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Dynamical effects of deformation in the coupled two-rotor system

Marius Grigorescu, Dirk Rompf, and Werner Scheid
Institut für Theoretische Physik, Justus-Liebig-Universita¨t Giessen, Heinrich-Buff-Ring 16, D-35392 Giessen, Germany

~Received 3 October 1997!

The coupling between the rotational and shape degrees of freedom in soft nuclei is studied using a con-
strained time-dependent Hartree-Fock approach. The dynamical equations are derived using the time-
dependent variational principle on a restricted trial manifold consisting of cranked squeezed states. This
procedure is applied to describe the low-lying isovector magnetic excitations observed recently in theg-soft
nucleus134Ba. The role of shape softness in the fragmentation mechanism of the low-lyingM1 strength is
emphasized.@S0556-2813~98!03303-2#

PACS number~s!: 21.60.Jz, 21.10.Re, 27.60.1j
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I. INTRODUCTION

The prediction of isovector angular rotational oscillatio
@1# ~scissors vibrations! in deformed nuclei has been partic
larly stimulating for the experimental research on the nucl
magnetism, leading to the discovery of low-lyingM1 states.
These states were observed in high resolution (e,e8) and
(g,g8) scattering experiments on rare earths@2#, f p shell
nuclei @3#, and actinides@4#. The apparent weak excitation o
these states in intermediate energy proton scattering@5# has
supported the orbital character predicted by the two ro
model ~TRM!, but the highly fragmented structure@6# has
generated a long standing debate about their real ori
Thus, the phenomenological TRM predicts one strongM1
state, which may be splitted in two by triaxiality@7,8#, while
the microscopic random-phase approximation~RPA! or
quasi-RPA~QRPA! calculations show the occurrence of se
eralM1 excitations produced by only few quasiparticle pa
@9#. The comparison between these results requires a reli
procedure to find a geometrical interpretation of the R
excitations, but this fundamental problem of the many-bo
theory has not yet been completely solved. In the case ofM1
states the main difficulty concerns the appropriate choice
the ‘‘angle operators’’@10,11#, required beside the angula
momenta to construct the 11 quasiboson excitation operato
Depending on this choice, the scissors vibration may app
as a rigid angular oscillation@12–14#, or as occurring by a
shear motion@15#. An alternative approach to the TRM dy
namics, avoiding the definition of the angle operators, is p
vided by algebraic models as IBA-II@16#, based on pure
boson generators, or SU~3! models @17,18# and pseudo-
SU~3! models@19#, where the generators can be expresse
terms of the fermion creation and annihilation operators.

The interest for the scissors modes has been renewed
ing the last few years by the increasing amount of data
results obtained in the recent experimental and theore
investigations. The measurements of theM1 strength along a
chain of even Sm@20# and Nd @21# isotopes has shown
quadratic dependence on the ground state quadrupole d
mation. This effect is considered a strong argument supp
ing the TRM origin of the low-lyingM1 states, being en
countered in all semiclassical models@22#. The energy
weighted sum rule for theM1 operator indicates also a spli
ting of theB(M1) strength in low and high energy comp
570556-2813/98/57~3!/1218~11!/$15.00
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nents ifDN52 shell-model configurations are allowed@23#.
The assumption of a fixed intrinsic deformation is jus

fied for the nuclei known to be good rotors, but for so
nuclei, the shape degrees of freedom should be considere
dynamical variables rather than as fixed parameters.
measurements of theB(E2) values along the chain of th
A5124–132 Ba isotopes@24# have shown an increase in th
triaxial shape asymmetry with the angular momentum. Al
an increase of theb deformation with the rotational fre
quency was observed in126Ba @25# for spins between 4\ and
10\.

Complementary to these results are the recent meas
ments of the low-lyingM1 spectrum of theg-soft nucleus
134Ba in a high resolution photon scattering experiment@26#.
These new data may shed some light on the dynamical in
play between the rotational and the shape degrees of free
not only during isoscalar rotations, but also during the ro
tional oscillations of the protons against neutrons.

In this work the coupling between the angular oscillatio
and the shape dynamics is studied within a restricted tim
dependent Hartree-Fock~TDHF! approach. The constraine
dynamical equations are obtained using the time-depen
variational principle on trial manifolds constructed by cran
ing. This formalism ensures a clear geometrical interpre
tion of the time-dependent solutions particularly when t
one-body component of the nuclear Hamiltonian is appro
mated by a harmonic oscillator term, and it will be presen
in Sec. II. The numerical results concerning the coupl
between the scissors vibrations and the shape degree
freedom in 134Ba are presented in Sec. III. The main resu
and the conclusions are summarized in Sec. IV.

II. RESTRICTED TDHF DYNAMICS
FOR DEFORMED NUCLEI

Let us assume thatL is the many-body Hilbert space,H is
the microscopic Hamiltonian, andM5$uZ(X)&% is a
2N-dimensional trial manifold of normed functions, param
etrized by the variablesX5$xi%, i 51,2N. If the antisymmet-
ric matrix v5@v i j (X)#, v i j (X)52 Im^] iZu] jZ& defines a
symplectic form onM ~Poisson bracket!, then the functional

J @X#5E ^Zu i ] t2HuZ&dt ~1!
1218 © 1998 The American Physical Society
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is stationary at small variationsdX whenX is the solution of
the quasiclassical Hamilton equations

(
j 51

2N

ẋjv jk~X!5
]^ZuHuZ&

]xk
. ~2!

The Hartree-Fock equations are obtained whenM is the
manifold S of all Slater determinants which are generat
from a given determinantuC0& by a unitary change of the
single-particle (SP) basis. This manifold has a complicate
structure, accounting for many degrees of freedom of
nucleus. Therefore, in the present studyS will be restricted
to a submanifold parametrized only by the phase space
ordinates relevant for the rotational and shape dynam
constructed by the cranking procedure@27#.

The static deformation parametersd andg are introduced
both in the collective and microscopic models of the nucle
@28#, being used to characterize the spontaneous breakin
the rotational symmetry of the nuclear mean field. IfuZ0&
denotes a symmetry breaking ground state, and

Qm5(
i 51

A

~r 2Y2m! i ~3!

are the quadrupole operators defined with

r 2Y205A 5

16p
~2z22x22y2!,

r 2Y2152r 2~Y221!* 52A15

8p
z~x1 iy !,

r 2Y225r 2~Y222!* 5A 15

32p
~x1 iy !2,

then the deformation parameters can be expressed in term
the expectation valueŝQm&5^Z0uQmuZ0& by using the rela-
tions @28#

d53
^Q0&

^r 2&
, tang5A2

^Q2&

^Q0&
. ~4!

Let us denote byGx the group of rotations around theX axis
and byLx the orbital angular momentum operator for proto
or neutrons. Then, the intrinsic ground state of a nucle
system rotating around theX axis with constant angular ve
locity v is given by the eigenstateuZ&v of the cranking
HamiltonianH2vLx ,

~H2vLx!uZ&v5EvuZ&v . ~5!

The set of functionsuZ&v contains uZ0& and represents a
curve in L parametrized by the Lagrange multiplierv or,
implicitly, by the expectation value of the angular mome
tum ^Lx&5v^ZuLxuZ&v . The action ofGx shifts this curve
over a surface inL which contains the states

uZ~f,v!&5e2 ifLxuZ&v ~6!

and defines a trial manifoldMr5$uZ(f,v)&%.
e
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This trial manifold may be easily constructed in the ha
monic oscillator approximation. This approximation w
proved to be relevant for the microscopic description of
fusion-fission reactions of light nuclei@29#, being success-
fully used in the Harvey model@30#. Moreover, it provides
the microscopic framework for the Elliott’s nuclear SU~3!
model @31#.

Let us assume thatuZ0& is an eigenstate of the linearize
many-body Hamiltonian

HL5 (
c,c8

~hL!cc8cc
†cc8, ~7!

wherehL is the SP anisotropic harmonic oscillator Hamil
tonian, andcc

† (cc) is the creation~annihilation! operator for

a nucleon in theSP statec. If h05(j5x,y,zv0(n̂j11/2),
denotes theSP spherical oscillator Hamiltonian,n̂j5bj

†bj

the number operator of the oscillator quanta along thej axis,
bj

†5Amv0 /2(j2 ipj /mv0), andkj is the dimensionless po
tential operatorkj5mv0j2/2, then the Hamiltonian

hL5h02
2

3
v0 (

j5x,y,z
djkj ~8!

corresponds to an anisotropic oscillator with frequenc
vj5v0A122dj/3. When in Eq.~5! H5HL , the solutions
uZ&v can be related by unitary transformations to the eig
states of a spherical harmonic oscillator@12,13#. Thus, if
l x5 i (bybz

†2bzby
†) is the SP angular momentum andv is

not larger thanvsA3/2, vs5A(vy
21vz

2)/2, then

hL2v l x5CvhsCv
21 ~9!

with

Cv5e2 ilcxe(j5x,y,zuj~dj
†
2dj!/2 ~10!

an unitary transformation generated by the operatorscx , dj
† ,

anddj ,

cx5by
†bz1bz

†by , dj
†5bj

†bj
† , dj5bjbj . ~11!

In the right-hand side of Eq.~9! hs5(jVj( b̃j
†b̃j11/2) with

b̃j
†5Amvs /2(j2 ipj /mvs) while the parametersl, uj of
Cv and Vj are given by tan2l52v/vsh, sinh2uj

5vs(12vj
2/vs

2)/2Vj , h5(vy
22vz

2)/2vs
2 , Vx5vx , Vy,z

2

5(vs1ey,z)
22(vsh/2)2, with ey52ez5vsh/2cos2l.

The operatorcx acts within a single oscillator shell, while
dj

† , dj change the number of oscillator quanta by 2. Ifv50,
then Vj5vj and the operatorC0 generates the transitio
from the eigenstates of a spherical oscillator with frequen
vs to an eigenstate ofhL . Whenv.0, Cv produces in ad-
dition a shift from the static intrinsic frame to a frame rota
ing with the angular velocityv. This shift is generated by
cx , which appears as an ‘‘angle’’ operator conjugate tol x .
Analog operators,cy , cz are associated tol y and l z , and the
eight operatorscx ,cy ,cz ,l x ,l y ,l z ,n̂x2n̂y ,n̂y2n̂z , generate
the su(3) algebra. It is interesting to note that this algebr
the same as$LW ,Qa%, generated by the angular momentu
and the five algebraic quadrupole operators@19#
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Qm
a 5A4p

5b4
@r 2Y2m~rW/urWu!1b4p2Y2m~pW /upW u!#. ~12!

The explicit relation between the generators is provided
the equations

cx52 i
1

A6
~Q1

a2Q21
a !, cy5

1

A6
~Q1

a1Q21
a !, ~13!

cz52 i
1

A6
~Q2

a2Q22
a !, n̂x2n̂y5

1

A6
~Q2

a1Q22
a !,

~14!

n̂y2n̂z52
1

2FQ0
a1

1

A6
~Q2

a1Q22
a !G , ~15!

while the relationship between the relative angle of the p
ton and neutron axes and the labels of the Clebsch-Go
series for the product of two su(3) irreducible represen
tions was discussed in@18#.

According to Eqs.~6!, ~9!, and~10!, the rotational motion
around thex axis can be accounted using the trial functi
manifoldMr defined by

uZ~f,v!&5e2 ifLxe2 ilCxDuC0&, ~16!

whereD is the unitary operator

D5e(j5y,zuj~Dj
†
2Dj!/2. ~17!

The generatorsCx andDj are expressed by

Cx5 (
c,c8

~cx!cc8cc
†cc8, Dj5 (

c,c8
~dj!cc8cc

†cc8, ~18!

anduC0& is a Slater determinant constructed with eigensta
of the spherical harmonic oscillator with frequencyvs .

The frequenciesvy , vz of the anisotropic oscillator po
tential and the related deformationsdy , dz , have been as
sumed above as fixed parameters. To include them as
namical variables in Eq.~2! it is necessary to extend th
manifoldMr with new states, parametrized by the corr
sponding conjugated momentum coordinates@32#. Such
states may be constructed similarly touZ&v , by the cranking
of hL with the ‘‘velocity operators’’i @hL ,kj#.

This problem may be easily solved by noticing th
the set of three operators$s1,j ,s2,j ,s3,j% defined by
s1,j5(dj

†1dj)/4, s2,j5 i (dj
†2dj)/4 and s3,j5(n̂j11/2)/2,

generate the su(1,1) algebra@33#, and the velocity operator is

i @hL ,kj#52iv0@s3,j ,s1,j1s3,j#52v0s2,j . ~19!

The cranked HamiltonianhL2lss2,j can be related toh0 by
a unitary transformation generated bys1,j , and therefore the
additional ‘‘shape’’ momentum variables can be accoun
simply by making the factoruj of Dj

† in Eq. ~17! complex,
uy5s2exp(22iF2) and uz5s3exp(22iF3). The extended
trial manifold, denoted M, is parametrized by
X[$f,l,s2 ,F2 ,s3 ,F3%, and contains the states
y

-
an
-

s

y-

-

t

d

uZ~X!&5UXuC0&, ~20!

where

UX5e2 ifLxe2 ilCxe(j5y,z~ujDj
†
2uj* Dj!/2. ~21!

The manifoldM is endowed with the symplectic form

v i j ~X!52 Im^C0u] iUX
21] jUXuC0&. ~22!

Using the notationsuk5coshsk , vk5sinhsk , and

N05K C0U(
c

cc
†ccUC0L ,

Sj5K C0U (
c,c8

~2n̂j11!cc8cc
†cc8UC0L , ~23!

the nonvanishing elementsv i j (X)52v j i (X) are

vfl5cos 2l@~u3
21v3

2!Sz2~u2
21v2

2!Sy#,

vfs2
522u2v2Sysin 2l,

vfs3
52u3v3Szsin 2l,

vs2F2
522u2v2Sy , vs3F3

522u3v3Sz , ~24!

and can be checked that they satisfy the closing relation

] ivkl1] lv ik1]kv l i 50. ~25!

The matrix@v# can be inverted analytically, and for a sing
rotor the system of Eq.~2! becomes

ẋ j5 (
k51

6

rk j~X!
]^cuHuc&

]xk
, ~26!

where the only elements ofr different of zero are

rfl521/vfl ,

rlFk
5

vfsk

vflvskFk

, k52,3,

rsiFk
52

d ik

vsiF i

, i ,k52,3. ~27!

In the case of two soft rotors in interaction, one correspo
ing to protons (t5p) and another to neutrons (t5n), the
trial function manifold is chosen as a product betwe
uZp(Xp)& and uZn(Xn)&, denoted

uZ~Xp ,Xn!&5U Xp

p U Xn

n uC0&, ~28!

such that the Poisson bracket of the proton and neutron v
ables vanishes. In this case, the dynamics of the whole
tem is given by two sets of six equations:

ẋp
j 5 (

k51

6

rk j
p ]H

]xp
k

, ẋn
j 5 (

k51

6

rk j
n ]H

]xn
k

, j 51, . . . ,6 ~29!
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coupled only by the proton-neutron interaction terms of
Hamilton functionH5^ZuHuZ&.

Let us consider now a nuclear Hamiltonian of the form

H5 (
c,c8

~h0
p!cc8cc,p

† cc8,p1 (
c,c8

~h0
n!cc8cc,n

† cc8,n

2
x

2 (
m522

2

~21!22m~Qp,mQp,2m1Qn,mQn,2m

12 f Qp,mQn,2m!, ~30!

wherecc,t
† creates a proton (t5p) or a neutron (t5n) in

the SP statec, and

Qt,m5 (
c,c8

~r 2Y2m!cc8cc,t
† cc8,t ~31!

is the one-body quadrupole operator. This Hamiltonian c
sists of two separate one-body harmonic oscillator terms,
protons and for neutrons, and a two-body quadrupo
quadrupole (QQ) interaction with proton-proton, neutron
neutron, and proton-neutron components. The paramete
H are x and f , related to the strengths of the isoscalar a
isovector components of theQQ interaction x0 , respec-
tively, x1. If b denotes the ratiob5x1 /x0 @34#, then
x5(11b)x0 and f 5(12b)/(11b).

When theSP basis isuc&5ur &us&, with ur &[unx
r ny

r nz
r& an

eigenstate ofh0 in Cartesian representation, andus& the
j 51/2 spinor, then theSP energy matrix̂ cuh0uc8& is diag-
onal. Moreover, the calculus of the averages^ZuHuZ& can be
performed analytically, and the Hamiltonian on the righ
hand side of Eq.~29! is

H~Xp ,Xn!5H0,p~Xp!1H0,n~Xn!1Hqq,p~Xp!

1Hqq,n~Xn!1Hqq,pn~Xp ,Xn!, ~32!

with

H0,t~Xt!5
v0

2
@3~v2

21v3
2!N01~u2

21v2
2!Sy1~u3

21v3
2!Sz#t ,

Hqq,t~Xt!'2
x

2
~2u^Qt,2&u212u^Qt,1&u21u^Qt,0&u2!,

Hqq,pn~Xp ,Xn!'2 f
x

2
@2 Re~^Qp,2&^Qn,22&

2^Qp,1&^Qn,21&!1^Qp,0&^Qn,0&#.

The average valueŝQt,m& appearing here are given by

^Qt,2&5c0A 3

32
~Sx2u f 2u2Sy2ug2u2Sz!t ,

^Qt,1&52 ic0A 3

32
@2~g3* f 22 f 3* g2!N01~g3f 2* 1g3* f 2!

3~Sy2N0!2~ f 3g2* 1 f 3* g2!~Sz2N0!#t ,

^Qt,0&5c0@2~ ug3u2Sy1u f 3u2Sz!2Sx2u f 2u2Sy2ug2u2Sz!t ,
e

-
or
-

of
d

-

wherec05(5/4p)1/2\/mv0 and f 2, f 3, g2, g3 depend on the
coordinatesX according to

f 25au21a* v2e22iF2, f 35a* u31av3e22iF3,
~33!

g25zu31z* v3e22iF3, g35z* u21zv2e22iF2, ~34!

with a andz the complex functions ofl andf given by Eq.
~A4! in the Appendix.

III. NUMERICAL RESULTS

The B(M1) strength measured for theg-soft nucleus
134Ba in a recent high resolution photon scattering expe
ment@26# is distributed on several fragments at energies
tween 2.5 and 4 MeV. The totalM1 strength summed ove
all states is 0.5660.004mN

2 , and has the centroid located
Eav52.99 MeV. The strongest transitions appear from
states located at 2.571, 2.939, and 3.334 MeV to the1

1

ground state. Decays with lower intensities of these th
states occur to the low-lying 21,2

1 states, placed at the excita
tion energiesE(21

1)50.6 MeV andE(22
1)51.17 MeV. For

the neutron-deficient isotopes of Ba the ground state ene
as a function of deformation has a double-well shape@36–
38#, with a stable and isomeric minimum at oblate, resp
tively, prolate deformations.

In the present calculation we considered a core of 40 p
tons and 40 neutrons, distributed over theN50,1,2,3 shells
of the harmonic oscillator potential. The sta
uC0&[uC0

p&uC0
n& of Eq. ~28! contains the remaining 16 pro

tons and 38 neutrons, distributed on energy levels from
N54 and N55 oscillator shells. The level ordering wa
determined assuming thatvx,vy,vz . The 16 protons of
uC0

p& are placed on the five levels (nx ,ny ,nz) of the N54
shell havingnz50, and on (3,0,1), (2,1,1), (5,0,0). The 3
neutrons ofuC0

n& are distributed on the 12 levels of theN54
shell havingnz50,1,2, on two levels withnz53, (1,0,3),
(0,1,3) and on five levels of theN55 shell, (5,0,0), (4,1,0),
(2,3,0), (3,2,0), (1,4,0). The contribution of the core leve
is accounted by adding 40 toN0 and 100 toSj given by Eq.
~23!. The oscillator frequency isv0541A21/3 MeV, the in-
teraction strengthx0 was fixed such thatx0c0

2555.16A25/3

MeV @36#, and b520.4, close to the value given in Re
@34#.

The ground stateuZ0& of the system was obtained by th
method of frictional cooling@39# consisting in solving Eq.
~29! with artificial dissipative terms on the right-hand side.
the trajectory is calculated for long enough time, then
asymptotic stateuZ0&5D0

pD0
nuC0& is independent on the ini

tial conditions and close to the true ground state.
This method shows that the Hamiltonian of Eq.~32! has

no bounded minimum, because at large deformations
contribution of theQQ interaction energy is large and neg
tive, making the system unstable. This instability is related
the volume conservation condition@40#, not considered here
However, in the physical region of oblate deformations th
is a well-defined metastable ground state~MGS!. For this
state the deformation parameters defined by Eq.~4! are
dp520.265,gp5225°,dn520.225,gn5216.2°. The ex-
pected value of the total quadrupole moment in the M
uZ0& is ^Q0&5^Qp,01Qn,0&5322 fm2, close to the value
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FIG. 1. The energy as a function of the angular momentum for protons@~a!, solid# and neutrons@~a!, dashed#, and on the angular variable
f whenfp52fn5f/2 @~b!, solid#, andfp5fn5f @~b!, dashed#.
n
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be
;310 fm2 given by the average formula^Q0&av

5A5/36pA^r 2&0d050.36d0A5/3 fm 2 @35# for A5134 and
d05(dp1dn)/2. Also, for uZ0& the self-consistency equatio

d0

3
5

x0c0

\v0
^Q0& ~35!

is fulfilled with good accuracy.
If the deformation parameters are fixed to the MGS v

ues, thenuZ(Xp ,Xn)& and the HamiltonianH(Xp ,Xn) be-
come functions of only four variables, denoted
uZr(fp ,lp ,fn ,ln)& and Hr(fp ,lp ,fn ,ln). The param-
eterslt appearing here may be further expressed as fu
tions of the angular momentum average by using the imp
equation

^ZuLx
tuZ&5

sin 2lt

2
@~u3

21v3
2!Sz2~u2

21v2
2!Sy#t . ~36!

After this change of parametrizationHr(0,lp ,0,0) and
Hr(0,0,0,ln) become functions ofLt5^ZuLx

tuZ&, t5p,n.
These functions are represented in Fig. 1~a! by solid, respec-
tively, dashed lines, with the zero point of the energy sc
fixed atHr(0,0,0,0). This functional dependence results a

Hr~0,lp ,0,ln!'
Lp

2

2I p
1

Ln
2

2I n
~37!

with the ‘‘dynamical’’ moments of inertiaI p'16.4 MeV21,
I n'27 MeV21. These values are close to the ones provid
by the Inglis formula@28#: I p

Inglis517.4 MeV21, I n
Inglis531.5

MeV 21.
The functions V(f)[Hr(f/2,0,2f/2,0) and

Hr(f,0,f,0) are represented in Fig. 1~b! by solid, respec-
tively, dashed lines. The functionV(f) is close to a har-
monic potentialCf2/2 with C596 MeV, interpreted as the
elastic constant of the restoring force between the rotor a
determined by the isovectorQQ interaction. The dashed lin
-

c-
it

le

d

es

in Fig. 1~b! shows that despite the occurrence of a deform
vacuum defining the intrinsic frame, the HamiltonianHr re-
mains invariant to arbitrary rotations around thex axis in the
laboratory frame.

According to these results, at fixed deformation t
Hamilton functionHr describes a system of two rigid rotor
having the moments of inertiaI p ,I n , and interacting by a
restoring elastic potentialC(fp2fn)2/2. For this system the
shape degrees of freedom are frozen, and Eq.~29! for 12
variables reduces to only four equations:

ḟp5rl,f
p ]Hr

]lp
, l̇p5rf,l

p ]Hr

]fp
, ~38!

and

ḟn5rl,f
n ]Hr

]ln
, l̇n5rf,l

n ]Hr

]fn
. ~39!

Moreover, from the definitions ofv i j andr i j one can easily
see that

rl,f
2 5

]lt

]Lt
, ~40!

and therefore by changing the coordinateslt to Lt , Eqs.
~38! and ~39! take the canonical form with the Hamiltonia

Hr~fp ,Lp ,fn ,Ln!5
Lp

2

2I p
1

Ln
2

2I n
1

C

2
~fp2fn!2. ~41!

The isoscalar and the isovector degrees of freedom can
further separated by the change of coordinates@41#

L is5Lp1Ln , f is5
I pfp1I nfn

I p1I n
~42!

and
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FIG. 2. The expectation value of the angular momentumLt as a function of time~a!, ~c!, and the phase-space orbits$ft(t),Lt(t)% ~b!,
~d! for the BWS quantized orbit of scissors vibration in the rigid two-rotor system.
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L iv5
I nLp2I pLn

I p1I n
, f iv5fp2fn . ~43!

The frequencyV of the small amplitude isovector oscilla
tions is determined by the constantC and by the reduced
moment of inertiaI r5I pI n /(I p1I n),

V5AC

I r
, ~44!

and has the valueV53.1 MeV.
According to the requantization formalism@42#, the

closed vibrational orbitsOn selected by the Bohr-Wilson
Sommerfeld~BWS! integrality condition

U R L ivdf ivU52pn, n51,2,3,. . . , ~45!

are related to the eigenstates of the many-body system.
n51 and small amplitudes this condition corresponds to
normalization of the RPA quasiboson operators@27#. In the
present case it selects an orbitO with the excitation energy
or
e

EO53.27 MeV. This orbit was determined by the numeric
integration of Eqs.~38! and ~39! with the initial conditions
fp52fn50.132 rad, andLp5Ln50. The time-evolution
of the average angular momentaLt , and the phase-spac
orbits $ft(t),Lt(t)% are represented in Figs. 2~a!, 2~b! for
protons and in Figs. 2~c!, 2~d! for neutrons.

In the system of Eqs.~38! and~39! the shape variables ar
frozen at the MGS values, and the dynamics was restric
only to the rotational degrees of freedom. If the initial co
ditions are the same as used to calculate the orbitO, but
instead of Eqs.~38! and~39!, the whole system of Eq.~29! is
integrated, then the angular and shape variables have
time evolution presented in Figs. 3 and 4, respectively. Th
results indicate the occurrence of a complex dynamical p
tern of anharmonic oscillations both for the rotational and
shape degrees of freedom. Thus, for the calculation of
excitation energies and of theB(M1) spectrum a separatio
of the normal modes of oscillations becomes necessary.

When the oscillation amplitude for the parametersXp , Xn
is small the time-dependent stateuZ& in Eq. ~28! should take
the form

uZ~ t !&5e(ne2 iVntBn
†
2eiVntBnuZ0&, ~46!
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FIG. 3. The expectation value of the angular momentumLt as a function of time~a!, ~c!, and the phase-space orbits$ft(t),Lt(t)% ~b!,
~d! for the scissors vibration of the soft TRM system. The initial conditions are the same as used for the orbits of Fig. 2.
,
b

r

ie
with Vn the frequencies of the normal modes, andBn
† the

corresponding RPA-like excitation operators. Therefore
u Z̃0& denotes the correlated ground state defined
Bnu Z̃0&50, then theB(M1) strength of the stateBn

†u Z̃0& is

B~M1!n,x5
u^ Z̃0uM iv,xBn

†u Z̃0&u2

u^ Z̃0u@Bn ,Bn
†#u Z̃0&u

, ~47!

with

M iv,x5~gp2gn!A 3

16p
~Lx

p2Lx
n!mN ~48!

the x component of the isovectorM1 operator. The matrix
element^ Z̃0u(Lx

p2Lx
n)B†u Z̃0& and the normalization facto

u^ Z̃0u@B,B†#u Z̃0&u can be expressed in terms of the Four
amplitudesMV andNV of the time-dependent functions
if
y

r

M~ t !5^Z0u~Lx
p2Lx

n!uZ~ t !&

'(
n

^Z0u~Lx
p2Lx

n!~e2 iVntBn
†2eiVntBn!uZ0&

~49!

and

N~ t !5 ln^Z~0!uZ~ t !&

'(
n

^Z0uBnBn
†uZ0&e

2 iVnt1^Z0uBn
†BnuZ0&e

iVnt.

~50!

Therefore, if one defines the Fourier series

M~ t !5 (
v.0
Mv

1e2 ivt1Mv
2eivt ~51!

and

N~ t !5 (
v.0
N v

1e2 ivt1N v
2eivt ~52!
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FIG. 4. The deformation variablesdt andgt as functions of time for protons~a!, ~b! and neutrons~c!, ~d!, in the soft TRM system. The
initial conditions are the same as used for the orbits of Fig. 2.
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then

^ Z̃0u~Lx
p2Lx

n!Bn
†u Z̃0&'MVn

1 ~53!

and

u^ Z̃0u@Bn ,Bn
†#u Z̃0&u'uNVn

1 2NVn

2 u. ~54!

Using these amplitudes, and assuming that the frequen
and theB(M1) values for the angular oscillations around t
y axis are the same, the total strength for then mode with the
frequencyV is

B~M1!52B~M1!n,x5
3

8p
~gp2gn!2

uMV
1u2

uNV
12NV

2u
mN

2 .

~55!

The functionsM(t) andN(t) of Eqs.~51! and ~52! can be
calculated as averages in the many-fermion stateuC0& con-
structed with SP spherical harmonic oscillator eigensta
such that
ies

s,

M~ t !5^C0u~D 0
pD 0

n!21~Lx
p2Lx

n!Up~ t !Un~ t !uC0&

5^C0
puD 0

p21Lx
pUp~ t !uC0

p&^C0
nuD 0

n21Un~ t !uC0
n&

2^C0
nuD 0

n21Lx
nUn~ t !uC0

n&^C0
puD 0

p21Up~ t !uC0
p&,

~56!

and

N~ t !5^C0
puUp

21~0!Up~ t !uC0
p&^C0

nuUn
21~0!Un~ t !uC0

n&.
~57!

Using the overlap coefficients given in the Appendix,
these averages can be expressed as analytical functions o
coordinatesXp ,Xn .

The B(M1) spectrum obtained withgp2gn51/2 for a
system of two rigid rotors is presented in Fig. 5~a!, and for
two soft rotors in Fig. 5~b!. The finite width of the lines and
the background peaks are due to the existence of an u
limit for the time interval on which the functionsM(t) and
N(t) are calculated, chosen here of 500\/MeV. In Fig. 5~a!
appears a single maximum located at 3.27 MeV, w
0.56mN

2 at the peak, close to the totalB(M1) value observed
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FIG. 5. The calculatedB(M1) spectrum for the rigid~a! and soft~b! two-rotor system~solid curves!. The values measured in th
experiment@26# for the low-lying 11 states of134Ba are represented by asterisks.
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in experiment. The results presented in Fig. 5~b! show that
the shape softness leads to a fragmentation of theM1
strength in three dominant states, located at 2.37, 2.94,
3.51 MeV. The correspondingB(M1) values are 0.145
0.384, and 0.06mN

2 , respectively, in agreement with the me
sured strengths of the mainM1 transitions.

IV. SUMMARY AND CONCLUSIONS

The series of measurements of the low-lyingM1 excita-
tion spectrum in deformed nuclei withg-soft triaxiality was
extended recently@26# to 134Ba by a high resolution photon
scattering experiment. This experiment confirms the previ
observation@43# of the scissors vibrations as an excitati
mode ofg-soft deformed nuclei. However, in the Ba regio
this mode is of particular interest because it should prov
indications about the effect of the deformation dynamics
the rotational properties.

In this work the coupling between the rotational and t
shape degrees of freedom is described using a semim
scopical model derived by a constrained TDHF calculati
The dynamical equations@Eq. ~29!# are obtained using the
time-dependent variational principle on a restricted tr
manifold consisting of cranked squeezed states. The trial
rameters which take into account the rotational motion
the angular momentum and the rotation angle around thx
axis, while the shape degrees of freedom are introduced
ing the generators of the squeezing transformations along
y and z directions@Eq. ~21!#. The model Hamiltonian@Eq.
~30!# consists of the one-body harmonic oscillator term a
the quadrupole-quadrupole two-body interaction. When
shape degrees of freedom are frozen at the ground state
figuration, the energy function defined by this Hamiltoni
on the trial manifold corresponds to a system of two rot
interacting by a restoring force linear in the relative ang
The elastic constant and the moments of inertia obtained
this system lead to an excitation energy@Eq. ~44!# of the
scissors mode which is near to the energy of the domin
M1 fragment observed in experiment. The phase-space
nd

s

e
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ro-
.

l
a-
e

s-
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e
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.
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nt
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bits are closed, and can be quantized using the Bohr-Wils
Sommerfeld formula. These quantized orbits are shown
Fig. 2~b! for protons, and Fig. 2~d! for neutrons. The spec
trum obtained in this case consists of a single line@Fig. 5~a!#
with the peak close to the total measuredB(M1) strength.

When the shape variables are coupled dynamically to
rotational motion the scissors vibrations become anharmo
~Fig. 3!. The M1 spectrum in this case contains three ma
states, in reasonable agreement with the group of three d
nant states appearing in experiment@Fig. 5~b!#. The occur-
rence of other weak fragments may be due to the pairing
spin-orbit interactions, or to the triaxiality effects, not co
sidered in the present calculations.

These results show that the dynamical coupling betw
the isovector angular oscillations and the shape degree
freedom lead to fragmentation and shift the dominant1

state to lower energy. This coupling may have an import
role in the fragmentation mechanism of the low-lyingM1
strength in soft nuclei, being worth of further theoretical a
experimental investigations.
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APPENDIX

The action of the unitary operator

U5e2 if l xe2 ilcxe(j5y,z~ujdj
†
2uj* dj!/2 ~A1!

on the spherical boson operatorsb2
† , b3

† may be written as a
linear transformation to the new boson operato
ak

†5U21bk
†U, k52,3, such that



rm

by
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a2
†5a coshs2b2

†1a sinhs2e2iF2b22z coshs3b3
†

2z sinhs3e2iF3b3 ~A2!

and

a3
†5a* coshs3b3

†1a* sinhs3e2iF3b31z* coshs2b2
†

1z* sinhs2e2iF2b2 ~A3!

with

a5cosl cosf2 i sinl sinf,

z5cosl sinf2 i sinl cosf. ~A4!

This linear transformation can be written in the general fo

aj
†5 (

k52,3
xk jbk

†1yk jbk , ~A5!
wherex and y are the complex coefficients determined
Eqs.~A2! and ~A3!.

Let us denote byc̃00 and c00 the vacuum states define
by

akc̃0050, bkc0050, k52,3, ~A6!

and byc̃nm andcnm the states

c̃nm5
1

Am!n!
~a2

†!n~a3
†!mc̃00, ~A7!

and

cnm5
1

Am!n!
~b2

†!n~b3
†!mc00. ~A8!

Then, according to @33#, the overlap coefficient
qm2m3 ,n2n3

5^cm2m3
uc̃n2n3

& is expressed by
qm2m3 ,n2n3
5~n2!n3!m2!m3! !1/2 (

k250

n2

(
k350

n3

(
~ j 1 , j 2 ,l 1 ,l 2!~ j 18 , j 28 ,l 18 ,l 28!

gj 1 j 2l 1l 2

2k2n2 g
j
18 j

28 l
18 l

28

3k3n3 d j 11 j 21 l 11 l 2 ,k2
d j

181 j
281 l

181 l
28 ,k3

3

qm21 j 11 j
182 j 22 j

28 ,m31 l 11 l
182 l 22 l

28
0

A~m21 j 11 j 182 j 22 j 28!! ~m31 l 11 l 182 l 22 l 28!!
. ~A9!

The coefficientqn2,n3

0 5^cn2n3
uc̃00& has nonzero values only ifn2 ,n3 are both even or odd, and is given by

qn2,n3

0 5~2 i !s2F n2!n3!Au2u3

~u211!~u31t11!2n21n322G 1/2

3 (
k5s2

n2 ~21!~k2s2!/2@~12u2!/~11u2!#~n22k!/2@s/~11u2!#k

k! @~n22k!/2#!

3 (
m5~k1I k!/2

~n31k!/2
~2m!! ~21!~n31k!/22m

m! ~2m2k!! @~n31k!/22m#! @~s1t11!/2#m~11u3!m
. ~A10!

Here I n5@12(21)n#/2, s2[I n2
, t5s2/(u211), and

uk5
1

112~ uyk2u22xk2yk2* 1uyk3u22xk3yk3* !
, ~A11!

s52 Im
x22y232x23y22

~x232y23!~x322y32!2~x222y22!~x332y33!
, ~A12!

gj 1 j 2l 1l 2
ikn 5 (

j 3 ,l 35even
d j 31 l 3 ,n2k~21!~ j 31 l 3!/2

y2i
j 11 j 3/2x2i

j 21 j 3/2y3i
l 11 l 3/2x3i

l 11 l 3/2

2~ j 31 l 3!/2j 1! j 2! ~ j 3/2!! ~ l 3/2!! l 1! l 2!
. ~A13!
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