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Fragment recognition in molecular dynamics
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We investigate the properties of three methods of fragment recognition in microscopic simulations of
molecular dynamics. They aif@) the early cluster recognition algorith(ECRA) which looks for the most
bound partitions in phase spadb) the minimum spanning tree in two particle energy spdd8TE) which
looks for those simply connected partitions in which each particle is bound to, at least, one other member of the
cluster to which it belongs, an@) the standard minimum spanning trédST) in configuration space. It is
found that, if the objective of a given calculation is to study the time evolution of properties related to the
fragment distribution, the MST should be discarded, MSTE results will be valid for not too short times, and
ECRA results will give the most complete description of such propelft®#3556-28137)01308-3

PACS numbeps): 25.70.Pq, 02.70.Ns, 24.10.Lx

I. INTRODUCTION outputs. Finally conclusions are drawn.

The problem of fragmentation of finite excited systems is
a topic of current interest in many branches of physics, en- Il. MODEL AND FRAGMENT RECOGNITION
compassing phenomena involving very different scales and ALGORITHMS
interaction potentials which range from nuclear multifrag- Th t widel d algorithm f zing frag-
mentation to the explosion of hot and dense liquid drops. The € most widely used algorithm Tor récognizing frag

possibility of finding power-law fragment distributions, i.e., ments is the standard minimum spanning (#@ST) in con-

scale-free mass spectra, in such different systems opens tﬂggl;fg'rﬁg ssupcicgswzlrircl)lz;tzifn ?ﬁ:gr b?r:rtcr)]vi\;eg frrczgcﬁ ';nglljé_
possibility of facing universality class in fragmenting sys- P P Y. PP

tems[1]. ter is defined in the following way. Given a set of particles

The study of these kind of processes has strongly ben-! K, ..., they belong to a clusteg if

efited from classical microscopic simulations, which give us
the possibility of dealing with the complete microscopic in- 100 L { L | 100
formation in (@,p) space, thus allowing us to study correla- '
tions of all orders. On the other hand, handling such an enor-
mous amount of information is not an easy task; the
determination of the fragment production process has been
particularly elusive.

Heavy-ion collisions at intermediate energy are a proper
tool to learn about the nuclear equation of state. It is then
mandatory to understand the information contained in the
asymptotic mass spectrum and to which state of the evolu-
tion of the fragmenting system it refers. For this sake, it is
important to properly analyze the time evolution of fragment
formation and to understand which kind of information is
provided by the fragment recognition algorithm being used.

10

mass number
<multiplicity>

It is the purpose of this work to study and compare the frag- L L R N R !
ment recognition algorithms which are currently used. 0.00 50.00 100.00 150.00 20000
In this paper we compare the results obtained from the fime (mo/48:)"”

3UaIyS|§ Ofl (;hi nbuwgrlcaldﬂsqulggtlon?. IOf exglted .tm:jo- FIG. 1. In this figure we show the time evolution of the size of
Imens_lona .IS S build up oN= pa_lr Ic e.S an F_"XC"? the biggest fragmentempty symbols and of the multiplicity for

three-dimensional sphergsltif=_147 partlclesmteractmg via fragments bigger than 8full symbolg for an initial energy of

a Lennard-Jones potential which undergo fragmentation and_"_ ¢ se.. in this figure results are shown for the three fragment

display, asymptotically, power-law mass spectra. . recognition algorithms described in the main text. It is immediately

In Sec. Il we define the fragment recognition algorithmsseen that the simple MST approagtircles is unable to properly
and the model used to simulate the fragmentation of twognalyze the configurations that are not very close to the asymptotic
dimensional disks and three-dimensional drops. In Sec. llktage of the evolution. MSTEsquaresresults give the asymptotic
we present the results of applying the above mentioned fragesults earlier than MST, and ECR@riangles is the one that
ment recognition algorithms to the microscopic simulationsshows that fragments are already formed even earlier in the very
performed and the comparison and analysis of the differerdense stage of the evolution.
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FIG. 2. In this figure we show the mass spectrum Nor 100 0.00 50.00 100.00 150.00 200.00
. . . . e 3 2 2
particles LJ disks with an initial energy of0.55¢ att= 200, (full time (mo?/485)"

circles andt=40t, (empty squargsaccording to the ECRA analy- o )
sis () and the MSTE analysi) together with the corresponding FIG. 3. In this figure we show the time dependence of the prob-

power-law fits. The fits at=20Q;, are denoted by full line and the ability that the spectra at time is statistically equivalent to the
ones fort=40t, by dashed lines. asymptotic one according to the test for binned dataa) Corre-

sponds to energig= —0.55 and(b) for E= —0.8¢. In both cases
triangles denote ECRA results and squares stand for the MSTE
results. It is immediately seen that statistical stability is reached by
ECRA at earlier times. Shaded region denotes the time range for
wherer; andr; denote the positions of the particles aRg ~ quivalence between both analysis.

is a parameter usually referred to as the clusterization

radius. This is an arbitrary parameter fixed according to taste. An improvement over the MST algorithm, although in the
Usually the interparticle potentials used in microscopicSame spirit, is to look for simply connected structures in the
simulations are truncated at a cutoff distarRg. So the space of two-particle binding energy,5]. This model,
following relation must hold:Ry<R. In this cluster which we denote as MSTE, is defined in the following way.
definition the role of relative momentum of particles is As beforei,j denote particles and stands for a cluster; then
totally disregarded. We will denote this kind of approacha cluster is a set of particles such that

as MST. It should be clear from the definition that this

method can only be used to analyze asymptotic configura- VieC,3jeCle;<0, (2
tions in which the fragmenting system can be viewed as a

very dilute mixture of free particles and almost equilibratedwith e;;= V;; +(pi—pj)2/4,u, whereu is the reduced mass.
fragments, nevertheless it is used in the dense stage of tf#o the cluster is built out of bound pairs of particles. It is
evolution giving, consequently, wrong resuliee, for ex- clear that in this case the effects of momentum are, in some
ample,[2,3]). way, taken into account.

VieC,3jeCl|r—rj|<Ry, oY)
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FIG. 4. In this figure we show the probability that at each time  F|G. 5. In this figure we show the inclusion coefficigfit) as a
step the mass spectra provided by ECRA and MSTE analysis amginction of time forE=—0.55¢ (a) and E= —0.8¢ (b). ECRA on
statistically equivalent. Infa) E=—0.5% and in (b) E=—0.8c;  MSTE is denoted by full triangles, MSTE on ECRA by squares;

once again the shaded region denotes the time range for equivalenggpty triangles refer to the reference valsee text for details
between both analysis.

The partition obtained using this last approach will be called
hereafter the most bound density fluctuation. We will denote
ills constituent clusters as fragments only in the low-density

Finally we briefly describe the third method which we
dubbed the early cluster recognition algoritiECRA) [6],
in which clusters are defined as the most bound partition of > " . o .
the system, i.e., the partitiofdefined by the set of clusters regime, i.e., when they coincide with the MST fragments.

{C;}) that minimizes the sum of the energies of each frag- As mentioned in the Introduction we simulate multifrag-
me:nt' mentation via a classical system of Lennard-Jones particles

in two dimensions. The two-body interaction potential is
K{™ is the kinetic energy of particlg measured in the

taken as
(o 12 g 6 g
r r Me
center-of-mass frame of the cluster which contains particle
j. The algorithm developed to achieve this goal is based owherer. is the cutoff radiudthe potential is taken equal to
an optimization method in the spirit of simulated annealingzero forr>r;). In these calculations we toak=30. En-
[6], and therefore poses strong demands on computer timergy and distance are measured in units of the potential well

Ecy=2 | 2 (3)

c.m.
> | X KE™+ > Vi,
i jeCi j.keC

o
V(r)=4e +|—
If‘C

: 4

where the first sum is over the clusters of the partition and
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FIG. 6. Asymptotic mass spectra of the three-dimensional drops
for enegiesE =0.5¢ (squaresandE=1.2¢ (triangles. 10.00

(e) and the distance in which the potential changes sign
(o), respectively. The unit of time that we used is
tOZ VO m/48€

In this work we study numerical simulations of the time
evolution of excited, two-dimensional Lennard-Jor&s)
drops ofN= 100 particles, whose initial configurations were
obtained by cutting a circular drop from a thermalized peri-
odic system ofN=225 LJ particles, per cell, with periodic
boundary conditions. The ground-state enet¢gyf this sys- 0.01
tem of 100 LJ particles, was calculated from an almost cir- 0.00
cular system cut out from a triangular lattice; the distance
between nearest neighbors was taken as that distance a
which V(r) attains its minimum valuer(,,~1.120). We
obtainedey= — 2.8¢. An analysis for a rather broad range of
energies was performed in R¢f] (hereafter referred to as
). In this work we will focus on energies &= —0.8¢ and
—0.55¢, because these are the cases in which the asymptotic:
mass spectra turn out to, approximately, show power-law
behavior. The initial density is in all the casps:0.75 2.
This means that all our drops are compressed and heated. Se
| for details. For the three-dimensional case the methodology
is the same. Spherical drops are cut from a thermalized 3D
periodic system oN=512 particles per cell. Three different 0.01 . I I . I ‘
energies are analyzed in this work, namelg= 1.2, 0.00 20.00 40.00 60.00 80.00
E=0.9¢, and E=0.5¢, the initial density is always time (mo*/4ge)"*
p=0.85"3.
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FIG. 7. Mean multiplicity as a function of time for different
mass ranges: 3—friangleg, 5-9(circles, 10—15(squarel 20—30
IIl. ANALYSIS OF NUMERICAL EXPERIMENTS (starg, and bigger than 3(diamonds$. The shaded symbols denote
In what follows we analyze the configurations resulting ECRA results and empty symbols MSTE results. The energies are
from the microscopic simulation of the time evolution of E=1-2¢ (&, E=0.9¢ (b), andE=0.5¢ ().
highly excited two-dimensional disks and three-dimensional
spheres. We begin with the two-dimensional case and aftefor early stages of the evolution, from now on we focus on
wards we extend the analysis to the three-dimensional oneMSTE and ECRA only. It is worth mentioning at this point
We first focus on the time evolution of the mean multi- that we consider the system to be in its asymptotic state, as
plicity for fragments bigger than 3 and the time evolution of regards to fragment formation, when the results obtained by
the mean size of the largest fragment according to MSTthe three methods coincide.
MSTE, and ECRA, for the two-dimensional case. In Fig. 1 In Fig. 2@ we show the asymptotic mass spectrum for
we show these quantities for energy- — 0.5%, see caption E=—0.55%, at timet=20Q, (full circles) according to the
for details. It is immediately seen that the MST completelyECRA formalism and the result of a power-law(fill line);
fails to analyze the initial stages of the evolution. On thewe also show the mass spectrum for titse40t, according
other hand, it can be seen that ECRA results attain theto ECRA (squarep and its corresponding power-law fit
asymptotic values at very early times. As regards MSTE, itdashed ling The mass number fit range used was
approaches the ECRA result at rather early times. Taking<A=34. We obtained the exponent1.46 fort=200,
into account that it is obvious that MST is quite unreliableand 7=1.39 for t=40t,. In Fig. 2b) we show the mass
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spectrum at time=20Q, (full circles) andt=40t, but ac-
cording to the MSTE algorithm and their corresponding
power-law fits. The exponents found are=1.47 for
t=200, and 7=1.25 fort=40t,. It is clear that asymptoti-
cally both algorithms give the same result, and that ECRA
result at timet=40t, is very similar to the asymptotic one,
while at this time the MSTE method gives little information
about the final behavior.

The next step should be to compare the mass spectra re-
sulting from these two algorithms and their statistical prop-
erties. A natural comparison concerns the moments of the
resulting distributions as a function of time. Instead of this
we choose a more direct way. We ask ourselves at which
stage of the evolution the statistical properties of the distri-
butions resulting from MSTE and ECRA are compatible
with the asymptotic one. For this purpose we use the chi
square statistics for binned datg) [7] defined by

bi_ i 2
i3 Grar ®

whereb; denotes the population of binfor data sef{b} and
a; the corresponding for data sg}. From this quantity we
can calculate the probability that the two s¢#g and{b}
come from the same probability density distribution function
[8]. Taking into account that we are interested in comparing
the ECRA and MSTE spectra as a function of time with the
asymptotic spectrum, we fix data geff as corresponding to
the final mass spectrum and calcula];é using for
{b}={b(t)}ecra @and{b}={b(t)}mste. Rather than consid-
ering the complete spectrum we focus on the range of inter-
mediate mass fragmentss4A< 34, due to the fact that the
lighter mass bins are constantly populated by evaporation in
heavier fragments. On the other hand, for energies that give
rise to power-law mass spectra the heavier fragments are
expected to have very large fluctuations from event to event
due to critical phenomena behavi®] and to finite-size ef-
fects. To estimate the value of the probability of L{?@atest
denoting equivalence we have studied this magnitude when
different mass spectra are generated from the same probabil-
ity density distribution function. For this purpose we have
generated sets of 100 partitions with total miss100 from
a power-law distribution, as is done in the Elattari-Richert-
Wagner model of fragmentatiofi0]. After calculating x?
and averaging we obtained a limit of confidence of 65%. In
Fig. 3(@ we show the results of the corresponding probabili-
ties for energyE=—0.55 and in Fig. 3b) for E=—0.8¢ .
It is clearly seen that ECRA results f&= —0.55 attain
statistical stability at time~50ty which is shorter than that
for the MSTE results £ 80ty); for E= —0.8¢ the picture is
exactly the same but the times are a little longeB0 for the
stability of the ECRA spectrum and 90t for MSTE. The
shaded regions in Figs.(@ and 3b) denote the time at
which the MSTE result becomes statistically equivalent to
the asymptotic one.

In Fig. 4(a) we show the probability that the ECRA spec-

FIG. 8. Inclusion coefficient for the three-dimensional case as 4@ and the MSTE spectra at a given time, come from the
function of time. ECRAS on MSTE is denoted by triangles andSame density distribution function fdf=—0.55, and in

MSTE on ECRA by squares. The energies d&e1.2¢ (a),

E=0.9 (b), andE=0.5¢ (c).

Fig. 4(b) we show the same quantity but fi=—0.8¢; the
shaded regions denote the time at which both kind of analy-
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sis become equivalent. Comparing Figs. 3 and 4 it is seeareas in Figs. 3, 4, and 5 it is easily seen that the resulting
that both the ECRA and MSTE results come from thetimes for the equivalence of the results from MSTE and
same distribution with high probability by the time that both ECRA are the same irrespective of which of the three criteria
spectra are consistent to a high degree with the asymptotig used.

one. _ We now focus on the analysis of the time evolution of
In order to further explore the relation between both re-gyr three-dimensional drops. In Fig. 6 we show the

sults we compare the microscopic consistency between thgsymptotic mass spectra for the two extremal energies
composition of the fragments detected by each recognitioRqve mentioned i.eE=1.2¢ and E=0.5¢. It is clearly

algorithm event by event as a function of time. For this pur-gaan that their functional dependency is of the power-law
pose we use the cgefficient of inclusion at titd (t) de- type. In Fig. 7 we display the time evolution of the
fined by the following argument. Lemy,n,---ny be the population of different bins according to the MSTE and
nucleons belonging _to agien ECRA* clus@g W'th mass  Ecra algorithms(see figure caption for detajlsThe same
numberAc =ny at time t; b;j(t)=0.5*ny(ny—1) is then  popaior as in the two-dimensional case is clearly seen. Fi-
the number of pairs of nucleons in clus@t at that time.  pally, following the analysis performed in the two-
The mass spectrum according to ECRA is thi&h}. Atthe  dimensional case, we show in Fig. 8 the coefficients
same time, for the same microscopic configuration we willj ., (t) andl,, .z(t). Once again the depicted behavior is

have a set of clustedCy,}, according to MSTE. They may similar as the one obtained for the two-dimensional numeri-
differ in its microscopic structure which means that particlescal experiments

that are together in son@g may be scattered among two or
more elements ofC,,} . Let Nei-ci, be the number of

nucleons which belong to clusteZL and also belong at IV. CONCLUSIONS
time t to a Cy. The number of pairs of nucleons
which belong to ECRA clustef at timet and also belong The results depicted in the previous section show that an

to a given MSTE cluster at that time is then analysis of the earlyrelevanj stages of fragment formation
aj(t)ZEiO-S*[NCjEHCiM(NC{EHCi,\A_1)]a where the sum runs can only be accomplished by the application of the ECRA

over all clusters according to the MSTE algorithm. We are@lgorithm. For longer times MSTE will give comparable re-
now able to introduce the mass weighted inclusion coeffisults.

cient[1(t)] Once the properties of the two relevant methods consid-
ered in this calculatiofMST was disregarded early in the
| ()= it)A _ ©) papej have been established, we ask ourselves which other
E-M bi(t) "/ property would play a role in the choice of either. The an-

swer is computing time. ECRA is much more computer time

where( )y denotes average over the clusters at tivend ~ cOnsuming than MSTE. The best way of combining both
() denotes average over the ensemble of explosions at ggorithms is to use MSTE and calculate the time at which it
given energy.lg . w(t) will be equal to 1 if all pairs of reaches statistical stability, then use ECRA for earlier times.
particles in a given cluster according to ECRA belong to theFinally never use MST unless you are interested in
same cluster when the system is studied with the MSTEsymptotic properties only, and you are sure that your nu-
approach. It is worth mentioning at this point that this doesmerical simulations have reached that stage of the evolution.
not mean that both algorithms give exactly the same result It is clear then, that, for the time being, ECRA is the right
but that the ECRA algorithm breaks up the MSTE clusterstool to unveil the dynamics of fragment formation and to
On the other hand, the inclusion coefficient would be 0 if thedetermine the true break-up time. The information carried by
arrangement were completely different. It measures the terthe asymptotic spectra correspond to the state of the system
dency of the members of a given cluster recognized byt this break-up time. The next goal to get a deeper under-
ECRA to be together in the MSTE analysis. Equivalentlystanding of the fragmentation process is to determine the
one can defind y_g(t) which measures the tendency of preak-up state from the information contained in the
constituents of fragments recognized by MSTE to be toasymptotic fragments, i.e., experimental data. We are cur-
gether in ECRA. rently working on this problem and results will be published
In Figs. 5a) and 3b) we show the coefficientg_, y(t) in the near future.
(full triangles together withl,_g(t) (squaresfor the same
energies as before, see caption for details. A third curve is

drawn in which the value of_ \(t) in which {CiMf} is ACKNOWLEDGMENTS
obtained from{CL} by simply removing one particle from
each fragment recognized by ECR&mpty triangles This The authors gratefully acknowledge E. S. Hernandez for

is our limit of microscopic consistency. It is seen that, for carefully reading this manuscript. This work was done under
both energies fragments by ECRA are almost completelyartial financial support from Universidad de Buenos Aires
included into MSTE from the very outset. On the other handyia Grant No. EX-070. C.O.D is a member of the Carrera del
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