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Microscopic quasiparticle-phonon description of odd-masst?’~1*Xe isotopes and their8 decay
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Department of Physics, University of Jgkgla POB 35, SF-40351 Jyshyla Finland
(Received 18 August 1997

Quasiparticle-phonon equations of motion are solved starting from a microscopic realistic many-body
Hamiltonian. In this microscopic quasiparticle-phonon mod#iQPM) the relevant part of the three-
quasiparticle Hilbert space may possibly be taken into account even in calculations using large single-particle
bases. As an example, the MQPM is applied to the calculation of energy levels and Fermi and Gamow-Teller
beta-decay transition amplitudes for transitions between odd-MasS3Xe, 27133, and 2"~ 13%Cs isotopes.
Considering the fully microscopic nature of the MQPM, comparison of its results and data indicates a rather
satisfactory agreement between theory and experiment.
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[. INTRODUCTION method enables a systematic way of deriving both the
proton-neutron and the like-nucleon two-body interactions.
Beta-decay and excitation spectra of odd-nfasklA for ~ The Haz, Hos and Hy parts of the quasiparticle Hamil-
shord nuclei have traditionally been described using phelonian are treated in the quasiparticle random-phase approxi-
nomenological or semiphenomenological models, such adation (QRPA framework. They lead to definition of the
quasiparticle-phonon models or particle-vibration models€xcitation (phonon spectrum of the even-even reference
using simple pairing-plus-quadrupole interactidds2]. In nucleus. The whole residual interaction is then diagonalized

many cases these models are in good qualitative agreemeftiN€ quasiparticle-phonon basis coupled from the BCS qua-

with experiments, when their parameters, such as the pairimf‘fp""rt'cIes and QRPA phonons.

The simplifying trick in the MQPM is to use the prede-
strengths_, qu_adrupole-force parameters, a_nd parameters t%frmined lowest two-quasiparticle excitatiofighonong of
the quasiparticle-phonon coupling Hamiltonian, are properl

. . -~k the nearby even-even reference nucleus as basic building
fitted. They are also simple to solve because of the simplicity), ) < tor the oddA states. and use the properties of e

of the interactions, and they al!ow simple interp(etation OfanRPA equations5,6] for the even-even nucleus to sim-
the states of the odd-systems in terms of low-lying one- ity the emerging one- and three-quasiparticle equations of
phonon and one-quasiparticle states of neighboring everinotion. The low-lying three-quasiparticle states constructed
even (referencg nuclei. For this reason they have widely in this way are composed of various quasiparticles coupled
been used to describe selected observed features oA oddto the few lowest and most important RPA excitations such
nuclei. On the other hand, more microscopic particle-phonofihat their coupling with the higher RPA excited states is
or quasiparticle-phonon models have been developed in thgeak and can be neglected. This truncation of the three-
past, but they have not been applied in a systematic way tquasiparticle model space can be controlled by looking at the
the beta decay of odA-nuclei. convergence of the odd-spectrum as a function of the num-
The other extreme is presented by the shell-model type dber of the included RPA excitations of different multipolar-
calculations for oddA nuclei, such as the so-called cluster- ity.
phonon modeld3,4], where all three-quasiparticle compo-  As an example of the use and power of the MQPM we
nents are explicitly constructed to diagonalize the Hamil-apply our model to the calculation of the energy levels of the
tonian of the oddA system. They give quite accurate resultsxenon isotopes?’ *3Xe, and to Fermi and Gamow-Teller
in principle, but the resulting states are difficult to interpretbeta decays between oddXe, I, and Cs nuclei in the mass
in terms of elementary excitations of the neighboring eventangeA=127—-133. This is a continuation of our previous
even nuclei and, in addition, they require huge computationalvork [7] discussing the same nuclei. In the first version of
effort as compared to the two-step diagonalization method othe MQPM[7] the coupling part of the microscopic Hamil-
the quasiparticle-phonon models. Therefore, unified aptonian,Hs;, does not emerge from the equations-of-motion
proaches that are microscopic but still simple to use and tgnethod (EOM) [8]. The EOM method introduces an addi-
interpret are called for. tional term into the quasiparticle-phonon matrix elements,
In our approach, the microscopic quasiparticle-phonomot taken into account if7]. In the present article we use the
model (MQPM), one strives for self-consistent treatment of EOM form of the coupling part of the Hamiltonian. In addi-
all for three parts of the Hamiltonian, namely the quasiparti-tion to being microscopically more justified, this form of the
cle, phonon, and quasiparticle-phonon terms. This is possibleoupling Hamiltonian yields results closer to the experimen-
by starting from a microscopic Hamiltonian with two-body tal data and thus improves the quantitative predictibility of
matrix elements derived fro a G matrix. The G-matrix the MQPM.
This article is organized as follows. In Sec. Il we will
describe the model and, in Sec. Ill we will present the re-
*Electronic address: toivanen@jyfl.jyu.fi sults, and, finally, in Sec. IV we will summarize the results
"Electronic address: suhonen@jyfl.jyu.fi and draw the conclusions.
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Il. THEORETICAL FRAMEWORK teraction labeled according to the number of quasiparticle
creation and annihilation operators which they contain
[6,10.

The microscopic quasiparticle-phonon model, MQPM,  In our method of calculation we use in Ed), as a start-
treats the structure of the odd-nuclei in four steps. First, ing point, the Coulomb-corrected Woods-Saxon single-
the neighboring even-even nucleus, or nuclei, can be used fsarticle energies , with the parametrization dfL1]. By per-
study the properties of the chosen mass region and to fix thigrming the BCS calculation in this basis and comparing the
possible free parameters of the model Hamiltonian. In theesulting quasiparticle spectrum with the low-energy spec-
present case we have used the Bonn-A G md8ixand a  trum of the neighboring proton-odd and neutron-odd nuclei
subsequent phenomenological renormalization of the twowe obtain information about the validity of the Woods-
body-interaction matrix elements was done. This Hamil-Saxon parametrization of the mean field. If necessary, the
tonian is used to generate the phonons which are excitationsroton or neutron single-particle energies can be adjusted in
of the even-even nuclei. In the MQPM the monopole part ofthe vicinity of the proton and neutron fermi surfaces in order
the same Hamiltonian is used to generate the quasiparticlegy achieve a more realistic description of the one-
basic building blocks of the odé-excitations, through the quasiparticle properties of the neighboring odd nuclei. The
BCS procedure. Second, the phonons are derived by the uagonopole matrix elements of the two-body interaction are
of the quasiparticle random-phase approximati@RPA  scaled by pairing-strength parametéssparately for protons
procedure[5,6,10. As the third step, the two basic excita- and neutronswhose values can be determing by com-
tions, QRPA phonons and BCS quasiparticles, are coupled tgarison with the semiempirical pairing gaps obtained from
form a basis for a realistic treatment of the ofldiucleus. the proton and neutron separation energies.

As the last step, the residual Hamiltonian, containing the In the next step a correlated ground state and the excited
interaction of the odd nucleon with the even-even referencetates of the even-even reference nucleus are constructed by
nucleus[the H3+Hy3 part of the Hamiltonian in Eq(3)  use of the QRPA. In the QRPA the creation operator for an
below] is diagonalized in thigovercompletg basis. excited statd QRPA phonoi has the form

As mentioned already above, we start our nuclear-
structure calculation from a realist&-fermion Hamiltonian
containing a diagonal one-body pdthe mean-field single-

A. Energies and wave functions of the odd-mass nucleus

Ql=2 [X¢Al(aa’;3,M)- Y2, A(aa’;I,M)],

aa’
a<a’

particle part and a two-body residual interaction part con- (4)
taining antisymmetrized two-body matrix elements. In
occupation-number representation it reads where the quasiparticle pair creation and annihilation opera-
tors are defined as Af(aa’;J M)=(r;;,[a;a;]m,
H:E 8qclca+iz U_aﬁ’y[sclcgcﬁcy, (1) A(aa,;JM):Uaal,[aaaar]JM and Taa’ =\ 1+ 5&1&" Here
a 4ays the greek indiceso denote phonon spid,, and parity,, .

Furthermore, they contain an additional quantum nunkher
where we have used the convention that in the creation anehumerating the different QRPA roots for the same angular
annihilation operators greek indices denote (ahirmonic- momentum and parity. Thus={J,, 7, ,K,}
oscillatop single-particle quantum numbess={a,m,}, and For each value of the angular momentum and parity the
roman indices, when used, denote all single-particle quanturspectrum of the even-even nucleus is constructed by diago-
numbers except the magnetic ones, iees{n,,l,,j.}. The nalizing the QRPA matrix containing the usual submatrices
antisymmetrized two-body-interaction matrix element is de-A (a QTDA matrix in two-quasiparticle bagiand B (in-
fined aSU_01575=<a,3|v|’y5>—<a’,3|U| 5). duced by correlations of the ground sydtg]. The two-body

The approximate ground state of the even-even referend@atrix elements of multipolarity™, occurring in theA and
nucleus is obtained from a BCS calculation, where quasipaf® matrices, are multiplied by two phenomenological scaling
ticle energies and occupation factarsandv, are obtained constants, namely the particle-hole strengly,, and the

from the Bogoliubov-Valatin transformation to quasiparticlesparticle-particle strengtly, [12]. In the present calculation
the bare G-matrix value of,,=1.0 has been used for all

al=ucl—p T multipolarities. The value ofj,, can be set by the experi-

moTRTR T RS mental value of the energy of the fir§f state and/or the
_ _ electromagnetic decay rate of the figst state to the ground
aL: UMCL_’_ U,uC;L ’ (2) state.

The basis states in our quasiparticle-phonon calculation
WhereEL=aiM(—l)j+m andEIL:cJ[ (—1)I*™. After this are constructed from the previously determined_ BCS quasi-
transformation the Hamiltonian can be written in its quasi-Particles(2) and the QRPA phonorig) of the studied even-
particle representation as even reference nucleus. In the MQPM the creation operators
of states in an odd nucleus have the following form in
terms of BCS quasiparticles and QRPA phonons
H=2 Esaja,+Hot Haot Host Hart His,  (3)

riim=2 Canmt 2 DafaQulim- )
where E, are the quasiparticle energies and other terms of
the Hamiltonian are normal-ordered parts of the residual inThe equations of motion for the eigenstates of the Add-
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nucleus are found by using the double-commutator tech A B\/C 1 0\/C
niques introduced ifi8]. They have the form BT A’) ( Di> =Qi(0 N) ( Di)' t)
(—HlalQilfm AT (M)} -)

=Qi(—H{[alQl]fm TT(im)}-), (6) where the overlap between the one-quasiparticle and the

quasiparticle-phonon states is always zero. However, the
(~{@njm.A.TTGM)} =)= 0~ [{anim.T{(jm)}| =), (7)  overlap between quasiparticle-phonon states can be nonzero

and thus the quasiparticle-phonon states form a nonorthogo-
where the double anticommutator is defined 4#,B,C} nal, usually overcomplete basis set. Equati®nis solved to
={A,[B,C]}+{[A,B],C} and the single commutators and find the oddA states and their energies by standard tech-
anticommutators have their usual definitions. The state  niques described below. Taking only terms to the ofdef
above is the unperturbed BCS vacuum of the referencand|Y|? into account in Eqs(6) and(7), the matricesh, B,
nucleus. Equation&®) and(7) lead to a generalized real sym- N and A’ become(below we have suppressed the trivial
metric eigenvalue problem guantum numbem, the z-projection ofj)

A(aa,;j):<_|{aav|:|va;f}|_>:Ea5aa’v ©

A (waw'a’;j)=(—|{[alQl 1l H,[al.Q" 1;}-)

1 i 1, . ja’ jb Jw
=5 (hQ, +Eat i, + Eg )N(vaw'a’:j) - anaw,E A (hQ,+E,+hQ, +Eq—2Ep)
b a o’
Yo v -1 -1 1A 3 5“b N S’ -1 -1
X Xpyar Xiva O T i + EJwa,% T—z(—ﬁﬂw— Ea71Q, —Ea—2Ep) YoV pa ThaTpu (10)

where the overlap matrix element between two three-quasiparticle states are

N(waw'a’;j)=(—[{[alQ}1].[a], Q] 1} =)= 8,0 Saa + K(waw'a’;)). (11)

Here# (), denote the QRPA-phonon energies, and the m#trir Eq. (11) reads

. A A ja’ jb ‘Ja) 0 o' jjb_w o’ — -
K(waw,a,;.l):‘]w‘]w’% { J J J ]Xba’xba_ J?_szaYba/ O-bei[a-ba]; ’ (12)
a o’

Here X2, =X, —(—1)latla~JuX? . The same definition holds fof.

The interaction matrix elements between the one-quasiparticle and quasiparticle-phonon states have the following form:

S AT 1 ‘]w ’ ’ %) ® -1 1 J‘” 4 4 @
<_ |[Qwaa]jHaa'|_>: § e 2 pr(bb aa \]w)(ubub’xbbf_Ubvb’Ybb/)Ubbf_ § . 2 Hpr(bb’aa Jw)(vbvb’xbbf
Jarb=b’ Jarb=b’
w -1 1 jw w w -1
- ubub'Ybb')Ubb/ + § ]\_ E th(bb,aale)(Ubvblxbb/ +Ubub’Ybb/)Ubb/
a’b=<b’
113, ., ® w y —1
-3 J—be Hio(bb'aa’J,,) (vplp Xep + Uptpr You ) Tpprs (13
a’'b=
|
wherej, =] and Hpp(bb'aa’J)=2u,up F(bb'aa’J)
Hp(bb’aa’J)=2vpu, G(bb'aa’Jd), (14 +2vpvp F(b'baa’ J)(—1)lbTie +3,
Hy(bb’aa’ J)=2u.v, G(bb'aa’d), (15) (17)
H (b’ aa’J) = 2v 0, F(bb'aa’ J) In the previous version of our modEf] the second term

o in the quasiparticle-phonon matrix elements of Ed) was
+2upu, F(b’baa’J)(— 1)t *d (16)  missing. This additional term stems from the use of
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theequations-of-motiofEOM) method of Eq.(6) when | 12 (k)
deriving the eigenvalue equatioi®). It has an important Ci :; N " Ok Ui - (22)
effect on the location of the three-quasiparticle-type states
relative to the one-quasiparticle-type ones, and it iSp practice one omits states having eigenvatydess than
essential for yielding theoretical results in agreement withsome set upper limit.
data.
To solve the rather involved eigenvalue problem of Eq.
(8) we adopt the method where we first solve the eigenvalue B. Expressions for allowed beta decay

equation for the overlap matriX: . . .
a P In the calculation of beta-decay transition amplitudes one

has to know the matrix elements of the charge-changing tran-
2 Niju}'oznkui(k)_ (18  sition den_s_ities(CCT_D) be_tween the init_ial and final states.

i The transition amplitude is expressed in terms of matrix el-
. . . " ements of the CCTD and the single-particle matrix elements
The Slgenvectors can be written in the basi® ot e transition operatdi2]. In the following equations we
[»=T{|QRPA) of Eq. (5) (|QRPA) is the correlated ground ite explicit expressions of all the needed reduced matrix
state of the even-even reference nucleas elements.

In our formalism we employ the following reduced

|]Z) 1 > (k)|_> 19 matrix elements of the CCTD between one-quasiparticle
=—=2>, u;"i).

s states
They have the property of being mutually orthogonal, have a (—||an[cz,'6p,]La£||—)= LupUpSnn Spprs (23)

norm equal to unity and form a complete set after removing
states having eigenvalug,=0 (this removes the overcom-

I TR .
pleteness of the sdti)}). (—llapley cplianll =) =Lopuadpp San (— 1)lp 0 th,

Using the new orthogonal complete set of state®) we (24
can transform(8) to an ordinary real and symmetric eigen- t~ N R
value problem of the form (—llapley enrdianl| =) =Lupundpp S, (25

— T (—llanfc!, Cplialll =)= Lo pdnn Spp (— 1)in Hp *L,
Z (k [H|1 >g|(”)=)\ngf(“), (20) llan pr CnrlL p|| nUpOnn’ Opp 6

These equations descripg™ (EC) transitions between

where . T -
particle statesg™(EC) transitions between hole statgs,
transitions between particle states agd transitions be-
(F |H|T )= 1 Z ui(k)*<i|H|j)u('). 1) tween hole st'ates, .respec'tively. Ab_ove the indicgp) de-
N i J note (harmonic-oscillator single-particle states of a neutron
(proton.
The coefficient<}' of the eigenstates are calculated from the Reduced matrix elements of the CCTD between a
g coefficients in the following way: guasiparticle-phonon state and a one-quasiparticle state are
t o~ T R L L ES -1 o4l Mz -1
(_||[Qwan]j[cnrcp’]Lap||_)_‘]wl-] jn jp’ J prrun’vp’apprénn’(_l) P +J¢_2Ynn’vn’up’o-nn’6pp’ )
(27)

(—IIIQuaplilch Cpliatll—)=—(—1)in e L L]

O B S - L
{j o J ]xnn"’n'up’f’nnl'‘SDD’(_l)]”+J+L
p n’ [3)

Sy .
iz Ypp,uprvn: Upp/ 5nn' .

+

(28)

In Egs.(27) and(28) only the matrix elements corresponding to E@3) and(24) are shown. The other two are obtained
by interchanging the proton and neutron indices.
The reduced matrix elements of the CCTD between two quasiparticle-phonon states are
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~ . . ] L j, 1 ' Pt
(_||[Qwan]j[czlCp’]L[angr]j’”_):_ S(Jn‘]wl)[jp/ J, Jé] 5nn’(55pp’5ww’+K(p wpw ;] ))
+5(jrd ')[j - s (15 80 + K(NoN’ )”
Si 1d ! . .y | = 104p! non w;
In J i pr J, i’ pp’| 5 “nn J
(0L
LT (=D ugup—| 3 e B X XD S( L)
L Jw’ jp’ jp
i O ip—y = | —1 —1nney o oa
+ 22Ty 2 Ynn/Yp/p o-pplo-nn’JLJ S(Jn‘]wj)‘]w‘]w’vn’vp’r (29)

INE

where K(awa'w';j) is defined in Eq.(12) and s(jnJ,j) fects also the position of the g/2states(belong to the
=(—1)n*Jo7). This matrix element again corresponds to0oh,,,®2; multiplet) in these isotopes. It is not possible to
Eq. (23). The other three matrix elements are obtained bycorrect this by adjusting the single-particle energies or pair-
interchanging the proton and neutron indices and/or makingqg strengths alone. Despite these properties the lowest neu-

the substitutionu,—v,, va— —U,. The final expressions on  one-quasiparticle energies behave smoothly in
for the Fermi and Gamow-Teller transition amplitudes, for 127-133vo \vhich makes it possible to describe both the

the comparative half-lif¢log(ft)] and the expressions for the o ;100 -particle and neutron-hole nuclei with respect to each
reduced single-particle matrix elements can be found, e.g., I8y en-event28- 134 nucleus

[6.12. In the present work we have chosen tHé 33Xe nuclei
to be hole nuclei with respect to the even-evEfi **xe
reference nuclei. The choice of a hole- or a particle-type
The neutron single-particle basis in our calculations con0ddA nucleus only makes a difference in the immediate
sisted of the complete oscillator major shelfset and Fi o, vicinity of a shell closure. In the MQPM calculation the en-
while for protons we adopted the major shelfs3and 4 w ergies of the lowest one-quasiparticle-like states drop about
with the intruder orbital @,,,, from the 1w major shell. 0.1-0.2 MeV from the BCS one-quasiparticle energies. The
Basically, the single-particle energies correspond to thenergies of these states also converge rapidly, thus justifying
Woods-Saxon energies with the Bohr-Mottelson parametritheir description by perturbation thedr]. It is worth noting
zation [11]. The pairing strength parameters were adjustedhat the MQPM is able to push the 1]/3tate energy up-
by the odd-even mass differences and the particle-holyards from the BCS quasiparticle energy in the isotopes
strength to the lowesi™ phonon energy of the even-even 127xe and12%e, but the correction is too small to have any
re+fere_nce nucleus. The na_tural—panty RPA phon_oﬁs?f . practical significance.
4%, 57, and 6" were used in the MQPM calculations. After * gecayse of the intruder orbitalh@,, near the neutron
the Hamiltonian parameters are fixed in the BCS and QRPAcg i level, there exists one low-lying negative-parity one-

calculations, the MQPM calculations are parameter-free anauasiparticle state in the spectra of the odd Xe isotopes. In

thus have good predictive power. addition, the low-lying negative-parity three-quasiparticle

127-13 ;
The thr_ee I(_)wes_t states of the Owd. Xe nuclei are states of oddA xenon isotopes have 90-95 % overlap with
one-quasiparticle-like states emerging from the neutron

single-particle orbitals €, 1dy,, and (yy,. Our BCS quasiparticle-phonon states composed of this orbital coupled
calculation could reproduce qualitatively, after slight adjust-t0 the Iowegt 2 RPA pho.non of the even-even reference
ment of the Woods-Saxon single-particle energies near thBUcleus. This coupling yields a multiplet of five states,
Fermi level, the experimental neutron one-quasiparticle enWhose spins extend frogn="7/2 toj = 15/2. This multiplet of
ergies in all the nuclei under discussion, except'fixe Statesis a good test for the qgallty_of theoretical model_s for
where it is does not seem possible to reproduce the corre€dd nuclei, in particular of their ability to produce low-lying
ordering of the lowest one-quasineutron states. This happer§gative-parity three-quasiparticle states. In our calculations
because of the strong influence of the neutron orhiz@on  these negative-parity levels converged very well already
the low-lying one-quasiparticle spectrum due to its high stawhen four lowest RPA phonons of each multipolarity were
tistical weight emerging from its large degeneracy. Furtherused. Despite the good convergence, the energy of the lowest
more, comparing the MQPM level energies, which closelystate of the multiplet, 9/2, does not go as low in energy as
resemble the BCS one quasiparticle energies, to experimethe experimental state energies in any of the isotopes. This is
tal level energie§13] (Fig. 1) one can see that it?’Xe and  the most unsatisfactory property of our model and is due to
in 12%e the experimental 11j2state lies somewhat higher missing the next-order many-body contributions in the
than the pure BCSI9);,, one-quasiparticle state, which af- quasiparticle-phonon matrix elements of E3). Still the

Ill. RESULTS AND DISCUSSION
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FIG. 1. (3) Experimental spectrum of?’ 133Xe. Data is taken fronf13]. (b) Theoretical MQPM spectrum of?>’ ¥3Xe. In this
calculation eight phonons of multipolarity'2 37, 4%, 57, and 6" were used.

agreement is generally better than in the previous version ajuasiparticle-phonon states in the xenon isotopes can be
ti lly better than in th i ion afuasiparticle-ph tates in th isot b
our model[_7;|. _ _ formed by coupling the 2 phonon to quasiparticlesdy,,
The positive-parity states o7 **Xe did not show con-  and 2s,;,. According to the rules of angular-momentum cou-
vergence until eight phonons of each multipole were usedyjing there is one state with angular momentjm1/2, two
This can be seen in Fig. 2 where the calculated spectrum qf=3/2 states, twoj=5/2 states and ong=7/2 state. The
131 H . ’ .
Xe is shown for four different sets of QRPA phonons giagonalization of Eq.(8) mixes these components and
used in the test calculations. From the figure one can see th@f)reads their energies. As the energy of thie ghonon is
by coupling the 2 phonon alone with quasiparticles does .+ o 5 Mev in128e and rises gradually to about 0.8
not produce enough configurations. When eightghonons MeV in 13¥Xe the energy of the unperturbed quasiparticle-

or eight 2" and 3~ phonons are taken into account, the . o
r[?honon multiplets, compared to the lowest one-quasiparticle

results are _aImost as good as in Fhe complete caI.cuIa.tlo Ytate, grows from 0.5 MeV to 0.8 MeV when going from
except that in the complete calculation the one—qua5|part|cle127xe 10 133e

like states become lower in energy, which gives the false
impression that the three-quasiparticle energies rise. AnotheEr
aspect of the complete calculation is that the energies of th

— : urbed quasiparticle-phonon energies and also relative to the
9/2, and 11/Z st.ates are substant|al!y lowered as compare ne-quasiparticle-like state energies who are lowered due to
to the more restricted calculations. It is also worth noting tha

in the case of xenon isotopes thé phonons seem not to 5—|31 part of (3) by about 0.1-0.3 MeV. From the six resulting

play a role in the spectrum of the neighboring olahucleus. z:?ljitsurtgelnllle’%(znt?\eg’éétzti;;ez:sa;: tthh: d?;?;;g;eriit::?
One could expect that in some other cases, i.e., whenthe 3 ' 9

+ +
phonons would be very collective, the role of them would bePONents 0.981dz;®2; , 0.14X1d3,®2; , and 0.10
more important. X 2s4, Wwhere we have indicated also the amplitudes of the

For the positive-parity states the agreement betweefROmPonents. In**Xe the 1/2 state has almost the same
theory and experiment is better than in the case of negativétructure, but in‘**Xe the 1d5,® 2, amplitude is 0.77, and
parity states and much better than in our previous wWatk in '*Xe the 1/2 state is almost pure dk,®2;
The six lowest-lying unperturbed positive-parity quasiparticle-phonon state. The 3/&tate of**3Xe is mainly

By looking at Fig. 1b) one can see that diagonalization of
g. (8) rises or lowers the state energies from the unper-
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a) b) °) 4 FIG. 3. Comparison of the theoretical and experimental energy

FIG. 2. Comparison of the theoretical energy spectra of thefsopretcht(rea dilfyﬁ%f:ilg%t;sliuleg%gzi]iggst of the energy levels

nucleus®®Xe for different sets of QRPA phonons used in the cal-

culations. In spectrunta) only the 2° RPA phonon was used, in surely not the easiest cases to discuss within a theoretical

spectrum(b) the eight lowest 2 phonons were used, and in spec- framework due to their large density of levels below 1 MeV.
trum (c) the eight lowest 2 and 3~ phonons were used. Spectrum The advantage of these isotopes is that there is a good
(d) is the result of the complete calculation where eight Iowestamount of experimental data on their energy spectra

honons of multipolarities 2, 37, 47, 57, and 6" were used. ! « Y :
P P Next we discuss briefly the odd-nuclei (with respect to
0.65< 1dg,®27 , 0.27%25,,®25 , 0.32<1dg,®2) , and  the 1 1¥Xe reference ”l_JC|93i7V_V[‘3fCh are either beta-decay
0.12x 2s,,®2; . The three-quasiparticle components of thedaughter or mother nuclei of " 1*Xe. Itis difficult, if not

state 3/3 remain approximately the same 1’ 13%e, but impossible, to fit the BCS one-quasiparticle energies to the
the 1d;, one-quasiparticle component grows gradually to

lowest-lying states of the lighter proton-quasiparticle nuclei

127,12 i i -
0.32 when going from'*3Xe to 12’Xe. This indicates that in Ts because these nuclei have a very complicated low
the case of the 3/2 states the mixing of one-quasiparticle

lying level structure as compared to the previously discussed
components with three-quasiparticle components mcreasé)sddN xenon nucl'e|. The probler_n IS _that these ngclel h"’?"e
many very low-lying three-quasiparticle states mixed with
towards the closed neutron shell. S . : e
. : one-quasiparticle states, thus making the identification of
The states 52 and 7/Z seem to have in all xenon iso-

) ; T one-quasiparticle-like states difficult. For this reason we
topes quasiparticle-phonon componensg22; and g, pave chosen to fit our proton single-particle set't§ 33

®2; as the main components, except in the case’dfe,  \hich have much simpler low-lying level structures with en-
where the main components are thds3 and (g7, One-  grgy |evels that can be assigned to definite single-particle
quasiparticle states. _ _ . levels. However, the heavier proton-quasiparticle nuclei
It seems that for a fully microscopic theory it is hard to 13113, which are nearer to the closed proton shells, do not
predict completely correctly the relative ordering of the haye this problem and have quite similar level structure as
perturbed states emerging from a quasiparticle-phononsz, iy making it possible to describe both proton-particle
multiplet, as is the case abovedd,®2; , 251,®21). It and -hole nuclei with respect to even-evEi13%e. There-
appears that the calculated 5/&tate should lie much further fore, considering MQPM calculations for beta decay, we can
down and at the same time the calculated; 14fate should comfortably describe the six proton-odd nucké’ 133 and
shift faster up in energy when going frofi°Xe to 33%Xe. On 131135 as proton-hole and proton-particle nuclei with re-
the other hand, the theoretical 3/2nd 7/2 states have the spect to even-evert?® 3%Xe nuclei, respectively. In the
correct qualitative and quantitative behavior when goingproton-hole nuclei?’~ 13} the lowest two states aredi,
from 12’Xe to *3Xe. In any case, the xenon isotopes areand (g, one-quasiparticle-like states. These can be roughly
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TABLE I. The experimental and theoretical comparative half-lives floglues of allowed beta-decay
transitions for nuclei where the beta-decay daughter or mother is a xenon isétop&Xxe. The additional
logft values in parentheses are calculated using only Gamow-Teller matrix elements in cases where the
isospin mixing in the MQPM produces a non-negligible Fermi matrix element. Also the experimental and
theoretical excitation energies of the final states are given.

Expt. Theor.

Transition Mode lodit Energy lodt Energy
127 e(1/27)—121(3/2;) B+ 6.6 0.200 5.6 0.183
121e(1/2)) —121(1/2]) 6.2 0.375 4.4 0.582
12%Cs(1/2 ) — 2%Xe(1/2)) B+ 6.3 0.00 5.75.9 0.00
129Cs(1/12) —12%Xe(3/2) 7.3 0.040 8.2 0.122
181Cs(5/2 ) — 13Xe(3/2) EC 55 0.00 3.7 0.00
1Y (7127 ) —13Xe(5/2)) B- 6.6 0.364 6.6 0.843
1837127 ) —13Xe(5/2) 7.0 0.723 8.0 1.337
1847121 ) —13Xe(7/2)) 7.0 0.637 4.%6.1) 1.123
133e(3/2)—13%%Cs(3/2) B— 7.0 0.384 5.66.1) 0.884
133xe(3/27) —1%%Cs(5/2) B— 5.6 0.080 3.8 0.279
133¢e(3/12)) - 13%Cs(5/2) 7.4 0.161 6.8 0.657
1837121 ) —133Xe(5/2) B- 6.8 0.530 7.0 0.873
183(7/27)—133Xe(5/2) 8.1 1.05 6.8 1.271
1837127 ) —133Xe(7/2) 7.6 0.875 4.5.0 1.091

reproduced already at the BCS level modifying slightly theparticle nucleus with respect to the referent®Xe. The
proton single-particle energies from the Woods-Saxon ones/QPM is also here able to describe the lowest final-state
Thus the relative ordering of lowest one-quasiparticle stategnergies and beta-decay matrix elements qualitatively, this

can be made correct. _ time overestimating them in magnitude. The main compo-
To test the ability of the MQPM to describe allowed betanent of the state 5[2is the single-quasiparticle statelg,,

decay we have applied it to beta decays where the initial ) +
state is the ground state of a xenon nucleus and the finaz?lnd the state 5R2has the leading componentg @2, and

states belong to a proton-odd nucleus or the initial state is 18072925 at about equal weight. The theoretical fogalue
ground state of the proton-odd nucleus and the final state@f the state 5/2 is too small because in this case the MQPM
belong to a xenon nucleus. We will not show all the spectrdS not able to mix enough three-quasiparticle components
for the proton-odd nuclet?”~ 133 or 13113¢s, but rather one into the state vector. Therefore the beta-decay amplitude
representative case of both elements is shown in Fig. 3 wit@oming from the one-quasiparticle to one-quasiparticle tran-
the beta-decay |dg values of the allowed transitions from sition (25 dominates the total transition amplitude.
the 1/2" ground state of*’Xe and the 3/2 ground state of Finally, in Table I, we show the Idg values of a set of
133¢e. In all but four cases the Fermi transition amplitudes,allowed beta-decay transitions where th€ *3Xe nuclei
whenever nonzero, are much smaller than the Gamow-Tellesre either beta-decay mother or daughter nuclei. Only those
ones. The four transitions where Fermi-type matrix elementgansitions have been shown where there exists experimental
have a magnitude comparable to the Gamow-Teller matrixjata on the loff values. Also the theoretical and experimen-
elements are indicated in Table | by additionalfipgalues  ta| excitation energies of the final states are depicted. As can
in parenthesis. These values have been obtained by using seen from the table, the agreement is good only for tran-
only Gamow-Teller matrix elements and neglecting thesijtions from one-quasiparticle-like states to three-
Fermi matrix elements. The unreasonably large Fermi matrixasiparticle-like states. The greatest problems arise in the
elements have their origin in the violation of the iSospincase of transitions from a one-quasiparticle state to another
symmetry due to the used proton-neutron formalism. one, and in this case the theoretical decay rates are too fast

For 1 the MQPM can reproduce the lowest three- 5nqg accordingly the Idg values are small. This means that
quasiparticle energies reasonably well. In this case the bet@ither in the initial or the final states there is a too weak
decay mother nucleus is described as a neutron-hole nucIeHﬁxing of the three-quasiparticle components to the one-
with respect to the**Xe reference nucleus. The beta decayqyasiparticle one. Another problem arises for the case of
to the lowest final states ofl is qualitatively described by  transitions where Fermi-type matrix elements are nonzero.
the MQPM. The 3/2 state of **l has the leading compo- These transitions tend to be too fast even when the Fermi
nents 0.9% 1ds;,®2; and 0.26<1d,®2; and the state matrix elements are neglected, as can be seen from Table I.
1/2] the components 0.941ds,®2; and 0.20<2s,,,. The  As mentioned earlier, ift*Xe and **3Xe the 5/2 and 7/2
state 5/Z consists of 0.7X0g,,®2; and 0.5 1ds, and  states are mostly three-quasiparticle states which can make
the state 3/ is mainly 0.90<0g;,®2; and 0.3 1ds,. the decay rates from the 7/3tates of*}i and **¥ to these

The decay'*3*Xe— 3%Cs is shown on the right half of Fig. states slow. For the 5{2final state this can be seen in the
3. Here the beta-decay mother nucleti$Xe is a neutron- decay rates in Table | but the theoretical decay rate to the
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7/2; is still much too fast in comparison with experiment. cays of oddA nuclei at least qualitatively. In our case, where
For the decay of the 3{2state in**3Xe the decay rates to the the active neutron major shell consistedsefi-g;/, positive-
5/2* states seem to follow qualitatively the experimental pat-Parity orbitals and thér,;, negative-parity intruder orbital,
tern, although the theoretical decay rates are slightly too fast® Positive-parity three-quasiparticle neutron-odd states and
Gamow-Teller beta decay between them and proton-odd
V. SUMMARY AND CONCLUSIONS states were reasonably we}l described, as long as the final
states were three quasiparticle type. However, the low-lying
The equations-of-motion method is a useful tool to sim-negative-parity quasiparticle-phonon states emerging from
plify the Hamiltonian equations for odd-mass nuclei, whenthe h,4,, intruder orbital were not satisfactory in the MQPM
one- and three-quasiparticle configurations are included. Iframework. To complete the model in this respect, next-
this way one can derive the eigenvalue equations of the mierder contributions to the Hamiltonian matrix elements have
croscopic quasiparticle-phonon modéQPM) where a to be taken into account in the description of three-
consistent truncation of the one- and three-quasiparticle corguasiparticle states built of RPA phonons and intruder qua-
figuration spaces can be performed starting from a realistisiparticles. We can conclude that the model we describe in
microscopic many-body Hamiltonian. Our calculations showour article is still incomplete and further development is
that the MQPM model is able to describe many of the ob-needed to satisfactorily describe the three-quasiparticle
served features of the energy spectra and allowed beta daegative-parity states of odd-mass nuclei.
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