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Estimating the nuclear level density with the Monte Carlo shell model
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~Received 30 June 1997!

A method for making realistic estimates of the density of levels in even-even nuclei is presented making use
of the Monte Carlo shell model~MCSM!. The procedure follows three basic steps:~1! computation of the
thermal energy with the MCSM,~2! evaluation of the partition function by integrating the thermal energy, and
~3! evaluating the level density by performing the inverse Laplace transform of the partition function using
maximum entropy reconstruction techniques. It is found that results obtained with schematic interactions,
which do not have a sign problem in the MCSM, compare well with realistic shell-model interactions provided
an important isospin dependence is accounted for.@S0556-2813~97!50210-X#

PACS number~s!: 21.10.Ma, 21.60.Cs, 21.60.Ka
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The density of levels in nuclei plays an important role
understanding compound nuclear reactions. Two particul
important examples are the decay of the giant-dipole re
nance~GDR! in hot nuclei@1#, and the radiative capture o
light nuclei, i.e., protons, neutrons, and alphas, in nucleos
thesis@2#. In the first case, properties of the GDR, in partic
lar the damping width, have been studied in several nu
for excitation energies ranging from 50 to 200 MeV, and
has been shown that the analysis of experimental data is
sensitive to the the dependence of the level density on e
tation energy@3#. In contrast to the GDR studies, the partic
capture probability, which determines the rate at which
cleosynthesis reactions occur, is sensitive to the level den
near the particle-decay threshold: i.e.,;5–15 MeV.

In most applications where the level density is requir
the Fermi-gas model estimate@4# is employed

r~E!5
Ap

12a1/4E5/4
exp~2AaE! , ~1!

whereE is the excitation energy, anda is the level-density
parameter, which is determined by the number of sing
particle states at the Fermi energy. The principal shortco
ing of the Fermi gas estimate is that interactions betw
nucleons are ignored. Effects due to shell corrections
pairing correlations are approximated in Eq.~1! by replacing
the excitation energyE by backshifted quantityE2D @5#.
Empirically, botha andD exhibit a dependence onE and the
number of nucleons,A, that cannot simply be estimate
within the context of the Fermi gas model; a typical value
a at low-excitation energies isa;A/8.

An alternative model that explicitly includes both on
and two-body correlations is the shell model. State-of-the
shell-model Hamiltonians, such as the universalsd-shell
~USD! Hamiltonian of Wildenthal@6# have been very suc
cessful at describing both excitation energies and transi
amplitudes for states in a wide range of nuclei (18<A
<48) up to excitation energies of the order 5–10 MeV. A
though the shell model might appear to be the obvio
method for estimating the level density at low-excitation e
ergies, direct diagonalization of the Hamiltonian faces sev
computational limitations due to the fact that the number
basis states scales as the exponential of the number o
lence particles. Indeed, the large number of basis states
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the motivation behind the development of the spectral dis
bution methods of French and others@7#, which rely on the
statistical properties of the elements of the Hamiltonian m
trix. A central-limit theorem can be applied to describe t
action of the Hamiltonian in large spaces@8#; generally re-
ducing the problem to the calculation of the first and seco
moments of the Hamiltonian. In many practical applicatio
however, this limiting situation may not be sufficiently rea
ized. For example, because of features of the Hamilton
which may be thought of as shell corrections, significant
partures from ‘‘normality’’ may be observed at low
excitation energies. As a consequence, it is necessar
compute higher-order moments of the Hamiltonian or pa
tion the shell-model space into smaller subspaces. Unfo
nately, not only are these higher-order moments more d
cult to evaluate, but the level density reconstructed w
orthogonal Hermite polynomials may fail to be positive de
nite @9#. An alternative method was proposed by Pluharˇ and
Weidenmu¨ller @10# in which the partial level densities in th
subspaces were assumed to have a form predicted by
Gaussian orthogonal ensemble~GOE!, i.e., semicircular, as
determined from the first and second moments of the Ham
tonian within the projected subspaces. The total level d
sity, which in their method is guaranteed to be positive de
nite, is then obtained by combining the various subpartitio
with the coupling between the subspaces being determ
statistically from the mean off-diagonal matrix elemen
This procedure also faces several limitations because of
reliance on the GOE limit for the subspaces, as well as be
restricted to the first and second moments of the Ham
tonian. Consequently, in applications to more general sh
model problems, this procedure tends to lead to level de
ties that are somewhat broader than the exact results@11#.

In this work, a method for making realistic estimates
shell-model level densities using the Monte Carlo sh
model @12# ~MCSM! is presented. The power of the MCSM
is that it is capable of providingexactresults for a range of
observables in model spaces where the dimensions are
hibitive for direct diagonalization. In addition, the MCSM
quite well suited to compute thermal properties, such as
energy, from which the partition function may be obtaine
which then yields the level density through an inver
Laplace transform. The applicability of the MCSM to th
most general of shell-model Hamiltonians, however, is li
R1678 © 1997 The American Physical Society
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ited because of the sign problem associated with the Mo
Carlo weight function. One is then faced with either using
extrapolation method@13#, which tends to yield larger statis
tical errors, or a schematic interaction that is free of the s
problem. Here, it will be shown that schematic Hamiltonia
such as a surface-delta interaction@14#, possess most of th
global, or collective, features exhibited by ‘‘realistic
Hamiltonians with one important exception: in the spectra
even-even nuclei, the higher isospin states tend to be too
in energy, thereby compressing the total level density. T
improper isospin dependence can be corrected by adding
termaT̂2 to the schematic interaction, thus shifting the ex
tation energy of the higher isospin states. Unfortunately,
T̂2 term also has a bad sign, and cannot be computed
rectly. To address this problem, a simple and accurate
proximation for correcting the thermal energy for theT2 de-
pendence in even-even nuclei is presented, and it will
shown by direct comparison that an MCSM calculation us
a schematic interaction yields a reasonable estimate of
level density obtained in ‘‘realistic’’ shell-model calcula
tions.

The procedure consists of four steps:~1! using a semire-
alistic schematic interaction, compute the thermal expe
tion value of the Hamiltonian,

E~b!5
Tr@Ĥe2bĤ#

Tr@e2bĤ#
5

(
i

Eie
2bEi

(
i

e2bEi

5

E dEe2bEEr~E!

E dEe2bEr~E!

,

~2!

with the MCSM;~2! correctE(b) for the missingT2 depen-
dence using Eq.~9! below; ~3! compute the partition func
tion, Z(b), via

lnZ~b!52E
0

b

db8E~b8!1 lnZ~0! , ~3!

where Z(0) is actually the total number of states; and~4!
calculater(E) using maximum-entropy reconstruction tec
niques to perform the inverse Laplace transform ofZ(b).

The primary goal of this work is to establish the feasib
ity of the method for making estimates of the level density
realistic situations. To accomplish this, comparisons with
act results are necessary, and the focus of this work is
nucleus24Mg, which has four valence protons and neutro
occupying the 0d5/2, 1s1/2, and 0d3/2 valence orbitals. Be-
cause of the overall success of the USD interaction, wh
was explicitly developed for this model space, this inter
tion will be used as a benchmark for success. The schem
interaction is composed of the three single-particle ener
and a two-body potential given by the surface-delta inter
tion ~SDI! @14#, which has the form

V~r1 ,r2!524pV0d~r12r2!d~r 12R0! , ~4!

wherer i is the position vector for thei th particle andR0 is
the nuclear radius. The principal feature of the SDI is tha
is basically comprised of multipole-multipole terms, with th
dominant multipoles being monopole and quadrupole. T
ing R053.145 fm,V0554.76 MeV/fm2, and evaluating the
te
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two-body matrix elements using harmonic oscillator wa
functions with\v513.531 MeV, theT51 USD matrix el-
ements are reproduced by better than 500 keV. The sin
particle energies are adjusted to reproduce the low-lying
perimental spectra for19O and the USD shell-model spectr
for 25O and 27O. Using fixed single-particle energies acro
the shell and the USD mass scaling of (18/A)0.3 for the two-
body part, the SDI Hamiltonian reproduces the USD spec
and level densities for oxygen isotopes reasonably well.
the other hand, an important component is missing, as
not possible to reproduce the binding energies for the oxy
isotopes. This feature is generic to schematic interaction
the form multipole plus pairing, and may be ‘‘fixed’’ by
adding a term dependent on the square of the isospin,aT̂2,
as is illustrated in Fig. 1, where the binding energies for
sd-shell oxygen isotopes are compared for the USD inter
tion and the schematic Hamiltonian, with parametersed5/2
524.820 MeV, es1/2522.820 MeV, ed3/251.530 MeV,
V0554.76 MeV/fm2, anda50.546 MeV.

From the standpoint of estimating the level density,
adequate Hamiltonian would in fact be an extension of
SDI that includes isospin-dependent components: in part
lar the modified surface delta interaction@15#. Because of the
sign problem in the MCSM, however, it is generally n
possible to treat isospin-dependent terms in the Hamilton
On the other hand, for a given isospin value, the SDI spe
compare well with the realistic USD results. Hence, a r
sonable first-order correction may be obtained by sim
shifting the higher isospin states by addingaT̂2 to the Hamil-
tonian. The magnitude of the coefficienta, however, cannot
be estimateda priori, as it seems to differ from nucleus t
nucleus and depends on the number of the protons and
trons as well as whether the shell is more than half full. T
is illustrated in Table I, where the excitation energies o
tained with the SDI and USD interactions for the firstJ
501 states of each isospin are tabulated for24Mg and 32S.
Also, given in the table are the total number of states of e
isospin that contribute to the total level density. Because
this unpredictableT2 behavior, a shell-model calculatio
with a realistic interaction, even within a truncated mod

FIG. 1. Comparison of binding energies for oxygen isotopes
a function of neutron number obtained with the USD~solid line!

and SDI10.546T̂2 ~dotted line! Hamiltonians, respectively.
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space, for a single angular momentum for a few isospin
necessary to determine a reasonable estimate fora. For
24Mg, the improper isospin dependence is corrected on
erage witha51.507. On the other hand, to illustrate that t
SDI interaction gives a good representation of the low-ly
collective behavior for24Mg, the excitation energies of th
lowest fewT50 states are compared with the USD values
Table II.

Using the Monte Carlo shell model~MCSM! techniques
described in Ref.@12#, the expectation values of observabl
such as the Hamiltonian,T̂2, etc., were evaluated for the SD
interaction as a function of the inverse temperature,b, in the
range 0<b<1 MeV21 in increments ofDb51/80 MeV21.
In order to ensure sufficient accuracy, 2000 Monte Ca
samples were taken for eachb value, and multiple time
slices were used in all MCSM calculations withb>0.0375
MeV21, with the maximum number of 40 being used atb51
MeV21. Typical Monte Carlo uncertainties for the energ
observable ranged from 10 keV for small values ofb to
about 120 keV forb;1 MeV21.

With E(b), the partition function is obtained via Eq.~3!,
and the level density is then given by the inverse Lapl
transform ofZ(b). Although a saddle-point approximatio
may be employed, givingr(E)5ebE1 lnZ/A22p]E/]b, this
method tends to be somewhat unstable at low-excitation
ergies due to difficulties associated with computing the
rivative in the denominator. An alternative method is
evaluate the inverse transform using maximum-entro
~MaxEnt! reconstruction techniques@16#. The starting point
is to bin r(E) into NR bins of equal widthDE, namely

r~E!5(
i

NR

f i$u@E2~Ei2D/2!#2u@E2~Ei1D/2!#% ,

~5!

TABLE I. Excitation energies~in MeV! for the firstJ50 states
of each isospin for the SDI and USD interactions for24Mg and 32S.
The number of states for each isospin contributing to the total le
density is also tabulated.

24Mg 32S
T USD SDI USD SDI # States

0 0.000 0.000 0.000 0.000 166,320
1 12.872 9.351 7.312 4.735 332,640
2 15.425 7.903 12.060 6.434 237,600
3 33.923 22.528 33.468 22.268 83,160
4 46.040 26.251 45.404 26.328 11,880

TABLE II. Comparison between the USD and SDI excitatio
energies~in MeV! for the lowest fewT50 states in24Mg. Shown
are the first ten states as predicted by the USD interaction, and
the lowestJ57 and 8 states.

J USD SDI J USD SDI

0 0.000 0.000 0 7.561 6.778
2 1.509 1.973 1 7.764 7.253
2 4.122 4.146 5 7.883 8.281
4 4.378 4.845 6 8.263 8.460
3 5.097 5.326 7 12.283 12.596
4 5.934 5.314 8 12.088 10.974
is

v-

o

e

n-
-

y

wheref i is the number of levels contained within thei th bin.
With this level density, the reconstructed partition function
then

ZR~b!5(
i

NR 2 f i

b
e2bEisinh~bDE/2! . ~6!

The goal of MaxEnt is to find the set of values$ f i% that
maximize the extended entropy functionalaS2x2/2, where

x25(
j

N
@Z~b j !2ZR~b j !#

2

s j
2

~7!

quantifies how well the reconstruction reproduces theN cal-
culated values of theZ(b j ) ~noteNR<N! and the informa-
tion entropy,S, is given by

S5(
i

NR

@ f i2Di2 f i ln~ f i /Di !# . ~8!

In the MaxEnt method, it is necessary to specify a defa
model $Di%, which may be used to characterize any pr
information known about the problem at hand. In this case
is well known that within a finite model space, the lev
density exhibits a Gaussian character@17#, which may be
used to define the default model. For finite-space, sh
model calculations, the total number of states is known a
the first and second moments of the level density may
obtained fromE(b50) and dE(b)/dbub50 , respectively.
The reconstructed$ f i% also depend ona, which governs the
relative weight between the default model and chi-squa
Here,a was chosen so thatx2;N. Finally, the uncertainty
in the f i values may be obtained in a manner similar
least-squares fitting from the curvature matrix]2(aS
2x2/2)] f i] f j .

As was mentioned above, the SDI interaction exhibits
bad isospin dependence that can be corrected by adding
term aT̂2 to the Hamiltonian. Unfortunately, this additiona
term has a bad sign in the MCSM and cannot be evalua
directly. The extrapolation method of Ref.@13# could be
used, but at a significant computational cost and larger
tistical errors. Instead, for even-even nuclei, where the lo
lying states are unaffected by the additional term, a per
bative approach may be more useful. Towards this end,aT̂2

is added to the SDI Hamiltonian, and the energy is evalua
by expanding theaT̂2 terms in the exponential in Eq.~2! to
first order inb. Unfortunately, a further limitation is impose
due to computational limitations that make it impractical
evaluate the expectation value ofn-body operators in the
MCSM beyondn52. Given these considerations, the firs
order correction to the energy is estimated as

Ecorr5ba
]^T̂2&

]b
1a^T̂2& . ~9!

In comparison with exact results, Eq.~9! works quite well,
although it tends to ‘‘over correct’’ by approximately 10%
This over correction, which may be due to the neglec
(T̂2)2 terms in the expansion, can be damped by multiply
Ecorr by the factore2ba^T̂2&. For illustrative purposes, both
E(b) and lnZ(b) are shown in Fig. 2 for20Ne using the SDI
interaction with and without the iosospin correction factor.
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the figure, the solid and dashed lines representE(b) and
Z(b) obtained by using the exact eigenvalues of a sh

model diagonalization for the SDI and SDI1aT̂2 Hamilto-
nians, respectively. The dotted line represents the results
tained by addingEcorr to the SDI results. From the figure,
is seen that the corrected values very accurately reprod
both the energy and partition function of the SDI1aT̂2

Hamiltonian.
Shown in Fig. 3 are the reconstructed level densities

tained for 24Mg using the SDI~top! and SDI11.507T̂2 ~bot-
tom! Hamiltonians, respectively. For the reconstructio
E(b) was normalized relative to the ground state val
which was evaluated to be276.844~200! MeV by perform-
ing MCSM calculations for 1.75<b<2.25 MeV21 and ex-
trapolating forb→`. The histogram in both panels repr
sents the exact level density for24Mg using the USD
Hamiltonian, and was obtained by direct diagonalization a
placing the 28503 (Jz50) eigenvalues into 1 MeV bins
while including the 2J11 degeneracy. Because of the ne
Gaussian structure of the level density,r(E) is only plotted
up to 45 MeV, which is slightly larger than the centroid
the USD level density~;42 MeV!. From the top panel, it is
clear that the level density obtained from the SDI Ham
tonian alone is much too compressed~centroid at ;36
MeV!, and overpredicts ther(E) by nearly a factor of two
for E<20 MeV. On the other hand, the corrected level de
sity represents a considerable improvement~centroid ;40
MeV!, and gives a reasonable representation of the U
level density for excitation energies<20 MeV.

At this point, it is important to note an important limita
tion in using the shell model to estimate the nuclear le
density. Because of the fact that all calculations are by
cessity limited to a finite model space, the shell-model le
density will always have a Gaussian character, and at s
point will always underestimate the true level density b
cause of the presence of states representing excitations
side of the model space. For the most part, the shell mod
best suited to describe states at lower-excitation energ

FIG. 2. Plot of the energy,E(b), and partition function,Z(b)

for 20Ne, as a function ofb for the SDI and SDI1aT̂2 Hamilto-
nians. The solid and dashed lines represent the SDI and

1aT̂2 results obtained from the exact eigenvalues, while the do
line shows the SDI results corrected via Eq.~9!.
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Hence, it is not realistic to expect that the shell model co
provide an estimate of the level density for excitation en
gies around 40–50 MeV. In the case of a single major os
lator shell, such as thesd shell used here, the results a
comparable to experimental data forE<10 MeV. On the
other hand, by enlarging the model space to include m
configurations, say another major oscillator shell such as
f p shell, the method presented here can be used to m
estimates for the level density up to excitation energies of
order 15–20 MeV. In this case, however, it will also b
necessary to account for states of differing parity, as wel
spurious excitations of the center of mass.

To conclude, the procedure outlined here can success
describe the level density of a realistic nuclear system,
plans are currently underway to compute level densities
22Mg, 26Si, 30S, and 34Ar, which are needed to make est
mates of~a,g! reaction rates of astrophysical interest@18#. In
addition, the method will also be applied to162Dy and 172Yb
where experimental data@19# for r(E) exists for excitation
energies up to the neutron separation energy. In these nu
since the protons and neutrons occupy different major sh
the problems associated with the higher isospin sta
pointed out here are most likely to be mitigated.

Discussions with C. W. Johnson and J. P. Draayer
gratefully acknowledged. This work was supported in part
NSF Cooperative agreement No. EPS 9550481, NSF G
No. 9603006, and U.S. DOE Contract No. DE-FG0
96ER40985.
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FIG. 3. Reconstructed level densities obtained for24Mg using

the SDI~top panel! and the SDI11.507T̂2 ~bottom panel! Hamilto-
nians, respectively. The histogram in both panels represents
24Mg level density obtained with the USD interaction.
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