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Light front treatment of the nucleus: Implications for deep inelastic scattering
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A light front treatment of the nuclear wave function is developed and applied, using the mean field approxi-
mation, to infinite nuclear matter. The nuclear mesons are shown to carry about a third of the nuclear plus
momentump1; but their momentum distribution has support only atp150, and the mesons do not contribute
to nuclear deep inelastic scattering. This zero mode effect occurs because the meson fields are independent of
space-time position.@S0556-2813~97!50207-X#

PACS number~s!: 21.30.Fe, 21.65.1f, 24.10.Jv, 13.60.Hb
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The discovery that the deep inelastic scattering struc
function of a bound nucleon differs from that of a free o
~the EMC effect@1#! changed the way that physicists viewe
the nucleus. With a principal effect that the plus moment
~energy plus third component of the momentum,p01p3

[p1! carried by the valence quarks is less for a bou
nucleon than for a free one, quark and nuclear physics co
not be viewed as being independent. Many different interp
tations and related experiments@2# grew out of the desire to
better understand the initial experimental observations.

The interpretation of the experiments requires that the
of conventional effects, such as nuclear binding, be asse
and understood@2#. Nuclear binding is supposed to be re
evant because the plus momentum of a bound nucleo
reduced by the binding energy, and so is that of its confi
quarks. Conservation of momentum implies that if nucleo
lose momentum, other constituents such as nuclear pions@3#,
must gain momentum. This partitioning of the total plus m
mentum amongst the various constituents is called the
mentum sum rule. Pions are quark antiquark pairs so th
specific enhancement of the nuclear antiquark momen
distribution, mandated by momentum conservation, is a t
able @4# consequence of this idea. A nuclear Drell Yan e
periment@5#, in which a quark from a beam proton annih
lates with a nuclear antiquark to form am1m2 pair, was
performed. No influence of nuclear pion enhancement w
seen, leading Bertschet al. @6# to question the idea that th
pion is a dominant carrier of the nuclear force.

Here a closer look at the relevant nuclear theory is tak
and the momentum sum rule is studied. The first step is
discuss the appropriate coordinates. The structure func
depends on the Bjorken variablexBj which in the parton
model is the ratio of the quark plus momentum to that of
target. ThusxBj5p1/k1, wherek1 is the plus momentum o
a nucleon bound in the nucleus, so a more direct relation
between the necessary nuclear theory and experiment is
tained by using a theory in whichk1 is one of the canonica
variables. Sincek1 is conjugate to a spatial variablex2[t
2z, it is natural to quantize the dynamical variables at
light cone time variable ofx1[t1z. To use such a formal
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ism is to use light front quantization, since the other thr
spatial coordinates~x2,x'! are on a hyperplane perpendic
lar to a light like vector@7#. This light front quantization
requires a new derivation of the wave function, because p
vious work used the equal time formalism.

Such a derivation is provided here, using a simple ren
malizable model in which the nuclear constituents are nu
onsc ~or c8!, scalar mesonsf @8#, and vector mesonsVm.
The LagrangianL is given by

L5
1

2
~]mf]mf2ms

2f2!2
1

4
VmnVmn1

mv
2

2
VmVm

1 c̄8„gm~ i ]m2gvVm!2M2gsf…c8, ~1!

where the bare masses of the nucleon, scalar, and ve
mesons are given byM , ms , mv , andV

mn5]mVn2]nVm.
This Lagrangian may be thought of as a low-energy effect
theory for nuclei under normal conditions. Quarks and g
ons would be the appropriate degrees of freedom at hig
energies and momentum transfer. Understanding the tra
tion between the two sets of degrees of freedom is of h
present interest, and using a relativistic formulation of t
hadronic degrees of freedom is necessary to avoid a m
terpretation of a kinematic effect as a signal for the tran
tion.

This hadronic model, when evaluated in mean field a
proximation, gives@9# at least a qualitatively good descrip
tion of many ~but not all! nuclear properties and reaction
The aim here is to use a simple Lagrangian to study
effects that one might obtain by using a light front formul
tion. It is useful to simplify this first calculation by studyin
infinite nuclear matter which has no surface effects.

The light front quantization necessary to treat nucleon
teractions with scalar and vector mesons was derived by
and collaborators@10,11#. Glazek and Shakin@12# used a
Lagrangian containing nucleons and scalar mesons to s
infinite nuclear matter. Here vector and scalar mesons
included, and the nuclear plus momentum distribution is
tained.

The next step is to examine the field equations. The nu
ons satisfy

g~ i ]2gvV!c85~m1gsf!c8 . ~2!
i-
R8 © 1997 The American Physical Society
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The independent and dependent Fermion degrees of free
in light front field theories are constructed using projecti
operatorsL6[g0g6/2, such thatc68 [L6c8 @13#. The re-
lation between the dependent variablec28 and the indepen-
dent variablec18 is very complicated unless one may set t
plus component of the vector field to zero. This simplific
tion is a matter of a choice of gauge for QED and QCD, b
the nonzero mass of the vector meson prevents such a ch
here. Instead, one simplifies the equation forc28 by trans-
forming @14# the Fermion field according toc8
5e2 igvL(x)c with ]1L5V1. This leads to the result

~ i ]22gvV̄
2!c15@a'•~p'2gvV̄'!1b~M1gsf!#c2 ,

i ]1c25@a'•~p'2gvV̄'!1b~M1gsf!#c1 , ~3!

where

]1V̄m5]1Vm2]mV1. ~4!

The field equations for the mesons are

]mV
mn1mv

2Vn5gvc̄gnc ,

]m]mf1ms
2f52gsc̄c . ~5!

The mean field approximation@9# is implemented by as
suming that the coupling constants are considered strong
the Fermion density large. Then the meson fields can
approximated as classical—the sources of the meson fi
are replaced by their expectation values. In this case,
nucleon mode functions will be plane waves and the nuc
matter ground state can be assumed to be a normal F
gas, of Fermi momentumkF , and of large volumeV in its
rest frame. The number of protons is set equal to the num
of neutrons. Then the meson fields are constants given

f52
gs
ms
2 ^ c̄c& ,

Vm5
gv
mv
2 ^ c̄gmc&5d0,m

gvrB
mv
2 , ~6!

where rB52kF
3/3p2. The expectation values refer to th

nuclear matter ground state.
The quantityV̄m can be obtained from Eqs.~4! and~6!. In

particular, V̄150 by construction. Furthermore, the cond
tions thatVi50 and] iV15] iV050 tell us thatV̄i50. Fi-
nally ]1V̄25]1V0, so the only nonvanishing component
V̄m is V̄25V0.

The fieldsf and V̄2 are constants, within the mean fie
approximation, so the solutions of Eq.~3! are of the plane
wave form;eik•x. That equation can then be rewritten as

~ i ]22gvV̄
2!c15

k'
21~M1gsf!2

k1 c1 . ~7!

The light front eigenenergy~i ]2[k2! is the sum of a kinetic
energy term in which the mass is shifted by the presenc
the scalar field @recall that for free nucleonsk25(k'

2
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1M2)/k1!#, and an energy arising from the vector field. T
nucleon field operator is constructed using the solutions
Eq. ~7! as the plane wave basis states@15#. This means that
the nuclear matter ground state, defined by operators
create and destroy baryons in eigenstates of Eq.~7!, is the
correct wave function and that Eqs.~6! and~7! represent the
solution of the approximate field equations, and the dia
nalization of the Hamiltonian.

The computation of the energy and plus momentum d
tribution proceeds from taking the appropriate expectat
values of the energy momentum tensorTmn @10,11#,

Pm5
1

2E d2x'dx
2^T1m& . ~8!

We are concerned with the light front energyP2 and mo-
mentumP1. The relevant components ofTmn can be ob-
tained from Refs.@10# and @11# and the field equations
Within the mean field approximation one finds

T125ms
2f212c1

† ~ i ]22gvV̄
2!c1 ,

T115mv
2V0

212c1
† i ]1c1 . ~9!

Taking the nuclear matter expectation value ofT12 and
T11, using Eq.~7!, and performing the spatial integral o
Eq. ~8! leads to the result

P2

V
5ms

2f21
4

~2p!3
E
F
d2k'dk

1
k'
21~M1gsf!2

k1 ,

~10!

P1

V
5mv

2V0
21

4

~2p!3
E
F
d2k'dk

1k1. ~11!

The subscriptF denotes thatukW u,kF with k3 defined by the
Glazek-Shakin@12# relation

k15A~M1gsf!21k21k3 . ~12!

Note thatV̄2, associated by Eq.~3! with the variablek2,
does not appear here. Using Eq.~12! allows one to maintain
the equivalence between energies computed in the light f
and equal time formulations of scalar field theories@16#. A
similar equation has been used to restore manifest rotati
invariance in light-front QED@17#.

Using Eq. ~12! allows us to compute the energy of th
system asE5 1

2~P
11P2!. The resulting expression turns ou

to be identical to that of the equal time treatment@9# as can
be seen by summing Eqs.~10! and ~11!, and changing inte-
gration variables from k1 to k3 @~ dk1/k1

→dk3/A(M1gsf)
21k2#. The equality of energies is a nic

check on the present result, and confirms the use of Eq.~12!,
because a manifestly covariant solution of the present p
lem, yielding the standard expression@9# for the energy, has
been obtained@18#.

Light front field theory is a Hamiltonian theory with state
built on a noninteracting vacuum, so the variational princip
is expected to apply. In particular, setting]E/]f to zero
reproduces the field equation forf, as is also usual@9#.
Moreover, the relationP15P2 ~which must hold for the
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system at rest! is a consequence of minimizing the ener
per particle at fixed volume with respect tokF , or minimiz-
ing the energy with respect to the volume@12#. The param-
etersgv

2M2/mv
25195.9 andgs

2M2/ms
25267.1 have been cho

sen @19# so as to give the binding energy per particle
nuclear matter as 15.75 MeV withkF51.42 fm21. In this
case,gvV̄

25330 MeV and solving Eq.~6! for f givesM
1gsf50.56M .

The use of Eq.~11! and these parameters leads imme
ately to the result that only 65% of the nuclear plus mom
tum is carried by the nucleons; the remainder is carried
the mesons. The nucleonic momentum distribution which
the input to calculations of the nuclear structure function
also of primary interest here. This function can be compu
from the integrand of Eq.~11!. The probability that a
nucleon has plus momentumk1 is determined from the con
dition that the plus momentum carried by nucleons,PN

1 , is
given byPN

1/A5*dk1k1 f (k1), whereA5rBV. It is con-

venient to use the dimensionless variabley[k1/M̄ with M̄
5M215.75 MeV. Then Eq.~11! and simple algebra leads t
the equation

f ~y!5
3

4

M̄3

kF
3 u~y12y!u~y2y2!F kF2

M̄2
2S EF

M̄
2yD 2G ,

~13!

where y6[(EF6kF)/M̄ and EF[AkF21(M1gsf)
2. This

function is displayed in Fig. 1. Similarly the baryon numb
distribution f B(y) ~number of baryons pery, normalized to
unity! can be determined from the expectation value
c†c. The result is

f B~y!5
3

8

M̄3

kF
3 u~y12y!u~y2y2!H S 11

EF
2

M̄2y2
D

3F kF2
M̄2

2S EF

M̄
2yD 2G2

1

2y2F kF4M̄4
2S EF

M̄
2yD 4G J .

~14!

FIG. 1. The momentum distribution,f (y) ~solid! and baryon
momentum distributionf B(y) ~dashed!.
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Some phenomenological models treat the two distributi
f (y) and f B(y) as identical. The distributions have the sam
normalization:*dy f(y)51, *dy fB(y)51, but they are dif-
ferent.

The nuclear deep inelastic structure function,F2A can be
obtained from the light front distribution functionf (y) and
the nucleon structure functionF2N using the relation@20#

F2A~x!

A
5E dy f~y!F2N~x/y!, ~15!

wherex is the Bjorken variable computed using the nucle
mass divided byA(M̄ ): x5Q2/2M̄n. This formula is the
expression of the convolution model in which one means
assess, viaf (y), only the influence of nuclear binding an
Fermi motion. IfF2N is obtained from deep inelastic scatte
ing on the free nucleon, other effects such as the nuc
modification of the nucleon structure function~and any in-
fluence of the final state interaction between the debris of
struck nucleon and the residual nucleus@21#! are neglected.
Consider the present effect of having the average value
y equal to 0.65. Frankfurt and Strikman@2# use Eq.~15! to
argue that an average of 0.95 is sufficient to explain the 1
depletion effect observed for the Fe nucleus. The pres
result then represents a very strong binding effect, eve
this infinite nuclear matter result cannot be compared
rectly with the experiments using Fe targets.

It is interesting to compare the 0.65 fraction with the r
sult of a relativistic calculation using the equal time~et! for-
malism @22#. In this calculation, which uses Eq.~1! and for
which the scalar and vector fields are the same as here
plus momentum of a nucleon was chosen as the sum of
Dirac eigenenergy andk3:

ket
1[A~M1gsf!21k21gvV

01k3. ~16!

Using this leads to an average nucleon plus momentum f
tion ^y&et5(EF1gvV

0)/M̄ , which when evaluated with ou
results forkF , f, and V̄2, leads to^y&et51.00. The big
difference between our result and the earlier equal ti
result— compare Eqs.~12! and~16!—arises from our use o
the plus momentum as a canonical momentum variable
the consequent use ofT1m to construct the light front mo-
mentum and energy density.

One might think that the mesons, which cause the la
binding effect, would also have huge effects on deep ine
tic scattering. It is therefore necessary to determine the
sonic momentum distributions. The mesons contribute 3
of the total nuclear plus momentum, but we need to kn
how this is distributed over different individual values. Th
paramount feature is thatf andVm are the same constan
for any and all values of the space-time coordinates. T
means that the related momentum distribution can only
proportional to a delta function setting both the plus and'
components of the momentum to zero. This result is att
uted to the mean field approximation, in which the mes
fields are treated as classical quantitates. Thus the finite
momentum may be thought of as coming from an infin
number of quanta, each carrying an infinitesimal amoun
plus momentum. A plus momentum of 0 can only be a
cessed experimentally atxB j50, which requires an infinite
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amount of energy. Thus, in the mean field approximation,
scalar and vector mesons cannot contribute to deep inel
scattering. The usual term for a field that is constant o
space is a zero mode, and the present Lagrangian provid
simple example. For finite nuclei, the mesons would carr
very small momentum of scale given by the inverse of
nuclear radius, under the mean field approximation. If fl
tuations were to be included, the relevant momentum s
could be of the order of the inverse of the average dista
between nucleons~about 2 fm!.

The Lagrangian of Eq.~1! and its evaluation in mean fiel
approximation for nuclear matter have been used to prov
a simple but semirealistic example. It would be premature
compare the present results with data before obtaining l
front dynamics for a model which addresses chiral symm
try, in which the correlational corrections to the mean fie
approximation are included, and which treats finite nuc
la
B
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Thus the specific numerical results of the present work
far less relevant than the central feature that the meson
sponsible for nuclear binding need not be accessible in d
inelastic scattering.

More generally, we view the present model as being o
of a class of models, such as the conventional shell mo
and the quark meson coupling model@23# in which the mean
field plays an important role. For such models nuclei wou
have constituents that contribute to the momentum sum r
but do not contribute to deep inelastic scattering. Thus
predictive and interpretive power of the momentum sum r
is vitiated.

This work was partially supported by the U.S. DOE.
thank the SLAC theory group and the national INT for the
hospitality. I thank S.J. Brodsky, L. Frankfurt, S. Glaze
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