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Energy-weightedM 1 sum rule in deformed nuclei: A self-consistent approach
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An energy-weighted sum rule covering the fMI1 scissorslike spectrum is computed in the context of the
random phase approximatidRPA) using a separable Hamiltonian. The deformed mean field is derived in
Hartree approximation from the quadrupole-quadrupole interaction which is accordingly modified so as to
avoid further distortions of the mean field. The main effect of this modification consists in the complete
cancellation of the contribution to the sum rule coming from the one-body potential. The resulting sum is
almost entirely exhausted once the contribution from the observed low-Mihgransitions is implemented
with the one coming from energy and strength of the high-lyWhiy mode, computed in schematic RPA. It also
emerges naturally that tHd 1 transitions of both modes are strictly correlated with the quadrupole collectivity
of the ground statd.S0556-28188)05502-2

PACS numbds): 21.10.Re, 21.60.Ev

I. INTRODUCTION phenomenological analyqi29]. These studies were confined
to the low-lying M1 excitations. On the other hand, sche-
Out of the many properties characterizing the low-lyingmatic[33] as well as realistif34—38 RPA calculations sug-
magnetic dipole excitations observed in deformed nuclegest the existence of a high-energy mode of scissors nature.
[1,2], known as scissors modg3], the intimate connection This would be just th&K"=1"* component of the isovector
between théM 1 transitions and the quadrupole collectivity is quadrupole giant resonance.
of the utmost importance for assessing the real nature of the When framed in particle-hole space, a sum rule, by its
mode. It has been found in S] and Nd[5] isotopic chains  own nature, necessarily accounts for the contribution of both
that the summed strength of thel transitions below 4 MeV  modes unless low- and high-energy states get decoupled by
undergoes a sudden increase in going from spherical to dsome special ansatz as in the pioneering work by Lipparini
formed nuclei and then grows quadratically with deforma-and Stringar{39]. The same can be said for the shell model
tion. Such a deformation law, which reflects the similar satusum rule derived irf26]. A shell model treatment of both
ration properties of the summed1 strength and the ground high and energy modes, however, is necessarily confined to
rotational E2 transition probability[6], has been found to light nuclei. This has been dofé0] and, as we shall briefly

hold for all rare earth nucldi7]. see in the following sections, interesting and surprising re-
Theoretical studies of this problem have been carried ousults have been obtained.

in the Tamm-Dancoff approximatioTDA) [8] and, more In heavy nuclei, the two modes were explicitly treated in

extensively, in the random phase approximatiB®A) [9—  a sum rule approach based on the use of a one-body Hamil-

11]. All these calculations are approximately free of the un-tonian only[27]. A quadratic deformation law was found to
certainties induced by the occurrence of spurious rotationdhold for both transitions. The approximation of neglecting
admixtureq12]. Such a redundant mode was removed eithethe two-body interaction was seriously questioféd]. In-
by a method developed by Pyatetal.[13] which leads to deed, the calculation is to be viewed as a phenomenological
a modification of the quadrupole-quadrupole interacfiti?l  tool for describing such a peculiar property of the mpéi2].
or by a Schmidt orthogonalization of the basis stéfef or In this paper we will compute, within the framework of
by formulating the RPA eigenvalue problem directly in the RPA, aM1 sum rule which involves the fuM1 spectrum.
laboratory fram¢11]. Another way of solving the problem is Contributions coming from one- and two-body potentials are
through the use of a self-consistent bd4i5,16. In a recent taken into account. Spurious rotational admixtures are
paper[17] it was shown by an analytical procedure carriedavoided by following the strategy adopted in R¢L7],
out in schematic RPA that the use of a mean field deducedhich consists in generating the deformed mean field in Har-
from a quadrupole-quadrupole interaction in the Hartree aptree approximation from a rotational invariant quadrupole-
proximation removes completely the redundant mode. It wasjuadrupole potential. The latter interaction is then modified
also shown that the method is equivalent to the Pyatov apsy the use of doubly stretched coordinafé8—-45 so as to
proach and, therefore, is effective in more general, realisticavoid any further distortion of the mean field.
contexts. In Sec. Il the Hartree treatment developed in R&7] is
Global properties such as the deformation law have beehriefly reviewed and doubly stretched coordinates are intro-
described, with different degrees of accuracy, in all phenomeuced. In Sec. IlIM1 and E2 transition amplitudes and
enological and schematic models adopted in the past to studirengths are derived in proton-neutron schematic RPA. Use
the modd 18—3J. Sum rule techniques have been exploitedof the two strengths will be made for a numerical analysis of
in some of these models. This has been done in IBM-Zhe scissors sum rule. This is derived in Sec. IV for a sche-
[8,21-25, in the realm of shell moddP6] and in a purely matic Hamiltonian and in Sec. V for a more realistic sepa-
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rable Hamiltonian. A qualitative and quantitative analysis ofOnce generated, the Hartree mean field must not be distorted
the sum rule is carried out in Sec. VI. Some concludingfurther by the two-body force. To this purpose it is appropri-

remarks are drawn in Sec. VII. ate to modify the quadrupole-quadrupole potential by using
doubly stretched coordinates = (w;/wg)X; in the quadru-
Il. DEFORMED HARTREE MEAN FIELD AND DOUBLY pole fields[43—45. Indeed, with these new variables we
STRETCHED COORDINATES have
We assume first that our nucl'ear system, com_pongi of <6§2>=<Q§2(;i)>=0 2.9
protons and\ neutrons, is described by an Hamiltonian of
the rotational invariant form as long as the nuclear self-consistent conditions
- L oP . o®som . om T @' om 1 1
H=Ho+ EX(QZ Q27+ Q7 -Qy)+ EXpn(QZ Q3 wl('r)z n(17)+ > =w2(7)2 n(zT)-l- >
) )
ny n2
.
+Q3" - QP), (2.9 1
N N _ —wy(nN2 [N+ (29
whereH, is an isotropic harmonic oscillatgHO) Hamil- nG”

tonian of frequencyw, and
are enforced. The explicit form of the new quadrupole fields

Q=2 di(h=2 TURTSIE 22 S

are proton ¢=p) and neutron t=n) quadrupole fields. The Q221 wy L
above two-body potential can also be written in the isospin
form, adopted for instance in Reff46], as the sum of an _ wi
isoscalar and an isovector quadrupole-quadrupole interaction Q2¢2=52Q2¢2y
with respective coupling constants 0
1 1 = 1 2 2 V5 2_ 2
=0)=— =1)=—(y— = +2 - — ,
x(T=0) 2()(+)(pn), x(T=1) 2()( Xpn)- Q20 3wg(w1 3) Q2 3w§(wl 3)Qoo
(2.3 (2.10

A Hartree treatmenf17] yields for theith nucleon the de- whereQgu=r2Y is a monopole term. The newdQ) po-

formed one-body potential tential is therefore composed of pure quadrupole-quadrupole

plus monopole-quadrupole and monopole-monopole terms.
It is well known that the Hartree conditionf.5) fix the

isoscalar coupling constant. To this purpose we first compute

the mean value of the quadrupole field using the asymptotic

where the deformation parametess are defined through HO basis. After exploiting the nuclear self-consistent condi-

tions (2.9), and Egs(2.6), we obtain

1 2
V};)=§mw§r“) - B,mwiasy, (2.4

Bpmw(z):_(X<Q(2'(J))>+Xpn<Q(2r(1))>)'
<Q(p)>: i <Q(”)): \ /iiz<r2>5<p) 1+ Eg(p))
Bamwg=— (x(Q50)+ xpn( Q%)) 29 @ 16m * <0 16m3 s

(2.1)
These equations, which can be called the Hartree self- o ) )
consistent conditions, ensure the separation of the intrinsignd similarly for neutrons. From summing both sides of Eq.
M1 states from the rotational mod&7]. (2.9 it is now easy to deduce
The Hartree potential can be put in the Nilsson form of an

2
anisotropic HO potential with frequencies _ 1 __ 4_77 Mg _ E
2 1
w1(7)=wo\[ 1+ 56, =wo| 1+ —57). where = (5,+ 6,)/2. The lowest order piece gf(0) is the
3 3 P ; ; .
well-known expression derived in Ré#7].
7 5 As Egs.(2.3 show, the isovector coupling constay(l)
w3(7) = wp [1— 8. =wyl 1—=45.]. (2.6) is nonvanishing only ify# xpn- There is no agreement on
3 3 the value to be assigned to such a constant. This is usually

) deduced from the symmetry energy mass fornjdid and
where new and old deformation parameters are connected h¥syits to be related tg(0) by the ratiob=— x(1)/x(0)

=3.5. This estimate has been questioned in recent analyses

5= \ /f B 2.7 [37,48, both pointing at a smaller value. In particular, shell
T 167 ©7° ' model calculations in light nucl€i48] have shown that a
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large value ob, while needed to give a correct energy split- (Qz ) on(Uv) F)
ting between isoscalar and isovector giant quadrupole reso- Yon(7)=N; nP ,
nances, leads to the collapse of states which should be well Eph
above the ground state. Given these uncertainties, we will
consider the ratido=— y(1)/x(0) as a free parameter. (Q(T) )ph(Uv)5h
Zon(7) =~ T (3.5
. M1 AND E2 TRANSITIONS IN PROTON-NEUTRON . o N
SCHEMATIC RPA The constant®, are fixed by the normalization condition

The Hamiltonian resulting from the self-consistent ap- ) o
proach illustrated in the previous section is composed of the TEph (1Ypr(D[*=1Zpn(7)[%) =1 3.6

Hartree deformed fiel@.4) plus the QQ) interaction. This
Hamiltonian is adopted here to derive explicit expressionsand by the ratio
for energies and strengths in proton-neutron schematic RPA
by adopting the formalism developed in RéL7]. Use of Np 2xpnS"(0)  1-2xS"V(w)
these expressions will be made in the numerical analysis of Ny 1-2xSP(0)  2xpnSP(w)
the sum rule which will be derived in the next section.

In the proton-neutron formalism the RPA energiesire  In order to compute the transition strength of the time-even
the roots of the eigenvalue equation E2 operator

(3.7

[1-2xSP(@)][1- 2xS™ ()] = 4x2,SP(@) S (w), M(E2p)=eQ), 38

(3. we make use of the expression lf, obtained by solving

Egs. (3.6) and (3.7), exploit the key relatior(3.3), and ex-

h
where press the unperturbed strengtl‘Q)(ﬂ) in terms of the ground
(T state mean value of the quadrupole field through
SPw)=2 — E(T>2|(Q“>>ph|2<ul, )5 (3.2
w2—
& [phiQahI*=7Z 2 Vies —<Q(”> (39
€ €p

Here Uv)'=vul?=ulv(? are coefficients produced
by the Bogoliubov-Valatin transformation, Q?),, ~ 'he above equation is derived by making use of the
K asymptotic HO basis. After all these steps, we obtain for the

—(p|B i i - -
(p|Q3}|h) are single particle matrix elements of the quad E2 strength the expression

rupole field, ancE,;, denotes the two quasiparticle energies.

In our case the space is spanned by proton and neutron un- 15 eg wZ—ES 2
perturbed excited states of energE§) = Vel +(2A(7)2  B(E2)T= 70— m Z<Q(p YN? 1+ eoEo 02— &2 e’
andES" =€l , where el = w,(7) — w3(7)= 6,0, and €5 (3.10
=wq(7)+ ws(7) are the HO particle-holeph) energies and
A is the pairing gap. The constant\is given by
Using the key relation
N2e| s €5 (wZ—EZ)Z —E(1-R!M)
1 |7 eBol 02— €3] | wP—E3(1-RP-RM)’
_ h 2 _— h (7)[\|2 0=0 2 0 ® ®
Ee) pgéz [(phIQSY]) Pfgfo [(ph|Q5Y DI (3.12)
33 where

one obtaing17], from the request that the eigenvalue equa- 15 2 2 p2
tion yields a vanishing root, quasiparticle self-consistent re- RIN=—— —X(Q(T)> 1+ 5 g} (3.12
lations equivalent to the Hartree conditiof%s5). It follows 327 Mwg €Eo 0~ €5

from them that (Iv)(+)_1 for both low- and high-energy

modes, (w)( —1 for the high-energy level, andJ(;)( y ~ The time oddM1 operator can be written

= ¢y /E, for the low-lying ong[17]. 3
The transition amplitude of a time evén) and odd(—) M(M1,p)= \/ L un=Ms9(M1,u)
operatorW!”) from the ground to an excited RPA stdje) 4w

is given by 3

)0y — + *)
<'M|W(“ 10) T,Eph [Y n(7)= th(T)]<p|W( |h>(uv)ph ' where the arrow points out the scissddd component, the
(3.9 only one contributing to the transition strength. The other
term, being proportional to the total angular momentum,
where gives a vanishing contribution in virtue of the Hartree self-
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consistent conditiongl7]. In computing the strength of this B(M1)1=8%. The same quadratic dependence is found

operator we need to exploit first the relation when theM 1 strength is computed exactly.
In the case of the low-energy mode we can approximate
the square brackets in Eq8.11) and (3.19 with 1. The
(phlLi,|)= \/ <Dh|Q(T)|>, behavior of the resulting/ 1 strength is not as simple as in

the case of the high-energy mode. It goes approximately as
B(M1)1«6® for vanishingly small deformations and be-
comes linear inS for superdeformed nuclei. This transition to

a rigid-body regime is in agreement with the result of more
realistic RPA calculation§36]. Between these two extreme
cases, the behavior is rather involved. That schematic RPA

(3.19

where ()= i or e{) =€} depending on whether theh
states span thAN O or AN=2 HO space. We then pro-
ceed as for th&2 transition and obtain

2 2 does not yield a5? law for the low-energy mode is a conse-
3 €} @ €2 5m uence of the inadequacy of this approximation scheme
BIM1)T=1e—m| =| £ —(Qd YN2 q quacy of this approxi S :
0 @o when used to study these low-lying magnetic transitions.
Eo 0~ E5|* ,
x| 1 oI Z| M (3.15 IV. ENERGY-WEIGHTED SCISSORS SUM RULE
0 €

As discussed in Ref49] the operator responsible for the
From the comparison of the expressions of the two strength®l 1 transition to the scissors mode is

we get
3 3
MedMLu) =\ 16~ Suimn=\/ 75 O = 3)

X(gp_gn)MN’ 4.1

1426
3

1
B(Ml)T=§m2w252

(1+ €0/Eq) 02— (EP + €0 /Epet’)
(1+ €oEo/€P ) 02— EP(1+ €0 /Eg)

whereS,, is the generator of the scissorslike oscillations of
protons versus neutrons. Consistently with RPA calculations,
we will use for the gyromagnetic factors the vaILga,yl
(3.16 andg,=0 so thatg,=1. If J(T) are purely orbital we gain the
M1 scissors operator adopted in schematic RPA.

For a M1 operator of the scissors form the following
energy weighted sum rule hol@i39]:

2
XB(E2)] =

This equation correlates tHe2 transitions to the low and
high scissors modes with thigl1l transitions to the same
states. Such a link, not to be confused with the well-known 3

M1-E2 relation found experimentally and to be discussed in X, 0B (M1)1=— > w,/(nu|S,|0)2ud
the subsequent sections, needs to be tested in more realistic " 16m A

RPA approaches. If valid in this more general context, it

3
could be used to deduce tié1 strength of a given mode ~3n > (0l[S].[H.S,1110)uk
once the correspondirig?2 strength is known experimentally T p=*1
and vice versa. <sc(M 1). 4.2

It is worth mentioning that théV1-E2 relation just de-
rived yields a vanishing/1 strength whem takes the value  he gouble commutator is computed using a Hamiltonian

5 5 composed of a one-body term containing the Hartree de-
\/ng + €o/Egel formed field (2.4) and of a quadrupole-quadrupole interac-
0=

1+ey/Ey (317 tion (QQ) expressed in doubly stretched coordinates. The
resulting value can be decomposed into one- and two-body
It can be checked, by direct substitution, that this is an exaqgpieces:
root of the eigenvalue equatidB.1) as long as the quasipar-
ticle self-consistent conditions are fulfilled. Such a root is
just the eigenvalue of the isoscalar quadrupole giant reso- Sc)(Ml)— Sfasc SC))MN (4.3
nance mode.

Exact eigenvalues of the high- and low-enefggissors  The one-body contribution comes from the Hartree field and
modes can also be deduced. A good approximation to theng given by

is given by
1
0 =e1+b2, o '=EyV1+by, (3.18 585°)=§”:Eﬂ<0|[SL:[HO'S;J]|0>
wherebeg=(b/2)/(1+b/2). =3moj( B Q)+ Bn(Q))- (4.4

As for the strengths, we can drop out 1 in the square
brackets appearing in Eq&.11) and(3.15. Under this ap- Assuming equal deformation for protons and neutrons, we
proximation, Eq.(3.15 yields, throughe, and (Q{),  get
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4 By making use of the explicit expressiof®.6) of the fre-
S69=3mwjB(Qz0)= §52mw0A(r2) (4.5  quencies, we can put the above quantity in the more trans-
parent form
which is the result derived in Ref27]. &0 5
The two-body term can be decomposed into two parts S5y =S5 0) + S5 1) 6+ Sy 2) 82 (4.12

SS9=80+ 559 (4.6)  The term ins? has been found to be negligible and will not
be discussed. The zeroth order term is
The first one comes from the component of the two-body

interaction which involves the monopole operators and is t
given by 522(0)=—6xpn§ Q) Q5 +Q5QE). (413
\/g 1 2 2 2 2 H H H
(so_ V2 = . (p?_, (p) (P24 2P AP Inserted into Eq.(4.3), it yields the shell model sum rule
073 wé(wl o3 lx(er @3 ){Qo0 Q20 derived in Refs[8,26].

2 2 The first order coefficient is
+xpn( @)+ 208V )N (QRIQW) 1+ (p—n).  (4.7)

To compute this quantity we use closure. Having in mind

Syi(1) 2X[<Q20 20+Q20TQ(n)>

that the states which couple strongly to the ground state +<Q(p) (n)T (n)>
through the quadrupole field, couple weak(if at all) 21
through the monopole operator and vice versa, we put —2<Q (n)‘r (n>>]
(7) (")

(Q59Q5 ) =(Qb)( QL - (4.9 +6Xpn[<Q20 (2%) QWP
Under this approximation and the assumption of equal fre- +<Q(p) (n) (n)TQ(P)>
guencies for protons and neutrons, we obtain from E43),
upon exploitation of the Hartree conditiof.5), —2<Q(2‘§) Q(zg) (n)T <p>>] (4.14

Sy=—m(wi+20)[ B (QR)+B(Q)]. (4.9 Using closure, we obtain a static part and terms describing
fluctuations of the quadrupole field. These latter pieces can
be neglected. Indeed, aside from the ground state, the set of
intermediatgnu) states include the low-energy isoscaiar
v vibrations and the isovector scissors mode as well as the
S(zsc)”“_?’mwo( )(ﬁp(Q(p)>+IBn<Q(2%)>)- K™=0%,1*,2"* components of both isoscalar and isovector
(4.10 quadrupole excitations. For a given resonance, the difference
among the strengths of the differqmtcomponentQ(zﬁ arise
The lowest order term is exactly equal and opposite to thénly once deformation is switched on. It follows that the

This, in virtue of the explicit expression®.6) of the fre-
guencies, can be written in the form

one-body contributiori4.4). pieces in the square brackets mutually cancel to a large ex-
A long and tedious calculation yields for the two-body tent. What remains is a small contribution which can be ne-
quadrupole part glected. A partial cancellation is achieved also for the con-
11 tribution, in any case negligible, froi, y, and low-energy
5(252©=§X—4(w§—w§)(4w3 w1)<Q(p)T )+Q(2’(‘,)TQ(2’5)> g/lu% excitations. We therefore retain only the static term and
w

N % y %(w%— 0D (TP~ 40d) Sz 1) =2x[{ QY X Q') +( Q5w Q5w) 1+ Bxprl ( QL)
0

X(Q59) +(QH QN1 (4.19
T T
X(QF Q¥+ Q%) —2x 4w1(w1 w3) Upon exploitation of the Hartree conditiog.5), it is pos-
“o sible to perform the following decomposition:
1 1
P’ MMy = = (4L a 04

X(Qzz Q22 +Qz Qaz) 3Xpnwg<w1+4wa Szl 1) = — 2mag( B Q') + Bn( Qb)) + Bxpn( QL)

1 X(QW)- (4.16

+ 130)10)3)(Q(2%) 20 (n)TQ(2%> 3Xpn _ _ o

The one-body piece contained$3,(1), when multiplied by
O (n)TQ(p)> 6, is exactly equal and opposite to the termsinoming from
21

4 4
X (Twi+4wi+250iw )<Q21 the monopole-quadrupole interaction and appearing in Eq.

1 . (4.10. After this cancellation no trace either of the one-body
~2Xpn—a 102502+ w3)(QE) QY+ QLY TQM). or of the monopole terms remains. Only the purely quadru-
0 pole contribution survives. The total sum rye3) assumes

(4.1) therefore the final simple form
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2 wnB(M1) T~—89 xpn<2 (QE) QY+ QuQL) 2 0B (M1)] =S5, (Ml)—i br(0[s®-s™[0),
(5.8

4
B §5<Q(2%)><Q(2%)>)' (417 whereSEY(M1) is just the energy-weighted suf#.17) ob-
tained when only th&)-Q interaction is used. The second
This, to zeroth order i, coincides with the shell model sum term in the right-hand side of the equation comes from the
rule [26]. Before making any use of this formula, we intend proton-neutron spin-spin interaction and, as we shall argue
to investigate if and how the energy-weighted sum rule idater on, is negligible. We are therefore left with
modified as we move from the schematic to a more realistic

Hamiltonian. > wBE(M1)T=SEYM1), (5.9
n

V. SCISSORS SUM RULE FOR A REALISTIC . . .
SEPARABLE HAMILTONIAN where the right-hand side term is given exactly by &ql7)
as in the schematic case. We then conclude that the use of a

Let us consider the following separable Hamiltonian:  separable Hamiltonian of the type adopted in realistic RPA
calculations does not change the scissors energy-weighted
sum rule obtained using only a quadrupole-quadrupole inter-
action as in schematic RPA. It is worth pointing out that such
an important result is obtained only if the angular momenta

H=Hyi+Vp+Vas+ V0. (5.1)

Hyi is the full spherical Nilsson Hamiltonian including the

- . . . 2 .
;p'nrgtrgr';[_ter:)r?o\r’]\”tgncdouapl'quﬁfgritﬁgﬂz‘:’] thgirip'efe’,x]'; entering into the scissors operatdr1) contain both orbital
L P i P ) ) painnggg ) and spin piecefEq. (5.5)]. The use of purely orbital angular
(QQ) interaction already considered here, ang, a spin-  momenta would have produced a contribution coming from

spin interaction of the form the spin-orbit potentialwhich is canceled by the opposite
1 1 contribution due to the spin compongnt
VM:E)(W)(g(p).§p>+§<n>,§<n>)+ EXE?(gm).gm) The spin orbit term has the form
o 3 S
+8M. 5P, (5.2 Stw(M1)=— Wg{(gé‘”—l)(ﬂ% [P sP|0)

where (r=p,n) ] =
gPOIT 00| 630
:Ek s((K). (5.9

This is nothing but the Kurath sum ru[&0] valid also for
c)s.pherlcal nuclei. It is remarkable that the spin-orbit term
does not affect at all the scissors energy-weighted sum. The
spin contribution comes entirely from the proton-neutron
spin-spin interaction and is given by

In computing the energy-weighted sum rule we have now t
use the fullM1 shell model operator. This can be decom-
posed into a rotational, a scissors and a spin component

M(M1)=My(M1)+ M ML)+ M, (M1). (5.9 3
) SEUM1) == —x(0[s®-s™M0),  (5.11)
The scissors operatot1,(M1) is still given by Eq.(4.1),

but with proton and neutron angular momenta composed

. L cU\/here the spin term appearing in the scissors sum given b
orbital and spin pieces; namely, P PP g 9 y

Eq. (5.8 is also included. The above equation may be writ-

GGG} 5.5 ten in the form
The spin termM,(M1) is given by SSU(ML) = — 12 Xpl;)( 2 [(n[st)]0)[?
M (M1)= \/4E p= \E [(gP—1)&P - |<n|§<>|o>|2) MeVu?, (5.1
T 41 A MN .
+g"E My (5.6

wheres(*)=sP) + s Spin excitations with a double-hump
The contribution from the double commutator can be decomstructure have been discovered receig,52. No unique
interpretations are correlated with the different values at-
tached to the thg-n spin-spin coupling constant. In the
(sO (Is) . L.

; ©nBa(MDT=Se(M1)+Sgn(M1) +S( w(M1). analyses using a vanishing strengbké,‘,’é:O) [11,53, the

(5.7 two bumps correspond to separate neutron and proton exci-
tations. In those using a nonvanishing val6d] the bumps

For the scissors operator we obtain are explained as isoscalar and isovector excitations.
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Also the spin contribution to the energy weighted sumSince the contribution coming from the ground state is by far
depends clearly on such a constant. It vanishes or not accortiie dominant one, we can neglect the other transitions in first
ing that)(&,‘;)=0 ong;)a&O. Its value, being the net result of approximation. Using Eg2.11) to compute(Q(z%)>, we ob-

a cancellation between two comparable terms, the isoscaléain
and the isovector summed spin transition strengths, is likely
to be small in any case. This should be specially true for the B _
share pertaining to the scissors sum, which is 1/4 of the total o' ); By (M1)T+ ‘"H); By (M1)1
piece given by Eq(5.12.
1 4ZN Z

MN
~_ 2 7 2\ 2 ry TN
VI. QUALITATIVE AND QUANTITATIVE ANALYSIS = 27 90 A2 A(r5)8%(1+b7) e’ 6.5

Having ascertained the validity of the scissors sum rule .
for a separable interaction of general form, we will attempt aW(E')”OW observe that for the high-energy mode we have
phenomenological study of Ed4.17). To this purpose we @ <2@o and that, according to experimerité—7], the
write the sum appearing on the left-hand side as centroid of the low-lyingM1 excitations is constanta( )

~ 3 MeV) throughout all nuclei of the rare-earth region. This
can be qualitative explained in schematic RPA with the fact
> w0BP(M1)] that o(7)oc\/e2+(2A)%. As the particle-hole energy,
" = Swq increases with deformation, the pairing gapde-
creaseg9] so as to leave the energy of the mode fairly in-
=2 0B (M1)1+ > ol'B{(M1)] sensitive to deformation. Sina®does not appear as leading
" " term in the energies of either modes, we can conclude that
Eq. (6.5 states that the summed strengths of both low- and
~o 7Y BU(MDT+0 MY BIP(M1)T. (6. high-energyM1 modes grow quadratically with deforma-
: A tion. Indeed, lower order terms i) if present in one or both

e . trengths, should be positive. No mutual cancellation could
Such a decomposition is suggested by the schematic RP}erefore take place.

calculation illustrated here as well as by the results obtaine Apart from the assumption on the energies, the deforma-

in realistic RPA[34-3§. tion law just derived is quite general. It comes indeed from

. In order to estimate the ”ghtThar.'d S'.de of E4.17) we the calculation of the double commutator of the Hamiltonian
single out the ground state contribution first. We then use E nd, therefore, does not rely on the results of explicit RPA

(25 to expressxpn(_Q(Z%)) in terms of y and of the proton 5y jations. It is also of considerable relevance that, accord-
quadrupole mean fieltQ%)). This step ensures the consis- ing to this calculation, the summed 1 strength is strictly
tency of the sum rule with the Hartree _cond|t|0ns and enab|e§roportional to the square of the Nilsson deformation param-
us to deal with a measurable quantity such as the protogter s, which is the zero order term of the parameter directly
quadrupole moment. We finally assume isospin as a googeduced from the rotation&2 strength. This is consistent
quantum number for the excited intrinsic states. In order tQujth the results of the first experimental work on the subject

make connections with standard notations we put [4] and confirms the purely phenomenological analysis based
on the TRM formulg[29].
x=x(0)(1—D), (6.2 For a numerical estimate of the full SUBES(M1) given

by the right-hand side of Eq6.3), we need to have a com-
whereb=— x(1)/x(0) will be taken as a free parameter. plete experimental information on thE2 transitions. In
Using Egs.(2.12 and(2.11), we get the final result 1545m, which is the nucleus considered here as an example,
all the E2 strengths are availab[85—57] except those of the
low- and high-energy isovector quadrupole modes. We have
computed in schematic RPA the2 strengths of theK™
=1" (scissors components using Eqé3.10 and(3.15 and
1 _5)[_<1_ _5) BL(E2)] then assumed the same value for the ok&modes. The
3712 3 0 uncertainties induced by this simplifying assumption should
be small and, in any case, of no practical effect on
MN SS&Q,(M 1), which is dominated by the ground state rotational
~ 6-3  transition.
The sumSS3(M1), computed for different values of the
having putb’=Z/Nb. The E2 strengths appearing in the free parameteb is shown in Fig. 18 (full line). The figure

o B (M) +0 MY BP(M1)T

2
mwo

:gm(1+b,)

2

+ 2 [BY(E2)1 B (E2)1]
n#

above equation are shows also that only a small part of the sum-rule is exhausted
by the observed low-lyingM 1 transitions(dashed ling For
Bo(E2)1 =(QR))2e?, b=—x(1)/x(0)=1.5 the measuret1 strength accounts

for less than 20%. This is a clear, model independent, indi-

o2 cation that other, so far unobserved 1 transitions contrib-
BT (E2)1= — n 02, 6.4 ute to the sum. In order to evaluate the contribution coming
n<ol E2)T 4 % KnalQMI0)] ©4 from the high-energy mode we compute energy and strength
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and got admixed with spin excitations. In any case, it is quite
remarkable that the observed low-lying transitions and the

154,
Sm

st75' — RPA high-lying mode account almost entirely for the scis-
> T sors sum rule. It implies, for instance, that the expected total
iso' ///////// strength of the low-lyingM 1 (scissor$ transition amounts
= N roughly to the one so far observed in the low-energy region
‘0;525' """ ] and that only a small part of it might be present, if at all, in
the region of spin excitations.
S It is important to stress that the large contribution coming

from the high-energy mode, already pointed out in Réf],
______________________ does not imply that this mode should be more collective.
ST 1 Even in the most favorable case in which the missing
,,,,,,,,,,,,, strength goes entirely to the high-energy mode, as depicted
__________________ in our schematic RPA calculation, thd1 strength of the
Se[ T T T IInmmemTEEE oo oo I high-lying mode, though increasing with reaches a value
----------------------------- 7 which is at most comparable with the low-lying measured
T - summed transition probabilifydotted line in Fig. 1b)]. This
ok ] strength, however, is multiplied by a large weighting factor,
ol 1 T T T T ] namely the excitation energy of the mode, which increases as
- b increasegdotted line in Fig. 1c)]. By contrary, theM 1
- strength of the low-lying transitions contributes with a much
= | smaller weight. Hence the dominance of the high-energy
= mode in the sum rule.
3 40 - We have computed for completeness also energy and
strength of the low-energy mode in schematic RPA. The two
| ________ 1 quantities resulted to be practically insensitivebtoWhile,
o | | | | | \ | however, the energy is close to the observed centroid
° s 1 s 2,5 3 (0iph=05)=3 MeV), theM1 strength is about twice the
AN observed ondBS\(M1)=6x2], an additional indication
FIG. 1. Scissors energy-weight&l sum rule versus the ratio Of the inadequacy of schematic RPA for the study of the
b=—x(1)/x(0). In(a) the full line refers taSS5(M1), the dashed low-lying M1 excitations. Had we substituted the experi-
line to w{, )38, (M1)e,! and the dot-dashed line @{)>.B{?  mental with the schematic RPA values, the energy weighted
X (ML)exol + wirnB&PA(M 1)1 In (b) and (c) the dashed lines give  sum wiphBSeh(M1)T + 0sohBY(M1)T would have re-
the experimental data while the dotted ones refer to the high-energyyited somewhat larger thﬁf\f\),(M 1).
RPA mode. In(b) the sum= B (M 1)y, +BSEA(M 1)1 is also
given (dot-dashed ling

VII. CONCLUSION

in schematic RPA using the proton-neutron formalism devel- A major result of our self-consistent treatment of the
oped in Ref[17] and briefly discussed here in Sec. lll. The energy-weightedM1 sum rule is the complete cancellation
numerical results were obtained by using the standard formuwf the contribution coming from the one-body potential. In-
las deed, the use of doubly stretched coordinates, required by the
3 need of avoiding any further distortion of the Hartree mean
_ 13 PN 5 _ 13 field, represents an effective way of restoring the rotational
wo=41A Mev, (%)= §R » R=1.2ATm, invariance broken by the deformed field. Since only purely
(6.6) two-body effects survive, the sum rule, to lowest order in
deformation, is formally the same as in spherical shell
and by taking the valua =0.7 MeV, adopted in Ref9], model.
for the pairing gap. The sum rule computed here refers to both low- and high-
When the contribution of the high-energy mode is in-energy magnetic excitations. The inclusion of the two modes
cluded[dash-dotted line in Fig. @], the energy-weighted has posed the problem of disentangling the corresponding
sum rule is almost entirely exhausted. The discrepancy besontributions. This has been done by using the experimental
tween SE(M1) and the sum w{)SB{)(Ml)y,l data for the low-lying mode and by computing the centroid
+obhBSFA(M1)T may be partly attributed to the approxi- and theM1 strength of the high energy mode in schematic
mate nature of the schematic RPA calculation. Even a smaRPA.
correction of theM 1 strength of the high-lying mode would Independently of detailed calculations, it has emerged
be amplified by the large weighting value of the excitationfrom inspecting the final outcome of the sum rule that the
energy. It may be also possible that a small fraction of théV1 strengths of both low- and high-energy modes are deter-
low-energy scissor1 strength has escaped observation.mined by the ground rotation&?2 transition and, for this
Indeed, the missing strength or part of it may be either disteason, are both quadratic in tkiilsson deformation pa-
tributed among very weak transitions forming part of therameter. Such a connection has been proved experimentally
background orland may have been shifted above 4 MeV for the low-energy mode. It would be desirable, though not
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easy, to test the same law for the high-energy transitions. contribution from the high-lying mode, here estimated in
As mentioned in the Introduction, also the sum rule de-schematic RPA, is added to the one from the low-lying ob-
rived in shell model has been shown to be valid not only inservedM 1 transition. Although providing a dominant con-
a small but also in a large space which includesA=0 tribution to the sum rule, the high-energy mode, if observed,
+AN=2 excitations[40]. The inclusion of these high- should not be more collective. Indeed, i1 strength
energy configurations causes a drastic increment of thehould at most reach the value of the summed transition
energy-weighted 1 sum[left-hand side of Eq(4.17)], but  propability observed for the low-lying excitations.
determines also a corresponding increase of the right-hand Though initially embedded in a schematic RPA context,
side part by enhancing the low-lyiré2 transitions. Accord-  ihe approach has been proved to have a much more general
ing to this calculation, in light nuclei, such as Be isotopes,yglence. That the scissors sum rule remains practically un-
the approximation of retaining only the ground rotatiogal changed when a more realistic separable Hamiltonian is
transition probability in the sum rule, necessary for derivingadopted is a manifestation of its general validity. Moreover,
the 6° law expressed by Eq6.5), is no longer valid. In fact, hinging on the calculation of a double commutator, it does
the otherE2 transitions, including the isovector ones, cannotpgt rely on any assumption specific of schematic or realistic
be neglected. It follows that the full sum rule must be used tRpA. For this reason, the sum rule derived here may be of

study the orbital motion with new and interesting conse-some help for consistency checks of RPA calculations using
quences. It follows, for instance, that in singly closed shelleajistic separable Hamiltonians.

nuclei, where isoscalar and isovect? transitions contrib-
ute equally, the orbitaM 1 strength vanishes even if tife2
transition probal:_nllty is dlffe_rent from zero, a result con- ACKNOWLEDGMENT
firmed by numerical calculatior[$8].
Coming back to the present work, the detailed analysis It is a pleasure to thank A. Richter for stimulating and
has shown that the sum rule is practically exhausted once thenlightening discussions.
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