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Energy-weightedM1 sum rule in deformed nuclei: A self-consistent approach

N. Lo Iudice
Dipartimento di Scienze Fisiche, Universita` di Napoli ‘‘Federico II’’ and Istituto Nazionale di Fisica Nucleare,

Mostra d’Oltremare Padiglione 19, I-80125 Napoli, Italy
~Received 5 May 1997; revised manuscript received 7 November 1997!

An energy-weighted sum rule covering the fullM1 scissorslike spectrum is computed in the context of the
random phase approximation~RPA! using a separable Hamiltonian. The deformed mean field is derived in
Hartree approximation from the quadrupole-quadrupole interaction which is accordingly modified so as to
avoid further distortions of the mean field. The main effect of this modification consists in the complete
cancellation of the contribution to the sum rule coming from the one-body potential. The resulting sum is
almost entirely exhausted once the contribution from the observed low-lyingM1 transitions is implemented
with the one coming from energy and strength of the high-lyingM1 mode, computed in schematic RPA. It also
emerges naturally that theM1 transitions of both modes are strictly correlated with the quadrupole collectivity
of the ground state.@S0556-2813~98!05502-2#

PACS number~s!: 21.10.Re, 21.60.Ev
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I. INTRODUCTION

Out of the many properties characterizing the low-lyi
magnetic dipole excitations observed in deformed nu
@1,2#, known as scissors modes@3#, the intimate connection
between theM1 transitions and the quadrupole collectivity
of the utmost importance for assessing the real nature of
mode. It has been found in Sm@4# and Nd@5# isotopic chains
that the summed strength of theM1 transitions below 4 MeV
undergoes a sudden increase in going from spherical to
formed nuclei and then grows quadratically with deform
tion. Such a deformation law, which reflects the similar sa
ration properties of the summedM1 strength and the groun
rotational E2 transition probability@6#, has been found to
hold for all rare earth nuclei@7#.

Theoretical studies of this problem have been carried
in the Tamm-Dancoff approximation~TDA! @8# and, more
extensively, in the random phase approximation~RPA! @9–
11#. All these calculations are approximately free of the u
certainties induced by the occurrence of spurious rotatio
admixtures@12#. Such a redundant mode was removed eit
by a method developed by Pyatovet al. @13# which leads to
a modification of the quadrupole-quadrupole interaction@12#
or by a Schmidt orthogonalization of the basis states@14# or
by formulating the RPA eigenvalue problem directly in t
laboratory frame@11#. Another way of solving the problem i
through the use of a self-consistent basis@15,16#. In a recent
paper@17# it was shown by an analytical procedure carri
out in schematic RPA that the use of a mean field dedu
from a quadrupole-quadrupole interaction in the Hartree
proximation removes completely the redundant mode. It w
also shown that the method is equivalent to the Pyatov
proach and, therefore, is effective in more general, realis
contexts.

Global properties such as the deformation law have b
described, with different degrees of accuracy, in all pheno
enological and schematic models adopted in the past to s
the mode@18–32#. Sum rule techniques have been exploit
in some of these models. This has been done in IBM
@8,21–25#, in the realm of shell model@26# and in a purely
570556-2813/98/57~3!/1246~10!/$15.00
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phenomenological analysis@29#. These studies were confine
to the low-lying M1 excitations. On the other hand, sch
matic @33# as well as realistic@34–38# RPA calculations sug-
gest the existence of a high-energy mode of scissors na
This would be just theKp511 component of the isovecto
quadrupole giant resonance.

When framed in particle-hole space, a sum rule, by
own nature, necessarily accounts for the contribution of b
modes unless low- and high-energy states get decouple
some special ansatz as in the pioneering work by Lippa
and Stringari@39#. The same can be said for the shell mod
sum rule derived in@26#. A shell model treatment of both
high and energy modes, however, is necessarily confine
light nuclei. This has been done@40# and, as we shall briefly
see in the following sections, interesting and surprising
sults have been obtained.

In heavy nuclei, the two modes were explicitly treated
a sum rule approach based on the use of a one-body Ha
tonian only@27#. A quadratic deformation law was found t
hold for both transitions. The approximation of neglecti
the two-body interaction was seriously questioned@41#. In-
deed, the calculation is to be viewed as a phenomenolog
tool for describing such a peculiar property of the mode@42#.

In this paper we will compute, within the framework o
RPA, aM1 sum rule which involves the fullM1 spectrum.
Contributions coming from one- and two-body potentials a
taken into account. Spurious rotational admixtures
avoided by following the strategy adopted in Ref.@17#,
which consists in generating the deformed mean field in H
tree approximation from a rotational invariant quadrupo
quadrupole potential. The latter interaction is then modifi
by the use of doubly stretched coordinates@43–45# so as to
avoid any further distortion of the mean field.

In Sec. II the Hartree treatment developed in Ref.@17# is
briefly reviewed and doubly stretched coordinates are in
duced. In Sec. IIIM1 and E2 transition amplitudes and
strengths are derived in proton-neutron schematic RPA.
of the two strengths will be made for a numerical analysis
the scissors sum rule. This is derived in Sec. IV for a sc
matic Hamiltonian and in Sec. V for a more realistic sep
1246 © 1998 The American Physical Society
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rable Hamiltonian. A qualitative and quantitative analysis
the sum rule is carried out in Sec. VI. Some conclud
remarks are drawn in Sec. VII.

II. DEFORMED HARTREE MEAN FIELD AND DOUBLY
STRETCHED COORDINATES

We assume first that our nuclear system, composed oZ
protons andN neutrons, is described by an Hamiltonian
the rotational invariant form

H5H01
1

2
x~Q2

~p!†
•Q2

~p!1Q2
~n!†

•Q2
~n!!1

1

2
xpn~Q2

~p!†
•Q2

~n!

1Q2
~n!†

•Q2
~p!!, ~2.1!

where H0 is an isotropic harmonic oscillator~HO! Hamil-
tonian of frequencyv0 and

Q2m
~t!5(

i
q2m

~t!~ i !5(
i

r i
~t!2

Y2m
~t!~ i ! ~2.2!

are proton (t5p) and neutron (t5n) quadrupole fields. The
above two-body potential can also be written in the isos
form, adopted for instance in Ref.@46#, as the sum of an
isoscalar and an isovector quadrupole-quadrupole interac
with respective coupling constants

x~T50!5
1

2
~x1xpn!, x~T51!5

1

2
~x2xpn!.

~2.3!

A Hartree treatment@17# yields for thei th nucleon the de-
formed one-body potential

Vb
~t!5

1

2
mv0

2r ~t!2
2btmv0

2q20
~t! , ~2.4!

where the deformation parametersbt are defined through

bpmv0
252~x^Q20

~p!&1xpn^Q20
~n!& !,

bnmv0
252~x^Q20

~n!&1xpn^Q20
~p!& !. ~2.5!

These equations, which can be called the Hartree s
consistent conditions, ensure the separation of the intri
M1 states from the rotational mode@17#.

The Hartree potential can be put in the Nilsson form of
anisotropic HO potential with frequencies

v1~t!5v0A11
2

3
dt.v0S 11

1

3
dtD ,

v3~t!5v0A12
4

3
dt.v0S 12

2

3
dtD . ~2.6!

where new and old deformation parameters are connecte

dt5A 45

16p
bt . ~2.7!
f

n
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lf-
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n
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Once generated, the Hartree mean field must not be disto
further by the two-body force. To this purpose it is approp
ate to modify the quadrupole-quadrupole potential by us
doubly stretched coordinatesx̃ i5(v i /v0)xi in the quadru-
pole fields @43–45#. Indeed, with these new variables w
have

^Q̃2m
~t!&5^Q2m

~t!~ x̃ i !&50 ~2.8!

as long as the nuclear self-consistent conditions

v1~t!(
n1

~t!
Fn1

~t!1
1

2G5v2~t!(
n2

~t!
Fn2

~t!1
1

2G
5v3~t!(

n3
~t!

Fn3
~t!1

1

2G ~2.9!

are enforced. The explicit form of the new quadrupole fie
is

Q̃2615
v1v3

v0
2 Q261 ,

Q̃2625
v1

2

v0
2 Q262 ,

Q̃205
1

3v0
2 ~v1

212v3
2!Q202

A5

3v0
2 ~v1

22v3
2!Q00,

~2.10!

whereQ005r 2Y00 is a monopole term. The new (Q̃Q̃) po-
tential is therefore composed of pure quadrupole-quadrup
plus monopole-quadrupole and monopole-monopole term

It is well known that the Hartree conditions~2.5! fix the
isoscalar coupling constant. To this purpose we first comp
the mean value of the quadrupole field using the asympt
HO basis. After exploiting the nuclear self-consistent con
tions ~2.9!, and Eqs.~2.6!, we obtain

^Q20
~p!&5A 5

16p
^Q0

~p!&5A 5

16p

4

3
Z^r 2&d~p!S 11

2

3
d~p!D ,

~2.11!

and similarly for neutrons. From summing both sides of E
~2.5! it is now easy to deduce

x~0!5
1

2
~x1xpn!52

4p

5

mv0
2

A^r 2& S 12
2

3
d D , ~2.12!

whered5(dp1dn)/2. The lowest order piece ofx(0) is the
well-known expression derived in Ref.@47#.

As Eqs.~2.3! show, the isovector coupling constantx(1)
is nonvanishing only ifxÞxpn . There is no agreement o
the value to be assigned to such a constant. This is usu
deduced from the symmetry energy mass formula@47# and
results to be related tox(0) by the ratiob52x(1)/x(0)
.3.5. This estimate has been questioned in recent anal
@37,48#, both pointing at a smaller value. In particular, sh
model calculations in light nuclei@48# have shown that a
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large value ofb, while needed to give a correct energy spl
ting between isoscalar and isovector giant quadrupole r
nances, leads to the collapse of states which should be
above the ground state. Given these uncertainties, we
consider the ratiob52x(1)/x(0) as a free parameter.

III. M1 AND E2 TRANSITIONS IN PROTON-NEUTRON
SCHEMATIC RPA

The Hamiltonian resulting from the self-consistent a
proach illustrated in the previous section is composed of
Hartree deformed field~2.4! plus the (Q̃Q̃) interaction. This
Hamiltonian is adopted here to derive explicit expressio
for energies and strengths in proton-neutron schematic R
by adopting the formalism developed in Ref.@17#. Use of
these expressions will be made in the numerical analysi
the sum rule which will be derived in the next section.

In the proton-neutron formalism the RPA energiesv are
the roots of the eigenvalue equation

@122xS~p!~v!#@122xS~n!~v!#54xpn
2 S~p!~v!S~n!~v!,

~3.1!

where

S~t!~v!5(
ph

Eph
~t!

v22Eph
~t!2 u~Q̃21

~t!!phu2~uv !ph
~1 !2

. ~3.2!

Here (uv)ph
(6)5vp

(t)uh
(t)6up

(t)vh
(t) are coefficients produce

by the Bogoliubov-Valatin transformation, (Q̃2m
(t))ph

5^puQ̃2m
(t)uh& are single particle matrix elements of the qua

rupole field, andEph denotes the two quasiparticle energie
In our case the space is spanned by proton and neutron

perturbed excited states of energiesE0
(t)5Ae0

(t)2
1(2D (t))2

and E2
(t)5e2

(t) , wheree0
(t)5v1(t)2v3(t).dtv0 and e2

(t)

5v1(t)1v3(t) are the HO particle-hole (ph) energies and
D (t) is the pairing gap.

Using the key relation

1

e2
~t! (

phPe2

u^phuQ21
~t!u&u25

1

e0
~t! (

phPe0

u^phuQ21
~t!u&u2

~3.3!

one obtains@17#, from the request that the eigenvalue equ
tion yields a vanishing root, quasiparticle self-consistent
lations equivalent to the Hartree conditions~2.5!. It follows
from them that (uv)ph

(1)51 for both low- and high-energy
modes, (uv)ph

(2)51 for the high-energy level, and (uv)ph
(2)

5e0 /E0 for the low-lying one@17#.
The transition amplitude of a time even~1! and odd~2!

operatorWm
(6) from the ground to an excited RPA stateum&

is given by

^muWm
~6 !u0&5 (

t,ph
@Yph* ~t!6Zph~t!#^puWm

~6 !uh&~uv !ph
~6 ! ,

~3.4!

where
o-
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Yph~t!5Nt

~Q̃2m
~t!!ph~uv !ph

~1 !

v2Eph
~t! ,

Zph~t!52Nt

~Q̃2m
~t!* !ph~uv !ph

~1 !

v1Eph
~t! . ~3.5!

The constantsNt are fixed by the normalization condition

(
t,ph

~ uYph~t!u22uZph~t!u2!51 ~3.6!

and by the ratio

Np

Nn
5

2xpnS
~n!~v!

122xS~p!~v!
5

122xS~n!~v!

2xpnS
~p!~v!

. ~3.7!

In order to compute the transition strength of the time-ev
E2 operator

M~E2,m!5eQ2m
~p! , ~3.8!

we make use of the expression ofNt , obtained by solving
Eqs. ~3.6! and ~3.7!, exploit the key relation~3.3!, and ex-
press the unperturbed strength ofQ21

(t) in terms of the ground
state mean value of the quadrupole field through

(
phPe0

u^phuQ21
~t!u&u25

3

4
A 5

16p

1

mv0
^Q20

~t!&. ~3.9!

The above equation is derived by making use of
asymptotic HO basis. After all these steps, we obtain for
E2 strength the expression

B~E2!↑5
15

16p

1

mv0

E0

v
^Q0

~p!&N2F11
e2

2

e0E0

v22E0
2

v22e2
2 G2

e2.

~3.10!

The constantN is given by

N225F11
e2

2

e0E0
S v22E0

2

v22e2
2 D 2G v22E0

2~12Rv
~n!!

v22E0
2~12Rv

~p!2Rv
~n!!

,

~3.11!

where

Rv
~t!5

15

32p

1

mv0
x^Q0

~t!&F11
e2

2

e0E0

v22E0
2

v22e2
2 G . ~3.12!

The time oddM1 operator can be written

M~M1,m!5A 3

4p
Lm

~p!mN⇒M~sc!~M1,m!

5A 3

16p
~Lm

~p!2Lm
~n!!mN , ~3.13!

where the arrow points out the scissorsM1 component, the
only one contributing to the transition strength. The oth
term, being proportional to the total angular momentu
gives a vanishing contribution in virtue of the Hartree se
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consistent conditions@17#. In computing the strength of thi
operator we need to exploit first the relation

^phuLm51
~t! u&5A4p

15
m

v1
~t!2

2v3
~t!2

eph
~t! ^phuQ21

~t!u&,

~3.14!

whereeph
(t)5e0

(t) or eph
(t)5e2

(t) depending on whether theph
states span theDN50 or DN52 HO space. We then pro
ceed as for theE2 transition and obtain

B~M1!↑5
3

16p
mS e0

E0
D 2 v

E0

e2
2

v0
^Q0

~p!&N2

3F11
E0

e0

v22E0
2

v22e2
2 G2

mN
2 . ~3.15!

From the comparison of the expressions of the two stren
we get

B~M1!↑5
1

2
m2v2d2S 11

1

3
d D

3F ~11e0 /E0!v22~E0
~p!2

1e0 /E0e2
~p!2

!

~11e0E0 /e2
~p!2

!v22E0
~p!2

~11e0 /E0!
G 2

3B~E2!↑
mN

2

e2 . ~3.16!

This equation correlates theE2 transitions to the low and
high scissors modes with theM1 transitions to the sam
states. Such a link, not to be confused with the well-kno
M1-E2 relation found experimentally and to be discussed
the subsequent sections, needs to be tested in more rea
RPA approaches. If valid in this more general context
could be used to deduce theM1 strength of a given mode
once the correspondingE2 strength is known experimentall
and vice versa.

It is worth mentioning that theM1-E2 relation just de-
rived yields a vanishingM1 strength whenv takes the value

v5AE0
~p!2

1e0 /E0e2
~p!2

11e0 /E0
. ~3.17!

It can be checked, by direct substitution, that this is an ex
root of the eigenvalue equation~3.1! as long as the quasipa
ticle self-consistent conditions are fulfilled. Such a root
just the eigenvalue of the isoscalar quadrupole giant re
nance mode.

Exact eigenvalues of the high- and low-energy~scissors!
modes can also be deduced. A good approximation to th
is given by

v~1 !.e2A11b/2, v~2 !.E0A11beff, ~3.18!

wherebeff5(b/2)/(11b/2).
As for the strengths, we can drop out 1 in the squ

brackets appearing in Eqs.~3.11! and ~3.15!. Under this ap-
proximation, Eq. ~3.15! yields, through e0 and ^Q0

(p)&,
hs

n
n
stic
t

ct

o-

m

e

B(M1)↑}d2. The same quadratic dependence is fou
when theM1 strength is computed exactly.

In the case of the low-energy mode we can approxim
the square brackets in Eqs.~3.11! and ~3.15! with 1. The
behavior of the resultingM1 strength is not as simple as i
the case of the high-energy mode. It goes approximately
B(M1)↑}d3 for vanishingly small deformations and be
comes linear ind for superdeformed nuclei. This transition t
a rigid-body regime is in agreement with the result of mo
realistic RPA calculations@36#. Between these two extrem
cases, the behavior is rather involved. That schematic R
does not yield ad2 law for the low-energy mode is a conse
quence of the inadequacy of this approximation sche
when used to study these low-lying magnetic transitions.

IV. ENERGY-WEIGHTED SCISSORS SUM RULE

As discussed in Ref.@49# the operator responsible for th
M1 transition to the scissors mode is

Msc~M1,m!5A 3

16p
SmgrmN5A 3

16p
~Jm

~p!2Jm
~n!!

3~gp2gn!mN , ~4.1!

whereSm is the generator of the scissorslike oscillations
protons versus neutrons. Consistently with RPA calculatio
we will use for the gyromagnetic factors the valuesgp51
andgn50 so thatgr51. If Jm

(t) are purely orbital we gain the
M1 scissors operator adopted in schematic RPA.

For a M1 operator of the scissors form the followin
energy weighted sum rule holds@39#:

(
n

vnBn
~sc!~M1!↑5

3

16p (
n,m

vnu^nmuSmu0&u2mN
2

5
3

32p (
m561

^0u@Sm
† ,@H,Sm##u0&mN

2

5SEW
~sc!~M1!. ~4.2!

The double commutator is computed using a Hamilton
composed of a one-body term containing the Hartree
formed field ~2.4! and of a quadrupole-quadrupole intera
tion (Q̃Q̃) expressed in doubly stretched coordinates. T
resulting value can be decomposed into one- and two-b
pieces:

SEW
~sc!~M1!5

3

16p
~S0

~sc!1S2
~sc!!mN

2 . ~4.3!

The one-body contribution comes from the Hartree field a
is given by

S0
~sc!5

1

2 (
m561

^0u@Sm
† ,@H0 ,Sm##u0&

53mv0
2~bp^Q20

~p!&1bn^Q20
~n!& !. ~4.4!

Assuming equal deformation for protons and neutrons,
get
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S0
~sc!.3mv0

2b^Q20&.
4

3
d2mv0

2A^r 2&, ~4.5!

which is the result derived in Ref.@27#.
The two-body term can be decomposed into two parts

S2
~sc!5S20

~sc!1S22
~sc! . ~4.6!

The first one comes from the component of the two-bo
interaction which involves the monopole operators and
given by

S20
~sc!5

A5

3

1

v0
4 ~v1

~p!2
2v3

~p!2
!@x~v1

~p!2
12v3

~p!2
!^Q00

~p!Q20
~p!&

1xpn~v1
~n!2

12v3
~n!2

!^Q00
~p!Q20

~n!&#1~p↔n!. ~4.7!

To compute this quantity we use closure. Having in mi
that the states which couple strongly to the ground s
through the quadrupole field, couple weakly~if at all!
through the monopole operator and vice versa, we put

^Q20
~t!Q00

~t8!&.^Q20
~t!&^Q00

~t8!&. ~4.8!

Under this approximation and the assumption of equal
quencies for protons and neutrons, we obtain from Eqs.~4.7!,
upon exploitation of the Hartree conditions~2.5!,

S20
~sc!.2m~v1

212v3
2!@bp^Q20

~p!&1bn^Q20
~n!&#. ~4.9!

This, in virtue of the explicit expressions~2.6! of the fre-
quencies, can be written in the form

S20
~sc!.23mv0

2S 12
2

3
d D ~bp^Q20

~p!&1bn^Q20
~n!& !.

~4.10!

The lowest order term is exactly equal and opposite to
one-body contribution~4.4!.

A long and tedious calculation yields for the two-bod
quadrupole part

S22
~sc!5

1

3
x

1

v0
4 ~v1

22v3
2!~4v3

22v1
2!^Q20

~p!†
Q20

~p!1Q20
~n!†Q20

~n!&

1
1

3
x

1

v0
4 ~v1

22v3
2!~7v1

224v3
2!

3^Q21
~p!†

Q21
~p!1Q21

~n!†Q21
~n!&22x

1

v0
4 v1

2~v1
22v3

2!

3^Q22
~p!†

Q22
~p!1Q22

~n!†Q22
~n!&2

1

3
xpn

1

v0
4 ~v1

414v3
4

113v1
2v3

2!^Q20
~p!†

Q20
~n!1Q20

~n!†Q20
~p!&2

1

3
xpn

1

v0
4

3~7v1
414v3

4125v1
2v3

2!^Q21
~p!†

Q21
~n!1Q21

~n!†Q21
~p!&

22xpn

1

v0
4 v1

2~5v1
21v3

2!^Q22
~p!†

Q22
~n!1Q22

~n!†Q22
~p!&.

~4.11!
y
s

te

-

e

By making use of the explicit expressions~2.6! of the fre-
quencies, we can put the above quantity in the more tra
parent form

S22
~sc!5S22~0!1S22~1!d1S22~2!d2. ~4.12!

The term ind2 has been found to be negligible and will n
be discussed. The zeroth order term is

S22~0!526xpn(
m

^Q2m
~p!†

Q2m
~n!1Q2m

~n!†Q2m
~p!&. ~4.13!

Inserted into Eq.~4.3!, it yields the shell model sum rule
derived in Refs.@8,26#.

The first order coefficient is

S22~1!52x@^Q20
~p!†

Q20
~p!1Q20

~n!†Q20
~n!&

1^Q21
~p!†

Q21
~p!1Q21

~n!†Q21
~n!&

22^Q22
~p!†

Q22
~p!1Q22

~n!†Q22
~n!&#

16xpn@^Q20
~p!†

Q20
~n!1Q20

~n!†Q20
~p!&

1^Q21
~p!†

Q21
~n!1Q21

~n!†Q21
~p!&

22^Q22
~p!†

Q22
~n!1Q22

~n!†Q22
~p!&#. ~4.14!

Using closure, we obtain a static part and terms describ
fluctuations of the quadrupole field. These latter pieces
be neglected. Indeed, aside from the ground state, the s
intermediateunm& states include the low-energy isoscalarb,
g vibrations and the isovector scissors mode as well as
Kp501,11,21 components of both isoscalar and isovec
quadrupole excitations. For a given resonance, the differe
among the strengths of the differentm componentsQ2m

(t) arise
only once deformation is switched on. It follows that th
pieces in the square brackets mutually cancel to a large
tent. What remains is a small contribution which can be
glected. A partial cancellation is achieved also for the co
tribution, in any case negligible, fromb, g, and low-energy
M1 excitations. We therefore retain only the static term a
put

S22~1!.2x@^Q20
~p!&^Q20

~p!&1^Q20
~n!&^Q20

~n!&#16xpn@^Q20
~p!&

3^Q20
~n!&1^Q20

~n!&^Q20
~p!&#. ~4.15!

Upon exploitation of the Hartree conditions~2.5!, it is pos-
sible to perform the following decomposition:

S22~1!.22mv0
2~bp^Q20

~p!&1bn^Q20
~n!& !18xpn^Q20

~p!&

3^Q20
~n!&. ~4.16!

The one-body piece contained inS22(1), when multiplied by
d, is exactly equal and opposite to the term ind coming from
the monopole-quadrupole interaction and appearing in
~4.10!. After this cancellation no trace either of the one-bo
or of the monopole terms remains. Only the purely quad
pole contribution survives. The total sum rule~4.3! assumes
therefore the final simple form
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(
n

vnBn
~sc!~M1!↑.2

9

8p
xpnS (

m
^Q2m

~p!†
Q2m

~n!1Q2m
~n!†Q2m

~p!&

2
4

3
d^Q20

~p!&^Q20
~n!& D . ~4.17!

This, to zeroth order ind, coincides with the shell model sum
rule @26#. Before making any use of this formula, we inten
to investigate if and how the energy-weighted sum rule
modified as we move from the schematic to a more reali
Hamiltonian.

V. SCISSORS SUM RULE FOR A REALISTIC
SEPARABLE HAMILTONIAN

Let us consider the following separable Hamiltonian:

H5HNil1VP1VQ̃Q̃1Vss . ~5.1!

HNil is the full spherical Nilsson Hamiltonian including th
spin orbit term with coupling constantj plus thel 2 piece,VP
a proton-proton and a neutron-neutron pairing,VQ̃Q̃ the
(Q̃Q̃) interaction already considered here, andVss a spin-
spin interaction of the form

Vss5
1

2
x~s!~SW ~p!

•SW ~p!1SW ~n!
•SW ~n!!1

1

2
xpn

~s!~SW ~p!
•SW ~n!

1SW ~n!
•SW ~p!!, ~5.2!

where (t5p,n)

SW ~t!5(
k

sW ~t!~k!. ~5.3!

In computing the energy-weighted sum rule we have now
use the fullM1 shell model operator. This can be deco
posed into a rotational, a scissors and a spin componen

MW ~M1!5MW J~M1!1MW sc~M1!1MW s~M1!. ~5.4!

The scissors operatorMW sc(M1) is still given by Eq.~4.1!,
but with proton and neutron angular momenta composed
orbital and spin pieces; namely,

JW ~t!5LW ~t!1SW ~t!. ~5.5!

The spin termMW s(M1) is given by

MW s~M1!5A 3

4p
mW 5A 3

4p
@~gs

~p!21!SW ~p!

1gs
~n!SW ~n!#mN . ~5.6!

The contribution from the double commutator can be deco
posed into a scissors plus a spin-orbit and a spin piece:

(
n

vnBn~M1!↑5SEW
~sc!~M1!1SEW

~ls! ~M1!1SEW
~s!~M1!.

~5.7!

For the scissors operator we obtain
s
ic

o
-

of

-

(
n

vnBn
~sc!~M1!↑5SEW

~sc!~M1!2
3

16p
xpn

~s!^0usW ~p!
•sW ~n!u0&,

~5.8!

whereSEW
~sc!(M1) is just the energy-weighted sum~4.17! ob-

tained when only theQ-Q interaction is used. The secon
term in the right-hand side of the equation comes from
proton-neutron spin-spin interaction and, as we shall ar
later on, is negligible. We are therefore left with

(
n

vnBn
~sc!~M1!↑.SEW

~sc!~M1!, ~5.9!

where the right-hand side term is given exactly by Eq.~4.17!
as in the schematic case. We then conclude that the use
separable Hamiltonian of the type adopted in realistic R
calculations does not change the scissors energy-weig
sum rule obtained using only a quadrupole-quadrupole in
action as in schematic RPA. It is worth pointing out that su
an important result is obtained only if the angular mome
entering into the scissors operator~4.1! contain both orbital
and spin pieces@Eq. ~5.5!#. The use of purely orbital angula
momenta would have produced a contribution coming fr
the spin-orbit potential~which is canceled by the opposit
contribution due to the spin component!.

The spin orbit term has the form

SEW
~ ls!~M1!52

3

4p
jF ~gs

~p!21!^0u(
k

lWk
~p!

•sWk
~p!u0&

1gs
~n!^0u(

k
lWk

~n!
•sWk

~n!u0&G . ~5.10!

This is nothing but the Kurath sum rule@50# valid also for
spherical nuclei. It is remarkable that the spin-orbit te
does not affect at all the scissors energy-weighted sum.
spin contribution comes entirely from the proton-neutr
spin-spin interaction and is given by

SEW
~s!~M1!52

3

4p
xpn

~s!^0usW ~p!
•sW ~n!u0&, ~5.11!

where the spin term appearing in the scissors sum given
Eq. ~5.8! is also included. The above equation may be w
ten in the form

SEW
~s!~M1!52

3

16p
xpn

~s!S (
n

u^nusW ~1 !u0&u2

2(
n

u^nusW ~2 !u0&u2DMeVmN
2 , ~5.12!

wheresW (6)5sW (p)6sW (n). Spin excitations with a double-hum
structure have been discovered recently@51,52#. No unique
explanation of such a structure has been given. The diffe
interpretations are correlated with the different values
tached to the thep-n spin-spin coupling constant. In th
analyses using a vanishing strength (xpn

(s)50) @11,53#, the
two bumps correspond to separate neutron and proton e
tations. In those using a nonvanishing value@54# the bumps
are explained as isoscalar and isovector excitations.
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Also the spin contribution to the energy weighted su
depends clearly on such a constant. It vanishes or not acc
ing thatxpn

(s)50 or xpn
(s)Þ0. Its value, being the net result o

a cancellation between two comparable terms, the isosc
and the isovector summed spin transition strengths, is lik
to be small in any case. This should be specially true for
share pertaining to the scissors sum, which is 1/4 of the t
piece given by Eq.~5.12!.

VI. QUALITATIVE AND QUANTITATIVE ANALYSIS

Having ascertained the validity of the scissors sum r
for a separable interaction of general form, we will attemp
phenomenological study of Eq.~4.17!. To this purpose we
write the sum appearing on the left-hand side as

(
n

vnBn
~sc!~M1!↑

5(
n

vn
~2 !Bn

~2 !~M1!↑1(
n

vn
~1 !Bn

~1 !~M1!↑

.v~2 !(
n

Bn
~2 !~M1!↑1v~1 !(

n
Bn

~1 !~M1!↑. ~6.1!

Such a decomposition is suggested by the schematic R
calculation illustrated here as well as by the results obtai
in realistic RPA@34–38#.

In order to estimate the right-hand side of Eq.~4.17! we
single out the ground state contribution first. We then use
~2.5! to expressxpn^Q20

(n)& in terms ofx and of the proton
quadrupole mean field̂Q20

(p)&. This step ensures the consi
tency of the sum rule with the Hartree conditions and enab
us to deal with a measurable quantity such as the pro
quadrupole moment. We finally assume isospin as a g
quantum number for the excited intrinsic states. In orde
make connections with standard notations we put

x5x~0!~12b!, ~6.2!

where b52x(1)/x(0) will be taken as a free paramete
Using Eqs.~2.12! and ~2.11!, we get the final result

v~2 !(
n

Bn
~2 !~M1!↑1v~1 !(

n
Bn

~1 !~M1!↑

5
9

5

mv0
2

A^r 2&
~11b8!S 12

2

3
d D FN

Z S 12
2

3
d DB0~E2!↑

1 (
nÞ0

@Bn
~0!~E2!↑2Bn

~1!~E2!↑#G mN
2

e2 ~6.3!

having putb85Z/Nb. The E2 strengths appearing in th
above equation are

B0~E2!↑5^Q20
~p!&2e2,

BnÞ0
~T! ~E2!↑5

e2

4 (
m

u^nmuQ~T!u0&u2. ~6.4!
rd-

lar
ly
e
al

e
a

A
d

q.

s
n
d

o

Since the contribution coming from the ground state is by
the dominant one, we can neglect the other transitions in
approximation. Using Eq.~2.11! to computê Q20

(p)&, we ob-
tain

v~2 !(
n

Bn
~2 !~M1!↑1v~1 !(

n
Bn

~1 !~M1!↑

.
1

4p
mv0

2 4ZN

A2 A^r 2&d2~11b8!
mN

2

e2 . ~6.5!

We now observe that for the high-energy mode we ha
v (1)}2v0 and that, according to experiments@4–7#, the
centroid of the low-lyingM1 excitations is constant (v (2)

;3 MeV) throughout all nuclei of the rare-earth region. Th
can be qualitative explained in schematic RPA with the f
that v (2)}Ae0

21(2D)2. As the particle-hole energye0

5dv0 increases with deformation, the pairing gapD de-
creases@9# so as to leave the energy of the mode fairly i
sensitive to deformation. Sinced does not appear as leadin
term in the energies of either modes, we can conclude
Eq. ~6.5! states that the summed strengths of both low- a
high-energyM1 modes grow quadratically with deforma
tion. Indeed, lower order terms ind, if present in one or both
strengths, should be positive. No mutual cancellation co
therefore take place.

Apart from the assumption on the energies, the deform
tion law just derived is quite general. It comes indeed fro
the calculation of the double commutator of the Hamiltoni
and, therefore, does not rely on the results of explicit R
calculations. It is also of considerable relevance that, acc
ing to this calculation, the summedM1 strength is strictly
proportional to the square of the Nilsson deformation para
eterd, which is the zero order term of the parameter direc
deduced from the rotationalE2 strength. This is consisten
with the results of the first experimental work on the subj
@4# and confirms the purely phenomenological analysis ba
on the TRM formula@29#.

For a numerical estimate of the full sumSEW
~sc!(M1) given

by the right-hand side of Eq.~6.3!, we need to have a com
plete experimental information on theE2 transitions. In
154Sm, which is the nucleus considered here as an exam
all theE2 strengths are available@55–57# except those of the
low- and high-energy isovector quadrupole modes. We h
computed in schematic RPA theE2 strengths of theKp

511 ~scissors! components using Eqs.~3.10! and~3.15! and
then assumed the same value for the otherKp modes. The
uncertainties induced by this simplifying assumption sho
be small and, in any case, of no practical effect
SEW

~sc!(M1), which is dominated by the ground state rotation
transition.

The sumSEW
~sc!(M1), computed for different values of th

free parameterb is shown in Fig. 1~a! ~full line!. The figure
shows also that only a small part of the sum-rule is exhaus
by the observed low-lyingM1 transitions~dashed line!. For
b52x(1)/x(0)>1.5 the measuredM1 strength accounts
for less than 20%. This is a clear, model independent, in
cation that other, so far unobserved,M1 transitions contrib-
ute to the sum. In order to evaluate the contribution com
from the high-energy mode we compute energy and stren
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in schematic RPA using the proton-neutron formalism dev
oped in Ref.@17# and briefly discussed here in Sec. III. Th
numerical results were obtained by using the standard for
las

v0541A21/3 MeV, ^r 2&5
3

5
R2, R51.2A1/3 fm,

~6.6!

and by taking the valueD.0.7 MeV, adopted in Ref.@9#,
for the pairing gap.

When the contribution of the high-energy mode is
cluded @dash-dotted line in Fig. 1~a!#, the energy-weighted
sum rule is almost entirely exhausted. The discrepancy
tween SEW

~sc!(M1) and the sum vexp
(2)(nBn

(2)(M1)exp↑
1vRPA

(1) BRPA
(1) (M1)↑ may be partly attributed to the approx

mate nature of the schematic RPA calculation. Even a sm
correction of theM1 strength of the high-lying mode woul
be amplified by the large weighting value of the excitati
energy. It may be also possible that a small fraction of
low-energy scissorsM1 strength has escaped observatio
Indeed, the missing strength or part of it may be either d
tributed among very weak transitions forming part of t
background or~and! may have been shifted above 4 Me

FIG. 1. Scissors energy-weightedM1 sum rule versus the ratio
b52x(1)/x(0). In ~a! the full line refers toSEW

~sc!(M1), the dashed
line to vexp

(2)(nBn
(2)(M1)exp↑ and the dot-dashed line tovexp

(2)(nBn
(2)

3(M1)exp↑1vRPA
(1) BRPA

(1) (M1)↑. In ~b! and ~c! the dashed lines give
the experimental data while the dotted ones refer to the high-en
RPA mode. In~b! the sum(nBn

(2)(M1)exp↑1BRPA
(1) (M1)↑ is also

given ~dot-dashed line!.
l-

u-

e-

ll

e
.
-

and got admixed with spin excitations. In any case, it is qu
remarkable that the observed low-lying transitions and
RPA high-lying mode account almost entirely for the sc
sors sum rule. It implies, for instance, that the expected t
strength of the low-lyingM1 ~scissors! transition amounts
roughly to the one so far observed in the low-energy reg
and that only a small part of it might be present, if at all,
the region of spin excitations.

It is important to stress that the large contribution comi
from the high-energy mode, already pointed out in Ref.@41#,
does not imply that this mode should be more collecti
Even in the most favorable case in which the miss
strength goes entirely to the high-energy mode, as depi
in our schematic RPA calculation, theM1 strength of the
high-lying mode, though increasing withb, reaches a value
which is at most comparable with the low-lying measur
summed transition probability@dotted line in Fig. 1~b!#. This
strength, however, is multiplied by a large weighting fact
namely the excitation energy of the mode, which increase
b increases@dotted line in Fig. 1~c!#. By contrary, theM1
strength of the low-lying transitions contributes with a mu
smaller weight. Hence the dominance of the high-ene
mode in the sum rule.

We have computed for completeness also energy
strength of the low-energy mode in schematic RPA. The t
quantities resulted to be practically insensitive tob. While,
however, the energy is close to the observed centr
(vRPA

(2) .vexp
(2).3 MeV), the M1 strength is about twice the

observed one@BRPA
(2) (M1).6mN

2 #, an additional indication
of the inadequacy of schematic RPA for the study of t
low-lying M1 excitations. Had we substituted the expe
mental with the schematic RPA values, the energy weigh
sum vRPA

(2) BRPA
(2) (M1)↑1vRPA

(1) BRPA
(1) (M1)↑ would have re-

sulted somewhat larger thanSEW
~sc!(M1).

VII. CONCLUSION

A major result of our self-consistent treatment of t
energy-weightedM1 sum rule is the complete cancellatio
of the contribution coming from the one-body potential. I
deed, the use of doubly stretched coordinates, required by
need of avoiding any further distortion of the Hartree me
field, represents an effective way of restoring the rotatio
invariance broken by the deformed field. Since only pur
two-body effects survive, the sum rule, to lowest order
deformation, is formally the same as in spherical sh
model.

The sum rule computed here refers to both low- and hi
energy magnetic excitations. The inclusion of the two mod
has posed the problem of disentangling the correspond
contributions. This has been done by using the experime
data for the low-lying mode and by computing the centro
and theM1 strength of the high energy mode in schema
RPA.

Independently of detailed calculations, it has emerg
from inspecting the final outcome of the sum rule that t
M1 strengths of both low- and high-energy modes are de
mined by the ground rotationalE2 transition and, for this
reason, are both quadratic in the~Nilsson! deformation pa-
rameter. Such a connection has been proved experimen
for the low-energy mode. It would be desirable, though n

gy



.
e
in

-
th

a

es

ng

o
t
e
e

n-

s
t

in
b-
-

ed,

tion

xt,
neral
un-

is
er,
es

stic
of

ing

d

1254 57N. Lo IUDICE
easy, to test the same law for the high-energy transitions
As mentioned in the Introduction, also the sum rule d

rived in shell model has been shown to be valid not only
a small but also in a large space which includes theDN50
1DN52 excitations @40#. The inclusion of these high
energy configurations causes a drastic increment of
energy-weightedM1 sum@left-hand side of Eq.~4.17!#, but
determines also a corresponding increase of the right-h
side part by enhancing the low-lyingE2 transitions. Accord-
ing to this calculation, in light nuclei, such as Be isotop
the approximation of retaining only the ground rotationalE2
transition probability in the sum rule, necessary for derivi
thed2 law expressed by Eq.~6.5!, is no longer valid. In fact,
the otherE2 transitions, including the isovector ones, cann
be neglected. It follows that the full sum rule must be used
study the orbital motion with new and interesting cons
quences. It follows, for instance, that in singly closed sh
nuclei, where isoscalar and isovectorE2 transitions contrib-
ute equally, the orbitalM1 strength vanishes even if theE2
transition probability is different from zero, a result co
firmed by numerical calculations@58#.

Coming back to the present work, the detailed analy
has shown that the sum rule is practically exhausted once
ys

er

.
o

.

le

in
s

-

e

nd

,

t
o
-
ll

is
he

contribution from the high-lying mode, here estimated
schematic RPA, is added to the one from the low-lying o
servedM1 transition. Although providing a dominant con
tribution to the sum rule, the high-energy mode, if observ
should not be more collective. Indeed, itsM1 strength
should at most reach the value of the summed transi
probability observed for the low-lying excitations.

Though initially embedded in a schematic RPA conte
the approach has been proved to have a much more ge
valence. That the scissors sum rule remains practically
changed when a more realistic separable Hamiltonian
adopted is a manifestation of its general validity. Moreov
hinging on the calculation of a double commutator, it do
not rely on any assumption specific of schematic or reali
RPA. For this reason, the sum rule derived here may be
some help for consistency checks of RPA calculations us
realistic separable Hamiltonians.
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