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Dynamical effects of deformation in the coupled two-rotor system
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The coupling between the rotational and shape degrees of freedom in soft nuclei is studied using a con-
strained time-dependent Hartree-Fock approach. The dynamical equations are derived using the time-
dependent variational principle on a restricted trial manifold consisting of cranked squeezed states. This
procedure is applied to describe the low-lying isovector magnetic excitations observed recentlyinate
nucleus'®Ba. The role of shape softness in the fragmentation mechanism of the lowNingtrength is
emphasized.S0556-281®8)03303-3
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[. INTRODUCTION nents ifAN=2 shell-model configurations are allowg2B].
The assumption of a fixed intrinsic deformation is justi-
The prediction of isovector angular rotational oscillationsfied for the nuclei known to be good rotors, but for soft
[1] (scissors vibrationsin deformed nuclei has been particu- nuclei, the shape degrees of freedom should be considered as
larly stimulating for the experimental research on the nucleatlynamical variables rather than as fixed parameters. The
magnetism, leading to the discovery of low-lyijl states. measurements of thB(E2) values along the chain of the
These states were observed in high resolutiere’) and A=124-132 Ba isotopd24] have shown an increase in the
(7,7") scattering experiments on rare earfl2, fp shell triaxial shape asymmetry with the angular momentum. Also,
nuclei[3], and actinide$4]. The apparent weak excitation of an increase of thegd deformation with the rotational fre-
these states in intermediate energy proton scatt¢Bhhas  quency was observed itt®Ba[25] for spins between# and
supported the orbital character predicted by the two rotodOf.
model (TRM), but the highly fragmented structufé] has Complementary to these results are the recent measure-
generated a long standing debate about their real origirments of the low-lyingM1 spectrum of they-soft nucleus
Thus, the phenomenological TRM predicts one strdwiy 1348a in a high resolution photon scattering experin{@e.
state, which may be splitted in two by triaxialify,8], while  These new data may shed some light on the dynamical inter-
the microscopic random-phase approximatidRPA) or  play between the rotational and the shape degrees of freedom
quasi-RPA(QRPA) calculations show the occurrence of sev- not only during isoscalar rotations, but also during the rota-
eralM1 excitations produced by only few quasiparticle pairstional oscillations of the protons against neutrons.
[9]. The comparison between these results requires a reliable In this work the coupling between the angular oscillations
procedure to find a geometrical interpretation of the RPAand the shape dynamics is studied within a restricted time-
excitations, but this fundamental problem of the many-bodydependent Hartree-FodR DHF) approach. The constrained
theory has not yet been completely solved. In the cad¢ bf dynamical equations are obtained using the time-dependent
states the main difficulty concerns the appropriate choice ofariational principle on trial manifolds constructed by crank-
the “angle operators’[10,11], required beside the angular ing. This formalism ensures a clear geometrical interpreta-
momenta to construct the"lquasiboson excitation operator. tion of the time-dependent solutions particularly when the
Depending on this choice, the scissors vibration may appeame-body component of the nuclear Hamiltonian is approxi-
as a rigid angular oscillationl2—14, or as occurring by a mated by a harmonic oscillator term, and it will be presented
shear motior{15]. An alternative approach to the TRM dy- in Sec. Il. The numerical results concerning the coupling
namics, avoiding the definition of the angle operators, is probetween the scissors vibrations and the shape degrees of
vided by algebraic models as IBA-[116], based on pure freedom in'*Ba are presented in Sec. lll. The main results
boson generators, or $8 models [17,18 and pseudo- and the conclusions are summarized in Sec. IV.
SU(3) models[19], where the generators can be expressed in
terms of the fermion creation and annihilation operators. Il. RESTRICTED TDHF DYNAMICS
The interest for the scissors modes has been renewed dur- FOR DEFORMED NUCLEI
ing the last few years by the increasing amount of data and
results obtained in the recent experimental and theoretical Let us assume that is the many-body Hilbert spack, is
investigations. The measurements of k& strength along a the microscopic Hamiltonian, and\={|Z(X))} is a
chain of even Snj20] and Nd[21] isotopes has shown a 2N-dimensional trial manifold of normed functions, param-
quadratic dependence on the ground state quadrupole def@trized by the variableX={x'}, i =1,2N. If the antisymmet-
mation. This effect is considered a strong argument supportic matrix w=[w;;(X)], w;j(X)=21m(3,Z|3,Z) defines a
ing the TRM origin of the low-lyingM1 states, being en- Symplectic form onM (Poisson brackgtthen the functional
countered in all semiclassical mode[22]. The energy
weighted sum rule for th#11 operator indicates also a split- _ :
ting of theB(M1) strength in low and high energy compo- j[X]—J (Zlia—H|Z)dt @
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is stationary at small variation$X whenX is the solution of This trial manifold may be easily constructed in the har-
the quasiclassical Hamilton equations monic oscillator approximation. This approximation was
proved to be relevant for the microscopic description of the
N HZ|H|Z) fusion-fission reactions of light nucl¢R9], being success-
21 X wj(X)= T ) fully used in the Harvey moddB0]. Moreover, it provides
= X the microscopic framework for the Elliott's nuclear &Y
model[31].

The Hartree-Fock equations are obtained whehis the
manifold S of all Slater determinants which are generated
from a given determinant¥,) by a unitary change of the
single-particle §P) basis. This manifold has a complicated
structure, accounting for many degrees _of freedor_n of the H = 2 (h,_)WchW, @)
nucleus. Therefore, in the present stuslwill be restricted by’
to a submanifold parametrized only by the phase space ¢
ordinates relevant for the rotational and shape dynamic
constructed by the cranking proced(&]. ; -
The static deformation parametefsindy are introduced @ nucleon in theSP state ¢. If ho=2 -,y ,0o(n;+1/2),
both in the collective and microscopic models of the nucleusienotes theSP spherical oscillator Hamiltoniam = b;ibg
[28], being used to characterize the spontaneous breaking tfie number operator of the oscillator quanta alongé&lagis,
the rotational symmetry of the nuclear mean field|Zf) bgz VMo /2(§—ip/Mmwg), andk; is the dimensionless po-

Let us assume thdZ,) is an eigenstate of the linearized
many-body Hamiltonian

Qvhere h, is the SP anisotropic harmonic oscillator Hamil-
%bnian, and:Tw (cy) is the creatiortannihilatior) operator for

denotes a symmetry breaking ground state, and tential operatok;=mwy&2/2, then the Hamiltonian
A 2
Q.= (r2Y,,), 3) hi=ho—zwo X ik ®)
=1 3 £=Xy,2
are the quadrupole operators defined with corresponds to an anisotropic oscillator with frequencies
w=wo\1—256/3. When in Eq.(5) H=H_, the solutions
) 5 5 o o |Z),, can be related by unitary transformations to the eigen-
rYao="\ E(ZZ —x=y9), states of a spherical harmonic oscillafd?,13. Thus, if

l,=i(bybl—b,b) is the SP angular momentum and is

15 not larger thamwsy/3/2, ws= /(w3 + w2)/2, then
r2Yp=—1%(Yp)*=— g 2ty

hL_wlx:thsC;l 9
[ 15 . with
2Y0=r3(Yo_p)* = E(Xﬂ)’)z,

then the deformation parameters can be expressed in terms of
the expectation value(QM>=(Zo|QM|Zo> by using the rela- an unitary transformation generated by the operatrsi!

tions[28] andd,,
cx=b/b,+blb,, di=blbl, d.=b.b,. 11
<Q20>’ tany: \/5282; (4) X yVz zVy & & & EV¢ ( )
r e

(9 ° In the right-hand side of E(q9) hS=E§Q§(bgb§+ 1/2) with
Let us denote by, the group of rotations around theaxis Bg: VMag/2(§—ip./mwg) while the parameters, 6, of
and byL, the orbital angular momentum operator for protonsC,, and (. are given by tanR=2w/ws7n, sinh2;
or neutrons. Then, the intrinsic ground state of a nucleon=wy1-wfw)/2Q;, 7=(wi- w20, Q=w., O,

system rotating around the axis with constant angular ve- =(w¢+ eylz)z—(wsn/Z)z, with €= — €,= wsn/2COSA.

- T
Cw:e_I)‘Cxez§=X,y,Z‘9§(d§_d§)/2 (10)

0=3

locity w is given by the eigenstatfZ),, of the cranking The operatoc, acts within a single oscillator shell, while
HamiltonianH — wL,, dg , d¢ change the number of oscillator quanta by 2wk 0,
then ),= w, and the operatoC, generates the transition
(H-o0lLy)|2),=E,|Z),. () from the eigenstates of a spherical oscillator with frequency

wg to an eigenstate dfi, . Whenw>0, C, produces in ad-
dition a shift from the static intrinsic frame to a frame rotat-
ing with the angular velocityw. This shift is generated by
Cy, Which appears as an “angle” operator conjugatd,to
Analog operatorsg,, c, are associated tg andl,, and the
eight operators, ,c,,c,,l,,ly,l1;,Nx—Ny,ny—n,, generate
1Z($,0)) =€ 1¥Z),, (6) the su(3) alg%bra. It is interesting to note that this algebra is

the same agL,Q?}, generated by the angular momentum

and defines a trial manifold1, ={|Z(¢,»))}. and the five algebraic quadrupole opera{drg|

The set of functiongZ), contains|Z,) and represents a
curve in £ parametrized by the Lagrange multiplier or,
implicitly, by the expectation value of the angular momen-
tum (L,)=,(Z|L,|Z),. The action ofgG, shifts this curve
over a surface irC which contains the states
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Q3= ,4—7T[I’ZY (F/|F|)+b4 2y (—>/|—>|)] (12) |Z(X)>=Z’[X|‘P0>v (20
no 5h? 2u P=Y2,.(P/IP[)]- wh

The explicit relation between the generators is provided by uX:efi</>Lxe*itheEg:y,z(6§D§f0§D§>/2' (21)
the equations

ere

The manifold M is endowed with the symplectic form

H 1 a a 1 a a —
Cx:_lﬁ(Ql_Qfl)- Cy:ﬁ(Ql_l_Qfl)a (13 i (X) =2 Im(W o| ity Uy | W o). (22
Using the notationsl, = coshs,, v,=sinhs, and
1 a a S A _i a a
Cz:_'%(Qz Qo). Ny ny—\/g(Qz"‘Q—z), NO=<\I’02 CLC.// ‘I’o>a
(14 v
O | S Se=( Wo| 2 (2ng+1)yChe, [ Wo), (23
ny_nz:_z Qo"‘%(Qz"‘sz) ) (195 by

the nonvanishing elements;; (X) = — w;; (X) are
while the relationship between the relative angle of the pro- g 8y (X) =~ ;i (X)

ton and neutron axes and the labels of the Clebsch-Gordan @ g\ =COS 2\[(u§+v§)22—(u§+v§)2y],
series for the product of two su(3) irreducible representa-
tions was discussed ii8]. ® g5, = —2Un0,3,SiN 2\,
According to Eqs(6), (9), and(10), the rotational motion 2
around thex axis can be accounted using the trial function ® 45, =2Ugv33,8iN 2\,
manifold M, defined by 3
1Z(h,w)) =€ Pre NOD| W), (16 Wsg0y = T 2Uabody, s, ~ 2z, (29
whereD is the unitary operator and can be checked that they satisfy the closing relation
D= ezgzy zﬂg(Dngg)/z (17) &iwk|+&|wik+ &kw” =0. (25)
The matrix] w] can be inverted analytically, and for a single
The generator€, andD, are expressed by rotor the system of Eq2) becomes
6
— T — T . HY|H
Cx= 2 (CywCley, D=2 (doypciey, (19 =S pe(X) (] k| " 26)
o A k=1 IX

and| W) is a Slater determinant constructed with eigenstateghere the only elements gf different of zero are
of the spherical harmonic oscillator with frequeney.

The frequenciess,, w, of the anisotropic oscillator po- por=—Lwy,
tential and the related deformatiod§, 6,, have been as-
sumed above as fixed parameters. To include them as dy- W gs,
namical variables in Eq(2) it is necessary to extend the chpk:m, k=23,
k™ k

manifold M, with new states, parametrized by the corre-
sponding conjugated momentum coordina{@2]. Such N
states may be constr_ucted similarl_y|tb)w, by the cranking psd, =~ _'k, i k=23, (27)
of h. with the “velocity operators™i[h,k.]. ' Ws @,

This problem may be easily solved by noticing that o )
the set of three operator§s;;,s,;,ss;} defined by [N the case of two soft rotors in interaction, one correspond-
31,§=(d£+d§)/4, sz,§=i(d£—d§)/4 and Sg,g=(ﬁ§+ 1/2)12, ing to protons ¢=p) and another to neutrong€n), the

. . trial function manifold is chosen as a product between
generate the su(1,1) algel§&8], and the velocity operator is |Z"(Xp)> and|Z"(X,)), denoted

|[h|_ ,k§]=2iw0[331§,51’§+ S3‘§]=2w082§. (19) |Z(Xp,xn)>:U§pu?(n|‘I’o>, (28)

The cranked Hamiltoniah, —\ s, can be related tb, by
a unitary transformation generated $y,, and therefore the
additional “shape” momentum variables can be accounte
simply by making the factop, of Dg in Eq. (17) complex,
0,=s,exp(=2id,) and #,=szexp(—2iP5). The extended 6 6
Y . . . . oH .. IH
trial manifold, denoted M, is parametrized by Xi=> pP—, xi=> pl—, j=1,...,6 (29
. P Pki~ k» *n Py~
X={¢,\,s,,P,,85,P3}, and contains the states k=1"""0X k=1 " 0x,

such that the Poisson bracket of the proton and neutron vari-
bles vanishes. In this case, the dynamics of the whole sys-
em is given by two sets of six equations:
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coupled only by the proton-neutron interaction terms of thewherecy= (5/47) Y% /mwq andf,, f3, g,, g3 depend on the

Hamilton functionH=(Z|H|Z).

Let us consider now a nuclear Hamiltonian of the form

b’ b’

2
~ 2 3 (-1 H(QpuQp- s QnQn
pu=-2

+2fQp,.Qn,- 1),

WherecTW creates a proton7=p) or a neutron ¢=n) in
the SP statey, and

(30

Qru= 2 (132,) 1€y Cyr s (3D

A

coordinatesX according to

fo=au,+a*v,e 22, fi=a*uz+avse ?%s,

(33

TP ga=*upt fve 22, (39)

g2={Uz+ {*vge
with « and{ the complex functions of and ¢ given by Eq.
(A4) in the Appendix.

Ill. NUMERICAL RESULTS

The B(M1) strength measured for the-soft nucleus
138a in a recent high resolution photon scattering experi-
ment[26] is distributed on several fragments at energies be-
tween 2.5 and 4 MeV. The totdll 1 strength summed over
all states is 0.56 0.004u2,, and has the centroid located at
E.,=2.99 MeV. The strongest transitions appear from the

is the one-body quadrupole operator. This Hamiltonian constates located at 2.571, 2.939, and 3.334 MeV to the 0
sists of two separate one-body harmonic oscillator terms, foground state. Decays with lower intensities of these three
protons and for neutrons, and a two-body quadrupolestates occur to the low-lying,2 states, placed at the excita-
quadrupole QQ) interaction with proton-proton, neutron- tion energiesE(2;)=0.6 MeV andE(2;)=1.17 MeV. For
neutron, and proton-neutron components. The parameters tife neutron-deficient isotopes of Ba the ground state energy
H are y andf, related to the strengths of the isoscalar andas a function of deformation has a double-well shi3®-

isovector components of th@Q interaction yo, respec-
tively, x4. If b denotes the ratidb=yx,/xg [34], then
x=(1+b)xo andf=(1-hb)/(1+b).

When theSP basis is| ) =|r)|s), with [r)=|njn{n}) an
eigenstate ofh, in Cartesian representation, arT;sb the
j=1/2 spinor, then th& P energy matrix ¢|ho| ') is diag-
onal. Moreover, the calculus of the averag&fH|Z) can be

38], with a stable and isomeric minimum at oblate, respec-
tively, prolate deformations.

In the present calculation we considered a core of 40 pro-
tons and 40 neutrons, distributed over the0,1,2,3 shells
of the harmonic oscillator potential. The state
|Woy=|TE)| WP of Eq. (28) contains the remaining 16 pro-
tons and 38 neutrons, distributed on energy levels from the

performed analytically, and the Hamiltonian on the right-N=4 and N=5 oscillator shells. The level ordering was

hand side of Eq(29) is
H(xp Xn) = Ho,p(xp) + Ho,n(xn) + qu,p(xp)

+ Hqqn(Xn) + Hqg,pn(Xp, Xn), (32)

with

Hoo(X) = (303 +0dINo+ (U +0D) S+ (1340331,
Haq (X~ = 3(21Q A2+ 21(Q.. 0+ Q.02

Hagon(Xp Xn) =~ 512 Re(Qp2(Q,-2)
- <Qp,1><Qn,fl>) + <Qp0><Qn0>]

The average valueQQ, ,) appearing here are given by

\/§ 2 2
<QT,2>:CO 3_2(2X_|f2| Ey_|92| 2Z)T’

3
(Q,n=—lco \/3:2[2(93 f,—f3092)No+ (935 +03 1)
X(2y—Ng)—(f395 +392)(2,—No)1,,

(Q,0=Col 2(|93|*Zy +|f3]°S ) = Sy — 2|22y~ 92 °2 )

determined assuming that,<w,<w,. The 16 protons of
|WwE) are placed on the five levelsi(,n,,n,) of the N=4
shell havingn,=0, and on (3,0,1), (2,1,1), (5,0,0). The 38
neutrons of W) are distributed on the 12 levels of thie=4
shell havingn,=0,1,2, on two levels witm,=3, (1,0,3),
(0,1,3) and on five levels of the=5 shell, (5,0,0), (4,1,0),
(2,3,0), (3,2,0), (1,4,0). The contribution of the core levels
is accounted by adding 40 td, and 100 taX ; given by Eq.
(23). The oscillator frequency imy=41A"*° MeV, the in-
teraction strengthy, was fixed such thag,c3=55.16A"5"
MeV [36], andb=—0.4, close to the value given in Ref.
[34].

The ground statéZ,) of the system was obtained by the
method of frictional coolind39] consisting in solving Eq.
(29) with artificial dissipative terms on the right-hand side. If
the trajectory is calculated for long enough time, then the
asymptotic statéZ,)=DEDg| V) is independent on the ini-
tial conditions and close to the true ground state.

This method shows that the Hamiltonian of E§2) has
no bounded minimum, because at large deformations the
contribution of theQQ interaction energy is large and nega-
tive, making the system unstable. This instability is related to
the volume conservation conditi¢A0], not considered here.
However, in the physical region of oblate deformations there
is a well-defined metastable ground stéiGS). For this
state the deformation parameters defined by &j. are
dp=—0.265,y,=—25° 8,=—0.225,y,=—16.2°. The ex-
pected value of the total quadrupole moment in the MGS
1Zo) is (Qg)=(Qp o+ Qnoy=322 fm?, close to the value
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FIG. 1. The energy as a function of the angular momentum for prgtanssolid] and neutron$§(a), dashedi and on the angular variable

¢ when ¢,=— ¢,= /2 [(b), solid], and ¢,= ¢,= ¢ [(b), dashed

~310 fm? given by the average formula(Q),  iN Fig. 1(b) shows that despite the occurrence of a deformed

_ 5/367-rA<r2>050=0.3650A5’3 fm2 [35] for A=134 and Vacuum defining the intrinsic frame, the Hamiltonia re-

So=(8,+ 8,)/2. Also, for|Z,) the self-consistency equation mains invariant to arbitrary rotations around thexis in the
poon ’ laboratory frame.

S XoCo According to these results, at fixed deformation the
3= h_<Q°> (35 Hamilton functionH" describes a system of two rigid rotors
@o having the moments of inertib,,I,,, and interacting by a
: ' : restoring elastic potential( ¢, — ¢,)%/2. For this system the
is fulfilled with good accuracy. p_7n
If the deformation parameters are fixed to the MGS val-Shape degrees of freedom are frozen, and (2@ for 12

ues, then|Z(X,.X,)) and the HamiltoniarH(X,.X,) be- variables reduces to only four equations:
come functions of only four variables, denoted by

r r
|Zr(¢p!)\p!¢nl)\n)> and Hr((ﬁpl)\pl(ﬁnr)\n)' The param_ éﬁp:pg’(ﬁﬂ, ).\p:pg‘)\ﬂ, (38)
eters\ , appearing here may be further expressed as func- INp d%p
tions of the angular momentum average by using the implicit
equation an
sin 2, Yo N (9_Hr . _ N a_H
(ZIL12)= "5 [+ D3~ (0% ). (36) $a=PragN, MTPuNGg 39

Moreover, from the definitions ab;; and p;; one can easily

After this change of parametrizatioft'(0,\,,0,0) and
see that

H'(0,0,0N,) become functions ot ,=(Z|L}Z), r=p,n.
These functions are represented in Fi@) by solid, respec-
tively, dashed lines, with the zero point of the energy scale
fixed atH"(0,0,0,0). This functional dependence results as

P (@0
LTI

L2 ﬁ and therefore by changing the coordinalesto L., Egs.
H'(ONp,0Np)~ ﬁJr TR (37 (38 and(39) take the canonical form with the Hamiltonian
p n
ith the “dynamical f inertid,~16.4 MeV b L, C
with the “dynamical” moments of inertia,~16.4 MeV™ -, H(by,Ly,dbp,Ly)=o+ =+ =(by— b))% (41)
|,~27 MeV 1. These values are close to the ones provided (%p:Lp:én Ln) 2lp 2, 2 (¢~ &)

by the Inglis formulg28]: 179°=17.4 MeV*, 119"=31.5 _ _
MeV 1. The isoscalar and the isovector degrees of freedom can be

The  functions  V(¢)=H (4/2,0~ $/2,0) and further separated by the change of coordingtkig
H'(¢,0,¢,0) are represented in Fig(d by solid, respec-
tively, dashed lines. The functioW(¢) is close to a har- Le=L,+L,, ¢ :|p¢p+'n¢n (42
monic potentialC $2/2 with C=96 MeV, interpreted as the soTR o s Ip+1n
elastic constant of the restoring force between the rotor axes
determined by the isovect@ Q interaction. The dashed line and
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FIG. 2. The expectation value of the angular momentunas a function of timea), (c), and the phase-space orbfis(t),L (t)} (b),
(d) for the BWS quantized orbit of scissors vibration in the rigid two-rotor system.

The frequency() of the small amplitude isovector oscilla-
tions is determined by the consta@t and by the reduced
moment of inertid , =

and has the valu@ =3.1 MeV.

According to the requantization formalisf¥2], the
closed vibrational orbitsD, selected by the Bohr-Wilson-
Sommerfeld(BWS) integrality condition

I.L,—1I,L
'ZM, ¢iv:¢p_¢n-

Lol (1p+ 1),

=2mn, n=123,. ..,

E»=23.27 MeV. This orbit was determined by the numerical
integration of Eqs(38) and (39) with the initial conditions
¢bp=—¢,=0.132 rad, and_,=L,=0. The time-evolution
of the average angular momenta, and the phase-space
orbits {¢,(t),L(t)} are represented in Figs(&, 2(b) for
protons and in Figs.(2), 2(d) for neutrons.

In the system of Eqg38) and(39) the shape variables are
frozen at the MGS values, and the dynamics was restricted
only to the rotational degrees of freedom. If the initial con-
ditions are the same as used to calculate the d@fhibut
instead of Eqs(38) and(39), the whole system of E¢29) is
integrated, then the angular and shape variables have the
time evolution presented in Figs. 3 and 4, respectively. These
results indicate the occurrence of a complex dynamical pat-
tern of anharmonic oscillations both for the rotational and the
shape degrees of freedom. Thus, for the calculation of the
excitation energies and of tH®&(M 1) spectrum a separation
of the normal modes of oscillations becomes necessary.

When the oscillation amplitude for the parametégs X,

are related to the eigenstates of the many-body system. F@f small the time-dependent sta# in Eq. (28) should take
n=1 and small amplitudes this condition corresponds to thene form

normalization of the RPA quasiboson operat@3)]. In the
present case it selects an orBltwith the excitation energy

|Z(t)>:eEVeiiSthBI_EiQVtB]wZO>, (46)
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FIG. 3. The expectation value of the angular momentunas a function of timea), (c), and the phase-space orbfis (t),L (t)} (b),
(d) for the scissors vibration of the soft TRM system. The initial conditions are the same as used for the orbits of Fig. 2.

with Q, the frequencies of the normal modes, aBlb the M(t)=(Zo|(LE—LD)|Z(1))
corresponding RPA-like excitation operators. Therefore, if
|Zo) denotes the correlated ground state defined by ~ D (Zo|(LP— LD (e 1 2BT — 2B, )| Z,)
B,|Zo)=0, then theB(M1) strength of the statB|Z,) is v
(49)
(ZolMy Bl Zo) and
B(M1),,=—= = (47 _
I{Zol[B,,B;]1Zo)| M) =In{Z(0)[Z(1))
i ~> (Zo|B,B]|Zoye M +(Z|BIB, | Zo)e M.
WI v
(50)
3 n Therefore, if one defines the Fourier series
My x:(gp_gn) _(LE_LX)MN (48)
' 167 ‘ _
M= Mjie 't M, et (51)

0>0
the x component of the isovectdvl1 operator. The matrix
element(Z,|(LP—L)B"|Z,) and the normalization factor
(Zo|[B,B"]|Z,)| can be expressed in terms of the Fourier Mi=S AFe-ioty \r—giot 52
amplitudesM, and N, of the time-dependent functions ® wZO © © 62

and
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FIG. 4. The deformation variable$. and y,. as functions of time for proton&), (b) and neutrongc), (d), in the soft TRM system. The
initial conditions are the same as used for the orbits of Fig. 2.

then M(t)=(Wo(DEDE) M (LE— LU U(D) Wo)
(Zol(L2-LDBYZo) =M (53 =(WEIDE iU WE)(WI DG Un(1)| W)
] —(WEI D5 LD WO WEDE L (1)| W),
an (56)
(Zol[B,,B}1IZo)| =N, —Ng |- (54  and

Using these amplitudes, and assuming that the frequencies M) =(WB|Lf *(0)Uy(1)| W B 5ILh, H(0)Un(1) | W 5).
and theB(M 1) values for the angular oscillations around the (57)
y axis are the same, the total strength for th@ode with the

frequencyQ is Using the overlap coefficients given in the Appendix, all

these averages can be expressed as analytical functions of the
M2 coordinatesX,, , X,
ilf The B(M1) spectrum obtained witly,—g,=1/2 for a
ING—Ngl N system of two rigid rotors is presented in Figap and for

(55  two soft rotors in Fig. &). The finite width of the lines and

the background peaks are due to the existence of an upper

The functionsM(t) and M(t) of Egs.(51) and(52) can be limit for the time interval on which the function$1(t) and
calculated as averages in the many-fermion gtétg) con-  A/(t) are calculated, chosen here of 0BleV. In Fig. 5a)
structed with SP spherical harmonic oscillator eigenstatesippears a single maximum located at 3.27 MeV, with
such that O.Smﬁ, at the peak, close to the tofa(M 1) value observed

3
B(M 1):2B(M1)V,x:8_ﬂ_(gp_gn)2
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FIG. 5. The calculate®(M 1) spectrum for the rigida) and soft(b) two-rotor system(solid curves. The values measured in the
experimen{26] for the low-lying 1" states of'®Ba are represented by asterisks.

in experiment. The results presented in Figo)sshow that  bits are closed, and can be quantized using the Bohr-Wilson-
the shape softness leads to a fragmentation of e  Sommerfeld formula. These quantized orbits are shown in
strength in three dominant states, located at 2.37, 2.94, arfdg. 2(b) for protons, and Fig. @) for neutrons. The spec-
3.51 MeV. The correspondin@(M1) values are 0.145, trum obtained in this case consists of a single [ifig. 5a)]
0.384, and 0.062, respectively, in agreement with the mea- with the peak close to the total measu@(M 1) strength.
sured strengths of the maM 1 transitions. When the shape variables are coupled dynamically to the
rotational motion the scissors vibrations become anharmonic
(Fig. 3. The M1 spectrum in this case contains three main
IV. SUMMARY AND CONCLUSIONS states, in reasonable agreement with the group of three domi-
nant states appearing in experim¢hig. 5b)]. The occur-

tion spectrum in deformed nuclei with-soft triaxiality was rence of_o;her weak fragments may b_e QUe to the pairing and
spin-orbit interactions, or to the triaxiality effects, not con-

extended recentl{26] to **Ba by a high resolution photon sidered in the present calculations
scattering experiment. This experiment confirms the previous These resuIFt)S show that the d ﬁamical counling between
observation[43] of the scissors vibrations as an excitation . i the dy pling

the isovector angular oscillations and the shape degrees of

mode of y-soft deformed nuclei. However, in the Ba region freedom lead to fragmentation and shift the dominant 1

this mode is of particular interest because it should provideState to lower enerav. This counling mav have an important
indications about the effect of the deformation dynamics onrole in the fra mer?t);tion mechgmigm 0? the low-| ngl
the rotational properties. 9 y

In this work the coupling between the rotational and thestrength in soft nuclei, being worth of further theoretical and

shape degrees of freedom is described using a semimicrg-)(pe”mem"’II Investigations.

scopical model derived by a constrained TDHF calculation.

The dynamical equqtiqr{sEq. (2.9)].are obtained using the ACKNOWLEDGMENTS

time-dependent variational principle on a restricted trial

manifold consisting of cranked squeezed states. The trial pa- M.G. expresses his gratitude to Deutscher Akademischer
rameters which take into account the rotational motion arédustauschdienst for financial support, and to the Institute of
the angular momentum and the rotation angle aroundkthe Theoretical Physics, Justus-Liebig-University, Giessen, for
axis, while the shape degrees of freedom are introduced ugospitality.

ing the generators of the squeezing transformations along the

y and z directions[Eq. (21)]. The model HamiltonianEq.

(30)] consists of the one-body harmonic oscillator term and APPENDIX

the quadrupole-quadrupole two-body interaction. When the The action of the unitary operator

shape degrees of freedom are frozen at the ground state con-

figuration, the energy function defined by this Hamiltonian

on the trial manifold corresponds to a system of two rotors U=e i #lxg INcxgZemy o0~ 0F dp)l2 (A1)
interacting by a restoring force linear in the relative angle.

The elastic constant and the moments of inertia obtained for

this system lead to an excitation enerdyq. (44)] of the  on the spherical boson operatdrs, b} may be written as a
scissors mode which is near to the energy of the dominarltnear transformation to the new boson operators
M1 fragment observed in experiment. The phase-space oa{zU*leU, k=2,3, such that

The series of measurements of the low-lyidd excita-
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a}=a costs,b)+ a sinhs,e? ®2b,— ¢ cosrs3b§ wherex andy are the complex coefficients determined by
] i Egs.(A2) and (A3).
—{ sinhsze” b, (A2) Let us denote by and i, the vacuum states defined
by
and
: i Poo=0, =0, k=23, A
al=a* costs;bl+ a* sinksze? ®sh;+ * costs,b) Aco0=0, Bicroo=0 8 (A6)
+ ¢* sinfs,e?®2b, (A3) and by ¢, and ¢,,, the states
. 1
with Yam=——=(ah) (@) "o, (A7)
o . lr//nm \/W( 2) ( 3) lﬂoo
a=COS\ COSp—i SIiN\ sing,
and
{=cos\ sing—i sin\ cosp. (A4) 1
_ Tyn wt
This linear transformation can be written in the general form Pam= m(bZ)n(b3)m¢’00' (A8)
a]T= 2 ijbl+)’kjbk, (A5) Then, according _ to [3_3], the overlap coefficient
=23 qm2m3,n2n3:<¢m2m3|¢n2n3> IS eXpressed by
np N3 «
= 112 2kon,  3Kgng
m,mg.nn, = (N2! N3t Myt mg!) > > jlleilz jijélilé5j1+j2+ll+lz,k25ji+jé+li+lé,k3

ka=0 K3=0 (5110501 1.i%.05.05)

0
y qm2+j1+jifj27jé,m3+ll+liflzflé (A9)
VMot jat+ji—ia— i) (Mat+ 11— 1,—15)!

The coefficiemqﬂzlnf(z/xnzn3|'z/700> has nonzero values only iif, ,n; are both even or odd, and is given by

Il 1/2
Ny N3t yUoU3

(Up+1)(ug+t+1)2n2*ns=2

Onyn,=(—1)2

Z (=12 (1—u,y)/(14u,y) "2 W s/ (14 u,) 1

x 2

et K[ (n,—Kk)/2]!

(ng+k)12 (2m)1(—1)(ns+kriz=m
x S : (A10)
m=(k+12 m(2m—Kk)!'[(ng+Kk)/2—m]'[(s+t+1)/2]™(1+uz)™

Herel,=[1—(—1)"1/2, 0,=1,,, t=5%/(u,+1), and

1

1+ 2(]Yial* = XkaYii2 + Vsl >— XkaYs)

Uy (A11)

X22Y 23~ X23Y 22
s=2Im , Al2
(X237~ Y23) (X350~ Y32) — (X22— ¥Y22) (X33~ Y33) ( )

j1tial2yiotial2, l1+1a/2 11 +13/2
Yo T Xy T Y3 T Xy

20sH1972) 1i,1(jo/2)1 (14/2)! M !

g}t?zmzz. 2 61-3“3'n7k(_1)(j3+|3)/2 (A13)

j3.l3=even
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