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Diabatic and adiabatic collective motion in a model pairing system
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Large amplitude collective motion is investigated for a model pairing Hamiltonian containing an avoided
level crossing. A classical theory of collective motion for the adiabatic limit is applied utilizing either a
time-dependent mean-field theory or a direct parametrization of the time-dependerdiSgér@quation. A
modified local harmonic equation is formulated to take account of the Nambu-Goldstone mode. It turns out that
in some cases the system selects a diabatic path. Requantizing the collective Hamiltonian, a reasonable agree-
ment with an exact calculation for the low-lying levels is obtained for both weak and strong pairing force. This
improves on results of the conventional Born-Oppenheimer approxima80556-28188)01903-7

PACS numbdps): 21.60.Ev, 21.30.Fe

[. INTRODUCTION can provide a submanifold which is approximately decou-
pled. This method has been applied to problems in nuclear
Nuclei are finite fermionic many-body systems which physics[2,3] and in other field{see the references cited in
support many kinds of collective motion. While properties of[1]).
high-frequency vibrationgsuch as giant resonangesan be In nuclear collective motion we often find level crossings.
well reproduced in the small-amplitude limit by the random-In the adiabatic approximation the motion always stays on
phase approximatiofRPA), some low-frequency vibrations the curve of lowest energy, avoiding all crossing. On the
exhibit a strongly anharmonic nature that the RPA cannobther hand, one can also invoke a diabatic approximation
describe. Nuclear fission and shape coexistence phenomewhere the motion goes through the crossing, leaving the sur-
also have such a large-amplitude nature. In order to investface of lowest energy. Of course neither of these two ap-
gate these kinds of large amplitude collective motion, oneroximations is exact, and the real description is intermediate
would ideally like to reduce the number of degrees of free-between these two extremes. This problem was first dis-
dom to a few judiciously chosen slow collective coordinatescussed by Hill and Wheeleg4]. During a nuclear shape
However, in nuclear systems, this task is not trivial, sincechange, the diabatic process is often more favored than the
there is no obvious separation of scales. adiabatic ong[5]. This raises the question of whether an
In molecular physics, where the masses of electrons are saiabatictheory, such as ALACM, can be used to shed some
much smaller than those of the atomic nuclei, the electronidight on diabatic dynamics. An answer to this question is one
motion is normally much faster than nuclear motion. Thus,of the main goals of this paper.
the collective coordinates are usually functions of nuclear In nuclear phenomena, it is well-known that the pairing
coordinates and the Born-OppenheiniB0) approximation (superfluidity influences all low-frequency collective mo-
works very well. On the other hand, in nuclear physics, sinceion. A well-known example is the effect on the moment of
a nucleus consists of neutrons and protons which have ainertia for rotational nuclei, which is always smaller than the
most the same masses, both the definition of collective coorgid-body value at low spin, which can be explained as an
dinates and the applicability of adiabatic assumptions areffect of pairing correlations. At the same time, the ground
never obvious. states of heavy nuclei with open-shell configurations are rea-
Although a large number of studies have been done tgsonably well described by the superfluid Bardeen-Cooper-
calculate the potential energy surface using the constraine8chrieffer BCS wave functions with energy gaps of about 1
Hartree-Fock (HF) or Hartree-Fock-Bogoliubov(HFB) MeV. Properties of both collective and noncollectiegiasi-
theory with a given generalized crankiior constraint op-  particle excitations depend on size of the energy gap. Fur-
erator, the choice of collective coordindiee., the choice of thermore, it has been argued by Bertd@j that nuclear
cranking operatojshas been rather arbitrary in most cases.shape change may be associated with the hopping of nucleon
In this paper we shall apply a special thediyl, that is  pairs by means of the pairing force. In this case, the pairing
designed to determine a self-consistent cranking operator fanteraction and level crossings play an essential role to de-
adiabatic large amplitude collective motiGALACM). This  termine the collective mag$hopping mass’).
theory provides a method to find approximate decoupled mo- According to these considerations, the pairing interaction
tion which is confined to a few dimensional submanifold of should play a key role in understanding the large amplitude
the configuration space, within the framework of classicalcollective motion in nuclei, especially when level crossings
Hamiltonian dynamics. Since most systems of practical in-are involved as the shape change is taking place. Therefore,
terest are not exactly separable, it is important that the theoriy is important to investigate the applicability of ALACM for
such a system with level crossings and a pairing force. The
theory has not been applied to such systems before.
*Electronic address: T.Nakatsukasa@umist.ac.uk In this paper, we study a model Hamiltonian describing a
Electronic address: Niels.Walet@umist.ac.uk system interacting through the pairing force. The model has
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a single-particle level crossing and multiple local minima, 1 1 _

and thus may be regarded as a model for shape-coexistence H~5BUpip;+ EBabPapb"‘V(Q',qa), 2.9
phenomena. In Sec. Il, the formalism of ALACM is briefly

recapitulated. In order to apply the ALACM to a classical where we have used the fact that for decoupled motion the
Hamiltonian with a spurious componefitambu-Goldstone mass tensor must be block-diagonal,

mode, a modified version of the local harmonic equations is

formulated. The classical Hamiltonian for a pairing Hamil- Ba=0. (2.6)
tonian is derived in Sec. Ill, both by using the mean-figd

this case BCBtheory and by applying a parametrization Besides the block-diagonality of mass tensor, we require the
which exactly conserves particle number. The results of nuabsence of both “real” and “geometrical” forces orthogo-
merical calculations for a simple two-level system are givernal to the decoupled manifold,

in Sec. IV and the conclusions and an outlook are summa-

rized in Sec. V. \7a=0, 2.7
II. BRIEF REVIEW OF ALACM B%=0. (2.8
A. Local harmonic equations (LHE) In practice, the three decoupling conditionig,6), (2.7),

We briefly review the theory of ALACMsee Ref[1] for and (2.8), cannot be satisfied exactly,_ except for speciall
a complete descriptionin this section, we use a summation cases. Thus, we neeq a method .appl|ca.ble to an approxi-
convention where the repeated appearance of the same sy ately decoupled manifold. The R|err.1ann.|an formulation of
bols (a,B, . . . ii,j, . ..) inupper and lower indices denotes E [1] is the one we choose to use in this paper. In a case

a sum over that symbol for all possible values. We also usQI ?h.s'r}gle cclxlllectlve ctc))ord|r_1[?td<(= 1), the basic equations
the convention that a comma in a lower index indicates th&' 1S Tormalism can be writien as

derivative with respect to the coordinate, thg=dF/d&“. VvV =xfl 2.9
The theory of adiabatic large amplitude collective motion “ o '
(ALACM) is applicable to a classical Hamiltonian system BAW. fl = o2fl (2.10
. . . . . yay ”B ,at .
which has kinetic terms only quadratic in momentum. We
thus have to start with a truncated Hamiltonian Here the covariant derivativelenoted by ;) in the left-hand

side (LHS) of Eq. (2.10 is defined by

1
H(E m)= EB“ﬂwawﬁ+V(§), a,B=1,...,

>

V;a,BEV,a/B_FzBV,’y' (211)
(2.9
where the affine connectioh is defined with the help of
where the mass tensB#, in general, depends on the coor- metric tensoB,; as

dinatesé® and is defined by truncation of the Hamiltonian to

second order o 1L ad
FBV:EB (stﬁ,y_l_ Ba)’yﬁ_BB)’ya)' (212

Bb————| . 2.2

o The equationg2.9) and (2.10 can be solved iteratively,

starting from a stationary point. In principle, the procedure to

Thus all terms more than quadratic in momentum are nefind a collective path is to find successive points at which an
glected. In the sense that the higher-order terms are smafigenvectorf’, of the covariant RPA equatio2.10 satisfies
this theory may be regarded as adiabatic theory in the the force conditior(2.9 at the same time. _
small-velocity limit. The tensoB,, which is defined as the ~ Once we get a collective path in multidimensional con-
inverse ofB*# (B*?B, 3= 4%), plays the role of metric ten- figuration space, a collective Hamiltonian is defined by
sor in the Riemannian formulation of local harmonic equa-evaluating the Hamiltoniaf2.5) on the patt,
tions (LHE) below. _ 1
: . i L . - _ _

C}ollectn;e coordinateg' and intrinsic(noncollectivé co- HCO|:H|2’%:0% 5511p§+v(q1), (2.13
ordinatesq® which are approximately decoupled from each
other, are assumed to be obtainable by making a point trans-

formation, conserving the quadratic nature of E2j), where we assume a smgle collective coordirtatel. _
The quality of decoupling can be measured by comparing

g=f(& (i=1,...K), (2.3  two different collective mass parameters that can be calcu-
lated in the theory. If we calculate the derivativiis/dqt in
P=f3¢ (a=K+1,...n). (2.4) terms of the tangents of the path,

In this section, we use symbolsx (B, ...) for indices of Y :E d_'f'g (2.14
original coordinates, 4, v, ...) for new coordinates after Yagt “Pdgt '

the transformation,i(j, . ..) for collective coordinates and

(a,b, ...) forintrinsic coordinates. The new Hamiltonian The other mass parameter can be obtained by using the
after the point transformations takes the form, eigenvectors"la of the covariant RPA equation.
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Ellzf’lagaﬁf}ﬁ_ (2.15  case that the translational symmetry is brokgf, and py¢
would be the center-of-mass coordinate and the total mo-

This is equal to Ell)fl if the decoupling is exact. There- mentum, respectively. In the case of particle-number break-

fore, we define the decoupling measeas ing, they correspond to the particle number and the gauge
angle. In all these cases we know the explicit form of the
D=(§11)*1~B'11— 1. (2.16 coordinates and momenta for the NG m@leThus, we can

write q“° andp, as functions of original coordinat&$ and

The size of this measu@ indicates the badness of decou- Momenta, . Although in generaly™® and p,; have arbi-
pling. trary dependence ofiand 7, we expand them with respect

If the decoupling is good, the motion orthogonal Yo 0 7 up to thg zergth order fanG .and up to first order for
(motion in directions ofg?) becomes irrelevant in classical Pne- [N keeping with the adiabatic character of the theory,
systems. However, it is not necessarily the case in quantuiien, we getf"*(¢) andgf.(£). An example will be shown
systems, because, according to the uncertain relation prif@ the next section for the particle number and the gauge
ciple, we cannot requirg,= 0 (the motion is confined oB)  angle.
and m,=0 at the same time. Therefore, one may need to The conditions for decoupling are again given by three

include the energy correction into the potent?e(lq), which equgtion5(2.6), (2.7),bar|1Fj(2.8), wherei =1 gnd NG.dIn this
arises from quantum fluctuation with respect to the intrinsicSeCtion we use symbols,{, . . .) representing 1 and NG. In
Ref.[1] it is shown that the third decoupling conditi¢®.8)

degrees of freedorf8]. Subsequently, the collective Hamil- =" ) .
grees. fT8]. Subsequently W I implies that the decoupled surface is a geodesic. The geode-

. . . . —l_
ton'a!” Heol \.N'” be q“."’?”“zed in a flat spacer =1) to sic surface is defined by differential equations
obtain physical quantities, such as energies and wave func-

tions. a a a
99 +Fﬁygﬁg§—l?ikjg'k=0, (2.19

B. Constrained local harmonic equations(CLHE ) i i, T £ ek
. . o Flap=Laglly+ Tikflaf =0, (2.20

The most practical and straightforward way to investigate o
a pairing Hamiltonian would be to utilize the mean-field where the affine connectidn is defined by Eq(2.12 andl’
(BCS) approximationSec. Ill A) in which the general prod- in new coordinates is in the same manner
uct wave functions are no longer eigenstates of the particle

number. When an intrinsic ground state break&antinu- = 15, = — _

ous symmetry of Hamiltonian, generally speaking, a Ly =5B " (Bu,vt B ™ B (2.2
Nambu-GoldstonéNG) mode will appear. This mode corre-

sponds to an “excitation” to connect degenerate vacua. In  Now we consider constraints

the case of particle-number breaking, this is often called

“pairing rotation.” We are interested in finding a collective qie=f"(¢*)=qy° (= consy, (2.22
coordinate orthogonal to this trivial mode.
It is also well-known that, at equilibrium points, the NG Pre=0%Ta=0, (2.23

mode has zero excitation energy and is decoupled from the
other modes in the RPA order. Thus, one may easily separaighich freeze the NG degree of freedom. The Poisson bracket
this mode from the other physical modemless the physical petween these to constraints{ig"®, pyepe=f"°g%.=1. In

mode happens to be zero energiowever, the NG mode order to facilitate the calculation of diffrentiation, we need to
does not necessarily have zero energy at nonequilibriurgefine a dirac brackd] by

points. Since we have to solve the LHE at each point on the

collective path, it is not trivial to distinguish the NG mode {F,G}pg={F,G}pg+{F,q"}pg{Prc.G}rs
from the other modes. Therefore, in this section, we provide e
a modified formulation of LHE which fixes a value of the —{F.Pxetre{d", G} pe. (2.249

coordinate corresponding to the NG mode. In the BCS pa-_. . . .
rametrization, we need the constraints to fix the particld ISt We consider the force condition corresponding to Eg.
number and gauge ang(8ec. Il A). We shall make use of (2.9). We differentiate the potentiad(£) =V(q) with respect
the fact that the coordinate and momentum corresponding t® £* keeping the constraintg*°= gy° and pys=0

the NG mode are explicitly known.

We shall only discuss the case of a single collective co- oV
ordinateK=1 and a single NG mode. First we divide the set ia
{g*} into three subsetsj®, g"¢, andg?, a=3, ... n, which
are assumed to be obtained by point transformations

=V, fL+V,fa =V, (229

G_ NG
qNe=qg

where the decoupling conditid@.7) has been used. This can

g“=f#(§), €&*=9%(q), (217 be calculated by using the Dirac bracket as
p.=09%m,, wm,=F"p,. (2.18 Vv
S o — = {70 Vioe, =V.a= 500V s
(76“ ) ,aI NGV ,B
g"® represents a coordinate for a NG mode artdfor a qNe=qp®

collective coordinate now we are trying to determine. In the (2.26
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Equating the above two equations, we obtain the force conmalism should become the usual LHE when the underlying
dition symmetry is unbroken. In the next section, we will discuss
_ the BCS approximation to derive a classical Hamiltonian
V,.=V,f,. (2.27 system. In the parametrization of Eq8.17) and (3.18), a
_ . _ state with|&*|=1 andw=0 corresponds to a state in a nor-
in the case of pairing rotatiori,’® may be taken as the aver- pa phase which is an eigenstate of particle nunjfram
age particle numbek’=(N). Then,V \,=dV/dN can be re- Eg.(3.23, one can see the pairing gap vanish in this tase
garded as a chemical potential and Eq.(2.27 may be Then, from Eg.(3.25, we havef’“‘jzo. Therefore, the
rewritten in the form similar to the constrained Hartree-Fock-CLHE (2.27) and(2.35 become equivalent to the LHR.9)

Bogoliubov equation and(2.10.
The equation$2.27) and(2.395 are the defining equations
— 1
Vo= pN AT, (2.28 of CLHE formalism. As in the usual LHE, we require the

In order to obtain the covariant RPA equation Correspond_self—conslstency between these two equations: A solution of

ing to Eq.(2.10, we start with the contravariant derivative of Eq. (Z'SShShOUId satisfy Eq(2.27) at the slame t(ljmle._ "? this .
the potential paper, where we concentrate on a simple model, it is easier

to solve the constraintg"®=qy° and p,.=0 explicitly and
Vil=\Bfl (2.29 describe everything by independent canonical variables
o (&5, 7%) (a=1, ... n—1). However, in the realistic cases
where V,aEBaﬁV’B and vlzglﬁ\jﬂzgli\ji . Again we for which it is difficult to solve the constraints, this CLHE

differentiate this equation with respect4 in keeping with ~ formalism would become more useful.

q“°=qy° and p,.=0. The derivative of the LHS is easily

calculated as IIl. TRANSCRIPTION INTO CLASSICAL FORM

oVt —11 Rather than tackling the full complexity of the nuclear
Pz =Vif,. (2.30 problem with all its complications and deriving our approach
qNe=qg® from there, we shall study a simple model in this paper. We

o ) ) ~consider a model where particles coupled to a harmonic os-
The derivative of the RHS is calculated in terms of the Diracgi||ator interact through the pairing force, first introduced by

bracket Fukui, Matsuo, and Matsuyanad] in order to study shape
mixing. This model can be regarded as a vibrating core plus

_V,ﬁflﬂ =—{m, ,V,ﬁflﬁ}DB, (2.31) valenc_e_ particles which can move between different levels by
JEY S IR ' the pairing force,
qNC=qy
= (V= RV it VA= 000 F s H=Heoret Hual, (3.2)
(2.32
—(VE—fegr VAL _TLVifL (233 Where
where, from the second to the third lines, we used the geo- 1
desic equatiori2.20 and the covariant derivative defined by Hcorezz(p2+ a?), (3.2
VE=\VELTE v, (2.39
Q

From Egs.(2.30 and(2.33, we obtain Hyo= E €a(q)(CZCQ+C£C;)_GAPTI’:\), 33

(V=g V) Fl=Viafl, . (2.39

o

Replacing\7j by w?, this becomes the covariant RPA equa-and we assumé&=>0. Herea denotes the time-reversed state

tion to determine eigenfrequenciesand eigenvectorfs,la. It of @ and |5T:Ea>0c:§c;% is the pair creation operator. The

is worth noting that any solutioft, of Eq. (2.35 with non-  total number of levels is @. The single-particle energies
zero eigenfrequency is orthogonal to the NG mode. This may (q) depend on the “deformation’t] of the core, which
be understood as follows: One multiplies ER.35 by g, induces particle-core coupling.

and takes sum ovew. Then, since the LHS becomes We need to construct a classical Hamiltonian which de-

\7%@_\7%6:0, it results in scribes the dynamics of the valence particles. In order to do
' ' this, time-dependent mean-field theory, which is known to be
w?gs.fh,=0. (2.36  aform of Hamilton’s equation, is utilized in the next section.
This is of practical interest because it has applicability to
Therefore, withw#0, we havegf;Gf’lazo. realistic systems. For the current model one can also adopt a

Since the NG mode emerges only when we break a syndirect parametrization of the exact wave function to con-
metry of Hamiltonian, one may expect that the CLHE for- struct a classical Hamiltoniafsec. Ill B).



1196
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Since monopole pairing interactions in nuclei were origi-

In this section we describe a canonical parametrization off@lly introduced in order to give a simple model of the short-

a general product wave function, discussed in Ref. We

start with a BCS statppo) which is the vacuum to quasipar-

ticle operators,,,

al=u,cl—v,c7, (3.4
a= uacz—+vaca (3.5

According to Thouless’ theorerfil0], any general product

wave function|z) which is not orthogonal td¢,) may be
written in the form

1
|z)= exp{ 5% zm/azag] | po), (3.6

wherez,,=—-2,,.

range attractive force, often only the Hartree terms are taken
into account in the mean-field calculations. Thus, we shall
neglect the exchange terms in Sec. IV A. If we neglect the

exchange terms for the Hamiltoni&s.3), only (ay) = (aa)
components are available and the matrix relations can be
regarded as ordinarg-number relations. For instance, Egs.
(3.10 and(3.11 now take the form

Paa=BaaBrg:  Kaa=Baal 1= BlgBaa) "’ (315
where there is no summation with respect to the indices
(a,a).

The coordinates defined above depend on the reference
state|¢q). For practical applications, it is probably conve-

nient to use a local coordinate at each point on a collective
path when one solves the LHE]. Namely, when moving to

The time-dependent BCS equation can be obtained b§ nearby point, one changes the reference state to the slater

taking variations with respect tn and z* of the classical
action,

. ftfd <z|iat—H|z>. 37
t

t
i (zl2)
We can introduce canonical coordinateg,{,m,,) by

Bay=(£aytim,,)IN2, for a>y. For a<y antisymmetry
tells us that the same coordinates are involved,

Bay="Bya=(£ayT1may)2, (39
and we can easily relate andz by
Bay=12(1+2'2)" 2], (3.9

This means thafjuasidensity matrices andjuasipairing
tensors can be expressed by

_ (zata,lz

po D g, G0
o SAaBD) g (3.17
Kay= (2]2) =[B(1=B"B) " ay- '

Using Egs.(3.4) and (3.5, one can relate these quantities
with real density matricespay:(czca) and pairing tensors

Kay:<CyCa>.

Then, the equations of motion take the canonical form

(using an implicit matrix notation

. OH
g_ (7_771 (312
oH
mT= &—g, (313)
with a classical Hamiltonian
H
Hee,m=AHI2 (3.14

RCE

determinant at this new point, making the new point the ori-
gin of coordinate system, and solves the LHE. However, in
this paper, in order to visualize a collective path in the con-
figuration space, we use a fixed reference state and a global
coordinate system. Since this global coordinate system can-
not describe a stafes) which is orthogonal to the reference
state| o), we need to select a reference state suitable for
describing all relevant states.

In case that we consider a system witl= () particles,
we may take the BCS state with,=v,=1/y2 for all « as

the| ¢o) ({ ol N| bo)=Q). The classical Hamiltonian for va-
lence particle$3.3) may be written as
1/2}

Hoal&,7)= 2, €,(q)

a>0

1+\/§§a{1—%(§§+ﬂi)
G
_Z[(Q_gz_ﬂ_z)z
1 1/2) 2
+2 E Wa(l——(fi-FWa)z) } },
a>0 2
(3.16

where we used notation8,=¢,,, To=T4a §252a§i,
n-ZEani, and neglected the exchange terms. Expanding
this Hamiltonian up to second order in momentum, we ob-
tain an adiabatic Hamiltonian in the form of E@.1) with

d 2’Hval

Baﬁ( &)= o (9775

€.(q) &
=y — ,_—+G Q_ 2 50,
| e ls,

(3.17

==
_G)—iaﬁ—lﬁl

G
V(O=Tal(§,m=00=\2 2, en(@)éaZa— 7 (=€)
(3.18

where

(3.19
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The average number of particles is

N 1 172
Mﬁ-”>=%=ﬂ+ﬁa§0 §a[1—5(§§+ﬂi) :
(3.20
~Q+ \/520 E,E o+ O(7?). (3.21)

The pairing gap is

(zIPl2) G|

A(g,m)=G (z|2) 2

{Q—gz—ﬂh J2i 20 Ty

1 1/2
x{1—§<§i+wi> } (3.22
G .
~5[0—§2+\/§| ZO T Bt +O(7?).  (3.23

Thus, the gauge angle in the adiabatic limit can be ex-
pressed by

ImA

o= arctarm ~

Since we consider a system with= () particles, we may
regard A/2 as g"° and ¢ as p,; in Sec. Il B. Using the
adiabatic expression of the particle numigr21) and the
gauge anglé€3.24), we can identify

E

2. +0(7%). (3.2
Q_gzmwa «TO(7). (3.29

Mo 1

(&) =—F=5+—= Ea 3.2

(©)=5 =5+ 52, fFa (3.29
Jg“ de V2

()= = =IT (3.26
(9q &770‘ =0 Q_§

One can see that the canonical relation

NRd } afve ag®

. = =1, (3.27)
[ 2 pg @ 9 dq'e

is satisfied.
In case ofN=Q =2, the conservation of particle number
in the adiabatic limit(3.21) is simply satisfied by

&1=—§&, m=—m,. (3.28
Then,H, 4 can be expressed as
1
H\,a|=§B"a'772+V(§), (3.29
2
== £—§+G<1—gz), (3:30
V(£)=2\2e£E-G(1-£%)?, (3.31)

where we assume=e;= — €, and
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1 1/2
f=bi=—&, m=m—my=2m, EE<1‘ zfz) .
(3.32
The potential is stationary at
E==x1, (3.33
and _Sgnf( \/1+B+\/1_E f0r|€|<G
\/E G - G ] .
(3.39

At £&=1 (—1) two particles occupy the=1 (a=2) level.

For e+ 0, one of the states corresponds to a local minimum
and the other to a local maximum. Faf <G, the potential
has another local minimum which corresponds to a super-
fluid state[the upper and lower signs in E(B.34) give the
same state in the limit ofr=0].

B. The time-dependent Schrdinger equation (TDSE)

In case ofN=( =2, one can easily find a canonical pa-
rametrization for the exact time-dependent Sdimger
equationTDSE). With the notatiorjaa)=ccH0), normal-
ized states can be written in general as

ly(t))=€'?Vcoga(t))|11)+e  *Usin(a(t))|22).
(3.39

An action, similar to Eq(3.7), may be defined by

ts
S= ft Sdt(g(0)]ia—Hl (D). (330

The time-dependent Schiimger equation can be given in
terms of the least action principle. For the Hamiltonkyy,,
we can introduce canonical coordinates)® as follows:

é=a, (3.37)

The canonical equations of moti¢8.12 and(3.13 hold for
the Hamiltonian
p
sin2¢) |’

(3.38

wheree=¢; = — ¢€,. The adiabatic Hamiltonia(B8.29 is ob-
tained by expanding up to second order in momentum. The
resultant mass parameter and potential are

p=—2¢sin2a.

Hya={¥|Hyal ) =2€cos2— G| 1+ sin2§co{ -

G
Bral(§) = Sinze’ (3.39
V(&)=2ecos2%— G(1+sin2¢). (3.40

In this parametrization, the mass does not depend on the
single-particle energy. It is apparent from Eq(3.35 that

1In order to avoid confusion withr=3.14 . . ., inthis section we
use the symbaop for the momentum conjugate t
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(b)

0 L FIG. 2. Contour plots of the energy surface for the potential
q V(q,€), Eq. (4.4). The parameterg,=0 andy=1 are used. The
) ) ) ) left figure () is the energy surface fa=0.2 and the rightb) for
FIG. 1. A schematic representation of the single-particle energ—1 9. Contour lines are displayed fa/=0.5. The thick lines

gies as a function of the coordinate for the casesq=0, x>0. indicate the collective paths obtained by the ALACM theory.

£=0 (w/2) corresponds to a pure configuratidr) (|22)).

There are two stationary points of the potential in a region v _ l 249 2(va— Z_G(1—£2)2 (4.4
0= &= which are specified by a condition (0.6)=50°+2\2(xa- €)§E-G(1- &% (4.4

G
tan2¢é=tan2a= — 7e (3.4)  whereB,, is given by Eq.(3.30 with e= yq— e,.

Taking =0 and y=1, the potentialV(qg,£) has two
local minima at €1,¢)=(—2,1) and (2;-1) which corre-
spond to valence-particle configuratiofisl) and |22), re-
spectively. A collective path is now obtained by using the
LHE algorithm described in Sec. Il. We start from a local
minimum, solve the RPA equations and search for the next
point in the direction of the lowest RPA mode. Since this

In this section, we present the numerical results for asystem has only two degrees of freedom, we can easily vi-
simple case witiN=Q=2. For single-particle energies, a sualize the path on the 2-dimensional surface. In Fig. 2, the

These give eigenstat€3.35 of H,, with ¢=0. ForG=0,
the state in a regionQ ¢< 7/2 always has lower energy and
the mass paramet®,, is hon-negative in this region.

IV. RESULTS

linear dependence on the coordingtés assumed, potential energy surface and the obtained collective path are
shown for two strengths of the pairing for¢@=0.2 and
€ (q)=(—)"te(q)=(—)*"Y(xq—€y), fora=1,2. G=1.9. In the case o&,=0, the potential landscape has a

4.0 symmetry with respect to a rotation of 180° about the origin,
V(q,&)=V(—q,—&). For a weak pairing forcéFig. 2 (a)],
The two levels cross each other @t e,/y. A schematic each local minimum has an independent collective path
figure of single-particle levels are displayed as functiong of which represents a harmonic oscillator with a fixed valence
in Fig. 1. Each level has twofold degeneracy. configuration(both particles in level 1 or level)2 These
The model can be solved quantum mechanically using aepresent diabatic solutions which do not mix in this approxi-
direct product basifN oso) core® | @@ )y Where|Noso core IS @n mation. On the other hand, for a strong pairing fofEeg.
eigenstate of the core Hamiltonian with the oscillator quante2(b)], we get a collective path which changes the particle

Nyee and |a;>va|502030> («=1,2). We use core states configuration and connects the two local minima.
with Ne= 20 for diagonalizing the total Hamiltonian, which Ve have thus found that the system automatically selects

can be written in a matrix form different type of collective paths according to the strength of
pairing force. In this approximation, we get completely di-
1, ., 2¢,(0)— G -G abatic solutions forG=0.2 which will result in no parity
H=5(p"+q)l+ G 2e,(q)—G )" (42 splitting upon quantization. Of course, f@&+0, an exact

calculation always gives some splitting in energy. However,
wherel is the 22 unit matrix. Results obtained with this the splitting turns out to be extremely small for the weak

method will be referred below as “exact calculation.” pairing casesee below.
Next, in order to discuss a case of asymmetric potential
A. TDMF parametrization landscape, let us take=0.4, y=0.7 andG=0.1. Figure

Now we apply the theory of ALACM to this model with 3(a) shows the potential energy surface and collective path.

the mean-field parametrization in Sec. Il A. The Hamil- T"€ potential, which is no longer symmetric about the 180°
tonian has the form rotation about the origin, has a deep minimum at

(0,6)=(—1.4,1) and a shallow minimum af=(1.4-1).
Each minimum has again an independent collective path par-

1
_ 2 2
H=5(p"+Byam) +V(0.6), (43 allel to the horizontal line g-axis), representing the diabatic
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(b)
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- / Js' ‘ wor \‘\\ 99% / | FIG. 3. (@ The same as Fig. 2 but fer=0.4,
mo \ |99z ,,"" 1 x=0.7, andG=0.1.(b) Diabatic potential curves
/ ol | X/ 1 as functions ofg and eigenenergies of the exact
= or / 7 \100% [ calculation. The number on each level indicates
\ 7 Vo . ; . . L
; / z the percentage of the main configuration in the
NN -1or \ 100% / 1 wave function.
\.“7 \_/
. —20r Vi i
40 20 0 20 40

dynamics. In Fig. &), we show results of exact calculation If we neglect the interactionG=0), the potentiaMg(q)

for this parameter set, together with the diabatic potentiahas two local minima atj= *+ y corresponding to different
curves corresponding to the valence configuratibh) and ~ valence-particle configurations. Figure 4 shows the BO po-
|22). The number on each level indicates the percentage nt'aISVBO(q) for weak[Fig. 4@] and strong pairing force
the main configuration in the wave function. The exact callFi9- 4b)] with y=1 and =0. In Ref.[8] it has been
culation shows strong diabaticity of the system and two dif-SnOWn that this approximation works well for the strong pair-
ferent configurations hardly mix. This agrees with the inde-N9 €ase but it considerably overestimates the mixing be-
pendent paths obtained in the ALACM. Therefore, one may€€n two minima for the weak pairing case.

state that the ALACM combined with the BCS approxima-  ©ON€ possible way to improve the BO theory is to deter-

tion can reproduce the qualitative feature of the pairing sysmine @ collective path self-consistently and take into account
tems. the effect of mass parametBy,. This will be discussed in

the next section. The other, which is discussed here, is to
_ o take account of thgBerry's) “gauge” potentials which
B. Born-Oppenheimer (BO) approximation emerge from the derivative of the eigenstates of the fast de-

Before discussing another parametrization in the next se@rees of freedontvalence particles|n) with respect to the
tion, let us review the Born-Oppenheim@O) approxima- slow coordinatey. The new effective Hamiltonian will be
tion. The formulation in the next section can be seen as the
generalized version of BO theory, in which a collective co- 1
ordinate is chosen self-consistently. _ HBOZE(p_An(q))Z+VBO(q)+q)n(q)a 4.7

Using the conventional adiabatic theory which assumes
motion of the valence particles is much faster than motion of
the core, the effective Hamiltonian can be obtained by diago-

nalizing H,, at each value of where
2
HBOZ%+VBO(Q), (4.9 An(q)zi<n|{9qn>, (4.8
q° 1
VBO(Q):?_\/4(Xq_60)2+GZ_G. (4.6 (I)n(q)zE(aqn|(1—|n><n|)|aqn>_ (4.9
(b)
_VBo(q) 7

'''''' VBg(q) + ¢(q) T

FIG. 4. Born-Oppenheimer potentialé(q)
(solid lines, Eg. (4.6), for G=0.2 (a) and for
G=2 (b). The parameterg,=0 and y=1 are
used. The dotted lines indicate the potential in-
cluding the scalar gauge potentigl(q) +®(q).
See text for detalils.

/\\
40 20 0 20 40 40 —20 0 20 40

q q
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(b)

n|a

FIG. 5. Contour plots of the potential energy
V(q,€), Eq.(4.12, for G=0.2 (a) andG=2 (b).
The parameterg,=0 and y=1 are used. The
thick lines indicate the collective paths obtained
by the ALACM, while the dotted lines are the
paths in the BO approximation.

In the present case, we tak® to be the lowest eigenstate of and a saddle point at (8/4) where we restrict to the
the valence Hamiltonian which can be expressed as in Eqegion 0<¢<w/2. In this parametrizationé represents the

(3.39, with a given by Eq.(3.41). Then, the gauge poten- mixing angle between the two valence configuratidnd)

tials are calculated as and|22). If we minimize the potential with respect to the
G)2 coordinate¢ at each value ofy, the potentialV(q,£&x(q))
(xG) (4.10 becomes the same as the BO potentiab). If G=0, the

2{4(xq—€0)?+G%* local minima correspond to the pure configuratiofis])

£=0) and|2§> (¢=m/2). In general, these minima have

This shows that there is no Berry's phase for the_cu”enginite values of mixing angle, which was not the case in the
problem, but does imply an additional scalar potential. Thg,aan-field parametrization.

additional potential is positive definite and has the maximum Figure 5 shows the potential energy surfaces and the 1-

value at the crossing poimf=e,/x. This scalar potential IS gimensional collective paths. For a strong pairing fdifee.
shown in Fig. 4 by dotted lines. The peak height at a levek )] e have a smooth path which connects two local
crossing is getting higher for weaker pairing. This term will inima. On the other hand, for the case of weak paifffig.

suppress the mixing between two minima for the case Ok the path exhibits a peculiar kinklike behavior near
weak pairing, and improve the result of quantizati®®e _ 0.8 Close to a local minimum point, the collective

below). path represents a harmonic oscillatve core Hamiltonian
which is almost parallel to g-axis (horizontal ling. On the
C. TDSE parametrization other hand, at the saddle poimt,€) = (0,7/4), the collective

In the Sec. IV A, we have shown the results using thePath is trying to go through the valley of potential. These
mean-field parametrization of the valence HamiltonianPaths are not able to be connected smoothly for the weak

which leads to a diabatic solution in the weak pairing caseP@ng case, which results in the strange back-bending. In
In this section, we use the parametrization described in Sed€ vicinity of this back-bending, the decoupling from the

Il B. This conserves number of particles exactly and can b@ther degree of freedom is very béaee discussion belgw
regarded as a generalized BO theory. In the same figure, we show a pdthotted ling which is
The total Hamiltonian is in a form obtained by minimizing the potential energy at each value of

g (BO approximatioh For weak pairing, the path obtained
1, ) by the ALACM theory is found to be quite different from
H=5(p"+Byam) +V(q,4), (410 that by the BO theory. On the other hand, for strong pairing,
we can hardly see the difference between them. In the BO
1 approximation, the motion along-axis is assumed to be
V(Q,€)= = g%+ 2(xq— €o)cos2%— G(1+sin2é), much faster than that alorgraxis. In other words, the mass
2 of valence Hamiltonian B, should be much smaller than
(412 the mass of core Hamiltonian, which can be expressed as the
condition

A(q)=0, &(q)=

whereB,, is given by Eq.(3.39.
With e;=0 andy =1, the potential surface has again two G>sin2¢. (4.19

local minima at ) ) ) ] S
It is obvious from this equation that the BO approximation

J16-G? 1 J16- G2 fails for the weak pairin_g forc&<1. _ _ _
(q,§)=<—T,§arcco£T)), In order to requantize the obtained collective Hamil-
tonian, it is convenient to define the collective coordinsite
on the path so as to make the collective mass parameter

Bl=1. We use the relation
(dq)2 sinzg(dg
+

2
as S d—g) =(B) =1, (4.15

and

(4.13

2 ,Earcco 4

(@1 %_@))
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:D L J F - Dx10% @ 3
s o | ST A VYA W
10 oo —V(s)
R V(s)+o(s)| 1 FIG. 6. Potentials along the pattthick lines
Or 1 displayed in Fig. 5 as functions of a collective
i 1 coordinates for G=0.2 (b) andG=2 (d). Solid
—10 (dotted lines are the potentials withovith) a
ool ] scalar gauge potenti@(s). The upper part(a)
L | and(c), shows the decoupling measubedefined
—30L _ in Eq.(2.16 for G=0.2 andG=2, respectively.
—40+1 ()
-50-30-10 10 30 50 -50-30-10 10 30 50
S S
to renormalize the effect of collective mass into a new coor- @ el 2 1/ d 2
dinates. The requantized collective Hamiltonian will be in a O(s)= Ef dX— =16l gsne@(®)| - (4.20
form o

5 Again, the vector potentigh vanishes and the scalar poten-
F=— 1 d—+\7(s) 4.16 tial is positive definite. In Fig. 6, we show this scalar gauge
2 g2 ' ' potential as a function of (dotted line$. For a strong pair-
ing force ®(s)~0 everywhere(one cannot see the dotted
Where\7(s)EV(q(s),§(s)). Iine in the figure because i; glmqst coincides with the s_olid
In Fig. 6, the potential and the decoupling measDre line), however, for yveak pairing, it has sharp peaks at kinks
(2.16 are shown as functions of coordinate Comparing Where the decoupling measutealso has large values. The
these potentials with the BO potentials in Fig. 4, for the®duantized Hamiltoniatd.16 will be modified into
strong pairing case, we see that they resemble each other and 1 &2
the decoupling is found to be very good everywhere on the VI Y7,
path. For the weak pairing force, however, the distance be- H 2 d<? V() +D(s). 4.2
tween two minima of the potential is larger in the ALACM
than in the BO theory. The decoupling is extremely badThe wave functiony.,(s) in Eq. (4.17) is required to be an
where the path has a kirfhe decoupling measut2 is order  eigenfunction of this modified Hamiltonian.
of 10 at the peak though the decoupling is relatively good ~ The results after requantization are summarized in Fig. 7.
anywhere else on the path. There we show the spectra ¢f) the BO theory without
As we have done for the BO approximation, we can in-gauge potentialg2) the BO theory with gauge potential8)
corporate the effective “gauge” potentials into the ALACM the ALACM theory without gauge potentialsi4) the
theory. We assume Gaussian wave functions for the intrinsiALACM theory with gauge potentials, an@) the exact cal-
(noncollective degrees of freedon‘fharmonic approxima- culation. For a strong pairing force, all approximation
tion”). Here, collective and intrinsic coordinates are ex-schemes work well. On the other hand, for a weak pairing
pressed bys andx, respectively. The wave function is ap- force, the resul{l) overestimates the splitting of parity dou-

proximated in a form of semidirect product, blets. This overestimate is corrected by including the scalar
gauge potential(2). The same effect also appears for
W ($,X) = theoi(S) ® Yiny(S,X), (4.17 ALACM results (3) and (4). However, in this case, the sup-

pression of parity splitting originates in the mass parameter,
where the wave functions for the intrinsic motigi(s,x) not in the gauge potentials. Since we renormalize the mass
are assumed to be a Gaussian, parameter with Eq(4.15, this produces a larger distance

14 between two local minima of the potentisl(s), as com-
exp( _ 0x(S) Xz)_ (4.18 pared toVgp(q). The tunnelling probability between two
2 minima is suppressed by this mass-renormalization effect.
The effect of gauge potentials, the difference betwé&®n
Here the frequencyw,(s) are calculated by the covariant and(4), turns out not to be significant in the ALACM. The
RPA at each point on the collective path. Since the loweshgreement with the exact calculation is good for low-lying
RPA mode is supposed to be along the collective pais)  statequp to the third excited statethough, as expected, it is

wy(S)

Yin(S,X) =

is the frgq_uency of the sc_acond RPA que. not so good for higher-lying states.
Identifying ¢in(s,x) with a state|n) in Egs. (4.8 and We also show transition matrix elemef¢a’|q|n)| in the
(4.9, the (Berry’s) gauge potentials become same figure. They are calculated by

. * * a¢intr_ ’ _ * *
A(S):|f7de'//intrT_o1 (4.19 (n'lalny= | da 4. (dayn(q) forBO, (422
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L r 156 113 1
121 128

10 e 28 177 175 199 o

r 089 075 o7 069 0.74 B

oFr 197 203 196 202 200 A FIG. 7. Spectra up to the fifth excited states
for (1) the BO theory withoutb(q), (2) the BO

theory with®(q), (3) the ALACM theory with-
outd(s), (4) the ALACM theory withd(s), and

(1) (2) (3) (4) (5) (5) the exact calculation. Figur@) is for G=0.2

and (b) for G=2. The numbers next to the ar-

(b) rows denote The values of the transition matrix
30 G=2 1 element/(n|g|n+1)].
197 197 195 195 196

20+ 1
Lle L 178 177 177 177 175 _
10 + 165 166 163 162 165 g
r 125 121 124 124 120 7
ot It 57 il 51 156 |

o These values are about 7 orders of magnitude smaller for the
<”'|Q|”>:f ds ¢;.(s)q(s)¢n(s)  for ALACM, case of strong pairing=2 compared to the weak pairing
o 4.23 G=0.2. For the weak pairing force, it turns out that all states
considerably suffer bad decoupling. Surprisingly, still we
have obtained reasonable agreement for the low-lying spec-
where the wave functiong/(q) and (s) are normalized tra and transition amplitudes.
with respect to the coordinatesands, respectively. Again,
for the case of weak pairing, the amplitude between the first
and second exited states is overestimated in BO thébry V. CONCLUSION
due to too strong mixing of two minima. This is corrected in
ALACM (3), (4) and in BO with gauge potenti&P). We have investigated a simple system with level cross-
Table | shows the expectation values of the decouplindgngs where the monopole pairing interaction plays an impor-
measureD with respect to individual states, tant role and the potential landscape exhibits multiple local
minima. To apply the ALACM theory, canonical coordinates
and a classical Hamilton’s equation have been introduced by
parametrization of the time-dependent states. We have done
this in two different ways. One is based on the time-
dependent mean-fielBCS) theory in which states are not
eigenstates of particle number. It is inevitable that this intro-
duces a Nambu-Goldstori®lG) mode (pairing rotation in
the theory. We have developed the constrained local har-
monic formalism which can treat this spurious component

<n|D|n>=J1dS U (s)D(s)gn(s).  (4.29

TABLE |. Expectation values of the decoupling measure
(n|D|n) with respect to individual eigenfunctions for ca¢8sand
(4) in Fig. 7. See the main text and the caption of Fig. 7 for more

detals. and find a path orthogonal to the NG mode in the configu-
G=02 G=2 ration space. The other is based on the exact time-dependent

n ®) 4) ®) 4) Schrgdinger equa}tion. It is _possible to derive a classical

Hamilton’s equation for a simple two-level system by re-

1 57 45 3.9%10°° 3.98<10°° garding the mixing angle and the relative phase as canonical

2 55 45 1.7x10°°® 1.71x10°8 variables, though this becomes more complicated when the

3 172 162 3.1%10°6 3.17x10°°® number of levels increases. In this parametrization, states are

4 181 167 3.1%10°° 3.19x10°° always eigenstates of particle number and there is no NG

5 8.0 7.1 1.0x10°® 1.00x10°¢ mode.

6 119 125 2.9%10°8 2.99x 1076 Using the mean-field parametrizatigneglecting Fock

terms, we have found that the system exhibits completely
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different collective paths depending on the strength of pairour adiabatic approach, all degrees of freedom are treated
ing force. For a weak pairing force, the collective path can-equivalently, taking account of the mass tensor in the multi-
not connect one local minimum with another. On the otherdimensional configuration space. Thus the collective path is
hand, a path which connects two local minima is obtained fovery much different from the one in the BO approximation
the case of a strong pairing force. In this model, differentfor the case of weak pairing. Actually, the collective path
local minima correspond to different configurations of va-turns out to represent the completely diabatic dynamics in
lence particles. Therefore, the strength of pairing force deterS0me cases. Therefore, if one has a decoupled path deter-
mines either adiabatic or diabatic behaviors of the system. Mined by the system itself, trliabatictheory may account

Using the parametrization of the exact time-dependenfOr the diabatic dynamics.
Schralinger equation, ifG#0, a collective path starting  ©oF the practical applications of the ALACM theory, gen-

from a local minimum always passes through a saddle poirf rally speaking, it is not easy to solve the constraints about

and reach the other minimum. For the strong pairing forceln® NG mode explicitly. Since nuclei show many kinds of

the path is very smooth and is well decoupled from the othepymmetry breakingtranslational Syf,“me”yv rotational_ sym-
degree of freedom orthogonal to the path. However, for thdnetry, gauge symmetyy[he constrglned local harmor_nc for-
weak pairing force, the path shows a peculiar behaviofnalism discussed in Se.c. II B will be very u;efgl in such
(back-bendingon the way where the decoupling is very bad. C3S€S- We shall apply this method to more realistic problems
This is qualitatively consistent with the mean-field results. " the near future.

We have requantized the 1-dimensional collective Hamil- Of course, in many realistic cases, the physics can be
tonian and compared the spectra and transition matrix eldntermediate between that of adiabatic, noncrossing, slow

ments with exact calculations. For the strong pairing forceMotion, and that of diabatic, nonmixing, motion. It remains a

the agreement is excellent for any kind of adiabatic approxichallenge to quantify collective motion in such regimes. One

mation (BO, ALACM). However, for the weak pairing, the such area is the dissipation of collective energy to noncollec-

BO approximation fails even to reproduce the qualitativetive ques' which was first discus_sed by Hill and Whe_eler
4]. This is not easily incorporated in the present formalism,

features of exact spectra, while the ALACM reproduces th o . .
low-lying spectra and transition amplitudes well. The agreeP€cause it is related to the coupling between collective and

ment becomes worse for the higher-lying states beyond poncollective degrees of freedom which 'is supposed to be
barrier height between two local minima. The theory is base¢M2ll- Nevertheless the first step towards including such cou-
on the adiabatic assumption in which Hamiltonians are exP!ing in a theory of large amplitude collective motion has
panded with respect to momentum up to second order. Thu&ecently been discussgd 1], and might very well lead to
this disagreement may come from the higher-order terms wB€W insights in this area. _

have neglected, because the higher-lying states are supposed” conclusion, the ALACM improves on the conventional

to have larger momenta. We have also discussed the effect 5C_theory. It works well even when the mass of valence
gauge potentials arising from change of intrinsic states along@miltonian is smaller than that of the core Hamiltonian,
ecause, in principle, the ALACM treats all degrees of free-

the path. Inclusion of these potentials turns out to improv ] . :

the BO calculations considerably but to leave the ALACM dom equivalently. The ALACM fails to reproduce properties

results almost unchanged. of hlgher-lymg states in 'the case of \{veak' pairing. This is
The authors of Ref[8] have studied the same model deflnltel_y dye to a limitation of the adlaba_tlc theory. Upon

Hamiltonian and concluded that for the case of a weak pairiéduantization, a reasonable agreement with the exact calcu-

ing force the adiabatic approa¢BO approximatiohis not Iatl_o_n has been achieved in both cases of strong and weak

appropriate for describing the system and the diabatic ap?@'""9 forces, at least for the low-lying states.

proach is needed. However, one should bear in mind that, in

the BO approximation, the collective coordinatevas cho- ACKNOWLEDGMENT
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