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Diabatic and adiabatic collective motion in a model pairing system

Takashi Nakatsukasa* and Niels R. Walet†

Department of Physics, UMIST, P.O. Box 88, Manchester M60 1QD, United Kingdom
~Received 16 October 1997!

Large amplitude collective motion is investigated for a model pairing Hamiltonian containing an avoided
level crossing. A classical theory of collective motion for the adiabatic limit is applied utilizing either a
time-dependent mean-field theory or a direct parametrization of the time-dependent Schro¨dinger equation. A
modified local harmonic equation is formulated to take account of the Nambu-Goldstone mode. It turns out that
in some cases the system selects a diabatic path. Requantizing the collective Hamiltonian, a reasonable agree-
ment with an exact calculation for the low-lying levels is obtained for both weak and strong pairing force. This
improves on results of the conventional Born-Oppenheimer approximation.@S0556-2813~98!01903-7#
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I. INTRODUCTION

Nuclei are finite fermionic many-body systems whi
support many kinds of collective motion. While properties
high-frequency vibrations~such as giant resonances! can be
well reproduced in the small-amplitude limit by the rando
phase approximation~RPA!, some low-frequency vibration
exhibit a strongly anharmonic nature that the RPA can
describe. Nuclear fission and shape coexistence phenom
also have such a large-amplitude nature. In order to inve
gate these kinds of large amplitude collective motion, o
would ideally like to reduce the number of degrees of fre
dom to a few judiciously chosen slow collective coordinat
However, in nuclear systems, this task is not trivial, sin
there is no obvious separation of scales.

In molecular physics, where the masses of electrons ar
much smaller than those of the atomic nuclei, the electro
motion is normally much faster than nuclear motion. Th
the collective coordinates are usually functions of nucl
coordinates and the Born-Oppenheimer~BO! approximation
works very well. On the other hand, in nuclear physics, sin
a nucleus consists of neutrons and protons which have
most the same masses, both the definition of collective c
dinates and the applicability of adiabatic assumptions
never obvious.

Although a large number of studies have been done
calculate the potential energy surface using the constra
Hartree-Fock ~HF! or Hartree-Fock-Bogoliubov~HFB!
theory with a given generalized cranking~or constraint! op-
erator, the choice of collective coordinate~i.e., the choice of
cranking operators! has been rather arbitrary in most cas
In this paper we shall apply a special theory@1#, that is
designed to determine a self-consistent cranking operato
adiabatic large amplitude collective motion~ALACM !. This
theory provides a method to find approximate decoupled
tion which is confined to a few dimensional submanifold
the configuration space, within the framework of classi
Hamiltonian dynamics. Since most systems of practical
terest are not exactly separable, it is important that the the
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can provide a submanifold which is approximately deco
pled. This method has been applied to problems in nuc
physics@2,3# and in other fields~see the references cited i
@1#!.

In nuclear collective motion we often find level crossing
In the adiabatic approximation the motion always stays
the curve of lowest energy, avoiding all crossing. On t
other hand, one can also invoke a diabatic approxima
where the motion goes through the crossing, leaving the
face of lowest energy. Of course neither of these two
proximations is exact, and the real description is intermed
between these two extremes. This problem was first
cussed by Hill and Wheeler@4#. During a nuclear shape
change, the diabatic process is often more favored than
adiabatic one@5#. This raises the question of whether a
adiabatictheory, such as ALACM, can be used to shed so
light on diabatic dynamics. An answer to this question is o
of the main goals of this paper.

In nuclear phenomena, it is well-known that the pairi
~superfluidity! influences all low-frequency collective mo
tion. A well-known example is the effect on the moment
inertia for rotational nuclei, which is always smaller than t
rigid-body value at low spin, which can be explained as
effect of pairing correlations. At the same time, the grou
states of heavy nuclei with open-shell configurations are r
sonably well described by the superfluid Bardeen-Coop
Schrieffer BCS wave functions with energy gaps of abou
MeV. Properties of both collective and noncollective~quasi-
particle! excitations depend on size of the energy gap. F
thermore, it has been argued by Bertsch@6# that nuclear
shape change may be associated with the hopping of nuc
pairs by means of the pairing force. In this case, the pair
interaction and level crossings play an essential role to
termine the collective mass~‘‘hopping mass’’!.

According to these considerations, the pairing interact
should play a key role in understanding the large amplitu
collective motion in nuclei, especially when level crossin
are involved as the shape change is taking place. There
it is important to investigate the applicability of ALACM fo
such a system with level crossings and a pairing force. T
theory has not been applied to such systems before.

In this paper, we study a model Hamiltonian describing
system interacting through the pairing force. The model
1192 © 1998 The American Physical Society
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57 1193DIABATIC AND ADIABATIC COLLECTIVE MOTION IN . . .
a single-particle level crossing and multiple local minim
and thus may be regarded as a model for shape-coexist
phenomena. In Sec. II, the formalism of ALACM is briefl
recapitulated. In order to apply the ALACM to a classic
Hamiltonian with a spurious component~Nambu-Goldstone
mode!, a modified version of the local harmonic equations
formulated. The classical Hamiltonian for a pairing Ham
tonian is derived in Sec. III, both by using the mean-field~in
this case BCS! theory and by applying a parametrizatio
which exactly conserves particle number. The results of
merical calculations for a simple two-level system are giv
in Sec. IV and the conclusions and an outlook are sum
rized in Sec. V.

II. BRIEF REVIEW OF ALACM

A. Local harmonic equations „LHE …

We briefly review the theory of ALACM~see Ref.@1# for
a complete description!. In this section, we use a summatio
convention where the repeated appearance of the same
bols (a,b, . . . ;i , j , . . . ) in upper and lower indices denote
a sum over that symbol for all possible values. We also
the convention that a comma in a lower index indicates
derivative with respect to the coordinate, thusF ,a5]F/]ja.

The theory of adiabatic large amplitude collective moti
~ALACM ! is applicable to a classical Hamiltonian syste
which has kinetic terms only quadratic in momentum. W
thus have to start with a truncated Hamiltonian

H~j,p!5
1

2
Babpapb1V~j!, a,b51, . . . ,n,

~2.1!

where the mass tensorBab, in general, depends on the coo
dinatesja and is defined by truncation of the Hamiltonian
second order

Bab5
]2H

]pa]pb
U

p50

. ~2.2!

Thus all terms more than quadratic in momentum are
glected. In the sense that the higher-order terms are sm
this theory may be regarded as anadiabatic theory in the
small-velocity limit. The tensorBab , which is defined as the
inverse ofBab (BagBgb5db

a), plays the role of metric ten
sor in the Riemannian formulation of local harmonic equ
tions ~LHE! below.

Collective coordinatesqi and intrinsic~noncollective! co-
ordinatesqa which are approximately decoupled from ea
other, are assumed to be obtainable by making a point tr
formation, conserving the quadratic nature of Eq.~2.1!,

qi5 f i~j! ~ i 51, . . . ,K !, ~2.3!

qa5 f a~j! ~a5K11, . . . ,n!. ~2.4!

In this section, we use symbols (a,b, . . . ) for indices of
original coordinates, (m,n, . . . ) for new coordinates after
the transformation, (i , j , . . . ) for collective coordinates and
(a,b, . . . ) for intrinsic coordinates. The new Hamiltonia
after the point transformations takes the form,
,
ce
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H̄'
1

2
B̄i j pipj1

1

2
B̄abpapb1V̄~qi ,qa!, ~2.5!

where we have used the fact that for decoupled motion
mass tensor must be block-diagonal,

B̄ai50. ~2.6!

Besides the block-diagonality of mass tensor, we require
absence of both ‘‘real’’ and ‘‘geometrical’’ forces orthogo
nal to the decoupled manifold,

V̄,a50, ~2.7!

B̄,a
i j 50. ~2.8!

In practice, the three decoupling conditions,~2.6!, ~2.7!,
and ~2.8!, cannot be satisfied exactly, except for spec
cases. Thus, we need a method applicable to an app
mately decoupled manifold. The Riemannian formulation
LHE @1# is the one we choose to use in this paper. In a c
of a single collective coordinate (K51), the basic equations
of this formalism can be written as

V,a5l f ,a
1 , ~2.9!

BbgV;ag f ,b
1 5v2f ,a

1 . ~2.10!

Here the covariant derivative~denoted by ;) in the left-hand
side ~LHS! of Eq. ~2.10! is defined by

V;ab[V,ab2Gab
g V,g , ~2.11!

where the affine connectionG is defined with the help of
metric tensorBab as

Gbg
a 5

1

2
Bad~Bdb,g1Bdg,b2Bbg,d!. ~2.12!

The equations~2.9! and ~2.10! can be solved iteratively
starting from a stationary point. In principle, the procedure
find a collective path is to find successive points at which
eigenvectorf ,a

1 of the covariant RPA equation~2.10! satisfies
the force condition~2.9! at the same time.

Once we get a collective pathS in multidimensional con-
figuration space, a collective Hamiltonian is defined
evaluating the Hamiltonian~2.5! on the pathS,

H̄col5H̄uS,pa50'
1

2
B̄11p1

21V̄~q1!, ~2.13!

where we assume a single collective coordinateK51.
The quality of decoupling can be measured by compar

two different collective mass parameters that can be ca
lated in the theory. If we calculate the derivativesdja/dq1 in
terms of the tangents of the path,

B̄115
dja

dq1
Bab

djb

dq1
. ~2.14!

The other mass parameter can be obtained by using
eigenvectorsf ,a

1 of the covariant RPA equation.
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B̃115 f ,a
1 Bab f ,b

1 . ~2.15!

This is equal to (B̄11)
21 if the decoupling is exact. There

fore, we define the decoupling measureD as

D5~B̄11!
21B̃1121. ~2.16!

The size of this measureD indicates the badness of deco
pling.

If the decoupling is good, the motion orthogonal toS
~motion in directions ofqa) becomes irrelevant in classica
systems. However, it is not necessarily the case in quan
systems, because, according to the uncertain relation p
ciple, we cannot requireqa50 ~the motion is confined onS)
and pa50 at the same time. Therefore, one may need
include the energy correction into the potentialV̄(q), which
arises from quantum fluctuation with respect to the intrin
degrees of freedom@3#. Subsequently, the collective Hami
tonian H̄col will be quantized in a flat space (B̄1151) to
obtain physical quantities, such as energies and wave f
tions.

B. Constrained local harmonic equations„CLHE …

The most practical and straightforward way to investig
a pairing Hamiltonian would be to utilize the mean-fie
~BCS! approximation~Sec. III A! in which the general prod
uct wave functions are no longer eigenstates of the par
number. When an intrinsic ground state breaks a~continu-
ous! symmetry of Hamiltonian, generally speaking,
Nambu-Goldstone~NG! mode will appear. This mode corre
sponds to an ‘‘excitation’’ to connect degenerate vacua
the case of particle-number breaking, this is often cal
‘‘pairing rotation.’’ We are interested in finding a collectiv
coordinate orthogonal to this trivial mode.

It is also well-known that, at equilibrium points, the N
mode has zero excitation energy and is decoupled from
other modes in the RPA order. Thus, one may easily sepa
this mode from the other physical modes~unless the physica
mode happens to be zero energy!. However, the NG mode
does not necessarily have zero energy at nonequilibr
points. Since we have to solve the LHE at each point on
collective path, it is not trivial to distinguish the NG mod
from the other modes. Therefore, in this section, we prov
a modified formulation of LHE which fixes a value of th
coordinate corresponding to the NG mode. In the BCS
rametrization, we need the constraints to fix the parti
number and gauge angle~Sec. III A!. We shall make use o
the fact that the coordinate and momentum correspondin
the NG mode are explicitly known.

We shall only discuss the case of a single collective
ordinateK51 and a single NG mode. First we divide the s
$qm% into three subsets,q1, qNG, andqa, a53, . . . ,n, which
are assumed to be obtained by point transformations

qm5 f m~j!, ja5ga~q!, ~2.17!

pm5g,m
a pa , pa5 f ,a

m pm . ~2.18!

qNG represents a coordinate for a NG mode andq1 for a
collective coordinate now we are trying to determine. In t
m
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case that the translational symmetry is broken,qNG and pNG

would be the center-of-mass coordinate and the total m
mentum, respectively. In the case of particle-number bre
ing, they correspond to the particle number and the ga
angle. In all these cases we know the explicit form of t
coordinates and momenta for the NG mode~s!. Thus, we can
write qNG andpNG as functions of original coordinatesja and
momentapa . Although in generalqNG and pNG have arbi-
trary dependence onj andp, we expand them with respec
to p up to the zeroth order forqNG and up to first order for
pNG . In keeping with the adiabatic character of the theo
then, we getf NG(j) andg,NG

a (j). An example will be shown
in the next section for the particle number and the gau
angle.

The conditions for decoupling are again given by thr
equations~2.6!, ~2.7!, and~2.8!, wherei 51 and NG. In this
section we use symbols (i , j , . . . ) representing 1 and NG. In
Ref. @1# it is shown that the third decoupling condition~2.8!
implies that the decoupled surface is a geodesic. The ge
sic surface is defined by differential equations

g,i j
a 1Gbg

a g,i
bg, j

g 2Ḡ i j
k g,k

a 50, ~2.19!

f ,ab
i 2Gab

g f ,g
i 1Ḡ jk

i f ,a
j f ,b

k 50, ~2.20!

where the affine connectionG is defined by Eq.~2.12! andḠ
in new coordinates is in the same manner

Ḡmn
l 5

1

2
B̄lk~B̄km,n1B̄kn,m2B̄mn,k!. ~2.21!

Now we consider constraints

qNG5 f NG~ja!5q0
NG ~5 const!, ~2.22!

pNG5g,NG
a pa50, ~2.23!

which freeze the NG degree of freedom. The Poisson bra
between these to constraints is$qNG,pNG%PB5 f ,a

NGg,NG
a 51. In

order to facilitate the calculation of diffrentiation, we need
define a dirac bracket@7# by

$F,G%DB[$F,G%PB1$F,qNG%PB$pNG ,G%PB

2$F,pNG%PB$q
NG,G%PB. ~2.24!

First we consider the force condition corresponding to E
~2.9!. We differentiate the potentialV(j)5V̄(q) with respect
to ja keeping the constraintsqNG5q0

NG andpNG50

]V

]ja U
qNG5q

0
NG

5V̄,1f ,a
1 1V̄,a f ,a

a 5V̄,1f ,a
1 , ~2.25!

where the decoupling condition~2.7! has been used. This ca
be calculated by using the Dirac bracket as

]V

]ja U
qNG5q

0
NG

52$pa ,V%DB ,5V,a2 f ,a
NGg,NG

b V,b .

~2.26!



o

r-

ck

nd
f

y

a

e
y

a

a

s

ym
r-

ing
ss
an

r-

e

s
e

of

sier

les
s

ar
ch

e
os-

by

lus
by

te
e
s

e-
do
be
n.
to
pt a
n-
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Equating the above two equations, we obtain the force c
dition

V,a5V̄, i f ,a
i . ~2.27!

in the case of pairing rotation,f NG may be taken as the ave
age particle numberN[^N̂&. Then,V̄,NG5]V/]N can be re-
garded as a chemical potentialm and Eq. ~2.27! may be
rewritten in the form similar to the constrained Hartree-Fo
Bogoliubov equation

V,a5mN,a1l f ,a
1 . ~2.28!

In order to obtain the covariant RPA equation correspo
ing to Eq.~2.10!, we start with the contravariant derivative o
the potential

V̄,15V,b f ,b
1 , ~2.29!

where V,a[BabV,b and V̄,1[B̄1mV̄,m5B̄1i V̄,i . Again we
differentiate this equation with respect toja in keeping with
qNG5q0

NG and pNG50. The derivative of the LHS is easil
calculated as

]V̄,1

]ja U
qNG5q

0
NG

5V̄,1
,1f ,a

1 . ~2.30!

The derivative of the RHS is calculated in terms of the Dir
bracket

]

]ja
V,b f ,b

1 U
qNG5q

0
NG

52$pa ,V,b f ,b
1 %DB , ~2.31!

5~V,a
,b2 f ,a

NGg,NG
g V,g

,b! f ,b
1 1V,b~ f ,ab

1 2 f ,a
NGg,NG

g f ,bg
1 !,

~2.32!

5~V;a
,b2 f ,a

NGg,NG
g V;g

,b ! f ,b
1 2Ḡ i1

1 V̄,i f ,a
1 , ~2.33!

where, from the second to the third lines, we used the g
desic equation~2.20! and the covariant derivative defined b

V;a
,b[V,a

,b1Gag
b V,g. ~2.34!

From Eqs.~2.30! and ~2.33!, we obtain

~V;a
,b2 f ,a

NGg,NG
g V;g

,b ! f ,b
1 5V̄;1

,1 f ,a
1 . ~2.35!

ReplacingV̄;1
,1 by v2, this becomes the covariant RPA equ

tion to determine eigenfrequenciesv and eigenvectorsf ,a
1 . It

is worth noting that any solutionf ,a
1 of Eq. ~2.35! with non-

zero eigenfrequency is orthogonal to the NG mode. This m
be understood as follows: One multiplies Eq.~2.35! by g,NG

a

and takes sum overa. Then, since the LHS become
V̄,NG

,1 2V̄,NG
,1 50, it results in

v2g,NG
a f ,a

1 50. ~2.36!

Therefore, withvÞ0, we haveg,NG
a f ,a

1 50.
Since the NG mode emerges only when we break a s

metry of Hamiltonian, one may expect that the CLHE fo
n-

-

-

c
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-

y

-

malism should become the usual LHE when the underly
symmetry is unbroken. In the next section, we will discu
the BCS approximation to derive a classical Hamiltoni
system. In the parametrization of Eqs.~3.17! and ~3.18!, a
state withujau51 andp50 corresponds to a state in a no
mal phase which is an eigenstate of particle number@from
Eq. ~3.23!, one can see the pairing gap vanish in this cas#.
Then, from Eq. ~3.25!, we have f ,a

NG50. Therefore, the
CLHE ~2.27! and~2.35! become equivalent to the LHE~2.9!
and ~2.10!.

The equations~2.27! and~2.35! are the defining equation
of CLHE formalism. As in the usual LHE, we require th
self-consistency between these two equations: A solution
Eq. ~2.35! should satisfy Eq.~2.27! at the same time. In this
paper, where we concentrate on a simple model, it is ea
to solve the constraintsqNG5q0

NG and pNG50 explicitly and
describe everything by independent canonical variab
(j* a,pa* ) (a51, . . . ,n21). However, in the realistic case
for which it is difficult to solve the constraints, this CLHE
formalism would become more useful.

III. TRANSCRIPTION INTO CLASSICAL FORM

Rather than tackling the full complexity of the nucle
problem with all its complications and deriving our approa
from there, we shall study a simple model in this paper. W
consider a model where particles coupled to a harmonic
cillator interact through the pairing force, first introduced
Fukui, Matsuo, and Matsuyanagi@8# in order to study shape
mixing. This model can be regarded as a vibrating core p
valence particles which can move between different levels
the pairing force,

H5Hcore1Hval , ~3.1!

where

Hcore5
1

2
~p21q2!, ~3.2!

Hval5 (
a51

V

ea~q!~ca
†ca1cā

†
cā!2GP̂†P̂, ~3.3!

and we assumeG.0. Hereā denotes the time-reversed sta
of a and P̂†5(a.0ca

†cā
† is the pair creation operator. Th

total number of levels is 2V. The single-particle energie
ea(q) depend on the ‘‘deformation’’q of the core, which
induces particle-core coupling.

We need to construct a classical Hamiltonian which d
scribes the dynamics of the valence particles. In order to
this, time-dependent mean-field theory, which is known to
a form of Hamilton’s equation, is utilized in the next sectio
This is of practical interest because it has applicability
realistic systems. For the current model one can also ado
direct parametrization of the exact wave function to co
struct a classical Hamiltonian~Sec. III B!.
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A. The time-dependent mean-field„TDMF … equation

In this section we describe a canonical parametrization
a general product wave function, discussed in Ref.@9#. We
start with a BCS stateuf0& which is the vacuum to quasipa
ticle operatorsaa ,

aa
†5uaca

†2vacā , ~3.4!

aā
†
5uacā

†
1vaca . ~3.5!

According to Thouless’ theorem@10#, any general produc
wave functionuz& which is not orthogonal touf0& may be
written in the form

uz&5expH 1

2(ag
zagaa

†ag
†J uf0&, ~3.6!

wherezag52zga .
The time-dependent BCS equation can be obtained

taking variations with respect toz and z* of the classical
action,

S5E
t i

t f
dt

^zu i ] t2Huz&

^zuz&
. ~3.7!

We can introduce canonical coordinates (jag ,pag) by
bag5(jag1 ipag)/A2, for a.g. For a,g antisymmetry
tells us that the same coordinates are involved,

bag52bga5~jag1 ipag!/A2, ~3.8!

and we can easily relateb andz by

bag5@z~11z†z!21/2#ag . ~3.9!

This means thatquasi-density matrices andquasi-pairing
tensors can be expressed by

r̄ag5
^zuag

†aauz&

^zuz&
5@bb†#ag , ~3.10!

k̄ag5
^zuagaauz&

^zuz&
5@b~12b†b!1/2#ag . ~3.11!

Using Eqs.~3.4! and ~3.5!, one can relate these quantitie
with real density matricesrag5^cg

†ca& and pairing tensors
kag5^cgca&.

Then, the equations of motion take the canonical fo
~using an implicit matrix notation!

j̇5
]H
]p

, ~3.12!

ṗ52
]H
]j

, ~3.13!

with a classical Hamiltonian

H~j,p!5
^zuHuz&

^zuz&
. ~3.14!
f

y

Since monopole pairing interactions in nuclei were ori
nally introduced in order to give a simple model of the sho
range attractive force, often only the Hartree terms are ta
into account in the mean-field calculations. Thus, we sh
neglect the exchange terms in Sec. IV A. If we neglect
exchange terms for the Hamiltonian~3.3!, only (ag)5(aā)
components are available and the matrix relations can
regarded as ordinaryc-number relations. For instance, Eq
~3.10! and ~3.11! now take the form

r̄aā5baābaā
* , k̄aā5baā~12baā

* baā!1/2, ~3.15!

where there is no summation with respect to the indi
(a,ā).

The coordinates defined above depend on the refere
stateuf0&. For practical applications, it is probably conv
nient to use a local coordinate at each point on a collec
path when one solves the LHE@2#. Namely, when moving to
a nearby point, one changes the reference state to the s
determinant at this new point, making the new point the o
gin of coordinate system, and solves the LHE. However
this paper, in order to visualize a collective path in the co
figuration space, we use a fixed reference state and a gl
coordinate system. Since this global coordinate system c
not describe a stateuf& which is orthogonal to the referenc
state uf0&, we need to select a reference state suitable
describing all relevant states.

In case that we consider a system withN5V particles,
we may take the BCS state withua5va51/A2 for all a as
the uf0& (^f0uN̂uf0&5V). The classical Hamiltonian for va
lence particles~3.3! may be written as

Hval~j,p!5 (
a.0

ea~q!F11A2jaH 12
1

2
~ja

21pa
2 !J 1/2G

2
G

4 F ~V2j22p2!2

12H (
a.0

paS 12
1

2
~ja

21pa!2D 1/2J 2G ,
~3.16!

where we used notationsja[jaā , pa[paā , j2[(aja
2 ,

p2[(apa
2 , and neglected the exchange terms. Expand

this Hamiltonian up to second order in momentum, we o
tain an adiabatic Hamiltonian in the form of Eq.~2.1! with

Bab~j!5
]2Hval

]pa]pb
U

p50

5H 2
ea~q!

A2

ja

Ja
1G~V2j2!J dab

2GJaJb , ~3.17!

V~j!5Hval~j,p50!5A2 (
a.0

ea~q!jaJa2
G

4
~V2j2!2,

~3.18!

where

Ja5S 12
1

2
ja

2 D 1/2

. ~3.19!
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The average number of particles is

N~j,p!5
^zuN̂uz&

^zuz&
5V1A2 (

a.0
jaH 12

1

2
~ja

21pa
2 !J 1/2

,

~3.20!

'V1A2 (
a.0

jaJa1O~p2!. ~3.21!

The pairing gap is

D~j,p!5G
^zuP̂uz&

^zuz&
5

G

2 FV2j22p21A2i (
a.0

pa

3H 12
1

2
~ja

21pa
2 !J 1/2G , ~3.22!

'
G

2 H V2j21A2i (
a.0

paJaJ 1O~p2!. ~3.23!

Thus, the gauge anglew in the adiabatic limit can be ex
pressed by

w5arctan
ImD

ReD
'

A2

V2j2 (a.0
paJa1O~p3!. ~3.24!

Since we consider a system withN5V particles, we may
regardN/2 as qNG and w as pNG in Sec. II B. Using the
adiabatic expression of the particle number~3.21! and the
gauge angle~3.24!, we can identify

f NG~j!5
Nad

2
5

V

2
1

1

A2
(
a.0

jaJa , ~3.25!

]ga

]qNG
~j!5

]w

]pa
U

p50

5
A2

V2j2
Ja . ~3.26!

One can see that the canonical relation

HNad

2
,wadJ

PB

5(
a

] f NG

]ja

]ga

]qNG
51, ~3.27!

is satisfied.
In case ofN5V52, the conservation of particle numbe

in the adiabatic limit~3.21! is simply satisfied by

j152j2 , p152p2 . ~3.28!

Then,Hval can be expressed as

Hval5
1

2
Bvalp21V~j!, ~3.29!

Bval52
A2ej

4J
1G~12j2!, ~3.30!

V~j!52A2ejJ2G~12j2!2, ~3.31!

where we assumee[e152e2 and
j[j152j2 , p[p12p252p1 , J[S 12
1

2
j2D 1/2

.

~3.32!

The potential is stationary at

j561, ~3.33!

and 2
sgne

A2
SA11

ueu
G

6A12
ueu
G D , for ueu,G.

~3.34!

At j51 (21) two particles occupy thea51 (a52) level.
For eÞ0, one of the states corresponds to a local minim
and the other to a local maximum. Forueu,G, the potential
has another local minimum which corresponds to a sup
fluid state@the upper and lower signs in Eq.~3.34! give the
same state in the limit ofp50#.

B. The time-dependent Schro¨dinger equation „TDSE…

In case ofN5V52, one can easily find a canonical p
rametrization for the exact time-dependent Schro¨dinger
equation~TDSE!. With the notationuaā&5ca

†cā
† u0&, normal-

ized states can be written in general as

uc~ t !&5eif~ t !cos„a~ t !…u11̄&1e2 if~ t !sin„a~ t !…u22̄&.
~3.35!

An action, similar to Eq.~3.7!, may be defined by

S5E
t i

t f
dt^c~ t !u i ] t2Huc~ t !&. ~3.36!

The time-dependent Schro¨dinger equation can be given i
terms of the least action principle. For the HamiltonianHval ,
we can introduce canonical coordinates (j,r)1 as follows:

j5a, r522fsin2a. ~3.37!

The canonical equations of motion~3.12! and~3.13! hold for
the Hamiltonian

Hval5^cuHvaluc&52ecos2j2GH 11sin2jcosS 2
r

sin2j D J ,

~3.38!

wheree[e152e2. The adiabatic Hamiltonian~3.29! is ob-
tained by expanding up to second order in momentum. T
resultant mass parameter and potential are

Bval~j!5
G

sin2j
, ~3.39!

V~j!52ecos2j2G~11sin2j!. ~3.40!

In this parametrization, the mass does not depend on
single-particle energye. It is apparent from Eq.~3.35! that

1In order to avoid confusion withp53.14 . . . , inthis section we
use the symbolr for the momentum conjugate toj.
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j50 (p/2) corresponds to a pure configurationu11̄& (u22̄&).
There are two stationary points of the potential in a reg
0<j<p which are specified by a condition

tan2j5tan2a52
G

2e
. ~3.41!

These give eigenstates~3.35! of Hval with f50. ForG>0,
the state in a region 0<j<p/2 always has lower energy an
the mass parameterBval is non-negative in this region.

IV. RESULTS

In this section, we present the numerical results fo
simple case withN5V52. For single-particle energies,
linear dependence on the coordinateq is assumed,

ea~q!5~2 !a11e~q!5~2 !a11~xq2e0!, for a51,2.
~4.1!

The two levels cross each other atq5e0 /x. A schematic
figure of single-particle levels are displayed as functions oq
in Fig. 1. Each level has twofold degeneracy.

The model can be solved quantum mechanically usin
direct product basisuNosc&corê uaā&val whereuNosc&core is an
eigenstate of the core Hamiltonian with the oscillator qua
Nosc and uaā&val[ca

†cā
† u0& (a51,2). We use core state

with Nosc<20 for diagonalizing the total Hamiltonian, whic
can be written in a matrix form

H5
1

2
~p21q2!I 1S 2e1~q!2G 2G

2G 2e2~q!2GD , ~4.2!

where I is the 232 unit matrix. Results obtained with thi
method will be referred below as ‘‘exact calculation.’’

A. TDMF parametrization

Now we apply the theory of ALACM to this model with
the mean-field parametrization in Sec. III A. The Ham
tonian has the form

H5
1

2
~p21Bvalp

2!1V~q,j!, ~4.3!

FIG. 1. A schematic representation of the single-particle en
gies as a function of the coordinateq, for the casee050, x.0.
n

a

a

a

V~q,j!5
1

2
q212A2~xq2e0!jJ2G~12j2!2, ~4.4!

whereBval is given by Eq.~3.30! with e5xq2e0.
Taking e050 and x51, the potentialV(q,j) has two

local minima at (q,j)5(22,1) and (2,21) which corre-

spond to valence-particle configurationsu11̄& and u22̄&, re-
spectively. A collective path is now obtained by using t
LHE algorithm described in Sec. II. We start from a loc
minimum, solve the RPA equations and search for the n
point in the direction of the lowest RPA mode. Since th
system has only two degrees of freedom, we can easily
sualize the path on the 2-dimensional surface. In Fig. 2,
potential energy surface and the obtained collective path
shown for two strengths of the pairing forceG50.2 and
G51.9. In the case ofe050, the potential landscape has
symmetry with respect to a rotation of 180° about the orig
V(q,j)5V(2q,2j). For a weak pairing force@Fig. 2 ~a!#,
each local minimum has an independent collective p
which represents a harmonic oscillator with a fixed valen
configuration~both particles in level 1 or level 2!. These
represent diabatic solutions which do not mix in this appro
mation. On the other hand, for a strong pairing force@Fig.
2~b!#, we get a collective path which changes the parti
configuration and connects the two local minima.

We have thus found that the system automatically sele
different type of collective paths according to the strength
pairing force. In this approximation, we get completely d
abatic solutions forG50.2 which will result in no parity
splitting upon quantization. Of course, forGÞ0, an exact
calculation always gives some splitting in energy. Howev
the splitting turns out to be extremely small for the we
pairing case~see below!.

Next, in order to discuss a case of asymmetric poten
landscape, let us takee50.4, x50.7 andG50.1. Figure
3~a! shows the potential energy surface and collective pa
The potential, which is no longer symmetric about the 18
rotation about the origin, has a deep minimum
(q,j)5(21.4,1) and a shallow minimum atq5(1.4,21).
Each minimum has again an independent collective path
allel to the horizontal line (q-axis!, representing the diabati

r-

FIG. 2. Contour plots of the energy surface for the poten
V(q,j), Eq. ~4.4!. The parameterse050 andx51 are used. The
left figure ~a! is the energy surface forG50.2 and the right~b! for
G51.9. Contour lines are displayed forDV50.5. The thick lines
indicate the collective paths obtained by the ALACM theory.
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FIG. 3. ~a! The same as Fig. 2 but fore50.4,
x50.7, andG50.1. ~b! Diabatic potential curves
as functions ofq and eigenenergies of the exa
calculation. The number on each level indicat
the percentage of the main configuration in t
wave function.
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dynamics. In Fig. 3~b!, we show results of exact calculatio
for this parameter set, together with the diabatic poten
curves corresponding to the valence configurationu11̄& and
u22̄&. The number on each level indicates the percentag
the main configuration in the wave function. The exact c
culation shows strong diabaticity of the system and two d
ferent configurations hardly mix. This agrees with the ind
pendent paths obtained in the ALACM. Therefore, one m
state that the ALACM combined with the BCS approxim
tion can reproduce the qualitative feature of the pairing s
tems.

B. Born-Oppenheimer „BO… approximation

Before discussing another parametrization in the next s
tion, let us review the Born-Oppenheimer~BO! approxima-
tion. The formulation in the next section can be seen as
generalized version of BO theory, in which a collective c
ordinate is chosen self-consistently.

Using the conventional adiabatic theory which assum
motion of the valence particles is much faster than motion
the core, the effective Hamiltonian can be obtained by dia
nalizing Hval at each value ofq

H̄BO5
p2

2
1VBO~q!, ~4.5!

VBO~q!5
q2

2
2A4~xq2e0!21G22G. ~4.6!
l

of
l-
-
-
y

s-

c-

e
-

s
f
-

If we neglect the interaction (G50), the potentialVBO(q)
has two local minima atq56x corresponding to differen
valence-particle configurations. Figure 4 shows the BO
tentialsVBO(q) for weak@Fig. 4~a!# and strong pairing force
@Fig. 4~b!# with x51 and e050. In Ref. @8# it has been
shown that this approximation works well for the strong pa
ing case but it considerably overestimates the mixing
tween two minima for the weak pairing case.

One possible way to improve the BO theory is to det
mine a collective path self-consistently and take into acco
the effect of mass parameterBval . This will be discussed in
the next section. The other, which is discussed here, i
take account of the~Berry’s! ‘‘gauge’’ potentials which
emerge from the derivative of the eigenstates of the fast
grees of freedom~valence particles! un& with respect to the
slow coordinateq. The new effective Hamiltonian will be

H̃BO5
1

2
„p2An~q!…21VBO~q!1Fn~q!, ~4.7!

where

An~q![ i ^nu]qn&, ~4.8!

Fn~q![
1

2
^]qnu~12un&^nu!u]qn&. ~4.9!
n-
FIG. 4. Born-Oppenheimer potentialsV(q)
~solid lines!, Eq. ~4.6!, for G50.2 ~a! and for
G52 ~b!. The parameterse050 and x51 are
used. The dotted lines indicate the potential i
cluding the scalar gauge potential,V(q)1F(q).
See text for details.
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FIG. 5. Contour plots of the potential energ
V(q,j), Eq. ~4.12!, for G50.2 ~a! andG52 ~b!.
The parameterse050 and x51 are used. The
thick lines indicate the collective paths obtaine
by the ALACM, while the dotted lines are the
paths in the BO approximation.
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In the present case, we takeun& to be the lowest eigenstate o
the valence Hamiltonian which can be expressed as in
~3.35!, with a given by Eq.~3.41!. Then, the gauge poten
tials are calculated as

A~q!50, F~q!5
~xG!2

2$4~xq2e0!21G2%2
. ~4.10!

This shows that there is no Berry’s phase for the curr
problem, but does imply an additional scalar potential. T
additional potential is positive definite and has the maxim
value at the crossing pointq5e0 /x. This scalar potential is
shown in Fig. 4 by dotted lines. The peak height at a le
crossing is getting higher for weaker pairing. This term w
suppress the mixing between two minima for the case
weak pairing, and improve the result of quantization~see
below!.

C. TDSE parametrization

In the Sec. IV A, we have shown the results using
mean-field parametrization of the valence Hamiltonia
which leads to a diabatic solution in the weak pairing ca
In this section, we use the parametrization described in S
III B. This conserves number of particles exactly and can
regarded as a generalized BO theory.

The total Hamiltonian is in a form

H5
1

2
~p21Bvalp

2!1V~q,j!, ~4.11!

V~q,j!5
1

2
q212~xq2e0!cos2j2G~11sin2j!,

~4.12!

whereBval is given by Eq.~3.39!.
With e050 andx51, the potential surface has again tw

local minima at

~q,j!5S 2
A162G2

2
,
1

2
arccosSA162G2

4 D D ,

and

SA162G2

2
,
1

2
arccosS 2

A162G2

4 D D , ~4.13!
q.

t
e

l
l
f

e
,
.
c.
e

and a saddle point at (0,p/4) where we restrictj to the
region 0<j<p/2. In this parametrization,j represents the
mixing angle between the two valence configurations,u11̄&
and u22̄&. If we minimize the potential with respect to th
coordinatej at each value ofq, the potentialV„q,j0(q)…
becomes the same as the BO potential~4.6!. If G50, the
local minima correspond to the pure configurations,u11̄&
(j50) and u22̄& (j5p/2). In general, these minima hav
finite values of mixing angle, which was not the case in t
mean-field parametrization.

Figure 5 shows the potential energy surfaces and the
dimensional collective paths. For a strong pairing force@Fig.
5~b!#, we have a smooth path which connects two lo
minima. On the other hand, for the case of weak pairing@Fig.
5~a!#, the path exhibits a peculiar kinklike behavior ne
q560.8. Close to a local minimum point, the collectiv
path represents a harmonic oscillator~the core Hamiltonian!
which is almost parallel to aq-axis ~horizontal line!. On the
other hand, at the saddle point (q,j)5(0,p/4), the collective
path is trying to go through the valley of potential. The
paths are not able to be connected smoothly for the w
pairing case, which results in the strange back-bending
the vicinity of this back-bending, the decoupling from th
other degree of freedom is very bad~see discussion below!.

In the same figure, we show a path~dotted line! which is
obtained by minimizing the potential energy at each value
q ~BO approximation!. For weak pairing, the path obtaine
by the ALACM theory is found to be quite different from
that by the BO theory. On the other hand, for strong pairi
we can hardly see the difference between them. In the
approximation, the motion alongj-axis is assumed to be
much faster than that alongq-axis. In other words, the mas
of valence Hamiltonian 1/Bval should be much smaller tha
the mass of core Hamiltonian, which can be expressed as
condition

G@sin2j. ~4.14!

It is obvious from this equation that the BO approximati
fails for the weak pairing forceG!1.

In order to requantize the obtained collective Ham
tonian, it is convenient to define the collective coordinates
on the path so as to make the collective mass param
B̄1151. We use the relation

S dq

dsD
2

1
sin2j

G S dj

dsD
2

5~B̄!2151, ~4.15!
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FIG. 6. Potentials along the paths~thick lines!
displayed in Fig. 5 as functions of a collectiv
coordinates for G50.2 ~b! andG52 ~d!. Solid
~dotted! lines are the potentials without~with! a
scalar gauge potentialF(s). The upper part,~a!
and~c!, shows the decoupling measureD defined
in Eq. ~2.16! for G50.2 andG52, respectively.
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to renormalize the effect of collective mass into a new co
dinates. The requantized collective Hamiltonian will be in
form

Ĥ52
1

2

d2

ds2
1V̄~s!, ~4.16!

whereV̄(s)[V„q(s),j(s)….
In Fig. 6, the potential and the decoupling measureD

~2.16! are shown as functions of coordinates. Comparing
these potentials with the BO potentials in Fig. 4, for t
strong pairing case, we see that they resemble each othe
the decoupling is found to be very good everywhere on
path. For the weak pairing force, however, the distance
tween two minima of the potential is larger in the ALACM
than in the BO theory. The decoupling is extremely b
where the path has a kink~the decoupling measureD is order
of 103 at the peak!, though the decoupling is relatively goo
anywhere else on the path.

As we have done for the BO approximation, we can
corporate the effective ‘‘gauge’’ potentials into the ALACM
theory. We assume Gaussian wave functions for the intrin
~noncollective! degrees of freedom~‘‘harmonic approxima-
tion’’ !. Here, collective and intrinsic coordinates are e
pressed bys and x, respectively. The wave function is ap
proximated in a form of semidirect product,

C~s,x!5ccol~s! ^ c intr~s,x!, ~4.17!

where the wave functions for the intrinsic motionc intr(s,x)
are assumed to be a Gaussian,

c intr~s,x!5S vx~s!

p D 1/4

expS 2
vx~s!

2
x2D . ~4.18!

Here the frequencyvx(s) are calculated by the covarian
RPA at each point on the collective path. Since the low
RPA mode is supposed to be along the collective path,vx(s)
is the frequency of the second RPA mode.

Identifying c intr(s,x) with a stateun& in Eqs. ~4.8! and
~4.9!, the ~Berry’s! gauge potentials become

A~s![ i E
2`

`

dxc intr*
]c intr

]s
50, ~4.19!
-

nd
e
e-

d

-

ic

-

st

F~s![
1

2E2`

`

dxU]c intr

]s U2

5
1

16S d

ds
lnv~s! D 2

. ~4.20!

Again, the vector potentialA vanishes and the scalar pote
tial is positive definite. In Fig. 6, we show this scalar gau
potential as a function ofs ~dotted lines!. For a strong pair-
ing force F(s)'0 everywhere~one cannot see the dotte
line in the figure because it almost coincides with the so
line!, however, for weak pairing, it has sharp peaks at kin
where the decoupling measureD also has large values. Th
requantized Hamiltonian~4.16! will be modified into

Ĥ52
1

2

d2

ds2
1V̄~s!1F~s!. ~4.21!

The wave functionccol(s) in Eq. ~4.17! is required to be an
eigenfunction of this modified Hamiltonian.

The results after requantization are summarized in Fig
There we show the spectra of~1! the BO theory without
gauge potentials,~2! the BO theory with gauge potentials,~3!
the ALACM theory without gauge potentials,~4! the
ALACM theory with gauge potentials, and~5! the exact cal-
culation. For a strong pairing force, all approximatio
schemes work well. On the other hand, for a weak pair
force, the result~1! overestimates the splitting of parity dou
blets. This overestimate is corrected by including the sca
gauge potential~2!. The same effect also appears f
ALACM results ~3! and ~4!. However, in this case, the sup
pression of parity splitting originates in the mass parame
not in the gauge potentials. Since we renormalize the m
parameter with Eq.~4.15!, this produces a larger distanc
between two local minima of the potentialV̄(s), as com-
pared toVBO(q). The tunnelling probability between two
minima is suppressed by this mass-renormalization eff
The effect of gauge potentials, the difference between~3!
and ~4!, turns out not to be significant in the ALACM. Th
agreement with the exact calculation is good for low-lyi
states~up to the third excited state!, though, as expected, it i
not so good for higher-lying states.

We also show transition matrix elementsu^n8uqun&u in the
same figure. They are calculated by

^n8uqun&5E
2`

`

dq cn8
* ~q!qcn~q! for BO, ~4.22!
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FIG. 7. Spectra up to the fifth excited state
for ~1! the BO theory withoutF(q), ~2! the BO
theory withF(q), ~3! the ALACM theory with-
out F(s), ~4! the ALACM theory withF(s), and
~5! the exact calculation. Figure~a! is for G50.2
and ~b! for G52. The numbers next to the ar
rows denote The values of the transition matr
elementu^nuqun11&u.
fir

in

lin

the
g
tes
e
ec-

ss-
or-
cal
es

by
one
e-
t
ro-

ar-
ent
u-
dent
al

e-
ical
the
are

NG

ely

re

re
^n8uqun&5E
2`

`

ds cn8
* ~s!q~s!cn~s! for ALACM,

~4.23!

where the wave functionsc(q) and c(s) are normalized
with respect to the coordinatesq ands, respectively. Again,
for the case of weak pairing, the amplitude between the
and second exited states is overestimated in BO theory~1!
due to too strong mixing of two minima. This is corrected
ALACM ~3!, ~4! and in BO with gauge potential~2!.

Table I shows the expectation values of the decoup
measureD with respect to individual states,

^nuDun&5E
2`

`

ds cn* ~s!D~s!cn~s!. ~4.24!

TABLE I. Expectation values of the decoupling measu
^nuDun& with respect to individual eigenfunctions for cases~3! and
~4! in Fig. 7. See the main text and the caption of Fig. 7 for mo
details.

G50.2 G52
n ~3! ~4! ~3! ~4!

1 57 45 3.9731026 3.9831026

2 55 45 1.7231026 1.7131026

3 172 162 3.1731026 3.1731026

4 181 167 3.1931026 3.1931026

5 8.0 7.1 1.0131026 1.0031026

6 119 125 2.9931026 2.9931026
st

g

These values are about 7 orders of magnitude smaller for
case of strong pairingG52 compared to the weak pairin
G50.2. For the weak pairing force, it turns out that all sta
considerably suffer bad decoupling. Surprisingly, still w
have obtained reasonable agreement for the low-lying sp
tra and transition amplitudes.

V. CONCLUSION

We have investigated a simple system with level cro
ings where the monopole pairing interaction plays an imp
tant role and the potential landscape exhibits multiple lo
minima. To apply the ALACM theory, canonical coordinat
and a classical Hamilton’s equation have been introduced
parametrization of the time-dependent states. We have d
this in two different ways. One is based on the tim
dependent mean-field~BCS! theory in which states are no
eigenstates of particle number. It is inevitable that this int
duces a Nambu-Goldstone~NG! mode ~pairing rotation! in
the theory. We have developed the constrained local h
monic formalism which can treat this spurious compon
and find a path orthogonal to the NG mode in the config
ration space. The other is based on the exact time-depen
Schrödinger equation. It is possible to derive a classic
Hamilton’s equation for a simple two-level system by r
garding the mixing angle and the relative phase as canon
variables, though this becomes more complicated when
number of levels increases. In this parametrization, states
always eigenstates of particle number and there is no
mode.

Using the mean-field parametrization~neglecting Fock
terms!, we have found that the system exhibits complet
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different collective paths depending on the strength of p
ing force. For a weak pairing force, the collective path ca
not connect one local minimum with another. On the oth
hand, a path which connects two local minima is obtained
the case of a strong pairing force. In this model, differe
local minima correspond to different configurations of v
lence particles. Therefore, the strength of pairing force de
mines either adiabatic or diabatic behaviors of the system

Using the parametrization of the exact time-depend
Schrödinger equation, ifGÞ0, a collective path starting
from a local minimum always passes through a saddle p
and reach the other minimum. For the strong pairing for
the path is very smooth and is well decoupled from the ot
degree of freedom orthogonal to the path. However, for
weak pairing force, the path shows a peculiar behav
~back-bending! on the way where the decoupling is very ba
This is qualitatively consistent with the mean-field results

We have requantized the 1-dimensional collective Ham
tonian and compared the spectra and transition matrix
ments with exact calculations. For the strong pairing for
the agreement is excellent for any kind of adiabatic appro
mation ~BO, ALACM!. However, for the weak pairing, th
BO approximation fails even to reproduce the qualitat
features of exact spectra, while the ALACM reproduces
low-lying spectra and transition amplitudes well. The agr
ment becomes worse for the higher-lying states beyon
barrier height between two local minima. The theory is ba
on the adiabatic assumption in which Hamiltonians are
panded with respect to momentum up to second order. T
this disagreement may come from the higher-order terms
have neglected, because the higher-lying states are supp
to have larger momenta. We have also discussed the effe
gauge potentials arising from change of intrinsic states al
the path. Inclusion of these potentials turns out to impro
the BO calculations considerably but to leave the ALAC
results almost unchanged.

The authors of Ref.@8# have studied the same mod
Hamiltonian and concluded that for the case of a weak p
ing force the adiabatic approach~BO approximation! is not
appropriate for describing the system and the diabatic
proach is needed. However, one should bear in mind tha
the BO approximation, the collective coordinateq was cho-
sen by assuming that the motion of valence particles
scribed by (j,p) is much faster than the motion alongq.
This is apparently not the case for the weak paringG!1. In
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our adiabatic approach, all degrees of freedom are tre
equivalently, taking account of the mass tensor in the mu
dimensional configuration space. Thus the collective pat
very much different from the one in the BO approximatio
for the case of weak pairing. Actually, the collective pa
turns out to represent the completely diabatic dynamics
some cases. Therefore, if one has a decoupled path d
mined by the system itself, theadiabatictheory may account
for the diabatic dynamics.

For the practical applications of the ALACM theory, ge
erally speaking, it is not easy to solve the constraints ab
the NG mode explicitly. Since nuclei show many kinds
symmetry breaking~translational symmetry, rotational sym
metry, gauge symmetry!, the constrained local harmonic for
malism discussed in Sec. II B will be very useful in su
cases. We shall apply this method to more realistic proble
in the near future.

Of course, in many realistic cases, the physics can
intermediate between that of adiabatic, noncrossing, s
motion, and that of diabatic, nonmixing, motion. It remains
challenge to quantify collective motion in such regimes. O
such area is the dissipation of collective energy to noncol
tive modes, which was first discussed by Hill and Whee
@4#. This is not easily incorporated in the present formalis
because it is related to the coupling between collective
noncollective degrees of freedom which is supposed to
small. Nevertheless the first step towards including such c
pling in a theory of large amplitude collective motion h
recently been discussed@11#, and might very well lead to
new insights in this area.

In conclusion, the ALACM improves on the convention
BO theory. It works well even when the mass of valen
Hamiltonian is smaller than that of the core Hamiltonia
because, in principle, the ALACM treats all degrees of fre
dom equivalently. The ALACM fails to reproduce propertie
of higher-lying states in the case of weak pairing. This
definitely due to a limitation of the adiabatic theory. Upo
requantization, a reasonable agreement with the exact ca
lation has been achieved in both cases of strong and w
pairing forces, at least for the low-lying states.
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