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Finite rank approximation for random phase approximation calculations
with Skyrme interactions: An application to Ar isotopes
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Starting from an effective interaction of Skyrme type, a finite rank separable approximation is proposed for
the residual particle-hole interaction with the aim to allow one to perform structure calculations in very large
particle-hole spaces. The approximation is checked on a specific example by calculating isoscalar quadrupole
and isovector dipole modes in a finite nucleus using the random phase approximation. It is found that the finite
rank approximation is very accurate in the isoscalar channel and it reproduces reasonably well the isovector
channel. The use of the finite rank interaction is illustrated by calculating the evolution of the dipole strength
distribution along the Ar isotope chain, frof= 32 to A=52.[S0556-28138)02003-2

PACS numbgs): 21.60.Jz, 24.30.Cz, 27.36t, 27.40:+z

[. INTRODUCTION the corresponding RPA amplitudes can be calculated by per-
forming only summations. If the-h interaction is a sum of
Among the great variety of microscopic nuclear modelsN separable termdinite rank separable interactipthe roots
aiming at a description of the properties of nuclear excitaof the secular equation are those ofNex N determinant.
tions one can distinguish essentially two types of approachesinceN is considerably smaller than the dimensDrof the
In one approach the emphasis is put on the consistency of the y space, one still gains over the case of a nonseparable
picture by employing an effective interaction which mustiyieraction where solving the RPA problem would require
describe, throughout the periodic table, the ground states iHiagonaIizing a two-dimensional 2E2D matrix. This is the
the framework of the Hartree—Foc(HF) approximation and motivation for proposing in this work a finite rank approxi-
E:e r?));(i:rlaeac:iosr:?lfs Al)n g:nz'digiﬁjsgén‘:Fbgrorn%nd%n tﬁ?sa%ation for thep-h interaction resulting from Skyrme-type
cIF;F;s belong the Gc,)gny’spi%teracticﬁm] and )t/he ékyrme— forces. Thus, the self-consistent mean field can be calculated
in the standard way with the original Skyrme interaction

type interactiong2]. This approach is quite successful not . . . -
only for predicting accurately nuclear ground state propertieg"hereas the_ RP_A solutions WOUId. be obtained W't.h the finite
rank approximation to the-h matrix elements. This would

[3,4] but also for calculating the main features of giant reso- _
nances in closed-shell nucldi5,6] and single-particle eventually allow one to use consistently Skyrme-type forces

strengths near closed shellg. The main difficulty is that 0 Study complicated situation@ffects of two- and three-
the complexity of giant resonance calculations beyond starRhonon configurationsvhere only the QPM model is avail-
dard RPA(e.g., for studying damping mechanisms of collec-able at preser{9].
tive excitation$ increases rapidly with the size of the con-  In the present work, we build a finite rank approximation
figuration space and one has to work within limited spacesfor p-h interactions of Skyrme type. We check this approxi-
The other approach is more phenomenological and assumesation by comparing RPA results calculated with the origi-
some simple separable form for the residual nucleon-nucleonal and approximate interactions. As a first application we
interaction while the mean field is modelized by an empiricalpresent the evolution of the collective isovector dipole and
potential well. These are the basic ingredients of the wellisoscalar quadrupole states along the isotopic chain of Ar
known guasiparticle-phonon mod@&@PM) of Solovievet al.  nuclei calculated in RPA. This paper is organized as follows.
[8]. The practical advantage of this approach is that it allowdn Sec. Il we sketch our method for constructing a finite rank
one to calculate nuclear excitations in very large configurainteraction. Detailed expressions are gathered in Appendix
tion spaces since there is no need to diagonalize matrices, whereas the solution of RPA equations with a finite rank
whose dimensions grow with the size of configuration spaceinteraction is explained in Appendix B. In Sec. Ill we apply
Very detailed predictions can be made for nuclei away fromthis interaction to the study of Ar isotopes. A comparison of
closed shell§9]. results obtained with the original and approximate interac-
When the residual particle-holg<h) interaction is sepa- tion is done in Sec. lll A whereas Secs. Il B and Il C are
rable, the RPA problem can be easily solved no matter howdevoted to a discussion of the calculated isovector dipole and
manyp-h configurations are involved. The RPA eigenvaluesisoscalar quadrupole states, respectively. Conclusions are
are obtained as the roots of a single secular equation and theimawn in Sec. IV.
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IIl. FINITE RANK APPROXIMATION appears on the right-hand side. TAE) and BY) matrices
FOR PARTICLE-HOLE MATRIX ELEMENTS are given by
We start from the effective Skyrme interactifi®] which AQ h'o'h
is often used in consistent HF-RPA calculations of nuclear ph,p’h’ = Hay(ph'p"h),
excitations. We adopt the notation of R¢LO| containing ) o
explicit density dependence and all spin-exchange terms Bohprn = (=1 IWH(pp’h’h). (4)

rather than the original form of Ref2], where density de-

pendence at the HF level was introduced by a three-bod{et us explain the procedure for making a finite rank ap-
contact force and where some spin-exchange terms wefoximation by examining only the contribution of the term
dropped. The exagi-h residual interactio,,,, correspond- Fo(r) of Eq. (1). The complete expressions can be found in
ing to the Skyrme force and including both direct and ex-APPeNdix A. The coupleg-h matrix element corresponding
change terms can be obtained as the second derivative of R Fo is

energy density functional with respect to the density]. . - L ) .

Thus, V,, has some velocity dependence which makes it Ha(ph'p’h)=J"%1e(ph’p (Pl Yol I)(p"1Yallh"),
cumbersome to use in finite systems but it also has a great

advantage, namely, it contains &function in coordinate \here (pl|Y,lIn) is the reduced matrix element of the

space. First, we shall S|mpl|1yph by approximating it by its spherical harmonic¥,y, J=+2J+1, andl; is the radial

Landau—Migdal form integral
Von=Ng > [Fi+Gioy- 0o+ (F| +Gloy-0p) 71 - 7] o 1 [ dr
ph™ o < I 19102 I 1017 02)71°72 Ie(ph'p'h)=Njg FO(r)up(r)uh(r)up,(r)uh,(r)—2.
0 r
X 8(ry1=ry), (D ©

. : . In practice,lr can be calculated accurately by choosing a
whereg; and 7; are the nucleon spin and isospin operators,Iarge enough cutoff radiuR and using a-point integration

and No=2kem*/m*4* with ke and m* standing for the Gauss formula with abscissas and weigfrts,w,}:
Fermi momentum and nucleon effective mass. For Skyrme

interactions all Landau parameters with 1 are zero. Here, le(ph'p’h)
we keep only thé=0 terms inV,,. The expressions for the

parameterd=y, Gy, F{, Gy in terms of the Skyrme force . o(r)
parameters can be found in REE0]. Because of the density =No Rk21 Wkr—zup(rk)uh(rk)up’(rk)uh’(rk)- (7
dependence of the interaction the Landau parameters of Eq. k

(1) are functions of the coordinate
In what follows the indice@ andh will refer respectively
to unoccupied and occupied single-particle states in the HF E
spectrum calculated with the original Skyrme interaction. In K= _NRI 1w ol (8
. . . X 0 k 2 ’
RPA problems there appear two types of interaction matrix M
elements, theAéJg prny Matrix related to forward-going

graphs and theBpg Y matrix related to backward-going

graphs. Because of the zero rangevgf, both matrices can
be obtained from the following quantity:

This suggests the introduction of the coefficients

and thep-h matrix elements

DM(ph)=up(ri)un(ri){pl|Ylh), 9

_ i so thatH is just a sum of separable terms:
) ) Jp Jh
HJ(ph’p’h)E% (—1)'P_mp+lp’_mp'(mp —m, —M

jp/ jh’ J
X\ my —my =M

X<¢p,mp(l)¢h’,mh,(2)|vph(112)| d’h,mh(l)

n

HJ<ph'p'h>=—k§l xDM(ph)D®(p'h"). (10)

This can be easily extended to all four terms of Eq.and
the angular-momentum coupled matrix elemidp(ph’p’h)
is finally expressed as a sum Nf=4n separable terms:

N

X bpr.my (2)), @ Ha(ph'p'h)=— 3 xD“(ph)D“(p'h). (1D

where the uncoupled matrix element calculated with the HE

@) (a)
single-particle wave functions The expressions for the quantitigd® and D(®(ph) are

given in Appendix A. The explicit solution of the corre-
sponding RPA equations can be found in Appendix B where
bim(1)= ( )yl (T1,01) 3) it is shown that the matrix problems never exceed the dimen-
i sionsN X N.
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FIG. 2. Comparison of isovector dipole strengths calculated
FIG. 1. Comparison of isoscalar quadrupole strengths calculatedith the full SliI force (solid curve and the finite rank approxima-
with the full SlII force (solid curvé and the finite rank approxima- tion (dotted curvg The strengths are in finMeV ~ L.
tion (dotted curvé The strengths are in ffnMeV 2.

mate form give practically the same results, with a strongly
lll. APPLICATION TO Ar ISOTOPES collective GQR around 18 MeV and a low-lying” tate at
As a first app”cation of the finite rank approximation we 3 MeV. On the other hand, the isovector dlpole results show
study the evolution of the giant quadrupole resona@®@R)  that the approximate interactioh) restricted td =0 terms is
and giant dipole resonan¢eDR) in the chain of Ar isotopes  slightly less repulsive than the originpth interaction in the
from the neutron-poor to the neutron-rich side. The strengtfisovector channel. The results of Fig. 2 and all GDR results
distributions are calculated in RPA, starting from the HFin the rest of this work have been calculated using the value
mean fields computed in coordinate space with an effectivée=1.3 fm~* for the Landau parametefs; and G;. The
Skyrme interaction. Note that no approximation is made foruse of a smaller value & for F; and G| would probably
the interaction at the level of HF calculations. In this work improve the agreement. From Fig. 2 it can be seen that the
we use the standard parametrizati8Hl [12]. Spherical approximate interaction reproduces the main features of the
symmetry is assumed for all HF ground states. For nonclosedipole strength distribution with a shift of 1-1.5 MeV in the
subshell nuclei we use the filling approximatigt]. position of the GDR. This shift remains of the same order for
In order to perform RPA calculations, the single-particlethe other Ar isotopes. Thus, the finite rank approximation for
continuum is discretized by diagonalizing the HF Hamil- the isovectorp-h interaction is slightly weaker than the
tonian on a basis of ten harmonic oscillator shells and truneriginal interaction but it leads to strength distributions
cating the single-particle space to three unoccupied levels fawhich present the same essential features as the exact ones.
each (,j) value. This is sufficient to exhaust practically all
the energy-weighted sum rule. For the sake of presentation
the calculated transition strength distributions are smoothed . .
out by folding them with a Lorentzian distribution of width In_F|gs. 3 and 4 are shoyvn isoscalar quadrupole strength
A = 2 MeV. In the present calculations we have adopted théunCtlons calculated in Ar isotopes from=32 to A=52.
valuen=24 for the finite rank approximatiojsee Eq.(10)]
and we have checked that variationsméround this value
P Isoscalar Quadrupole
do not change significantly the results.

B. Isoscalar quadrupole states

A. Comparison with exact interaction results

First, we check how the RPA results calculated with the
finite rank approximation(11) can reproduce the strength
distributions obtained with the origina+h interactionvph.

We select®Ar as an illustrative case. The exact and approxi-
mate strength distributions are compared in Fig. 1 for the
isoscalar GQR and in Fig. 2 for the isovector GDR. In the
isoscalar channel the Landau—Migdal foff) with the F
and G, calculated according to Ref10] can give an accu-

rate representation of the origingth Skyrme interaction if T o 20 0

we adopt the effective valuk-=1.8 fm~1. This value is E (MeV)

larger than the nuclear matter value in order to compensat

for the effects of the neglected terfAg andG;. From Fig. 1 FIG. 3. Isoscalar quadrupole strength distributiofs fm*

it can be seen that the original interaction and its approxiMeV~1) in even isotopes?Ar to “°Ar.
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Isoscalar Quadrupole Isovector Dipole

FIG. 4. Isoscalar quadrupole strength distributiofis fm*
MeV™Y) in even isotoped?Ar to 5?Ar.

The general evolution when the mass number increases is th
existence of a strongly collective giant resonance whose en

ergy is fairly stablgaround 17 MeY and some smaller con-

centrations of transition strength at lower energies. Thes

low-energy excitations are of noncollective nature as w
shall see now.
In theseZ=18 nuclei the HF reference states correspon

FIG. 5. Isovector dipole strength distributiofia fm? MeV ~1)
in even isotopes?Ar to “°Ar.

Mlculated isovector dipole strength distributions which are

shown in Figs. 5 and 6. In the lighter isotopes upAte36
ghe dipole strength shows less collectivity than in heavier
sotopes. The peak energy of the GDR goes slowly down
rom about 18 MeV in®?Ar to 16 MeV in 5?Ar. As discussed

Oabove, these peak energies are probably underestimated by

about 1 MeV as compared to those of RPA calculations done
with the original interactiorSSlil. In the three heaviest iso-
topes “8595Ar one can observe the appearance of smaller
bumps around 7.5 MeV. They correspond to neutpsh
configurations where the hole is in the 8ubshell while the
particle is in al=2 low-lying single-particle resonand@
: . . __the present discretized calculation such a single-particle reso-
change of major shell and cannot contribute to low-lying . o

nance appears as a discrete state at positive energy whose

excitations. The only possibilities of having low-energy 2 o - . .
. position does not depend sensitively on the discretization
states are provided by a small number of neutpeh con-
method adopted

figurations within the same major shell. Thus, the structure In a recent wor 13] the isovector dipole strengths in Ar

. . e 3 .
.Osf t:ezztat(-:iz belg\{v Sol\r/]l]? M :‘::tnoiasng'lze':’?S‘ggAlfd'.t?zr '; isotopes were calculated using a relativistic RPA model. The
! 12(1ds72) 'guration while 1 It GDR peak energies thus obtained are very close to the

-1 : : 38 _ . h .
iﬁgﬁ(ésél’é)se d ;?lgf[[?]lé:’Z?gPe. sIchh 'IAorwt-Tein zseigtar:%l:wtrggnno resent results. Moreover, it was found that in the three iso-
ying opes*®505Ar there are smaller bumps around 6 MeV exci-

0 46 -1 ]
take place. Fronf°Ar to *°Ar the 2ps(1f7;) " configura- tation energy whereas these bumps do not exist in lighter

. . . . 8'50 . . .
tion is |nvoJ\{ed,_ whereas irf®*%Ar one is dealmg W.'th isotopes. It would be interesting to explore experimentally
2p1A2p3p) L. Finally, the very low energy state itfAr is

due to a ¥5(2py),) ~* transition. One can also notice in the
nuclei “°%5Ar an additional bump in the 10 MeV energy
region. This bump can be attributed to &3(1f;,) ! tran-

sition which does not appear in lighter nuclei because the
1fg, orbital is yet unbound.

to a partly occupied dg,, subshell for the protons with a
well-marked separation to the first unoccupieft, 1 level.
For the neutrons the subshell closures occukaB2 (1ds),
filled), A=34 (2sy, filled), A=38 (1ds, filled), A=46
(1f4 filled), A=50 (2pa3y, filled), and A=52 (2p4, filled).
The protonp-h excitations withJ™=2" correspond to a

Isovector Dipole

C. Isovector dipole states

In the long chain of Ar isotopes one evolves from a situ-
ation where the neutron and proton distributions in the
ground state are similar, to a situation where there is a dis
tinct neutron skin in the nuclei having a large neutron excess
In a fluid dynamical picture of the isovector dipole mode
where the neutron and proton fluids would oscillate against
each other, one would expect a slow lowering down of the
giant resonance energy as well as the appearance in th
neutron-rich isotopes of a weaker excitation at lower energy
due to the oscillations of the neutron skin against the protons. FIG. 6. Isovector dipole strength distributiofia fm? MeV ~1)
This qualitative general behavior is indeed observed in thén even isotope$?Ar to 5?Ar.

E (MeV)
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the low energy tail of the dipole strength in the heavy Ar  We shall distinguish natural parity statds=J) and un-
isotopes since such pigmy-type resonances would have inmatural parity statesl(=J=1). For the natural parity case,
portant consequences on photoabsorption cross sections. the y(® coefficients are

IV. CONCLUSION xY==Ng ' RI WFo(ro/re if a=Kk,
We have shown that by approximating the origipah —NalRﬁ‘lkaé(rk>/rE if  a=n+k,
interaction derived from a Skyrme force by its Landau-
Migdal expansion truncated at the0 terms it is possible to —Ng 'RI W, Go(r)/r2 if a=2n+k,
calculate accurately the isoscalar RPA modes and also to R
reproduce reasonably well the isovector RPA modes. The —NglRJ’lka(’)(rk)/rﬁ if a=3n+Kk, (A2)

benefit of having a Landau-Migdal form is that it allows one

to construct a finite rank-h interaction and thus to combine Where the indexk runs from 1 ton. The corresponding
the advantages of consisten@e mean field and the re- D®(ph;q) factors are

sidual interaction of RPA are determined from the same ef-

fective interactionand simplicity(the size of the RPA prob- D (ph;a) =up(run(r(pllYollh) if  a=k,
lem does not increase with increasing configuration gpéice . _
would be possible to improve the finite rank interaction in qup(run(ri)(pllYsllh) if  a=n+k,
the isovector channel by using an effective value of the . _
Fermi momentunk: smaller than that adopted here, in order Up(riUn(ri(plITygl[h) if  a=2n+k,
to account for the extra repulsion due to the negle€tgdnd .
T34l f =3n+Kk.
G} Landau parameters. Thus, future large scale RPA calcu- AU (T Un(r)(PIITaallh) i @=3n (A3)

lations with Skyrme type interactions can be envisaged.
As an illustration of the method we have used the finiteFor the unnatural parity case, thé coefficients are
rank p-h interaction derived from the Skyrme for&ll to
calculate the evolution of dipole strength distribution alongy(® = —NglRfJ‘lkao(rk)/rﬁ if  a=k,
the chain of Ar isotopes. It is found that, with increasing

mass numbeA the giant dipole resonance becomes more —Ng 'RI W Gi(r/re if  a=n+Kk,
collective but its peak energy varies little frod=38 to
A=52. In addition, a low-lying component around 7 MeV NIyl 2 —on4+
appears in thé=48-52 isotopes due to single-particle tran- No RI“WiGo(ri/ric if - a=2n+k,
sitions. A :
" —Ng 'RI W Gi(r/rd if a=3n+k,
(Ad)
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(A5)
APPENDIX A The angular-momentum coupled matrix elements defined in

Here we generalize the expressiong@? andD® given Eq. (2) take the general form

in Sec. Il to the case where tigeh interaction containgr, N
-0 and/orry - 7, terms. In addition to the spherical harmon- H,(ph'p’h;qq’)=— 2>, x“D®(ph;q)D@(p'h’:q’),
ics Yy there will appear also operators of the type a=1

(A6)

Tg{'L(Flg)z[nyU]gﬂ_ (A1) with N=4n.

, APPENDIX B
To handle ther, - 7, terms we simply have to attach to each

p-h pair {ph} an extra indexg= =1 which specifies if it is Here, we show for completeness how the finite rank form
a neutronp-h pair or a protonp-h pair. Then, the matrix (11) of the p-h matrix elements can simplify the resolution
element ofr, - 7, between &ph;q} and a{p’h’;q’} con- of RPA equations. This is a simple generalization of the
figuration is proportional tgiq’, i.e., +1 if one connects two ~ well-known rank one case. Denoting b, Y n} the RPA
neutron pairs or two proton pairs an€l otherwise. amplitudes corresponding to an RPA eigenvaluend by
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E,n the unperturbeg-h energies, the RPA equations are

N
(Eph— @) Xph= 21 XD @ (ph) X, D@(p'h")Xpp
a= prhr
N
+ 21 XD @ (ph) X, D@(p'h" )Yy,
a= prhr
N
(Eph+w>vph=a§1 X' 9D (ph) X, DW(p'h)Yyp

plhl
N
+ 2, x'D(ph) X D(p'n") Xpri.
a= p/h/

(B1)

In the N-dimensional space we can define a vedidoy its
components

To= 2 D@(P'N) Ky + Yprnr)- (B2
p!hV
The solution of Eq(B1) can be expressed as

N
Xph=

(@p@(ph)T..
Epre 02 X (ph)T,

N

1
> XD (ph)T,. (B3)
=1

Y =
ph Eph+ Wy

Combining Eqs(B2) and(B3) we obtain the result
(W=-1)T=0, (B4)

1209

whereW is the NX N matrix

1
%) %)
o D (ph)x'*.
(B5)

Thus, the RPA eigenvalues are the roots of the secular
equation

1
W, z=2, D@(ph +

p

de{W—-1)=0. (B6)

Once an eigenvalue is known the corresponding ampli-
tudes{Xpn,Ypn} can be determined in the following way.
Using Eq.(B4) we can expres$T,,a=1,2,... N—1} in
terms of Ty. It is convenient to define the
(N—1)-dimensional vectors$, s and the N—1)X(N—1)
matrix w by

ta:Ta 1
Sa:WaN ’
Wop=(W=1),4, (B7)

where I<a,B8<N-—1. Then, the solution of EqB4) is
t=—w1sTy, (B8)
or, more explicitly,
N—1

To=—Tn2 We38 a=12...N-1. (B9
B=1

Thus, the RPA amplitudes are determined by ES8) and
(B9) up to a factorTy which is fixed by the normalization
condition.
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