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Estimating the nuclear level density with the Monte Carlo shell model
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A method for making realistic estimates of the density of levels in even-even nuclei is presented making use
of the Monte Carlo shell modéMCSM). The procedure follows three basic stefis: computation of the
thermal energy with the MCSM?2) evaluation of the partition function by integrating the thermal energy, and
(3) evaluating the level density by performing the inverse Laplace transform of the partition function using
maximum entropy reconstruction techniques. It is found that results obtained with schematic interactions,
which do not have a sign problem in the MCSM, compare well with realistic shell-model interactions provided
an important isospin dependence is accounted 80556-28187)50210-X]

PACS numbd(s): 21.10.Ma, 21.60.Cs, 21.60.Ka

The density of levels in nuclei plays an important role inthe motivation behind the development of the spectral distri-
understanding compound nuclear reactions. Two particularlypution methods of French and othé¢i, which rely on the
important examples are the decay of the giant-dipole resacstatistical properties of the elements of the Hamiltonian ma-
nance(GDR) in hot nuclei[1], and the radiative capture of trix. A central-limit theorem can be applied to describe the
light nuclei, i.e., protons, neutrons, and alphas, in nucleosynaction of the Hamiltonian in large spacgg); generally re-
thesis[2]. In the first case, properties of the GDR, in particu- gucing the problem to the calculation of the first and second
lar the damping width, have been studied in several nucleinoments of the Hamiltonian. In many practical applications,
for excitation energies ranging from 50 to 200 MeV, and ithowever, this limiting situation may not be sufficiently real-
has been shown that the analysis of experimental data is vefyed. For example, because of features of the Hamiltonian,
sensitive to the the dependence of the level density on exciyhich may be thought of as shell corrections, significant de-
tation energy 3]. In contrast to the GDR studies, the patrticle partures from “normality” may be observed at low-
capture probability, which determines the rate at which nupycitation energies. As a consequence, it is necessary to
cleosynthesis reactions occur, is sensitive to the level densitélompute higher-order moments of the Hamiltonian or parti-

near the particle-decay threshold: i.e.5-15 MeV. ~tion the shell-model space into smaller subspaces. Unfortu-
In most applications where the level density is requirednately, not only are these higher-order moments more diffi-
the Fermi-gas model estimafé] is employed cult to evaluate, but the level density reconstructed with
iy orthogonal Hermite polynomials may fail to be positive defi-
_ m 2\aE 1 nite [9]. An alternative method was proposed by Pluaad
p(E) Ta—ga®XA(2VaE), D) o L . e
12a-""E Weidenmlier [10] in which the partial level densities in the

subspaces were assumed to have a form predicted by the

whereE is the excitation energy, anal is the level-density Gaussian orthogonal ensemil@OFE), i.e., semicircular, as
parameter, which is determined by the number of singledetermined from the first and second moments of the Hamil-
particle states at the Fermi energy. The principal shortcomtonian within the projected subspaces. The total level den-
ing of the Fermi gas estimate is that interactions betweesity, which in their method is guaranteed to be positive defi-
nucleons are ignored. Effects due to shell corrections andite, is then obtained by combining the various subpartitions
pairing correlations are approximated in Ef). by replacing  with the coupling between the subspaces being determined
the excitation energf by backshifted quantitte—A [5].  statistically from the mean off-diagonal matrix elements.
Empirically, botha andA exhibit a dependence dhand the  This procedure also faces several limitations because of the
number of nucleonsA, that cannot simply be estimated reliance on the GOE limit for the subspaces, as well as being
within the context of the Fermi gas model; a typical value forrestricted to the first and second moments of the Hamil-
a at low-excitation energies i@~ A/8. tonian. Consequently, in applications to more general shell-

An alternative model that explicitly includes both one- model problems, this procedure tends to lead to level densi-
and two-body correlations is the shell model. State-of-the-arties that are somewhat broader than the exact refsidis
shell-model Hamiltonians, such as the universdishell In this work, a method for making realistic estimates of
(USD) Hamiltonian of Wildenthal[6] have been very suc- shell-model level densities using the Monte Carlo shell
cessful at describing both excitation energies and transitiomodel[12] (MCSM) is presented. The power of the MCSM
amplitudes for states in a wide range of nuclei €8 s that it is capable of providingxactresults for a range of
<48) up to excitation energies of the order 5-10 MeV. Al- observables in model spaces where the dimensions are pro-
though the shell model might appear to be the obviousibitive for direct diagonalization. In addition, the MCSM is
method for estimating the level density at low-excitation en-quite well suited to compute thermal properties, such as the
ergies, direct diagonalization of the Hamiltonian faces severenergy, from which the partition function may be obtained,
computational limitations due to the fact that the number ofwhich then yields the level density through an inverse
basis states scales as the exponential of the number of vaaplace transform. The applicability of the MCSM to the
lence particles. Indeed, the large number of basis states wasost general of shell-model Hamiltonians, however, is lim-
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ited because of the sign problem associated with the Mont
Carlo weight function. One is then faced with either using an
extrapolation methofl13], which tends to yield larger statis- 5 |
tical errors, or a schematic interaction that is free of the sigr
problem. Here, it will be shown that schematic Hamiltonians,
such as a surface-delta interactidd], possess most of the

global, or collective, features exhibited by “realistic”

Hamiltonians with one important exception: in the spectra of
even-even nuclei, the higher isospin states tend to be too lo
in energy, thereby compressing the total level density. Thi¢;
improper isospin dependence can be corrected by adding tt 35 |

termaT? to the schematic interaction, thus shifting the exci-
tation energy of the higher isospin states. Unfortunately, this

T2 term also has a bad sign, and cannot be computed d
rectly. To address this problem, a simple and accurate af 16 18 20 22 24 2 28 30
proximation for correcting the thermal energy for fiéde- N

pendence in even-even nuclei is presented, and it will be FIG. 1. Comparison of binding energies for oxygen isotopes as
shown by direct comparison that an MCSM calculation usinga function of neutron number obtained with the USlid line)

a schematic interaction yields a reasonable estimate of thghd SDH0.54612 (dotted ling Hamiltonians, respectively.

level density obtained in “realistic” shell-model calcula-

tions. . . . two-body matrix elements using harmonic oscillator wave
The procedure consists of four stegs} using a semire- ¢\ ione with%w=13.531 MeV, theT=1 USD matrix el-

alistic schematic interaction, compute the thermal expecta; |\ i< are reproduced by better than 500 keV. The single-
tion value of the Hamiltonian, '

particle energies are adjusted to reproduce the low-lying ex-
perimental spectra fot?0 and the USD shell-model spectra

25 +

Binding Energy (MeV)

N i > Eje P f dEe #EEp(E) for 2°0 and ?’0. Using fixed single-particle energies across
E(B)= TrHe 7] _ ] — the shell and the USD mass scaling of @8 for the two-
Tre A1] 2 o BE dEe PEp(E) ' body part, the _S_DI Hamiltonian_reproduces the USD spectra
i P and level densities for oxygen isotopes reasonably well. On

(2)  the other hand, an important component is missing, as it is

not possible to reproduce the binding energies for the oxygen

with the MCSM; (2) correctE(3) for the missingT? depen-  isotopes. This feature is generic to schematic interactions of
dence using Eq(9) below; (3) compute the partition func- the form multipole plus pairing, and may be “fixed” by

tion, Z(B), via adding a term dependent on the square of the isosgif,
B as is illustrated in Fig. 1, where the binding energies for the
InZ(B)= _J dB'E(B")+InZ(0), (3)  sdshell oxygen isotopes are compared for the USD interac-

0 tion and the schematic Hamiltonian, with parametejs,

. =—4.820 MeV, =—2.820 MeV, =1.530 MeV,
where Z(0) is actually the total number of states; aft) Vy=54.76 M:V/frii%llzanda=0 546 ?\Ae\fdw €

calculatep(E) using maximum-entropy reconstruction tech- From the standpoint of estimating the level density, an

niques to perform the inverse Laplace transforzgg). adequate Hamiltonian would in fact be an extension of the

. The primary goal of th_is WO”.( is to establish the feas_ibi!- SDI that includes isospin-dependent components: in particu-
ity of the method for making estimates of the level density 'Nar the modified surface delta interactifkb]. Because of the
realistic situations. To accomplish this, comparisons with ex-

| d the f ¢ thi Ki hsign problem in the MCSM, however, it is generally not
act results are necessary, and the focus of this work Is thg,qqiple 10 treat isospin-dependent terms in the Hamiltonian.

nucleus_z“M% V‘éhiCh has four(;/egjence rl)rotons at\)r)d IneutronsOn the other hand, for a given isospin value, the SDI spectra
occupying the s, 1Sy, and Mg, valence orbitals. Be- oo nnare well with the realistic USD results. Hence, a rea-

cause of.the overall success Qf the USD interact_ior], Whic'%onable first-order correction may be obtained by simply
was explicitly developed for this model space, this interac-

tion will be used as a benchmark for success. The schematre'@if.tmg the higher isospin states by addaig’ to the Hamil-

interaction is composed of the three single-particle energie%oman'_ The mag'_”'“_*de O_f the coefﬂme@,t however, cannot
e estimatedh priori, as it seems to differ from nucleus to

and a two-body potential given by the surface-delta interac=

: . nucleus and depends on the number of the protons and neu-
tion (SD) [14], which has the form trons as well as whether the shell is more than half full. This
V(ry,ro)=—4mVed(ri—r5)8(r;—Ry), (4) s illustrated in Table I, where the excitation energies ob-
tained with the SDI and USD interactions for the fiikst
wherer; is the position vector for theth particle andR, is =07 states of each isospin are tabulated #évig and 32S.

the nuclear radius. The principal feature of the SDI is that itAlso, given in the table are the total number of states of each
is basically comprised of multipole-multipole terms, with the isospin that contribute to the total level density. Because of
dominant multipoles being monopole and quadrupole. Takthis unpredictableT? behavior, a shell-model calculation
ing Ro=3.145 fm,V,=54.76 MeV/fnf, and evaluating the with a realistic interaction, even within a truncated model
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TABLE I. Excitation energiegin MeV) for the firstJ=0 states  wheref; is the number of levels contained within thé bin.
of each isospin for the SDI and USD interactions #ivig and3%S.  With this level density, the reconstructed partition function is
The number of states for each isospin contributing to the total levethen
density is also tabulated.

I O'J

Ng
20 22g zR(ﬁ)=2i %f'eﬁEisink(,BAEIZ). (6)
T usD SDI usD SDI # States
The goal of MaxEnt is to find the set of valu¢§;} that
0 0.000 0.000 0.000 0.000 166,320 maximize the extended entropy functione— x%/2, where
1 12.872 9.351 7.312 4.735 332,640 y
2 15.425 7.903 12.060 6.434 237,600 , < [Z(B)—Zr(B)]
3 33.923 22528  33.468  22.268 83,160 Xo=2 2 @
4

46.040 26.251 45.404 26.328 11,880

guantifies how well the reconstruction reproducesNheal-

. . . .culated values of th&(g;) (noteNg=<N) and the informa-
space, for a single angular momentum for a few isospins i, entropy,S, is given by

necessary to determine a reasonable estimateafoFor
2"Mg, the improper isospin dependence is corrected on av- NR
erage witha=1.507. On the other hand, to illustrate that the SzZ [fi—D;—fiIn(f;/D;)]. (8)
SDI interaction gives a good representation of the low-lying :
collective behavior for*"Mg, the excitation energies of the | the MaxEnt method, it is necessary to specify a default
lowest fewT =0 states are compared with the USD values iny,odel {D;}, which may be used to characterize any prior
Table I1. _ information known about the problem at hand. In this case, it

Using the Monte Carlo shell modeéMCSM) techniques s well known that within a finite model space, the level
described in Ref|12], the expectation values of observables yensity exhibits a Gaussian characé], which may be
such as the Hamiltoniail?, etc., were evaluated for the SDI used to define the default model. For finite-space, shell-
interaction as a function of the inverse temperatyén the  model calculations, the total number of states is known and
range G<B<1 MeV ! in increments ofAB=1/80 MeV 1.  the first and second moments of the level density may be
In order to ensure sufficient accuracy, 2000 Monte Carlabtained fromE(B=0) and dE(B)/dB|z_o, respectively.
samples were taken for eagh value, and multiple time The reconstructelf;} also depend om, which governs the
slices were used in all MCSM calculations wig»0.0375  relative weight between the default model and chi-square.
MeV !, with the maximum number of 40 being used3atl  Here, a was chosen so that?~N. Finally, the uncertainty
MeV~1. Typical Monte Carlo uncertainties for the energy in the f, values may be obtained in a manner similar to
observable ranged from 10 keV for small values ®fto  |east-squares fitting from the curvature matri®(aS
about 120 keV forB~1 MeV 1. — x?12)of ;.

With E(B), the partition function is obtained via E(B), As was mentioned above, the SDI interaction exhibits a
and the level density is then given by the inverse Laplacgad isospin dependence that can be corrected by adding the
transform ofZ(p). Although a saddle-point approximation termaT? to the Hamiltonian. Unfortunately, this additional

. _ aBE+INZ) [T o7 2pn thi
may be employed, giving(E) =e IV—2mEldp, this term has a bad sign in the MCSM and cannot be evaluated

method tends to be somewhat unstable at low-excitation eny; h
ergies due to difficulties associated with computing the de-d'reCtly' The extrapolation method of Reffl3] could be

rivative in the denominator. An alternative method is touist(?d’lburtr art aIﬁlginlflézaptrcci/mﬁutstlgnr?l (ioiStvsr?dr Iatrr?erl s\;tva—
evaluate the inverse transform using maximum-entrop stical errors. Instead, Tor even-even nuciel, where the 1o

(MaxEnb reconstruction techniqudd6]. The starting point yin-g states are unaffected by the additional term, aApertur-
is to bin p(E) into Ng bins of equal widthAE, namely bative approach may be more useful. Towards this afid,
is added to the SDI Hamiltonian, and the energy is evaluated
by expanding the T2 terms in the exponential in ER) to
first order inB. Unfortunately, a further limitation is imposed
(5) due to computational limitations that make it impractical to
evaluate the expectation value pfbody operators in the

TABLE II. Comparison between the USD and SDI excitation MCSM beyondn=2. Given these considerations, the first-
. . _ . 2 . L
energles(m MeV) for the Iowes_t fewT=0 states in “Mg. _Shown order correction to the energy is estimated as
are the first ten states as predicted by the USD interaction, and then

Ng

p(E)=2 T{60lE—(Ei—A/2)]—0[E—(Ei+A/2)]},

the lowest]=7 and 8 states. 9 -“|-2>
_ g X +2
Ecor=Ba— == +a(T?). ©
J USD SDI J USD SDI B
0 0.000 0.000 0 7561 6.77¢  |n comparison with exact results, E() works quite well,
2 1.509 1.973 1 7.764 7.053 although it tends to “over correct” by approximately 10%.
2 4.122 4.146 5 7883 8.281 This over correction, which may be due to the neglected
4 4.378 4.845 6 8.263 ga60  (T?)? terms in the expansion, can be damped by multiplying
T2 . .
3 5.097 5.326 7 12.283 12.596  Eco by the factore 2T For illustrative purposes, both
4 5.934 5.314 8 12.088 10.974 E(B) and IrZ(B) are shown in Fig. 2 fof°Ne using the SDI

interaction with and without the iosospin correction factor. In
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FIG. 2. Plot of the energyg(B), and partition functionZ(3)
for 2Ne, as a function ofg for the SDI and SD+aT2 Hamilto- 1000
nians. The solid and dashed lines represent the SDI and SDI
+aT? results obtained from the exact eigenvalues, while the dotted m 100
line shows the SDI results corrected via Eg). = *
the figure, the solid and dashed lines repredefg) and 10
Z(B) obtained by using the exact elgenvaIAues of a shell- " £+ Vg +1.507T
model diagonalization for the SDI and SPaT? Hamilto- 1 , , ,
nians, respectively. The dotted line represents the results ob- 0 20 40
tained by addinde,,, to the SDI results. From the figure, it E (MeV)

is seen that the corrected values very accurately reproduce

both the energy and partition function of the SEAT?
Hamiltonian.
Shown in Fig. 3 are the reconstructed level densities ob

tained for ?Mg using the SDKtop) and SDH-1.507T2 (bot- B o

tom) Hamiltonians, respectively. For the reconstruction,Hence, it is not realistic to expect that the shell model could
E(B) was normalized relative to the ground state valueProvide an estimate of the level density for excitation ener-
which was evaluated to be 76.844200) MeV by perform-  9i€s around 40-50 MeV. In the case of a single major oscil-

ing MCSM calculations for 1.75 8<2.25 MeV ! and ex- lator shell, such as thed shell used here, the results are
trapolating for B—. The histogram in both panels repre- comparable to experimental data fB,<10 MeV. On the

sents the exact level density fo¥Mg using the USD othe_r han_d, by enlarging the model space to include more
Hamiltonian, and was obtained by direct diagonalization an onfigurations, say another major oscillator shell such as the
placing the,28503 1,=0) eigenvalues into 1 MeV bins p shell, the method presented here can be used to make
while including the 2+1 degeneracy. Because of the r]earestimates for the level density up to excitation energies of the

Gaussian structure of the level densip§E) is only plotted order 15-20 MeV. In this case, however, it will also be
up to 45 MeV, which is slightly larger than the centroid of necessary to account for states of differing parity, as well as

o ... spurious excitations of the center of mass.
E:TSaLrJ?rllja tlet\;]eel (Ij:vr:aslltgerfszit Mgg/t)éilr:\:ao dmfrtcr)]r?\ t(t)hpepggflyl—::r?\il- To conclude, the procedure outlined here can successfully
; . y . describe the level density of a realistic nuclear system, and
tonian alone is much too compressécentroid at ~36

MeV), and overpredicts the(E) by nearly a factor of two plans are currently underway to compute level densities for

22 26; 30 34 H :
Mg, °Si, 'S, and*"Ar, which are needed to make esti-
for E<20 MeV. On the other hand, the corrected level den- ! ' L ' St
sity represents a considerable improvem@entroid ~40 mates of{«,7y) reaction rates of astrophysical intergk8]. In

i ; ied 17D 17
MeV), and gives a reasonable representation of the Usﬁddltlon' the.method will also be apphed"c y and . ZY.b
. o : where experimental dafd 9] for p(E) exists for excitation
level density for excitation energies20 MeV. . . .
. R . ... energies up to the neutron separation energy. In these nuclei,
At this point, it is important to note an important limita-

tion in using the shell model to estimate the nuclear leve ince the protons and neutrons occupy different major shells,

density. Because of the fact that all calculations are by ne-he problems associated with the higher isospin states

cessity limited to a finite model space, the shell-model Ievepomted out here are most likely to be mitigated.

density will always have a Gaussian character, and at some Discussions with C. W. Johnson and J. P. Draayer are
point will always underestimate the true level density be-gratefully acknowledged. This work was supported in part by

cause of the presence of states representing excitations olNSF Cooperative agreement No. EPS 9550481, NSF Grant
side of the model space. For the most part, the shell model ilo. 9603006, and U.S. DOE Contract No. DE-FG02-

best suited to describe states at lower-excitation energieS6ER40985.

FIG. 3. Reconstructed level densities obtained #Mg using

the SDI(top panel and the SD¥ 1.50712 (bottom panel Hamilto-
nians, respectively. The histogram in both panels represents the
23Mg level density obtained with the USD interaction.
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