
PHYSICAL REVIEW C AUGUST 1997VOLUME 56, NUMBER 2
Enumeration method for the hole line expansion diagrams

R. Sartor
University of Liège, Institute of Physics B5, 4000 Lie`ge 1, Belgium

~Received 10 March 1997!

We point out that to any order of the hole line expansion simple graph theoretical arguments yield an upper
bound on the number of hole lines contained in the diagrams. The derivation of this upper bound suggests a
procedure which could be useful in the actual enumeration of the hole line expansion diagrams. The cases of
the binding energy and of the mass operator are treated in sufficient detail to make obvious the extension of our
results to other quantities.@S0556-2813~97!00408-1#

PACS number~s!: 24.10.Cn, 21.10.Dr, 21.60.2n, 21.65.1f
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I. INTRODUCTION

The hole line expansion constitutes one of the widely
cepted methods~see, e.g.,@1#! used in the study of nuclea
matter. As is well known, it results from ordinary perturb
tion theory by performing two diagram rearrangements. T
first one consists in summing the so-called particle-part
ladders into the Brueckner reaction matrixG: this solves the
problems raised by the short-range behavior of the nucle
nucleon force. The second rearrangement consists in or
ing the diagrams according to the number of independ
hole line momenta, i.e., the hole momenta which remain
ter momentum conservation has been taken into account.
ensuing expansion then appears to be ruled by the s
parameterk which measures the ratio of the two-body co
relation volume to the mean volume occupied by a nucle
Hole line momentum independence appears to be crucia
partition the whole set of diagrams into classes of diagra
of given order ink. For instance, the so-called hole-ho
diagram which involves four hole lines~see Fig. 1! should be
considered on the same footing as the three-body cluster

FIG. 1. The so-called hole-hole contribution to the binding e
ergy of nuclear matter. Here as well as in the other figures of
paper, full dots represent antisymmetrizedG matrices.
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grams of Fig. 2 which only involve three hole lines: es
mates indeed show that all these diagrams are reduced
single factor k with respect to the leading Brueckne
Hartree-Fock~BHF! contribution. Many other examples o
this ordering rule can be found, e.g., in@2# where the class of
binding energy diagrams with four independent hole lines
studied.

This leads us to inquire whether there is an upper bo
on the numberh of holes lines in diagrams of orderI , i.e., in
diagrams withI independent hole lines. This question will b
answered in the affirmative: to any orderI is associated an
upper bound on the numberh of hole lines which can appea
in the diagrams contributing to that order. A related quest
concerns the actual enumeration of the diagrams of ordI
with h.I : can we find some simplification which could en
able us to avoid examining all the diagrams withh hole lines
to see whether or not momentum conservation will redu
the h hole lines toI -independent ones? The answer to th
question is again in the affirmative. We shall show that
diagrams of orderI with h.I hole lines can all be con
structed by assembling a well defined number of subd
grams belonging to classes whose enumeration is m
easier than the enumeration of the complete class of
grams withh hole lines. This stems from the fact that all th
subdiagrams referred to above have less thanI hole lines.

This paper is organized as follows. In Sec. II, we stu
the binding energy and the mass operator and we derive
corresponding upper bounds on the numberh of hole lines
allowed at any orderI of the hole line expansion. In Sec. III
we analyze the structure of diagrams as a function ofh and
I . This analysis suggests a simplified enumeration proced
which we apply in Sec. IV to the detailed study of an e

-
is FIG. 2. Diagrams pertaining to the three-body-cluster contri
tion to the binding energy of nuclear matter.
942 © 1997 The American Physical Society
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56 943ENUMERATION METHOD FOR THE HOLE LINE . . .
ample. Our work is summarized and compared with rela
ones in Sec. V.

II. HOLE LINE NUMBER UPPER BOUNDS AT ANY
ORDER OF THE HOLE LINE EXPANSION

A. Binding energy diagrams

Because of momentum conservation, the momenta
tached to the hole and particle lines of any diagramD can all
be expressed in terms of a subset of them; namely, the su
of the so-called independent momenta. These are the
menta which are integrated over in the analytical express
corresponding to the given diagram. Such a subset of in
pendent momenta can be obtained by considering any s
ning treeT contained inD. ~We remind the reader that b
definition, a tree is a connected loop free diagram and th
tree T is said to span a diagramD when it has the same
vertices asD, whereas its line set is a subset of the line se
D.! The looked for independent momenta are then the m
menta attached to the lines which do not belong toT. Hence,
to determine the numberI of independent hole momenta i
D, one has to find a spanning tree which contains as
hole lines as possible. Henceforth, such a tree will be ca
a minimal spanning tree. It can be constructed by mean
the following method. First we suppress all the hole lines
D. In general, this will yield a disconnected diagram wit
say,N connected components. Then we construct a span
tree for each component; this yields a collection of subtr
which only involve particle lines. Finally, we link these su
trees into a spanning tree by usingN21 of the previously
suppressed hole lines. It should be clear that this span
tree is minimal. Indeed the connected components referre
above exist independently of our construction method
any spanning tree will have to use up exactlyN21 hole
lines between these components in order to link them
gether. It should also be clear that in any spanning tree wh
is not minimal, the extra hole lines will never be hole lin
between components since using more thanN21 such lines
would create loops which by definition are not allowed in
tree: any extra hole line has to link vertices belonging to
same component. In the following, a component toget
with the hole lines between its vertices will be referred to
a subdiagram. In Fig. 3, the method we have just describe
illustrated on the hole-hole diagram of Fig. 1.

Our results so far can be summarized for any diagr
D by the equation

I 5h2N11, ~2.1!

whereh is the total number of hole lines inD and I is the
number of independent ones, i.e., the order ofD within the
framework of the hole line expansion.N is as above the
number of components or subdiagrams determined by
method we used to construct the minimal spanning tree.

Now, we want to prove that for any binding energy di
gram, we have

h>2N. ~2.2!

The proof is trivial whenN51. Indeed either the considere
diagram is the BHF one~see Fig. 4! for which we have
h52 or its lowermost vertex is a vertex of typeA ~see Fig. 5!
d
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which already involves two hole lines. Hence in both cas
the inequality~2.2! is obviously satisfied. In order to treat th
N.1 case, we shall use the graph theory theorem wh
states that if we define the degree of a vertex as the num
of lines which are attached to it, then the sum of the degr
of all the vertices in a diagram is equal to twice the numb
of lines. The proof of this theorem just consists in notici
that since a line is necessarily attached to two vertices~dis-
tinct or not!, it will be counted twice when we calculate th
sum of the degrees by mere counting and adding. T
simple proof suggests an interpretation of the theorem
stating that each line in the diagram contributes half a uni
the total count of lines when ‘‘seen’’ from any of the tw
vertices~distinct or not! that it links together. This interpre
tation will be used several times in the following.

Consider now the collection of vertices (A,...,M ) from
which any diagram is constructed~see Fig. 5!. One notices
that the differenced between the number of hole and partic
lines above any vertex is always the same as below it~for
instance, we haved50 for the verticesA, B, andH!. This
implies that each of theN subdiagrams which appear in th
minimal tree construction, is linked to the other ones by
even number of hole lines, half of them incoming and t
other half outgoing~see Fig. 6!. Moreover, since we only
consider connected diagrams each subdiagram has t
linked to the rest of the diagram by at least two hole lines.
the following, we shall refer to the hole lines inside a su
diagram as its internal hole lines and to the hole lines wh

FIG. 3. Determination of the minimal spanning tree on an e
ample. Step~1!: Suppress the diagram hole lines. This leads to
diagram withN52 components. Step~2!: Construct a spanning tre
for each component. In this example, one of the components
sists of a single vertex and the corresponding tree is reduced to
vertex. The other component consists of two vertices linked by
particle lines. One possible tree is indicated by the dotted line. S
~3!: Link the trees obtained in the previous step to form a minim
spanning tree~dotted lines!.

FIG. 4. Brueckner-Hartree-Fock~BHF! contribution to the bind-
ing energy of nuclear matter.
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944 56R. SARTOR
link it to the rest of the diagram as its external hole line
Consider now a given subdiagrams and denote byhi and
he the numbers of its internal and external hole lines, resp
tively. The contributionhs of s to the total numberh of hole
lines in the diagram will be given by

hs5hi1
he

2
, ~2.3!

where the factor12 multiplying he is derived from the inter-
pretation we have given of the above mentioned theo
when applied to an auxiliary diagram obtained from the d
gram under scrutiny by shrinking the subdiagrams to po
while keeping the set of external hole lines.

FIG. 5. List of possible vertices. Crosses refer to auxiliary p
tential (U) insertions. Note that it is convenient to consider t
‘‘tadpoles’’ J andL as vertices when constructing the diagrams

FIG. 6. Subdiagram structure: Any subdiagram is linked to
rest of the diagram by an even number of hole lines, half of th
incoming and the other half outgoing.
.

c-

m
-
ts

Hence, for subdiagrams with at least four external h
lines we obtain~without having to discuss the allowed value
of hi!

hs>2. ~2.4!

On the other hand, we have to show thathi cannot vanish if
we want to write an inequality identical to Eq.~2.4! for the
subdiagrams with two external hole lines. This can be s
from Fig. 7 where we have depicted all the possible low
most vertices for a subdiagram with two external hole lin
In all cases, the lowermost vertex involves an internal h
line ~we assume that the auxiliary potential appearing in
fourth diagram of Fig. 7 is self-consistent at least at the B
level which implies a ‘‘hidden’’ hole line!.

Hence Eq.~2.4! applies to any subdiagram and by sum
ming over the contributionshs of all subdiagrams we obtain
the inequality~2.2!. By combining Eq.~2.1! with Eq. ~2.2!,
we obtain

h<2I 22, ~2.5!

which gives the upper bound on the numberh of hole lines
allowed at any orderI of the hole line expansion. Note tha
this upper bound cannot be improved since for any ordeI ,
one can find diagrams withh52I 22 hole lines. Figure 1
provides an example forI 53 and it should be obvious tha
one can construct similar diagrams for anyI .

B. Mass operator diagrams

We now consider the mass operator whose hole line
pansion has been advocated and discussed in@3#. To con-
struct the minimal spanning tree, one proceeds as for
binding energy diagrams. A minor difference only appears
the first step of the procedure: here one has to suppress
only the hole lines of the diagram but also the so-called l
whose momenta are in fact given momenta. Then, Eq.~2.1!
also applies here with the same meaning for the symbolI ,
h, andN.

Now, we want to show that Eq.~2.2! has to be replaced
by

h>2N21. ~2.6!

In order to prove this, we have to consider two cases. In
first one, both legs of the diagram are attached to the s
subdiagram~a subdiagram is defined as in Sec. II A!. Since
these legs have replaced two external hole lines, the co
butionhs of this subdiagram to the total number of hole lin
will be reduced by one unit and will satisfy the inequality

hs5hi1
he

2
>1. ~2.7!

-

e

FIG. 7. List of the possible lowermost vertices for subdiagra
with two external hole lines.
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56 945ENUMERATION METHOD FOR THE HOLE LINE . . .
For the other subdiagrams the inequality~2.4! will still ap-
ply. By summing the contributionshs of all subdiagrams, we
obtain

h5Shs>112~N21!>2N21, ~2.8!

i.e., the inequality~2.6!. In the second case to be considere
the diagram legs are attached to two distinct subdiagra
Since in each of these subdiagram a leg has replace
external hole line, the contributionhs of each of them to the
total number of hole lines will be reduced by half a unit a
will satisfy the inequality

hs5hi1
he

2
>

3

2
. ~2.9!

Again, inequality~2.4! will apply to the other subdiagrams
By summing the contributionshs of all the subdiagrams, we
obtain

h5Shs>2S 3

2D12~N22!>2N21, ~2.10!

i.e., the inequality~2.6!.
By combining Eqs.~2.1! and ~2.6!, we obtain

h<2I 21, ~2.11!

which provides the upper bound onh at any orderI of the
hole line expansion pertaining to the mass operator. N
that this upper bound cannot be improved since at any o
I , one can construct diagrams which satisfyh52I 21. An
example of such a diagram is provided in Fig. 8.

III. STRUCTURE OF THE HOLE LINE EXPANSION
DIAGRAMS

The inequalities~2.5! and ~2.11! show that the numbe
h of hole lines allowed in diagrams increases almost twice
fast as the orderI which has been retained in the hole lin
expansion. This implies that except at the lowest ord
whereh5I for both the binding energy and the mass ope
tor, one will have to perform the time consuming enume
tion of lots of diagrams withh.I just to check whether o
not momentum conservation reduces the number of hole
tegrations down toI . Our aim will be to show that the sub
diagram structure we have used in the discussion of Sec
can lead to a sizeable reduction of the enumeration work

FIG. 8. Example of a diagram corresponding to the upper bo
h52I 21 in Eq.~2.11!. The dotted lines define a minimal spannin
tree.
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From Eq.~2.1! we see thath.I implies N.1, i.e., that
the corresponding diagram can be seen as an assemb
subdiagrams linked together by external hole lines only. T
suggests that we should enumerate the subdiagrams firs
then assemble them into diagrams. This method reduces
enumeration task for the following reasons.

First, let us consider the subdiagrams pertaining to
binding energy. All of them have at least two external ho
lines and we have seen in Sec. II that each external hole
contributes half a unit to the total numberh of hole lines in
the diagram. This means that together the external hole l
of the N subdiagrams will contribute at leastN units to h.
From Eq.~2.1! we then see that at mostI 21 internal hole
lines will remain shared among theN subdiagrams. Hence
for all the h.I values allowed by the upper bound~2.5! we
just have to enumerate the subdiagrams with at mostI 21
internal hole lines. Actually there is a stronger limit on th
number of internal hole lines allowed in subdiagrams w
more thanI 21 external hole lines. Indeed, for any subdi
gram one has trivially

hi1he<h, ~3.1!

which together with Eq.~2.5! yields

hi<2I 222he . ~3.2!

Whenhe is ~strictly! bigger thanI 21, the right-hand side of
this inequality yields an upper bound onhi which is indeed
lower thanI 21. One should note that there is also an upp
bound on the number of external hole lines attached to
subdiagram. Indeed, Eqs.~2.5! and ~3.1! also imply

he<2I 22. ~3.3!

Finally, the numberN of subdiagrams which can appear
any diagram is also bounded at each orderI of the hole line
expansion. This can be seen from the inequalities~2.2! and
~2.5!, which together yield

N<I 21. ~3.4!

Let us now consider the mass operator diagrams. H
too, the enumeration of subdiagrams followed by their
sembly is easier than the direct enumeration of all the d
grams satisfying the inequality~2.11!. Let us first establish
the upper bound on the numberhi of internal hole lines. In
the case of a mass operator diagram, the contribution of
external hole lines to the total number of hole lines can be
low as N21 ~instead ofN for binding energy diagrams!
since the diagram legs have replaced two external hole li
From Eq.~2.1!, we conclude that at mostI internal hole lines
remain to be shared by the subdiagrams. This means tha
can limit ourselves to the enumeration of subdiagrams w
at mostI internal hole lines for allh values allowed by the
inequality ~2.11!. By combining Eq.~2.11! with Eq. ~3.1!,
one gets

hi<2I 212he , ~3.5!

whose right-hand side yields a stronger upper bound onhi
for subdiagrams with more thanI 21 external hole lines.

d
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946 56R. SARTOR
From Eqs.~2.11! and ~3.1!, one also derives the following
upper bound on the number of external hole lines which
be attached to a subdiagram:

he<2I 21. ~3.6!

Finally, from Eqs.~2.6! and ~2.11!, one derives

N<I , ~3.7!

which gives the upper bound on the numberN of subdia-
grams.

As will appear in the next section, the enumeration
subdiagrams in the mass operator case becomes easier
do not worry for each subdiagram about which external h
lines could possibly act as the diagram legs: all mass op
tor subdiagrams will actually be drawn as binding ene
subdiagrams, i.e., as if all their ‘‘legs’’ were external ho
lines. The numberhe8 of these undifferentiated external ho
lines will always be even and it will exceed the numberhe of
actual external hole lines by at most two units:

he8<he12. ~3.8!

This together with Eq.~3.5! implies

hi<2I 112he8 , ~3.9!

which improves on the upper boundI on hi when he8 is
bigger thanI 11. Finally, the upper bound onhe8 is derived
from Eqs.~3.6! and ~3.8!, which yield

he8<2I 11<2I , ~3.10!

where the fact thathe8 is even has been taken into account
write the last inequality.

IV. ENUMERATION EXAMPLE

In this section, we shall enumerate the contributions to
mass operator up to two independent hole lines. We s
thus illustrate the results obtained above and point out s
peculiar features in the construction of subdiagrams w
two or more of them have to be assembled to yield a co
plete mass operator diagram.

The contributions to the mass operator with one indep
dent hole line (I 51) are readily obtained with the abov
method. Indeed, Eq.~2.11! implies that only diagrams with a
single hole line (h51) will be involved and from Eq.~2.1!
one sees that they will be obtained from a single subdiag
(N51), i.e., that no assembly will be required. From E
~3.10!, we see that we just have to enumerate the sub
grams with two undifferentiated external hole lines (he8
52); these external hole lines will actually constitute t
diagram legs. The subdiagrams satisfying all these requ
ments are depicted in Fig. 9~for definiteness we assume th
the auxiliary potential is self-consistent at the one hole l
level!. Diagram ~a! is the well-known BHF contribution,
whereas diagram~b! just serves to cancel a similar contrib
tion coming from the unperturbed part of the mass opera
One should note that in keeping with the remarks at the
of Sec. III, we have drawn the mass operator legs as h
lines although this does not imply any constraint on the m
n
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mentumk associated with these lines:uku can be bigger as
well as lower than the Fermi momentum.

Let us now consider the contributions with two indepe
dent hole lines (I 52). From Eqs.~2.11! and ~2.1!, one de-
rives that the values which are allowed forh and N are ~h
52, N51! and ~h53, N52!. Each diagram~h52, N51!
consists of a single subdiagram. This rules out subdiagr
with he854 which would be allowed by Eq.~3.10!; hence,
we just have to consider subdiagrams with two undifferen
ated external hole lines (he852). As in theI 51 case, these
hole lines will be the legs of the diagram. Let us note th
when we build the subdiagrams from the vertices depicte
Fig. 5, we can disregard verticesI , L, andM . Indeed, these
vertices are actually unallowed subdiagrams: vertexI corre-
sponds to a subdiagram withhe854, whereas verticesL and
M correspond to subdiagrams withh51. By combining the
remaining vertices of Fig. 5, one can build the~h52, N
51! diagrams shown in Fig. 10. Diagrams~a!–~e!, which
contain a box labeledGn, stand for an infinite series of dia
grams which are obtained by replacing the box byn
50,1,2,..., vertices of typeG ~refer to Fig. 5 for the various
vertex types!. As an example, the diagrams corresponding
Fig. 10~a! for n50, 1, and 2 are displayed in Fig. 11. No
that there is a single diagram for eachn because in order to
avoid double counting, successiveG vertices should neve
be linked together by two particle lines. Diagrams~a!–~j! in
Fig. 10 can all be obtained from the so-called three-bo
cluster diagrams pertaining to the hole line expansion of
binding energy@4# by ‘‘cutting’’ a hole line. Diagram~k! can
also be obtained from a binding energy diagram by cuttin
hole line. In contradistinction diagram~l! does not corre-
spond to any binding energy diagram since by ‘‘pasting
gether’’ the diagram legs one would obtain a diagram w
two successiveG matrices linked by two particle lines. Note
however, that such diagrams are not forbidden when
writes the binding energy as the sum of the true kinetic a
potential energies~see@5#!.

We now consider the~h53, N52! diagrams, i.e., the
diagrams composed of two subdiagrams. First, we enume
these subdiagrams. From Eq.~3.10! with I 52, one con-
cludes that only subdiagrams withhe852 or 4 are allowed.
For subdiagrams withhe852, the number of internal hole
lines cannot vanish@see discussion following Eq.~2.4!# so
that one can havehi51 or 2. For subdiagrams withhe854,
the improved upper bound onhi given by Eq.~3.9! applies
and only the valueshi50 or 1 are allowed. Thus, we hav
to find the subdiagrams characterized by (he8 ,hi)5(2, 1),
~2, 2!, ~4, 0!, and~4, 1!. The search can be simplified a littl
further by noticing that for any diagram composed of at le

FIG. 9. One hole line contributions to the mass operator.
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56 947ENUMERATION METHOD FOR THE HOLE LINE . . .
FIG. 10. Two hole line contributions to the mass operator c
sisting of a single subdiagram.

FIG. 11. Diagrams obtained from Fig. 10~a! when the box la-
beledGn is replaced byn G matrices. The illustrated cases corr
spond ton50, 1, and 2.
two subdiagrams, one has

~She8!22

2
1~Shi !5h. ~4.1!

This implies that~h53, N52! diagrams can only be con
structed by using the following (he8 ,hi) combinations of sub-
diagrams:~2, 1!1~2, 1!, ~2, 1!1~4, 0!, and ~4, 0!1~4, 0!.
Actually, the combination~2, 1!1~2, 1! is ruled out by the
fact that the diagram has to be one line irreducible to qua
as a mass operator diagram. Hence only the combinat
~2, 1!1~4, 0! and~4, 0!1~4, 0! will have to be considered in
the assembly process.

The allowed~2, 1! and~4, 0! subdiagrams are depicted i
Figs. 12 and 13, respectively. The boxes labeledGn have the
same meaning as in Fig. 10. Let us stress that when c
structing subdiagrams, one does not have to apply the
stating that successiveG matrices should never be linked b
two particle lines. This rule only applies to the diagrams o
constructs by assembling the subdiagrams. It will app
clearly below that by suitably ‘‘interlocking’’ subdiagram
containing suchG-matrix ladders, one can always avo
double counting. Let us note in passing that all the diagra
summarized by Figs. 12~c! and 13~b! actually consist of
G-matrix ladders.

Let us now assemble~2, 1! and ~4, 0! subdiagrams to
construct complete diagrams. The subdiagrams in Figs. 1~a!
and 12~b! can only be assembled with then50 version of
the subdiagram in Fig. 13~b!. This yields the diagrams in
Figs. 14~a! and 14~b!. Similarly, the subdiagram in Fig. 13~a!
can only be assembled with then50 version of the subdia-
gram in Fig. 12~c!. This yields the diagram in Fig. 14~c!. The
n50 version of the subdiagram in Fig. 12~c! can be com-

-

FIG. 12. Subdiagrams with two undifferentiated external h
lines and a single internal hole line. These subdiagrams are refe
to as~2, 1! subdiagrams in the text.

FIG. 13. Subdiagrams with four undifferentiated external h
lines and no internal hole line. These subdiagrams are referred
~4, 0! subdiagrams in the text.
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948 56R. SARTOR
bined with both then50 andn51 versions of the subdia
gram in Fig. 13~b!. This yields the diagrams depicted in Fig
14~d!, 14~e!, and 14~f!. One checks that, in genera
G-matrix ladders in the complete diagrams will be avoid
only by combining then version of the subdiagram in Fig
12~c! with the n21, n, or n11 versions of the subdiagram
in Fig. 13~b!. Using the Bethe-Brandow-Petscheck~BBP!
theorem@6#, one sees that the whole series of~2, 1!1~4, 0!
diagrams withoutU insertions boils down to the two dia
grams depicted in Fig. 15 where the label ‘‘on’’ means th
the G matrices in the middle of the diagrams should be c
culated on the energy shell. The diagram 15~a! is cancelled
by the diagram 14~a! when the auxiliary potential for hole
states is chosen self-consistently at the one hole line le
i.e., is identified by the BHF contribution to the mass ope
tor @see Fig. 9~a!#. The diagram 15~b! renormalizes the BHF
contribution@7#.

To complete the example, let us consider the diagra
resulting from the assembly of two~4, 0! subdiagrams. The
diagram in Fig. 13~a! can only be assembled with then50
version of the diagram in Fig. 13~b!. This yields the dia-
grams depicted in Figs. 16~a! and 16~b!. Then version of the
subdiagram 13~b! can be combined with both then and the
n11 version of the same subdiagram. The diagrams co
sponding ton50 are depicted in Figs. 16~c!–16~f!. Again
the BBP theorem can be used to reduce the whole serie
~4, 0!1~4, 0! diagrams to the two diagrams of Fig. 17, whe
the middleG matrix has to be calculated on the energy sh

Note finally that all the mass operator diagrams compo
of two subdiagrams~see Figs. 14–17! can be obtained from

FIG. 14. First members of the infinite series of diagrams wh
can be built by assembling~2, 1! subdiagrams with~4, 0! subdia-
grams.

FIG. 15. Diagrams resulting from the BBP summation of t
whole series of~2, 1!1~4, 0! diagrams withoutU insertions. The
labels ‘‘on’’ mean that the middleG matrices should be calculate
on the energy shell.
t
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d

corresponding binding energy diagrams. For instance,
cutting a hole line in the hole-hole diagram of Fig. 1, o
accounts for the two diagrams of Fig. 17.

V. SUMMARY AND DISCUSSION

In this paper, we have discussed the enumeration p
lems appearing within the hole line expansion method. T
diagrams contributing to a given orderI cannot be obtained
by the straightforward enumeration of the diagrams withI
hole lines. What matters is the number of independent h
lines, i.e., the number of hole lines whose momenta are
fixed by momentum conservation. From a practical point
view, this immediately leads us to inquire whether there is
upper bound on the numberh of hole lines which can appea
in the diagrams contributing to a given orderI . Here, we
have discussed the binding energy and mass operator c
for which we have found the upper bounds given by E
~2.5! and ~2.11!, respectively. We have also shown that it
not necessary to enumerate all the diagrams within these

h

FIG. 16. First members of the infinite series of diagrams wh
can be built by assembling two~4, 0! subdiagrams.

FIG. 17. Diagrams resulting from the BBP summation of t
whole series of~4, 0!1~4, 0! diagrams. The labels ‘‘on’’ mean tha
the middleG matrices should be calculated on the energy shell
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per bounds. Indeed, we have proved that the diagrams
h.I can be constructed from a well defined number of s
diagrams whose enumeration is much easier than that o
diagrams they are composing. As far as we know, the e
meration problems posed by the hole line expansion w
considered systematically only in@2# and @8#. Reference@2#
was concerned with the enumeration of theI 54 contribu-
tions to the binding energy of nuclear matter. Actually, t
method which was used to arrive at the full set of the
diagrams was not described at all. We can check, howe
that all these diagrams have at most six hole lines, i.e.,
isfy in the I 54 case the upper bound given in general by E
~2.5!. Let us also emphasize that the combination diagra
of @2#, which are defined at a given orderI of the hole line
expansion as the diagrams whose energy denominators,
sibly after applying the BBP theorem, do not involve t
excitation ofI particles above the Fermi surface, should n
be identified with the diagrams composed of subdiagra
which have been considered in the present paper. An
ample of a combination diagram which is not composed
subdiagrams is given in Fig. 18. On the other hand, all d
grams composed of subdiagrams are combination diagra
This statement can be proved by noting that it is logica
equivalent to the statement that diagrams which are not c
bination diagrams cannot be disconnected by suppres
their hole lines. The latter statement is obvious because
diagrams which are not combination diagrams at the or
I of the hole line expansion coincide with the so-call
I -body cluster diagrams, i.e., with the diagrams which, a
suppression of their hole lines, appear asI upgoing lines
connected by a certain number of antisymmetrizedG matri-
ces. As with@2#, @8# is also concerned with the binding en
ith
-
he
u-
re

e
r,
t-
.
s

os-

t
s
x-
f
-
s.

-
ng
he
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ergy of nuclear matter but the enumeration of diagrams
considered at any orderI of the hole line expansion. It wa
also found that the enumeration work is ‘‘bounded’’ by a
inequality which has to be satisfied at any given orderI „see
Eq. ~34! of @8#…. Note, however, that the method used in@8#
is an algebraic one and as a consequence this inequali
different from our inequality Eq.~2.5!: it refers more to the
algebraic expression of the binding energy„see Eq.~30! of
@8#… than to the structure of the diagrams. This leads to so
extra work of elimination of unwanted diagrams„see point
~ii ! in the rule summary of@8#… which is avoided here by
taking into account the structure in subdiagrams. Fina
note that the quantity denoted byC in @8#, i.e., the number of
momentum conservation conditions for hole lines which a
ply in a diagram, can actually be determined readily
means of the tree analysis we described in Sec. II.

FIG. 18. Example of diagram which would be considered a
combination diagram according to@2# although it consists of a
single subdiagram.
ev.
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