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Fragment recognition in molecular dynamics

A. Strachan and C. O. Dorso
Departamento de Fisica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Pabello´n I, Ciudad Universitaria,

Nuñez (1428), Buenos Aires, Argentina
~Received 22 October 1996!

We investigate the properties of three methods of fragment recognition in microscopic simulations of
molecular dynamics. They are~a! the early cluster recognition algorithm~ECRA! which looks for the most
bound partitions in phase space,~b! the minimum spanning tree in two particle energy space~MSTE! which
looks for those simply connected partitions in which each particle is bound to, at least, one other member of the
cluster to which it belongs, and~c! the standard minimum spanning tree~MST! in configuration space. It is
found that, if the objective of a given calculation is to study the time evolution of properties related to the
fragment distribution, the MST should be discarded, MSTE results will be valid for not too short times, and
ECRA results will give the most complete description of such properties.@S0556-2813~97!01308-3#

PACS number~s!: 25.70.Pq, 02.70.Ns, 24.10.Lx
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I. INTRODUCTION

The problem of fragmentation of finite excited systems
a topic of current interest in many branches of physics,
compassing phenomena involving very different scales
interaction potentials which range from nuclear multifra
mentation to the explosion of hot and dense liquid drops. T
possibility of finding power-law fragment distributions, i.e
scale-free mass spectra, in such different systems open
possibility of facing universality class in fragmenting sy
tems@1#.

The study of these kind of processes has strongly b
efited from classical microscopic simulations, which give
the possibility of dealing with the complete microscopic i
formation in (q,p) space, thus allowing us to study correl
tions of all orders. On the other hand, handling such an e
mous amount of information is not an easy task;
determination of the fragment production process has b
particularly elusive.

Heavy-ion collisions at intermediate energy are a pro
tool to learn about the nuclear equation of state. It is th
mandatory to understand the information contained in
asymptotic mass spectrum and to which state of the ev
tion of the fragmenting system it refers. For this sake, it
important to properly analyze the time evolution of fragme
formation and to understand which kind of information
provided by the fragment recognition algorithm being us
It is the purpose of this work to study and compare the fr
ment recognition algorithms which are currently used.

In this paper we compare the results obtained from
analysis of the numerical simulations of excited tw
dimensional disks build up ofN5100 particles and excited
three-dimensional spheres ofN5147 particles interacting via
a Lennard-Jones potential which undergo fragmentation
display, asymptotically, power-law mass spectra.

In Sec. II we define the fragment recognition algorithm
and the model used to simulate the fragmentation of tw
dimensional disks and three-dimensional drops. In Sec
we present the results of applying the above mentioned f
ment recognition algorithms to the microscopic simulatio
performed and the comparison and analysis of the diffe
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outputs. Finally conclusions are drawn.

II. MODEL AND FRAGMENT RECOGNITION
ALGORITHMS

The most widely used algorithm for recognizing fra
ments is the standard minimum spanning tree~MST! in con-
figuration space which has been borrowed from simp
problems such as percolation theory. In this approach a c
ter is defined in the following way. Given a set of particl
i , j ,k, . . . , they belong to a clusterC if

FIG. 1. In this figure we show the time evolution of the size
the biggest fragment~empty symbols! and of the multiplicity for
fragments bigger than 3~full symbols! for an initial energy of
E520.55e. In this figure results are shown for the three fragme
recognition algorithms described in the main text. It is immediat
seen that the simple MST approach~circles! is unable to properly
analyze the configurations that are not very close to the asymp
stage of the evolution. MSTE~squares! results give the asymptotic
results earlier than MST, and ECRA~triangles! is the one that
shows that fragments are already formed even earlier in the
dense stage of the evolution.
995 © 1997 The American Physical Society
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996 56A. STRACHAN AND C. O. DORSO
¹ i PC,' j PC/ur i2r j u<Rcl , ~1!

wherer i and r j denote the positions of the particles andRcl
is a parameter usually referred to as the clusteriza
radius. This is an arbitrary parameter fixed according to ta
Usually the interparticle potentials used in microsco
simulations are truncated at a cutoff distanceRco. So the
following relation must hold:Rcl<Rco. In this cluster
definition the role of relative momentum of particles
totally disregarded. We will denote this kind of approa
as MST. It should be clear from the definition that th
method can only be used to analyze asymptotic config
tions in which the fragmenting system can be viewed a
very dilute mixture of free particles and almost equilibrat
fragments, nevertheless it is used in the dense stage o
evolution giving, consequently, wrong results~see, for ex-
ample,@2,3#!.

FIG. 2. In this figure we show the mass spectrum forN5100
particles LJ disks with an initial energy of20.55e at t5200t0 ~full
circles! andt540t0 ~empty squares! according to the ECRA analy
sis ~a! and the MSTE analysis~b! together with the correspondin
power-law fits. The fits att5200t0 are denoted by full line and the
ones fort540t0 by dashed lines.
n
e.

a-
a

the

An improvement over the MST algorithm, although in th
same spirit, is to look for simply connected structures in
space of two-particle binding energy@4,5#. This model,
which we denote as MSTE, is defined in the following wa
As beforei , j denote particles andC stands for a cluster; then
a cluster is a set of particles such that

¹ i PC,' j PC/ei j <0, ~2!

with ei j 5 Vi j 1(pi2pj )
2/4m, wherem is the reduced mass

So the cluster is built out of bound pairs of particles. It
clear that in this case the effects of momentum are, in so
way, taken into account.

FIG. 3. In this figure we show the time dependence of the pr
ability that the spectra at timet is statistically equivalent to the
asymptotic one according to thex2 test for binned data.~a! Corre-
sponds to energyE520.55e and~b! for E520.8e. In both cases
triangles denote ECRA results and squares stand for the M
results. It is immediately seen that statistical stability is reached
ECRA at earlier times. Shaded region denotes the time range
equivalence between both analysis.
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56 997FRAGMENT RECOGNITION IN MOLECULAR DYNAMICS
Finally we briefly describe the third method which w
dubbed the early cluster recognition algorithm~ECRA! @6#,
in which clusters are defined as the most bound partition
the system, i.e., the partition~defined by the set of cluster
$Ci%) that minimizes the sum of the energies of each fr
ment:

E$Ci %
5(

i
F (

j PCi

K j
c.m.1 (

j ,kPCi

Vj ,kG , ~3!

where the first sum is over the clusters of the partition a
K j

c.m. is the kinetic energy of particlej measured in the
center-of-mass frame of the cluster which contains part
j . The algorithm developed to achieve this goal is based
an optimization method in the spirit of simulated anneal
@6#, and therefore poses strong demands on computer t

FIG. 4. In this figure we show the probability that at each tim
step the mass spectra provided by ECRA and MSTE analysis
statistically equivalent. In~a! E520.55e and in ~b! E520.8e;
once again the shaded region denotes the time range for equiva
between both analysis.
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The partition obtained using this last approach will be cal
hereafter the most bound density fluctuation. We will den
its constituent clusters as fragments only in the low-den
regime, i.e., when they coincide with the MST fragments

As mentioned in the Introduction we simulate multifra
mentation via a classical system of Lennard-Jones parti
in two dimensions. The two-body interaction potential
taken as

V~r !54eF S s

r D 12

2S s

r D 6

2S s

r c
D 12

1S s

r c
D 6G , ~4!

wherer c is the cutoff radius~the potential is taken equal t
zero for r .r c). In these calculations we tookr c53s. En-
ergy and distance are measured in units of the potential

re

nce

FIG. 5. In this figure we show the inclusion coefficientI (t) as a
function of time forE520.55e ~a! andE520.8e ~b!. ECRA on
MSTE is denoted by full triangles, MSTE on ECRA by square
empty triangles refer to the reference value~see text for details!.
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998 56A. STRACHAN AND C. O. DORSO
(e) and the distance in which the potential changes s
(s), respectively. The unit of time that we used
t05As2m/48e.

In this work we study numerical simulations of the tim
evolution of excited, two-dimensional Lennard-Jones~LJ!
drops ofN5100 particles, whose initial configurations we
obtained by cutting a circular drop from a thermalized pe
odic system ofN5225 LJ particles, per cell, with periodi
boundary conditions. The ground-state energye0 of this sys-
tem of 100 LJ particles, was calculated from an almost
cular system cut out from a triangular lattice; the distan
between nearest neighbors was taken as that distanc
which V(r ) attains its minimum value (r min;1.12s). We
obtainede0.22.8e. An analysis for a rather broad range
energies was performed in Ref.@7# ~hereafter referred to a
I!. In this work we will focus on energies ofE520.8e and
20.55e, because these are the cases in which the asymp
mass spectra turn out to, approximately, show power-
behavior. The initial density is in all the casesr50.75s22.
This means that all our drops are compressed and heated
I for details. For the three-dimensional case the methodol
is the same. Spherical drops are cut from a thermalized
periodic system ofN5512 particles per cell. Three differen
energies are analyzed in this work, namely,E51.2e,
E50.9e, and E50.5e, the initial density is always
r50.85s23.

III. ANALYSIS OF NUMERICAL EXPERIMENTS

In what follows we analyze the configurations resulti
from the microscopic simulation of the time evolution
highly excited two-dimensional disks and three-dimensio
spheres. We begin with the two-dimensional case and a
wards we extend the analysis to the three-dimensional o

We first focus on the time evolution of the mean mul
plicity for fragments bigger than 3 and the time evolution
the mean size of the largest fragment according to M
MSTE, and ECRA, for the two-dimensional case. In Fig
we show these quantities for energyE520.55e, see caption
for details. It is immediately seen that the MST complete
fails to analyze the initial stages of the evolution. On t
other hand, it can be seen that ECRA results attain t
asymptotic values at very early times. As regards MSTE
approaches the ECRA result at rather early times. Tak
into account that it is obvious that MST is quite unreliab

FIG. 6. Asymptotic mass spectra of the three-dimensional dr
for enegiesE50.5e ~squares! andE51.2e ~triangles!.
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for early stages of the evolution, from now on we focus
MSTE and ECRA only. It is worth mentioning at this poin
that we consider the system to be in its asymptotic state
regards to fragment formation, when the results obtained
the three methods coincide.

In Fig. 2~a! we show the asymptotic mass spectrum
E520.55e, at time t5200t0 ~full circles! according to the
ECRA formalism and the result of a power-law fit~full line!;
we also show the mass spectrum for timet540t0 according
to ECRA ~squares! and its corresponding power-law fi
~dashed line!. The mass number fit range used w
4<A<34. We obtained the exponentt51.46 for t5200t0
and t51.39 for t540t0. In Fig. 2~b! we show the mass

s

FIG. 7. Mean multiplicity as a function of time for differen
mass ranges: 3–7~triangles!, 5–9~circles!, 10–15~squares!, 20–30
~stars!, and bigger than 30~diamonds!. The shaded symbols denot
ECRA results and empty symbols MSTE results. The energies
E51.2e ~a!, E50.9e ~b!, andE50.5e ~c!.



ng

RA
,
n

a re-
p-
the
is
ich
tri-
le
chi

on
ing
he

ter-

n in
give
are
ent

hen
abil-
ve

rt-

In
ili-

t

to

c-
the

aly-

s
nd

56 999FRAGMENT RECOGNITION IN MOLECULAR DYNAMICS
FIG. 8. Inclusion coefficient for the three-dimensional case a
function of time. ECRAS on MSTE is denoted by triangles a
MSTE on ECRA by squares. The energies areE51.2e ~a!,
E50.9e ~b!, andE50.5e ~c!.
spectrum at timet5200t0 ~full circles! and t540t0 but ac-
cording to the MSTE algorithm and their correspondi
power-law fits. The exponents found aret51.47 for
t5200t0 andt51.25 for t540t0. It is clear that asymptoti-
cally both algorithms give the same result, and that EC
result at timet540t0 is very similar to the asymptotic one
while at this time the MSTE method gives little informatio
about the final behavior.

The next step should be to compare the mass spectr
sulting from these two algorithms and their statistical pro
erties. A natural comparison concerns the moments of
resulting distributions as a function of time. Instead of th
we choose a more direct way. We ask ourselves at wh
stage of the evolution the statistical properties of the dis
butions resulting from MSTE and ECRA are compatib
with the asymptotic one. For this purpose we use the
square statistics for binned data (xb

2) @7# defined by

xb
25(

i

~bi2ai !
2

~bi1ai !
, ~5!

wherebi denotes the population of bini for data set$b% and
ai the corresponding for data set$a%. From this quantity we
can calculate the probability that the two sets$a% and $b%
come from the same probability density distribution functi
@8#. Taking into account that we are interested in compar
the ECRA and MSTE spectra as a function of time with t
asymptotic spectrum, we fix data set$a% as corresponding to
the final mass spectrum and calculatexb

2 using for
$b%5$b(t)%ECRA and $b%5$b(t)%MSTE. Rather than consid-
ering the complete spectrum we focus on the range of in
mediate mass fragments 4<A<34, due to the fact that the
lighter mass bins are constantly populated by evaporatio
heavier fragments. On the other hand, for energies that
rise to power-law mass spectra the heavier fragments
expected to have very large fluctuations from event to ev
due to critical phenomena behavior@9# and to finite-size ef-
fects. To estimate the value of the probability of thexb

2 test
denoting equivalence we have studied this magnitude w
different mass spectra are generated from the same prob
ity density distribution function. For this purpose we ha
generated sets of 100 partitions with total massN5100 from
a power-law distribution, as is done in the Elattari-Riche
Wagner model of fragmentation@10#. After calculatingxb

2

and averaging we obtained a limit of confidence of 65%.
Fig. 3~a! we show the results of the corresponding probab
ties for energyE520.55e and in Fig. 3~b! for E520.8e .
It is clearly seen that ECRA results forE520.55e attain
statistical stability at time;50t0 which is shorter than tha
for the MSTE results (;80t0); for E520.8e the picture is
exactly the same but the times are a little longer:;60 for the
stability of the ECRA spectrum and;90t0 for MSTE. The
shaded regions in Figs. 3~a! and 3~b! denote the time at
which the MSTE result becomes statistically equivalent
the asymptotic one.

In Fig. 4~a! we show the probability that the ECRA spe
tra and the MSTE spectra at a given time, come from
same density distribution function forE520.55e, and in
Fig. 4~b! we show the same quantity but forE520.8e; the
shaded regions denote the time at which both kind of an

a
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1000 56A. STRACHAN AND C. O. DORSO
sis become equivalent. Comparing Figs. 3 and 4 it is s
that both the ECRA and MSTE results come from t
same distribution with high probability by the time that bo
spectra are consistent to a high degree with the asymp
one.

In order to further explore the relation between both
sults we compare the microscopic consistency between
composition of the fragments detected by each recogni
algorithm event by event as a function of time. For this p
pose we use the coefficient of inclusion at timet, I (t) de-
fined by the following argument. Letn1 ,n2•••nN be the
nucleons belonging to a given ECRA clusterCE

j with mass
numberACj

5nN at time t; bj (t)50.5*nN(nN21) is then

the number of pairs of nucleons in clusterCE
j at that time.

The mass spectrum according to ECRA is then$CE
j %. At the

same time, for the same microscopic configuration we w
have a set of clusters$CM

i %, according to MSTE. They may
differ in its microscopic structure which means that partic
that are together in someCE

i may be scattered among two o
more elements of$CM

i % . Let NC
E
j →C

M
i be the number of

nucleons which belong to clusterCE
j and also belong a

time t to a CM
i . The number of pairs of nucleon

which belong to ECRA clusterj at time t and also belong
to a given MSTE cluster at that time is the
aj (t)5( i0.5*@NC

E
j →C

M
i (NC

E
j →C

M
i 21)#, where the sum runs

over all clusters according to the MSTE algorithm. We a
now able to introduce the mass weighted inclusion coe
cient @ I m(t)#

I E→M~ t !5KK aj~ t !

bj~ t !
AC jL

cl
L

e

~6!

where ^ &cl denotes average over the clusters at timet and
Š ‹e denotes average over the ensemble of explosions
given energy.I E→M(t) will be equal to 1 if all pairs of
particles in a given cluster according to ECRA belong to
same cluster when the system is studied with the MS
approach. It is worth mentioning at this point that this do
not mean that both algorithms give exactly the same re
but that the ECRA algorithm breaks up the MSTE cluste
On the other hand, the inclusion coefficient would be 0 if t
arrangement were completely different. It measures the
dency of the members of a given cluster recognized
ECRA to be together in the MSTE analysis. Equivalen
one can defineI M→E(t) which measures the tendency
constituents of fragments recognized by MSTE to be
gether in ECRA.

In Figs. 5~a! and 5~b! we show the coefficientI E→M(t)
~full triangles! together withI M→E(t) ~squares! for the same
energies as before, see caption for details. A third curv
drawn in which the value ofI E→M 8(t) in which $CM 8

i
% is

obtained from$CE
j % by simply removing one particle from

each fragment recognized by ECRA~empty triangles!. This
is our limit of microscopic consistency. It is seen that, f
both energies fragments by ECRA are almost comple
included into MSTE from the very outset. On the other ha
clusters detected by MSTE become included into the EC
ones only after the time of statistical equivalence. If we n
compare the characteristic times resulting from the sha
n
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areas in Figs. 3, 4, and 5 it is easily seen that the resul
times for the equivalence of the results from MSTE a
ECRA are the same irrespective of which of the three crite
is used.

We now focus on the analysis of the time evolution
our three-dimensional drops. In Fig. 6 we show t
asymptotic mass spectra for the two extremal energ
above mentioned, i.e.,E51.2e and E50.5e. It is clearly
seen that their functional dependency is of the power-
type. In Fig. 7 we display the time evolution of th
population of different bins according to the MSTE an
ECRA algorithms~see figure caption for details!. The same
behavior as in the two-dimensional case is clearly seen.
nally, following the analysis performed in the two
dimensional case, we show in Fig. 8 the coefficie
I E→M(t) and I M→E(t). Once again the depicted behavior
similar as the one obtained for the two-dimensional num
cal experiments

IV. CONCLUSIONS

The results depicted in the previous section show tha
analysis of the early~relevant! stages of fragment formation
can only be accomplished by the application of the ECR
algorithm. For longer times MSTE will give comparable r
sults.

Once the properties of the two relevant methods con
ered in this calculation~MST was disregarded early in th
paper! have been established, we ask ourselves which o
property would play a role in the choice of either. The a
swer is computing time. ECRA is much more computer tim
consuming than MSTE. The best way of combining bo
algorithms is to use MSTE and calculate the time at whic
reaches statistical stability, then use ECRA for earlier tim
Finally never use MST unless you are interested
asymptotic properties only, and you are sure that your
merical simulations have reached that stage of the evolut

It is clear then, that, for the time being, ECRA is the rig
tool to unveil the dynamics of fragment formation and
determine the true break-up time. The information carried
the asymptotic spectra correspond to the state of the sys
at this break-up time. The next goal to get a deeper und
standing of the fragmentation process is to determine
break-up state from the information contained in t
asymptotic fragments, i.e., experimental data. We are c
rently working on this problem and results will be publish
in the near future.
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