other choices for thé& dependence have been considered
Zp) 211 (w;'Ini!) N which leads to(ny) = wy(Za—«/Zp). [12].

These results apply to any choice @f but in this paper we

The partition functionZ, can be built by recursion relation.
Starting withZ,=1 one can build all higher ones using

Z,=

Tl

will f(_)cus only on the choice _of Eq(.2.3). We Iik_e to em- Ill. THE FREE ENERGY, THE LARGEST CLUSTER,
phasize that here the calculations in the canonical ensemble AND THE SPECIFIC HEAT

are done without any Monte-Carlo sampling to obtain vari-

ous quantities of interest. The free energy of a system &f particles is given by

In the canonical ensemble it is straightforward to isolateF=—T In Z,. The canonical partition function is directly
the largest cluster for each “event.” Calculations in which acalculated by the recurrence method of E3j6) and thus the
“tag” is kept on the largest cluster proved to be of signifi- free energy is readily available. For a system of 2800 and
cance in percolation model analysis of data. It is possible fol400 particles this is shown in Fig. 1 as a function of tem-
us to calculat€k,,,y, the average size of the largest cluster.perature. The figure suggests that there is break in the first
This should be scaled by the size of the system thus weéerivative in F which occurs at about 7.3 MeV for 2800
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FIG. 1. The free energy per particle f¢@ a system of 2800
particles andb) a system of 1400 particles plotted as a function of
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FIG. 3. Curves forkma/A as a function of the scaled variable
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temperature. The curves suggest that a break in the first derivativfz/Tb where boiling temperaturg, is the temperature at whid@,

occurs at 7.3 MeV and at 7.15 MeV, respectively.

is maximum. The cases shown are for 700 partidigassh-do,
1400 particlesdash), and 2000 particlegsolid ling). The boiling

particles and at 7.15 MeV for 1400 particles. This meangemperatures in the respective cases are 6.97 MeV, 7.15 MeV, and
there is a first order transition here. There will be a sudder{-225 MeV. Notice that the steepness of fall increases as the par-
jump in entropy accompanied by an infinite specific heat aficle number increases. This sudden fall begins at about 0.5 for

the “boiling temperature.” Of course although 2800 is a

(KA

large number it is not the thermodynamic limit thus the spe-

cific heat would be large and proportional Aobut not infi-

sively high and narrow as the system grows larger. This huge

nite. The behavior of the specific heat as the system siziimp in specific heat at the “boiling point” is readily under-
grows is shown in Fig. 2. Notice the peak becomes progresstood if we consider the behavior (,.,9/A for various size

100

80

Cv/ kB

FIG. 2. Curves folC, for 700 (dash-dox, 1400(dash, and 2800

systems as function of temperature. Starting from a value
higher than 0.5 it quickly drops to much lower value as the
“boiling point” is traversed. This drop becomes progres-
sively sharper as the system size grows. Calculations with
finite systems(Fig. 3) suggest that for infinite systems
(Kma/A will drop from about 0.5 to at least very close to
zero at the boiling point. It is the sudden disappearance of
the large blob at the “boiling point” that is responsible for
the specific heat going to infinity.

IV. ABSENCE OF A POWER LAW, EFFECTIVE 7,
AND THE SECOND MOMENT

In a percolation model a power law emerges near the
critical point. The yieldsY(A) of the composites obey
Y(A)xA~". In the lattice gas model there is a continuous
line in p—T plane where such a power law emerges. See
Ref.[8] for the prescription how the yieldg(A) are calcu-
lated in the lattice gas model. The interested reader will also
find in the same reference the well-known prescription of
calculatingY(A) in the bond percolation model. Although
the power law is expected to emerge only in the neighbor-
hood of percolation point an effectivecan always be de-

(solid) particles as a function of temperature. The maxima occur atduced from the data usifd.3]

6.95 MeV, 7.15 MeV, and 7.3 MeV and coincide with what visually

appear to be near breaks in the first derivatives of free energy.
Notice that as the particle numbers increase, the heights of the

peaks increase and the widths narrow.

SP2AY(A)  SPPAATT

= . 4.1
SRY(A) - ZRATT “
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FIG. 4. Curves for yieldsr(A) againstA at various tempera-

; . . FIG. 5. For a system of 200 particles curves for effective
tures. The disassembling system chosen has 200 particles. The tem-_ .. :
peratures chosen are 6.2 Médash, 6.7 MeV (solid) (at this tem- specific heat, and the second moment as a function of temperature.

o Noti hat the minimum nd the maximum oM, are cl
perature the effective is lowes}, and 7.2 MeV(dash-dot thc;tlr%ea:(iritutmeofcl imum of and the maximum oM, are close to
Y-

We have takem1=5 andn2= 30 which is similar to values
used in other analyses. In the model pursued here we do n

find the emergence of a power law. This is not just becaus r:mlr;];:glter::z3ttcearn|(|3r2i|::.alT2§s(Ialmglésar;rljesiiastlLye?(Tc?\l/\r/]lzg e
we are using a finite number of particles. One sees a muc 9 9 9

clearer emergence of a power law in the lattice gas mod ame%lfrgmfFlﬁj. 3.thatAa}Z onzdcrolsszg the b0|l|né] p0|r_1t a
even with smaller particle number than what is considere Zr%e 202 0 tde233|zev sub_ e(rj1¥ Isappears. Equations
here. An example of yield¥(A) in the model is demon- -1, (2.2), and(2.3) are combined to give

strated in Fig. 4. In spite of a lack of a power law below, at v , )
or above the boiling temperature deducing an effectives- (nY= F(qumT)3/2|<3/2eb’(/»k+Wok+T kleg—o(T)k?%)
ing formula (4.1) is useful. As the temperature changes the

value of the effectiver will go through a minimum as shown (5.9
in Fig. 5. The minimum value depends upon the freeze—oufOr k>1 and(n,)=ef*(V;/h% (2emT)32. In the infinite

density p used for the calculation. For the case shown injimit the term proportional td in the exponent must disap-

Figs. 4 and 5 the value of the,, was 1.84 but a lower value pear at the “boiling point.” Hence we should have
is found if a larger value of the freeze-out density is used,;

t%ese figures to determine the value of the boiling point in

correspondingly a larger value is obtained if a lower freeze- 1 * o3
out density is used. We also recall when a true power law 1= =—(2mmT)¥q efr+ > k% Ao(Dk (5.2
emerges at a critical point the value ofs restricted to be ph 2

between 2 and 314]. There is no such restriction here be- o ~

We now consider the second momewit. This will go ~ boiling temperature is 8.187 MeV. The boiling temperature
through a maximum as the temperature changes. The maxpcreases with increasing freeze-out density in this model.
mum of M, and the minimum ofr.; are very close to each ~ There is at least orfed 5] published work on experimental
other and they both occur close to the maximunCof(Fig. extraction of the caloric curve. This curve suggests that a
5). Since experimentally a measuremen@afis rather hard ~ Peak inC, is seen around 5 MeV for some finite nuclei. On
(see howevef15)) it is easier to locate approximately the the theory side the percolation model has often been applied

“poiling point” by the minimum of 7. or the maximum of ~ Put there is noC, in percolation model since there is no
M,. The value ofM, does not grow with particle number Hamiltonian. The phase transition in that model is a continu-

but saturates around 11.6. ous transition and rather different from the first order transi-
tion considered here. However R¢8] shows that the per-
colation model is one limit of the lattice gas model which
does have a Hamiltonian and which has several features
We return to Figs. 1 and 2. While the figures clearly showwhich can be compared with the model investigated here.
evidence of the occurence of a first-order transition and thélore of this comparison appears in our next section, how-
ever increasing values of the specific heat it is difficult fromever, in the lattice gas model also one predicts that the one

V. BOILING POINT FOR INFINITE MATTER
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will likely see a first order transitiofil6] and in that respect the rest in the gaseous phase. One has to remind oneself that

it is similar to the prediction here. interactions in the model are treated in a rather undemocratic
fashion. Interactions within particles in a composite are
VI. SUMMARY AND DISCUSSION treated(witness the appearance of binding energy, surface

. o terms, and excited states of the compgsiiet interactions
_ We have taken a basic statistical model for nuclear mulpetween composites are treated less stringently. This would
tifragmentation and have searched and found a first-ordefake the model quite unrealistic for high values of freeze-
phase transition in the model. This phase transition is quitgt density but of course the model is designed for low
distinct. Here theC, goes to infinity at the “boiling point”  feeze-out densities.
and the second momeM , reaches a maximum which is e find it satisfying that the maximum d¥l, and the
finite in the thermodynamic limit. This is to be contrasted minimum of 7. appear at a temperature close to that of the
with first order transition in the lattice gas model. In that paximum ofC, . Since the measurement 6f, is hard this
model the second moment goes to infinity il merely  means one may still locate approximately the “boiling tem-
goes through a discontinuous jump. Insofar as the lattice g3serature” by indirect means. This remains true in the lattice
model(which can be mapped onto an Ising mgdsla more  gas model in spite of rather different character of the phase

standard description of liquid-gas phase transition, this paryansition there. Thus this seems to be a characteristic shared
ticular model considered here is quite distinct. Onepy many models.

hallmark of this distinctiveness comes from the sudden dis-
appearance ofKy.0/A which jumps from about 0.5 to
nearly, if not exactly, zero as the boiling temperature is tra-
versed. If we identify the large cluster as a liquid then we
have to say, looking at Fig. 3, that we can have a mixed This work was supported in part by the Natural Sciences
phase in which half or more of the total number of particlesand Engineering Research Council of Canada andleby
are in a liquid phase and the rest in gaseous phase; or, we c&onds pour la Formation de Chercheurs et I'AiddaRe-
have all the particles in a gas phase but we cannot, for exeherche du Queecand by the U.S. Department of Energy,
ample, have one-third of the particles in the liquid phase an@rant No. DE FG02-96ER 40987.
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