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Microscopic quasiparticle-phonon description of odd-mass1272133Xe isotopes and theirb decay

J. Toivanen* and J. Suhonen†

Department of Physics, University of Jyva¨skylä, POB 35, SF-40351 Jyva¨skylä, Finland
~Received 18 August 1997!

Quasiparticle-phonon equations of motion are solved starting from a microscopic realistic many-body
Hamiltonian. In this microscopic quasiparticle-phonon model~MQPM! the relevant part of the three-
quasiparticle Hilbert space may possibly be taken into account even in calculations using large single-particle
bases. As an example, the MQPM is applied to the calculation of energy levels and Fermi and Gamow-Teller
beta-decay transition amplitudes for transitions between odd-mass1272133Xe, 1272133I, and 1272133Cs isotopes.
Considering the fully microscopic nature of the MQPM, comparison of its results and data indicates a rather
satisfactory agreement between theory and experiment.
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I. INTRODUCTION

Beta-decay and excitation spectra of odd-mass~odd-A for
short! nuclei have traditionally been described using ph
nomenological or semiphenomenological models, such
quasiparticle-phonon models or particle-vibration mode
using simple pairing-plus-quadrupole interactions@1,2#. In
many cases these models are in good qualitative agree
with experiments, when their parameters, such as the pa
strengths, quadrupole-force parameters, and paramete
the quasiparticle-phonon coupling Hamiltonian, are prope
fitted. They are also simple to solve because of the simpli
of the interactions, and they allow simple interpretation
the states of the odd-A systems in terms of low-lying one
phonon and one-quasiparticle states of neighboring ev
even ~reference! nuclei. For this reason they have wide
been used to describe selected observed features of oA
nuclei. On the other hand, more microscopic particle-pho
or quasiparticle-phonon models have been developed in
past, but they have not been applied in a systematic wa
the beta decay of odd-A nuclei.

The other extreme is presented by the shell-model typ
calculations for odd-A nuclei, such as the so-called cluste
phonon models@3,4#, where all three-quasiparticle compo
nents are explicitly constructed to diagonalize the Ham
tonian of the odd-A system. They give quite accurate resu
in principle, but the resulting states are difficult to interp
in terms of elementary excitations of the neighboring ev
even nuclei and, in addition, they require huge computatio
effort as compared to the two-step diagonalization metho
the quasiparticle-phonon models. Therefore, unified
proaches that are microscopic but still simple to use and
interpret are called for.

In our approach, the microscopic quasiparticle-phon
model ~MQPM!, one strives for self-consistent treatment
all for three parts of the Hamiltonian, namely the quasipa
cle, phonon, and quasiparticle-phonon terms. This is poss
by starting from a microscopic Hamiltonian with two-bod
matrix elements derived from a G matrix. The G-matrix

*Electronic address: toivanen@jyfl.jyu.fi
†Electronic address: suhonen@jyfl.jyu.fi
570556-2813/98/57~3!/1237~9!/$15.00
-
as
,

ent
ng

of
y
ty
f

n-

-
n
he
to

of

-

t
-

al
of
-

to

n
f
i-
le

method enables a systematic way of deriving both
proton-neutron and the like-nucleon two-body interactio
The H22, H04, and H40 parts of the quasiparticle Hamil
tonian are treated in the quasiparticle random-phase app
mation ~QRPA! framework. They lead to definition of the
excitation ~phonon! spectrum of the even-even referen
nucleus. The whole residual interaction is then diagonali
in the quasiparticle-phonon basis coupled from the BCS q
siparticles and QRPA phonons.

The simplifying trick in the MQPM is to use the prede
termined lowest two-quasiparticle excitations~phonons! of
the nearby even-even reference nucleus as basic buil
blocks for the odd-A states, and use the properties of thepp-
nnQRPA equations@5,6# for the even-even nucleus to sim
plify the emerging one- and three-quasiparticle equations
motion. The low-lying three-quasiparticle states construc
in this way are composed of various quasiparticles coup
to the few lowest and most important RPA excitations su
that their coupling with the higher RPA excited states
weak and can be neglected. This truncation of the thr
quasiparticle model space can be controlled by looking at
convergence of the odd-A spectrum as a function of the num
ber of the included RPA excitations of different multipola
ity.

As an example of the use and power of the MQPM
apply our model to the calculation of the energy levels of
xenon isotopes1272133Xe, and to Fermi and Gamow-Telle
beta decays between odd-A Xe, I, and Cs nuclei in the mas
rangeA51272133. This is a continuation of our previou
work @7# discussing the same nuclei. In the first version
the MQPM @7# the coupling part of the microscopic Hami
tonian,H31, does not emerge from the equations-of-moti
method~EOM! @8#. The EOM method introduces an add
tional term into the quasiparticle-phonon matrix elemen
not taken into account in@7#. In the present article we use th
EOM form of the coupling part of the Hamiltonian. In add
tion to being microscopically more justified, this form of th
coupling Hamiltonian yields results closer to the experime
tal data and thus improves the quantitative predictibility
the MQPM.

This article is organized as follows. In Sec. II we w
describe the model and, in Sec. III we will present the
sults, and, finally, in Sec. IV we will summarize the resu
and draw the conclusions.
1237 © 1998 The American Physical Society
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II. THEORETICAL FRAMEWORK

A. Energies and wave functions of the odd-mass nucleus

The microscopic quasiparticle-phonon model, MQP
treats the structure of the odd-A nuclei in four steps. First
the neighboring even-even nucleus, or nuclei, can be use
study the properties of the chosen mass region and to fix
possible free parameters of the model Hamiltonian. In
present case we have used the Bonn-A G matrix@9# and a
subsequent phenomenological renormalization of the t
body-interaction matrix elements was done. This Ham
tonian is used to generate the phonons which are excitat
of the even-even nuclei. In the MQPM the monopole part
the same Hamiltonian is used to generate the quasiparti
basic building blocks of the odd-A excitations, through the
BCS procedure. Second, the phonons are derived by the
of the quasiparticle random-phase approximation~QRPA!
procedure@5,6,10#. As the third step, the two basic excita
tions, QRPA phonons and BCS quasiparticles, are couple
form a basis for a realistic treatment of the odd-A nucleus.
As the last step, the residual Hamiltonian, containing
interaction of the odd nucleon with the even-even refere
nucleus@the H311H13 part of the Hamiltonian in Eq.~3!
below# is diagonalized in this~overcomplete! basis.

As mentioned already above, we start our nucle
structure calculation from a realisticA-fermion Hamiltonian
containing a diagonal one-body part~the mean-field single-
particle part! and a two-body residual interaction part co
taining antisymmetrized two-body matrix elements.
occupation-number representation it reads

H5(
a

«aca
†ca1

1

4 (
abgd

v̄abgdca
†cb

†cdcg , ~1!

where we have used the convention that in the creation
annihilation operators greek indices denote all~harmonic-
oscillator! single-particle quantum numbersa5$a,ma%, and
roman indices, when used, denote all single-particle quan
numbers except the magnetic ones, i.e.,a5$na ,l a , j a%. The
antisymmetrized two-body-interaction matrix element is d
fined asv̄abgd5^abuvugd&2^abuvudg&.

The approximate ground state of the even-even refere
nucleus is obtained from a BCS calculation, where quasip
ticle energies and occupation factorsua andva are obtained
from the Bogoliubov-Valatin transformation to quasiparticl

am
† 5umcm

† 2vm c̃m ,

ãm
† 5umc̃m

† 1vmcm , ~2!

where ãm
† 5a2m

† (21) j 1m and c̃m
† 5c2m

† (21) j 1m. After this
transformation the Hamiltonian can be written in its qua
particle representation as

H5(
a

Eaaa
†aa1H221H401H041H311H13, ~3!

whereEa are the quasiparticle energies and other terms
the Hamiltonian are normal-ordered parts of the residual
,
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teraction labeled according to the number of quasipart
creation and annihilation operators which they cont
@6,10#.

In our method of calculation we use in Eq.~1!, as a start-
ing point, the Coulomb-corrected Woods-Saxon sing
particle energies«a with the parametrization of@11#. By per-
forming the BCS calculation in this basis and comparing
resulting quasiparticle spectrum with the low-energy sp
trum of the neighboring proton-odd and neutron-odd nuc
we obtain information about the validity of the Wood
Saxon parametrization of the mean field. If necessary,
proton or neutron single-particle energies can be adjuste
the vicinity of the proton and neutron fermi surfaces in ord
to achieve a more realistic description of the on
quasiparticle properties of the neighboring odd nuclei. T
monopole matrix elements of the two-body interaction a
scaled by pairing-strength parameters~separately for protons
and neutrons! whose values can be determined@6# by com-
parison with the semiempirical pairing gaps obtained fro
the proton and neutron separation energies.

In the next step a correlated ground state and the exc
states of the even-even reference nucleus are constructe
use of the QRPA. In the QRPA the creation operator for
excited state~QRPA phonon! has the form

Qv
† 5 (

a<a8
@Xaa8

v A†~aa8;JvM !2Yaa8
v Ã~aa8;JvM !#,

~4!

where the quasiparticle pair creation and annihilation ope
tors are defined as A†(aa8;JM)5saa8

21
@aa

†aa8
†

#JM ,

Ã(aa8;JM)5saa8
21

@ ãaãa8#JM and saa85A11daa8. Here
the greek indicesv denote phonon spinJv and paritypv .
Furthermore, they contain an additional quantum numberkv

enumerating the different QRPA roots for the same angu
momentum and parity. Thusv5$Jv ,pv ,kv%.

For each value of the angular momentum and parity
spectrum of the even-even nucleus is constructed by dia
nalizing the QRPA matrix containing the usual submatric
A ~a QTDA matrix in two-quasiparticle basis! and B ~in-
duced by correlations of the ground state! @5#. The two-body
matrix elements of multipolarityJp, occurring in theA and
B matrices, are multiplied by two phenomenological scali
constants, namely the particle-hole strength,gph, and the
particle-particle strengthgpp @12#. In the present calculation
the bare G-matrix value ofgpp51.0 has been used for a
multipolarities. The value ofgph can be set by the experi
mental value of the energy of the firstJp state and/or the
electromagnetic decay rate of the firstJp state to the ground
state.

The basis states in our quasiparticle-phonon calcula
are constructed from the previously determined BCS qu
particles~2! and the QRPA phonons~4! of the studied even-
even reference nucleus. In the MQPM the creation opera
of states in an odd-A nucleus have the following form in
terms of BCS quasiparticles and QRPA phonons

G i
†~ jm!5(

n
Cn

i an jm
† 1(

av
Dav

i @aa
†Qv

† # jm . ~5!

The equations of motion for the eigenstates of the oddA



ec

d

nc
-

the
the
zero
go-

ch-

al
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nucleus are found by using the double-commutator t
niques introduced in@8#. They have the form

^2u$@aa
†Qv

† # jm
† ,Ĥ,G i

†~ jm!%u2&

5V i^2u$@aa
†Qv

† # jm
† ,G i

†~ jm!%u2&, ~6!

^2u$an jm ,Ĥ,G i
†~ jm!%u2&5V i^2u$an jm ,G i

†~ jm!%u2&, ~7!

where the double anticommutator is defined as 2$A,B,C%
5$A,@B,C#%1$@A,B#,C% and the single commutators an
anticommutators have their usual definitions. The stateu2&
above is the unperturbed BCS vacuum of the refere
nucleus. Equations~6! and~7! lead to a generalized real sym
metric eigenvalue problem
h

e

S A B

BT A8
D S Ci

Di D 5V i S 1 0

0 ND S Ci

Di D , ~8!

where the overlap between the one-quasiparticle and
quasiparticle-phonon states is always zero. However,
overlap between quasiparticle-phonon states can be non
and thus the quasiparticle-phonon states form a nonortho
nal, usually overcomplete basis set. Equation~8! is solved to
find the odd-A states and their energies by standard te
niques described below. Taking only terms to the orderuXu2

and uYu2 into account in Eqs.~6! and~7!, the matricesA, B,
N and A8 become~below we have suppressed the trivi
quantum numberm, thez-projection of j )
g form:
A~aa8; j !5^2u$aa ,Ĥ,aa8
† %u2&5Eadaa8, ~9!

A8~vav8a8; j !5^2u$@aa
†Qv

† # j
† ,Ĥ,@aa8

† Qv8
†

# j%u2&

5
1

2
~\Vv1Ea1\Vv81Ea8!N~vav8a8; j !2

1

2
ĴvĴv8(

b
H j a8 j b Jv

j a j Jv8
J ~\Vv1Ea1\Vv81Ea822Eb!

3X̄ba8
v X̄ba

v8sba
21sba8

21
1

1

2
ĴvĴv8(

b

d j j b

ĵ 2
~2\Vv2Ea2\Vv82Ea822Eb!Ȳba

v Ȳba8
v8 sba

21sba8
21 , ~10!

where the overlap matrix element between two three-quasiparticle states are

N~vav8a8; j !5^2u$@aa
†Qv

† # j
† ,@aa8

† Qv8
†

# j%u2&5dvv8daa81K~vav8a8; j !. ~11!

Here\Vv denote the QRPA-phonon energies, and the matrixK in Eq. ~11! reads

K~vav8a8; j !5 ĴvĴv8(
b

F H j a8 j b Jv

j a j Jv8
J X̄ba8

v X̄ba
v82

d j j b

ĵ 2
Ȳba

v Ȳba8
v8 Gsba

21sba8
21 . ~12!

Here X̄aa8
v [Xaa8

v
2(21) j a1 j a82JvXa8a

v . The same definition holds forȲ.
The interaction matrix elements between the one-quasiparticle and quasiparticle-phonon states have the followin

^2u@Qvaa# j Ĥaa8
† u2&5

1

3

Ĵv

ĵ a8
(

b<b8
Hpp~bb8aa8Jv!~ubub8Xbb8

v
2vbvb8Ybb8

v
!sbb8

21
2

1

3

Ĵv

ĵ a8
(

b<b8
Hhh~bb8aa8Jv!~vbvb8Xbb8

v

2ubub8Ybb8
v

!sbb8
21

1
1

3

Ĵv

ĵ a8
(

b<b8
Hph~bb8aa8Jv!~ubvb8Xbb8

v
1vbub8Ybb8

v
!sbb8

21

2
1

3

Ĵv

ĵ a8
(

b<b8
Hhp~bb8aa8Jv!~vbub8Xbb8

v
1ubvb8Ybb8

v
!sbb8

21 , ~13!
of
where j a85 j and

Hpp~bb8aa8J!52vbub8G~bb8aa8J!, ~14!

Hhh~bb8aa8J!52ubvb8G~bb8aa8J!, ~15!

Hph~bb8aa8J!52vbvb8F~bb8aa8J!

12ubub8F~b8baa8J!~21! j b1 j b81J, ~16!
Hhp~bb8aa8J!52ubub8F~bb8aa8J!

12vbvb8F~b8baa8J!~21! j b1 j b81J.

~17!

In the previous version of our model@7# the second term
in the quasiparticle-phonon matrix elements of Eq.~10! was
missing. This additional term stems from the use
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1240 57J. TOIVANEN AND J. SUHONEN
theequations-of-motion~EOM! method of Eq. ~6! when
deriving the eigenvalue equation~8!. It has an important
effect on the location of the three-quasiparticle-type sta
relative to the one-quasiparticle-type ones, and it
essential for yielding theoretical results in agreement w
data.

To solve the rather involved eigenvalue problem of E
~8! we adopt the method where we first solve the eigenva
equation for the overlap matrixN:

(
j

Ni j uj
~k!5nkui

~k! . ~18!

The eigenvectors can be written in the basisu i &
ui&[G i

†uQRPA& of Eq. ~5! (uQRPA& is the correlated ground
state of the even-even reference nucleus! as

u k̃ &5
1

Ank
(

i
ui

~k!u i &. ~19!

They have the property of being mutually orthogonal, hav
norm equal to unity and form a complete set after remov
states having eigenvaluenk50 ~this removes the overcom
pleteness of the set$u i &%).

Using the new orthogonal complete set of states~19! we
can transform~8! to an ordinary real and symmetric eige
value problem of the form

(
l

^ k̃ uHu l̃ &gl
~n!5lngk

~n! , ~20!

where

^ k̃ uHu l̃ &5
1

Anknl
(
i j

ui
~k!* ^ i uHu j &uj

~ l ! . ~21!

The coefficientsCi
n of the eigenstates are calculated from t

g coefficients in the following way:
s
s
h

.
e

a
g

Ci
n5(

k
nk

21/2gk
~n!ui

~k! . ~22!

In practice one omits states having eigenvaluenk less than
some set upper limite.

B. Expressions for allowed beta decay

In the calculation of beta-decay transition amplitudes o
has to know the matrix elements of the charge-changing t
sition densities~CCTD! between the initial and final states
The transition amplitude is expressed in terms of matrix
ements of the CCTD and the single-particle matrix eleme
of the transition operator@12#. In the following equations we
write explicit expressions of all the needed reduced ma
elements.

In our formalism we employ the following reduce
matrix elements of the CCTD between one-quasipart
states

~2uuan@cn8
† c̃ p8#Lap

†uu2 !5L̂unupdnn8dpp8, ~23!

~2uuap@cn8
† c̃ p8#Lan

†uu2 !5L̂vpvndpp8dnn8~21! j p81 j n81L,
~24!

~2uuap@cp8
† c̃ n8#Lan

†uu2 !5L̂upundpp8dnn8, ~25!

~2uuan@cp8
† c̃ n8#Lap

†uu2 !5L̂vnvpdnn8dpp8~21! j n81 j p81L.
~26!

These equations describeb1(EC) transitions between
particle states,b1(EC) transitions between hole states,b2

transitions between particle states andb2 transitions be-
tween hole states, respectively. Above the indicesn (p) de-
note ~harmonic-oscillator! single-particle states of a neutro
~proton!.

Reduced matrix elements of the CCTD between
quasiparticle-phonon state and a one-quasiparticle state
d

~2uu@Qvan# j@cn8
† c̃ p8#Lap

†uu2 !5 ĴvL̂ ĵ F H j p j L

j n j p8 Jv
J X̄pp8

v un8vp8spp8
21 dnn8~21! j p1 j 1L1

d j j n8

ĵ 2
Ȳnn8

v vn8up8snn8
21 dpp8G ,

~27!

~2uu@Qvap# j@cn8
† c̃ p8#Lan

†uu2 !52~21! j n81 j p81LĴvL̂ ĵ F H j n j L

j p j n8 Jv
J X̄nn8

v vn8up8snn8
21 dpp8~21! j n1 j 1L

1
d j j p8

ĵ 2
Ȳpp8

v up8vn8spp8
21 dnn8G . ~28!

In Eqs.~27! and~28! only the matrix elements corresponding to Eqs.~23! and~24! are shown. The other two are obtaine
by interchanging the proton and neutron indices.

The reduced matrix elements of the CCTD between two quasiparticle-phonon states are
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~2uu@Qvan# j@cn8
† c̃ p8#L@ap

†Qv8
†

# j 8uu2 !52Fs~ j nJv j !H j L j 8

j p8 Jv j n8
J dnn8S 1

2
dpp8dvv81K~p8vpv8; j 8! D

1s~ j n8Jv8 j !H j L j 8

j p8 Jv8 j n8
J dpp8S 1

2
dnn8dvv81K~nvn8v8; j ! D G

3 ĵ L̂ j 8̂~21! j 1L1 j 8un8up82F H j L j 8

j n j n8 Jv8

Jv8 j p8 j p

J X̄n8n
v8 X̄pp8

v s~ j p8 j n8L !

1
d j j n8

d j 8 j p8

ĵ 2 j 8̂2
Ȳnn8

v Ȳp8p
v8 Gspp8

21 snn8
21 ĵ L̂ j 8̂s~ j nJv j !ĴvĴv8vn8vp8, ~29!
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where K(ava8v8; j ) is defined in Eq.~12! and s( j nJv j )
[(21) j n1Jv2 j . This matrix element again corresponds
Eq. ~23!. The other three matrix elements are obtained
interchanging the proton and neutron indices and/or mak
the substitutionua→va , va→2ua . The final expressions
for the Fermi and Gamow-Teller transition amplitudes,
the comparative half-life@ log(ft)# and the expressions for th
reduced single-particle matrix elements can be found, e.g
@6,12#.

III. RESULTS AND DISCUSSION

The neutron single-particle basis in our calculations c
sisted of the complete oscillator major shells 4\v and 5\v,
while for protons we adopted the major shells 3\v and 4\v
with the intruder orbital 0h11/2 from the 5\v major shell.
Basically, the single-particle energies correspond to
Woods-Saxon energies with the Bohr-Mottelson parame
zation @11#. The pairing strength parameters were adjus
by the odd-even mass differences and the particle-h
strength to the lowestJp phonon energy of the even-eve
reference nucleus. The natural-parity RPA phonons 21, 32,
41, 52, and 61 were used in the MQPM calculations. Afte
the Hamiltonian parameters are fixed in the BCS and QR
calculations, the MQPM calculations are parameter-free
thus have good predictive power.

The three lowest states of the odd-N 1272133Xe nuclei are
one-quasiparticle-like states emerging from the neut
single-particle orbitals 2s1/2, 1d3/2, and 0h11/2. Our BCS
calculation could reproduce qualitatively, after slight adju
ment of the Woods-Saxon single-particle energies near
Fermi level, the experimental neutron one-quasiparticle
ergies in all the nuclei under discussion, except in129Xe
where it is does not seem possible to reproduce the co
ordering of the lowest one-quasineutron states. This happ
because of the strong influence of the neutron orbit 0h11/2 on
the low-lying one-quasiparticle spectrum due to its high s
tistical weight emerging from its large degeneracy. Furth
more, comparing the MQPM level energies, which clos
resemble the BCS one quasiparticle energies, to experim
tal level energies@13# ~Fig. 1! one can see that in127Xe and
in 129Xe the experimental 11/21

2 state lies somewhat highe
than the pure BCS 0h11/2 one-quasiparticle state, which a
y
g
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fects also the position of the 9/21
2 states~belong to the

0h11/2^ 21
1 multiplet! in these isotopes. It is not possible

correct this by adjusting the single-particle energies or p
ing strengths alone. Despite these properties the lowest
tron one-quasiparticle energies behave smoothly
1272133Xe which makes it possible to describe both t
neutron-particle and neutron-hole nuclei with respect to e
even-even1282134Xe nucleus.

In the present work we have chosen the1272133Xe nuclei
to be hole nuclei with respect to the even-even1282134Xe
reference nuclei. The choice of a hole- or a particle-ty
odd-A nucleus only makes a difference in the immedia
vicinity of a shell closure. In the MQPM calculation the e
ergies of the lowest one-quasiparticle-like states drop ab
0.1–0.2 MeV from the BCS one-quasiparticle energies. T
energies of these states also converge rapidly, thus justif
their description by perturbation theory@1#. It is worth noting
that the MQPM is able to push the 11/21

2 state energy up-
wards from the BCS quasiparticle energy in the isotop
127Xe and 129Xe, but the correction is too small to have an
practical significance.

Because of the intruder orbital 0h11/2 near the neutron
Fermi level, there exists one low-lying negative-parity on
quasiparticle state in the spectra of the odd Xe isotopes
addition, the low-lying negative-parity three-quasipartic
states of odd-A xenon isotopes have 90–95 % overlap w
quasiparticle-phonon states composed of this orbital coup
to the lowest 21 RPA phonon of the even-even referen
nucleus. This coupling yields a multiplet of five state
whose spins extend fromj 57/2 to j 515/2. This multiplet of
states is a good test for the quality of theoretical models
odd nuclei, in particular of their ability to produce low-lyin
negative-parity three-quasiparticle states. In our calculati
these negative-parity levels converged very well alrea
when four lowest RPA phonons of each multipolarity we
used. Despite the good convergence, the energy of the lo
state of the multiplet, 9/22, does not go as low in energy a
the experimental state energies in any of the isotopes. Th
the most unsatisfactory property of our model and is due
missing the next-order many-body contributions in t
quasiparticle-phonon matrix elements of Eq.~13!. Still the
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FIG. 1. ~a! Experimental spectrum of1272133Xe. Data is taken from@13#. ~b! Theoretical MQPM spectrum of1272133Xe. In this
calculation eight phonons of multipolarity 21, 32, 41, 52, and 61 were used.
n

e

ns
th

es

e
tio
cl
ls
th
t

re
ha

b

ee
tiv

ty

be

u-

d

8
le-
icle
m

of
er-
the

e to
g
g
-

the
e

agreement is generally better than in the previous versio
our model@7#.

The positive-parity states of1272133Xe did not show con-
vergence until eight phonons of each multipole were us
This can be seen in Fig. 2 where the calculated spectrum
131Xe is shown for four different sets of QRPA phono
used in the test calculations. From the figure one can see
by coupling the 21

1 phonon alone with quasiparticles do
not produce enough configurations. When eight 21 phonons
or eight 21 and 32 phonons are taken into account, th
results are almost as good as in the complete calcula
except that in the complete calculation the one-quasiparti
like states become lower in energy, which gives the fa
impression that the three-quasiparticle energies rise. Ano
aspect of the complete calculation is that the energies of
9/21

2 and 11/21
2 states are substantially lowered as compa

to the more restricted calculations. It is also worth noting t
in the case of xenon isotopes the 32 phonons seem not to
play a role in the spectrum of the neighboring odd-A nucleus.
One could expect that in some other cases, i.e., when the2

phonons would be very collective, the role of them would
more important.

For the positive-parity states the agreement betw
theory and experiment is better than in the case of nega
parity states and much better than in our previous work@7#.
The six lowest-lying unperturbed positive-pari
of

d.
of

at

n,
e-
e
er

he
d
t

3
e

n
e-

quasiparticle-phonon states in the xenon isotopes can
formed by coupling the 21

1 phonon to quasiparticles 1d3/2

and 2s1/2. According to the rules of angular-momentum co
pling there is one state with angular momentumj 51/2, two
j 53/2 states, twoj 55/2 states and onej 57/2 state. The
diagonalization of Eq.~8! mixes these components an
spreads their energies. As the energy of the 21

1 phonon is
about 0.5 MeV in 128Xe and rises gradually to about 0.
MeV in 134Xe the energy of the unperturbed quasipartic
phonon multiplets, compared to the lowest one-quasipart
state, grows from 0.5 MeV to 0.8 MeV when going fro
127Xe to 133Xe.

By looking at Fig. 1~b! one can see that diagonalization
Eq. ~8! rises or lowers the state energies from the unp
turbed quasiparticle-phonon energies and also relative to
one-quasiparticle-like state energies who are lowered du
H31 part of~3! by about 0.1–0.3 MeV. From the six resultin
states the 1/22

1 and 3/22
1 states have the most interestin

structure. In133Xe the state 1/22
1 has as the dominating com

ponents 0.9631d3/2^ 21
1 , 0.1431d3/2^ 22

1 , and 0.10
32s1/2 where we have indicated also the amplitudes of
components. In131Xe the 1/22

1 state has almost the sam
structure, but in129Xe the 1d3/2^ 21

1 amplitude is 0.77, and
in 127Xe the 1/21 state is almost pure 1d3/2^ 21

1

quasiparticle-phonon state. The 3/22
1 state of133Xe is mainly
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0.6531d3/2^ 21
1 , 0.2732s1/2^ 21

1 , 0.3231d3/2^ 22
1 , and

0.1232s1/2^ 22
1 . The three-quasiparticle components of t

state 3/22
1 remain approximately the same in1272133Xe, but

the 1d3/2 one-quasiparticle component grows gradually
0.32 when going from133Xe to 127Xe. This indicates that in
the case of the 3/21 states the mixing of one-quasipartic
components with three-quasiparticle components incre
towards the closed neutron shell.

The states 5/21
1 and 7/21

1 seem to have in all xenon iso
topes quasiparticle-phonon components 2s1/2^ 21

1 and 1d3/2

^ 21
1 as the main components, except in the case of127Xe,

where the main components are the 1d5/2 and 0g7/2 one-
quasiparticle states.

It seems that for a fully microscopic theory it is hard
predict completely correctly the relative ordering of t
perturbed states emerging from a quasiparticle-pho
multiplet, as is the case above (1d3/2^ 21

1 , 2s1/2^ 21
1). It

appears that the calculated 5/21
1 state should lie much furthe

down and at the same time the calculated 1/22
1 state should

shift faster up in energy when going from129Xe to 133Xe. On
the other hand, the theoretical 3/22

1 and 7/21
1 states have the

correct qualitative and quantitative behavior when go
from 127Xe to 133Xe. In any case, the xenon isotopes a

FIG. 2. Comparison of the theoretical energy spectra of
nucleus131Xe for different sets of QRPA phonons used in the c
culations. In spectrum~a! only the 21

1 RPA phonon was used, in
spectrum~b! the eight lowest 21 phonons were used, and in spe
trum ~c! the eight lowest 21 and 32 phonons were used. Spectru
~d! is the result of the complete calculation where eight low
phonons of multipolarities 21, 32, 41, 52, and 61 were used.
es

n

g

surely not the easiest cases to discuss within a theore
framework due to their large density of levels below 1 Me
The advantage of these isotopes is that there is a g
amount of experimental data on their energy spectra.

Next we discuss briefly the odd-Z nuclei ~with respect to
the 1282134Xe reference nuclei! which are either beta-deca
daughter or mother nuclei of1272133Xe. It is difficult, if not
impossible, to fit the BCS one-quasiparticle energies to
lowest-lying states of the lighter proton-quasiparticle nuc
127,129Cs because these nuclei have a very complicated l
lying level structure as compared to the previously discus
odd-N xenon nuclei. The problem is that these nuclei ha
many very low-lying three-quasiparticle states mixed w
one-quasiparticle states, thus making the identification
one-quasiparticle-like states difficult. For this reason
have chosen to fit our proton single-particle set to1272133I
which have much simpler low-lying level structures with e
ergy levels that can be assigned to definite single-part
levels. However, the heavier proton-quasiparticle nuc
131,133Cs, which are nearer to the closed proton shells, do
have this problem and have quite similar level structure
131,133I making it possible to describe both proton-partic
and -hole nuclei with respect to even-even132,134Xe. There-
fore, considering MQPM calculations for beta decay, we c
comfortably describe the six proton-odd nuclei1272133I and
131,133Cs as proton-hole and proton-particle nuclei with r
spect to even-even1282134Xe nuclei, respectively. In the
proton-hole nuclei1272133I the lowest two states are 1d5/2
and 0g7/2 one-quasiparticle-like states. These can be roug

e
-

t

FIG. 3. Comparison of the theoretical and experimental ene
spectra andb2-decay logft values~to the right of the energy levels!
for the decays127Xe→127I and 133Xe→133Cs.
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TABLE I. The experimental and theoretical comparative half-lives (logft values! of allowed beta-decay
transitions for nuclei where the beta-decay daughter or mother is a xenon isotope1272133Xe. The additional
logft values in parentheses are calculated using only Gamow-Teller matrix elements in cases wh
isospin mixing in the MQPM produces a non-negligible Fermi matrix element. Also the experimenta
theoretical excitation energies of the final states are given.

Expt. Theor.
Transition Mode logft Energy logft Energy

127Xe(1/21
1)→127I(3/21

1) b1 6.6 0.200 5.6 0.183
127Xe(1/21

1)→127I(1/21
1) 6.2 0.375 4.4 0.582

129Cs(1/21
1)→129Xe(1/21

1) b1 6.3 0.00 5.7~5.8! 0.00
129Cs(1/21

1)→129Xe(3/21
1) 7.3 0.040 8.2 0.122

131Cs(5/21
1)→131Xe(3/21

1) EC 5.5 0.00 3.7 0.00
131I(7/21

1)→131Xe(5/21
1) b2 6.6 0.364 6.6 0.843

131I(7/21
1)→131Xe(5/22

1) 7.0 0.723 8.0 1.337
131I(7/21

1)→131Xe(7/21
1) 7.0 0.637 4.8~5.1! 1.123

133Xe(3/21
1)→133Cs(3/21

1) b2 7.0 0.384 5.6~6.1! 0.884
133Xe(3/21

1)→133Cs(5/21
1) b2 5.6 0.080 3.8 0.279

133Xe(3/21
1)→133Cs(5/22

1) 7.4 0.161 6.8 0.657
133I(7/21

1)→133Xe(5/21
1) b2 6.8 0.530 7.0 0.873

133I(7/21
1)→133Xe(5/22

1) 8.1 1.05 6.8 1.271
133I(7/21

1)→133Xe(7/21
1) 7.6 0.875 4.7~5.0! 1.091
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reproduced already at the BCS level modifying slightly t
proton single-particle energies from the Woods-Saxon on
Thus the relative ordering of lowest one-quasiparticle sta
can be made correct.

To test the ability of the MQPM to describe allowed be
decay we have applied it to beta decays where the in
state is the ground state of a xenon nucleus and the
states belong to a proton-odd nucleus or the initial state is
ground state of the proton-odd nucleus and the final st
belong to a xenon nucleus. We will not show all the spec
for the proton-odd nuclei1272133I or 131,133Cs, but rather one
representative case of both elements is shown in Fig. 3 w
the beta-decay logft values of the allowed transitions from
the 1/21 ground state of127Xe and the 3/21 ground state of
133Xe. In all but four cases the Fermi transition amplitud
whenever nonzero, are much smaller than the Gamow-Te
ones. The four transitions where Fermi-type matrix eleme
have a magnitude comparable to the Gamow-Teller ma
elements are indicated in Table I by additional logft values
in parenthesis. These values have been obtained by u
only Gamow-Teller matrix elements and neglecting t
Fermi matrix elements. The unreasonably large Fermi ma
elements have their origin in the violation of the isosp
symmetry due to the used proton-neutron formalism.

For 127I the MQPM can reproduce the lowest thre
quasiparticle energies reasonably well. In this case the b
decay mother nucleus is described as a neutron-hole nuc
with respect to the128Xe reference nucleus. The beta dec
to the lowest final states of127I is qualitatively described by
the MQPM. The 3/21

1 state of 127I has the leading compo
nents 0.9031d5/2^ 21

1 and 0.2631d3/2^ 21
1 and the state

1/21
1 the components 0.9131d5/2^ 21

1 and 0.2032s1/2. The
state 5/22

1 consists of 0.7130g7/2^ 21
1 and 0.5031d5/2 and

the state 3/22
1 is mainly 0.9030g7/2^ 21

1 and 0.3231d3/2.
The decay133Xe→133Cs is shown on the right half of Fig

3. Here the beta-decay mother nucleus133Xe is a neutron-
s.
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particle nucleus with respect to the reference132Xe. The
MQPM is also here able to describe the lowest final-st
energies and beta-decay matrix elements qualitatively,
time overestimating them in magnitude. The main comp
nent of the state 5/21

1 is the single-quasiparticle state 1d5/2,
and the state 5/22

1 has the leading components 0g7/2^ 21
1 and

0g7/2^ 22
1 at about equal weight. The theoretical logft value

of the state 5/21
1 is too small because in this case the MQP

is not able to mix enough three-quasiparticle compone
into the state vector. Therefore the beta-decay amplit
coming from the one-quasiparticle to one-quasiparticle tr
sition ~25! dominates the total transition amplitude.

Finally, in Table I, we show the logft values of a set of
allowed beta-decay transitions where the1272133Xe nuclei
are either beta-decay mother or daughter nuclei. Only th
transitions have been shown where there exists experime
data on the logft values. Also the theoretical and experime
tal excitation energies of the final states are depicted. As
be seen from the table, the agreement is good only for tr
sitions from one-quasiparticle-like states to thre
quasiparticle-like states. The greatest problems arise in
case of transitions from a one-quasiparticle state to ano
one, and in this case the theoretical decay rates are too
and accordingly the logft values are small. This means th
either in the initial or the final states there is a too we
mixing of the three-quasiparticle components to the o
quasiparticle one. Another problem arises for the case
transitions where Fermi-type matrix elements are nonze
These transitions tend to be too fast even when the Fe
matrix elements are neglected, as can be seen from Tab
As mentioned earlier, in131Xe and 133Xe the 5/21

1 and 7/21
1

states are mostly three-quasiparticle states which can m
the decay rates from the 7/21 states of131I and 133I to these
states slow. For the 5/21

1 final state this can be seen in th
decay rates in Table I but the theoretical decay rate to
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7/21
1 is still much too fast in comparison with experimen

For the decay of the 3/21
1 state in133Xe the decay rates to th

5/21 states seem to follow qualitatively the experimental p
tern, although the theoretical decay rates are slightly too f

IV. SUMMARY AND CONCLUSIONS

The equations-of-motion method is a useful tool to si
plify the Hamiltonian equations for odd-mass nuclei, wh
one- and three-quasiparticle configurations are included
this way one can derive the eigenvalue equations of the
croscopic quasiparticle-phonon model~MQPM! where a
consistent truncation of the one- and three-quasiparticle c
figuration spaces can be performed starting from a real
microscopic many-body Hamiltonian. Our calculations sh
that the MQPM model is able to describe many of the o
served features of the energy spectra and allowed beta
r.

o,
-
t.

-

In
i-

n-
ic

-
e-

cays of odd-A nuclei at least qualitatively. In our case, whe
the active neutron major shell consisted ofs-d-g7/2 positive-
parity orbitals and theh11/2 negative-parity intruder orbital
the positive-parity three-quasiparticle neutron-odd states
Gamow-Teller beta decay between them and proton-
states were reasonably well described, as long as the
states were three quasiparticle type. However, the low-ly
negative-parity quasiparticle-phonon states emerging fr
the h11/2 intruder orbital were not satisfactory in the MQPM
framework. To complete the model in this respect, ne
order contributions to the Hamiltonian matrix elements ha
to be taken into account in the description of thre
quasiparticle states built of RPA phonons and intruder q
siparticles. We can conclude that the model we describe
our article is still incomplete and further development
needed to satisfactorily describe the three-quasipart
negative-parity states of odd-mass nuclei.
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