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Enumeration method for the hole line expansion diagrams
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We point out that to any order of the hole line expansion simple graph theoretical arguments yield an upper
bound on the number of hole lines contained in the diagrams. The derivation of this upper bound suggests a
procedure which could be useful in the actual enumeration of the hole line expansion diagrams. The cases of
the binding energy and of the mass operator are treated in sufficient detail to make obvious the extension of our
results to other quantitiefS0556-281®7)00408-]
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I. INTRODUCTION grams of Fig. 2 which only involve three hole lines: esti-
mates indeed show that all these diagrams are reduced by a
The hole line expansion constitutes one of the widely acsingle factor x with respect to the leading Brueckner-
cepted methodésee, e.g.[1]) used in the study of nuclear Hartree-Fock(BHF) contribution. Many other examples of
matter. As is well known, it results from ordinary perturba- this ordering rule can be found, e.g.,[2] where the class of
tion theory by performing two diagram rearrangements. Theinding energy diagrams with four independent hole lines is
first one consists in summing the so-called particle-particlestudied.
ladders into the Brueckner reaction mat@x this solves the This leads us to inquire whether there is an upper bound
problems raised by the short-range behavior of the nucleoren the numbeh of holes lines in diagrams of ordéri.e., in
nucleon force. The second rearrangement consists in ordetagrams with independent hole lines. This question will be
ing the diagrams according to the number of independeranswered in the affirmative: to any ordeis associated an
hole line momenta, i.e., the hole momenta which remain afupper bound on the numbhrof hole lines which can appear
ter momentum conservation has been taken into account. The the diagrams contributing to that order. A related question
ensuing expansion then appears to be ruled by the smatbncerns the actual enumeration of the diagrams of drder
parameterx which measures the ratio of the two-body cor- with h>1: can we find some simplification which could en-
relation volume to the mean volume occupied by a nucleonable us to avoid examining all the diagrams whithole lines
Hole line momentum independence appears to be crucial tth see whether or not momentum conservation will reduce
partition the whole set of diagrams into classes of diagramshe h hole lines tol-independent ones? The answer to this
of given order ink. For instance, the so-called hole-hole question is again in the affirmative. We shall show that the
diagram which involves four hole lindsee Fig. 1should be  diagrams of orded with h>1 hole lines can all be con-
considered on the same footing as the three-body cluster digtructed by assembling a well defined number of subdia-
grams belonging to classes whose enumeration is much
easier than the enumeration of the complete class of dia-
grams withh hole lines. This stems from the fact that all the
subdiagrams referred to above have less thhole lines.

This paper is organized as follows. In Sec. Il, we study
the binding energy and the mass operator and we derive the
corresponding upper bounds on the numbesf hole lines
allowed at any order of the hole line expansion. In Sec. I,
we analyze the structure of diagrams as a functioh ahd
I. This analysis suggests a simplified enumeration procedure
which we apply in Sec. IV to the detailed study of an ex-

FIG. 1. The so-called hole-hole contribution to the binding en-
ergy of nuclear matter. Here as well as in the other figures of this FIG. 2. Diagrams pertaining to the three-body-cluster contribu-
paper, full dots represent antisymmetrizBdmatrices. tion to the binding energy of nuclear matter.
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ample. Our work is summarized and compared with related
ones in Sec. V.

II. HOLE LINE NUMBER UPPER BOUNDS AT ANY
ORDER OF THE HOLE LINE EXPANSION

A. Binding energy diagrams (

=
s

Because of momentum conservation, the momenta at-
tached to the hole and patrticle lines of any diagfaroan all
be expressed in terms of a subset of them; namely, the subse
of the so-called independent momenta. These are the mo:
menta which are integrated over in the analytical expression
corresponding to the given diagram. Such a subset of inde-
pendent momenta can be obtained by considering any span
ning treeT contained inD. (We remind the reader that by FIG. 3. Determination of the minimal spanning tree on an ex-

definition, a tree is a connected loop free diagram and that gmple. Ster(1): Suppress the diagram hole lines. This leads to a

tree.T is said to span a Fhagrarli_) when it has thg same diagram withN=2 components. Stef2): Construct a spanning tree
vertices ad, whereas its line set is a subset of the line set of, a5ch component. In this example, one of the components con-

D.) The looked for independent momenta are then the MOg;sts of a single vertex and the corresponding tree is reduced to that
menta attached to the lines which do not belong télence,  vertex. The other component consists of two vertices linked by two
to determine the numberof independent hole momenta in particle lines. One possible tree is indicated by the dotted line. Step
D, one has to find a spanning tree which contains as fewg): Link the trees obtained in the previous step to form a minimal
hole lines as possible. Henceforth, such a tree will be calledpanning treédotted lineg.

a minimal spanning tree. It can be constructed by means of

the following method. First we suppress all the hole lines ofwhich already involves two hole lines. Hence in both cases,
D. In general, this will yield a disconnected diagram with, the inequality(2.2) is obviously satisfied. In order to treat the
say,N connected components. Then we construct a spanning>1 case, we shall use the graph theory theorem which
tree for each component; this yields a collection of subtreestates that if we define the degree of a vertex as the number
which only involve particle lines. Finally, we link these sub- of lines which are attached to it, then the sum of the degrees
trees into a spanning tree by usih-1 of the previously of all the vertices in a diagram is equal to twice the number
suppressed hole lines. It should be clear that this spanningf lines. The proof of this theorem just consists in noticing
tree is minimal. Indeed the connected components referred tihat since a line is necessarily attached to two vertidées
above exist independently of our construction method andinct or no, it will be counted twice when we calculate the
any spanning tree will have to use up exadily-1 hole  sum of the degrees by mere counting and adding. This
lines between these components in order to link them tosimple proof suggests an interpretation of the theorem by
gether. It should also be clear that in any spanning tree whichtating that each line in the diagram contributes half a unit to
is not minimal, the extra hole lines will never be hole linesthe total count of lines when “seen” from any of the two
between components since using more tNanl such lines vertices(distinct or noj that it links together. This interpre-
would create loops which by definition are not allowed in atation will be used several times in the following.

tree: any extra hole line has to link vertices belonging to the Consider now the collection of verticed\(...,M) from
same component. In the following, a component togethewhich any diagram is constructédee Fig. 3 One notices
with the hole lines between its vertices will be referred to aghat the difference between the number of hole and particle
a subdiagram. In Fig. 3, the method we have just described iines above any vertex is always the same as belotfort

illustrated on the hole-hole diagram of Fig. 1. instance, we havd=0 for the verticesA, B, andH). This
Our results so far can be summarized for any diagranimplies that each of th&l subdiagrams which appear in the
D by the equation minimal tree construction, is linked to the other ones by an
even number of hole lines, half of them incoming and the
I=h—N+1, (2.9 other half outgoing(see Fig. 6. Moreover, since we only

consider connected diagrams each subdiagram has to be
linked to the rest of the diagram by at least two hole lines. In
the following, we shall refer to the hole lines inside a sub-
giagram as its internal hole lines and to the hole lines which

whereh is the total number of hole lines iD and| is the
number of independent ones, i.e., the ordebotvithin the
framework of the hole line expansioN is as above the
number of components or subdiagrams determined by th
method we used to construct the minimal spanning tree.

Now, we want to prove that for any binding energy dia-
gram, we have

h=2N. (2.2

The proof is trivial wherN= 1. Indeed either the considered
diagram is the BHF ondsee Fig. 4 for which we have FIG. 4. Brueckner-Hartree-Fo¢BHF) contribution to the bind-
h=2 or its lowermost vertex is a vertex of type(see Fig. 5  ing energy of nuclear matter.
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FIG. 7. List of the possible lowermost vertices for subdiagrams
with two external hole lines.

Hence, for subdiagrams with at least four external hole
lines we obtainwithout having to discuss the allowed values
of h;)
c D E F

he=2. (2.4)

On the other hand, we have to show thatannot vanish if

we want to write an inequality identical to E(R.4) for the

subdiagrams with two external hole lines. This can be seen

from Fig. 7 where we have depicted all the possible lower-
G H I

most vertices for a subdiagram with two external hole lines.
In all cases, the lowermost vertex involves an internal hole
line (we assume that the auxiliary potential appearing in the
fourth diagram of Fig. 7 is self-consistent at least at the BHF
level which implies a “hidden” hole ling
Hence Eq.(2.4) applies to any subdiagram and by sum-

ming over the contributionkg of all subdiagrams we obtain
the inequality(2.2). By combining Eq.(2.1) with Eq. (2.2),

J K L M we obtain

FIG. 5. List of possible vertices. Crosses refer to auxiliary po-
tential (U) insertions. Note that it is convenient to consider the
“tadpoles” J andL as vertices when constructing the diagrams.

h=2l-2, (2.5

which gives the upper bound on the numbeof hole lines
allowed at any ordel of the hole line expansion. Note that
‘this upper bound cannot be improved since for any ofder
one can find diagrams with=21—-2 hole lines. Figure 1
C;')rovides an example fdr=3 and it should be obvious that
one can construct similar diagrams for any

link it to the rest of the diagram as its external hole lines
Consider now a given subdiagrasnand denote byh; and
h. the numbers of its internal and external hole lines, respe
tively. The contributiorhg of s to the total numbeh of hole
lines in the diagram will be given by

h B. Mass operator diagrams

hs=h; + 76 (2.3 We now consider the mass operator whose hole line ex-
pansion has been advocated and discussd@]inTo con-
struct the minimal spanning tree, one proceeds as for the
where the factop multiplying h, is derived from the inter-  binding energy diagrams. A minor difference only appears in
pretation we have given of the above mentioned theorenthe first step of the procedure: here one has to suppress not
when applied to an auxiliary diagram obtained from the dia-only the hole lines of the diagram but also the so-called legs
gram under scrutiny by shrinking the subdiagrams to pointsvhose momenta are in fact given momenta. Then,(Ed)
while keeping the set of external hole lines. also applies here with the same meaning for the symhols
h, andN.
Now, we want to show that Eq2.2) has to be replaced

by
h=2N-1. (2.6)

In order to prove this, we have to consider two cases. In the
first one, both legs of the diagram are attached to the same
subdiagram(a subdiagram is defined as in Sec. )l Since
these legs have replaced two external hole lines, the contri-
bution hg of this subdiagram to the total number of hole lines
will be reduced by one unit and will satisfy the inequality

FIG. 6. Subdiagram structure: Any subdiagram is linked to the
rest of the diagram by an even number of hole lines, half of them h ) he 1 2.7
. . . s . .
incoming and the other half outgoing.
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From Eq.(2.1) we see thah>1| implies N>1, i.e., that
the corresponding diagram can be seen as an assembly of
subdiagrams linked together by external hole lines only. This
suggests that we should enumerate the subdiagrams first and
then assemble them into diagrams. This method reduces the
enumeration task for the following reasons.

First, let us consider the subdiagrams pertaining to the
binding energy. All of them have at least two external hole
lines and we have seen in Sec. Il that each external hole line
contributes half a unit to the total numblerof hole lines in

FIG. 8. Example of a diagram corresponding to the upper boundhe diagram. This means that together the external hole lines
h=21—1 in Eq.(2.11). The dotted lines define a minimal spanning of the N subdiagrams will contribute at leakt units to h.
tree. From Eq.(2.1) we then see that at mokt-1 internal hole

lines will remain shared among th¢ subdiagrams. Hence,
For the other subdiagrams the inequali&4) will still ap- for all the h>1 values allowed by the upper boui@.5 we
ply. By summing the contributionis, of all subdiagrams, we just have to enumerate the subdiagrams with at rhest
obtain internal hole lines. Actually there is a stronger limit on the
number of internal hole lines allowed in subdiagrams with
h=3h=1+2(N-1)=2N—-1, (2.8)  more thanl —1 external hole lines. Indeed, for any subdia-
gram one has trivially

i.e., the inequality{2.6). In the second case to be considered,
the diagram legs are attached to two distinct subdiagrams. h,+he=<h, (3.1
Since in each of these subdiagram a leg has replaced an

external hole line, the contributidm, of each of them to the which together with Eq(2.5) yields

total number of hole lines will be reduced by half a unit and

will satisfy the inequality h;<2l-2—h,. (3.2
ho=h he> 3 59 Whenh, is (strictly) bigger than — 1, the right-hand side of
s=Mit 272 (2.9 this inequality yields an upper bound &g which is indeed

lower thanl — 1. One should note that there is also an upper
Again, inequality(2.4) will apply to the other subdiagrams. bound on the number of external hole lines attached to any
By summing the contributionig of all the subdiagrams, we subdiagram. Indeed, Eg.5) and(3.1) also imply
obtain
hes2l—2. (3.3
3
h=Xh=2 5) +2(N—2)=2N-1, (2.10 Finally, the numbeiN of subdiagrams which can appear in
any diagram is also bounded at each ondef the hole line

i.e., the inequality(2.6). expansion. This can be seen from the inequalit®&8 and
By combining Eqs(2.1) and(2.6), we obtain (2.9), which together yield
h<2l-1, (2.11 N<I—1. (3.9
which provides the upper bound dnat any order of the Let us now consider the mass operator diagrams. Here

hole line expansion pertaining to the mass operator. Not¢oo, the enumeration of subdiagrams followed by their as-
that this upper bound cannot be improved since at any ordesembly is easier than the direct enumeration of all the dia-
I, one can construct diagrams which satisfz21—1. An  grams satisfying the inequalit§2.11). Let us first establish

example of such a diagram is provided in Fig. 8. the upper bound on the numbler of internal hole lines. In
the case of a mass operator diagram, the contribution of the
IIl. STRUCTURE OF THE HOLE LINE EXPANSION external hole lines to the total number of hole lines can be as
DIAGRAMS low as N—1 (instead ofN for binding energy diagrams

since the diagram legs have replaced two external hole lines.

The inequalities(2.5 and (2.11) show that the number From Eq.(2.1), we conclude that at mostinternal hole lines
h of hole lines allowed in diagrams increases almost twice agemain to be shared by the subdiagrams. This means that we
fast as the ordel which has been retained in the hole line can limit ourselves to the enumeration of subdiagrams with
expansion. This implies that except at the lowest orderat mostl internal hole lines for alh values allowed by the
whereh=1 for both the binding energy and the mass operainequality (2.11). By combining Eq.(2.11) with Eq. (3.1),
tor, one will have to perform the time consuming enumera-one gets
tion of lots of diagrams witth>1 just to check whether or
not momentum conservation reduces the number of hole in- hj<2l-1-h,, (3.5
tegrations down td. Our aim will be to show that the sub-
diagram structure we have used in the discussion of Sec. IWhose right-hand side yields a stronger upper boundh;on
can lead to a sizeable reduction of the enumeration work. for subdiagrams with more thah—1 external hole lines.



946 R. SARTOR 56

From Egs.(2.11) and (3.1), one also derives the following k k
upper bound on the number of external hole lines which can
be attached to a subdiagram:

hes21-1. (3.6
, . k k
Finally, from Egs.(2.6) and(2.11), one derives
N<I, (3.7 (a) (b)
which gives the upper bound on the numidérof subdia- FIG. 9. One hole line contributions to the mass operator.

grams.

As will appear in the next section, the enumeration _Ofmentumk associated with these linelk| can be bigger as
subdiagrams in the mass operator case becomes easier if Wil as lower than the Fermi momentum
do not worry for each subdiagram about which external hole Let us now consider the contributions with two indepen-

lines could possibly act as the diagram legs: all mass OPera, -+ hole lines (=2). From Eqgs(2.11) and(2.1), one de-

tor sgbdlagrams will a_lctually t.’e“draVX” as binding ENer9Yives that the values which are allowed forand N are (h
subdiagrams, i.e., as if all their “legs” were external hole

, , . ; =2,N=1) and (h=3, N=2). Each diagram(h=2, N=1)
I!nes. The numbeh, of these gnd-|fferent|ated external hole consists of a single subdiagram. This rules out subdiagrams
lines will always be even and it will exceed the numhbgiof

tual external hole lines by at most two units: with h,=4 which would be allowed by Eq3.10; hence,
actual external hole fines by at most two units. we just have to consider subdiagrams with two undifferenti-

hl<hg+2. (3.9  ated external hole linesh(=2). As in thel =1 case, these
hole lines will be the legs of the diagram. Let us note that
This together with Eq(3.5) implies when we build the subdiagrams from the vertices depicted in
Fig. 5, we can disregard verticésL, andM. Indeed, these
hi<2l+1-hg, (3.9  vertices are actually unallowed subdiagrams: veftewrre-

S . sponds to a subdiagram witt} =4, whereas verticek and
which improves on the upper bouridon h; when he is  \ correspond to subdiagrams with=1. By combining the
bigger thanl + 1. Finally, the upper bound o, is derived  remaining vertices of Fig. 5, one can build the=2, N
from Eqgs.(3.6) and(3.8), which yield =1) diagrams shown in Fig. 10. Diagrania)—(e), which
contain a box labele®", stand for an infinite series of dia-
grams which are obtained by replacing the box by
=0,1,2..., vertices of typeG (refer to Fig. 5 for the various
vertex types As an example, the diagrams corresponding to
Fig. 10@) for n=0, 1, and 2 are displayed in Fig. 11. Note
that there is a single diagram for eactbecause in order to
IV. ENUMERATION EXAMPLE avoid double counting, successi@ vertices should never

In this section, we shall enumerate the contributions to th&€ linked together by two particle lines. Diagrafas—(j) in
mass operator up to two independent hole lines. We shalffig- 10 can all be obtained from the so-called three-body-
thus illustrate the results obtained above and point out somg@uster diagrams pertaining to the hole line expansion of the
peculiar features in the construction of subdiagrams wheRinding energy4] by “cutting” a hole line. Diagram(k) can
two or more of them have to be assembled to yield a com@/SO be obtained from a binding energy diagram by cutting a
plete mass operator diagram. hole line. In cqntr_ad|st|nct|on @agrarﬂ)_does not corre-

The contributions to the mass operator with one indepenSPond to any binding energy diagram since by “pasting to-
dent hole line (=1) are readily obtained with the above 9€ther” the diagram legs one would obtain a diagram with
method. Indeed, Eq2.11) implies that only diagrams with a two successivé matrices linked by two part|(_:le lines. Note,
single hole line hi=1) will be involved and from Eq(2.1) ho_vvever, th_at .such diagrams are not forbidden \_/vhe_n one
one sees that they will be obtained from a single subdiagrar¥fites the binding energy as the sum of the true kinetic and
(N=1), i.e., that no assembly will be required. From Eg.Potential energiegsee[5]). _ _

(3.10, we see that we just have to enumerate the subdia- We now consider thgh=3, N=2) diagrams, i.e., the
grams with two undifferentiated external hole linek ( diagrams composed of two subdiagrams. First, we enumerate
~2): these external hole lines will actually constitute thetN€S€ subdiagrams. From E(3.10 with |=2, one con-
diagram legs. The subdiagrams satisfying all these requirézudes that only subdiagrams witt{=2 or 4 are allowed.
ments are depicted in Fig.(r definiteness we assume that FOr subdiagrams witth¢=2, the number of internal hole
the auxiliary potential is self-consistent at the one hole lindines cannot vanisiisee discussion following Eq2.4)] so
level). Diagram (a) is the well-known BHF contribution, that one can havl;=1 or 2. For subdiagrams withg=4,
whereas diagrartb) just serves to cancel a similar contribu- the improved upper bound dm given by Eq.(3.9) applies
tion coming from the unperturbed part of the mass operatorand only the value§; =0 or 1 are allowed. Thus, we have
One should note that in keeping with the remarks at the entb find the subdiagrams characterized Wy (h;)=(2, 1),

of Sec. Ill, we have drawn the mass operator legs as hol&, 2), (4, 0), and(4, 1). The search can be simplified a little
lines although this does not imply any constraint on the mofurther by noticing that for any diagram composed of at least

h,=2l+1=<2I, (3.10

where the fact that/ is even has been taken into account to
write the last inequality.
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k
k
(b)
k k
(o) (b) (c)
FIG. 12. Subdiagrams with two undifferentiated external hole
lines and a single internal hole line. These subdiagrams are referred

k k k to as(2, 1) subdiagrams in the text.

(c) (d)
two subdiagrams, one has

(Shy)-2

5 +(=h))=h. 4.9

(f) (g)
This implies that(h=3, N=2) diagrams can only be con-

(e)
k
jk 8
(h)
\ k K structed by using the followingh(, ,h;) combinations of sub-
diagrams:(2, D)+(2, 1), (2, D+(4, 0, and (4, 0+(4, 0.
# f g Actually, the combination(2, 1)+(2, 1) is ruled out by the
(k)

fact that the diagram has to be one line irreducible to qualify
as a mass operator diagram. Hence only the combinations

:k (2, )+(4, 0 and(4, 0+(4, 0) will have to be considered in
k

(L) (j)

the assembly process.

The allowed(2, 1) and(4, 0) subdiagrams are depicted in
Figs. 12 and 13, respectively. The boxes lab&8chave the
same meaning as in Fig. 10. Let us stress that when con-
structing subdiagrams, one does not have to apply the rule

FIG. 10. Two hole line contributions to the mass operator con-Stating that successiv@ matrices should never be linked by
sisting of a single subdiagram. two patrticle lines. This rule only applies to the diagrams one
constructs by assembling the subdiagrams. It will appear
clearly below that by suitably “interlocking” subdiagrams
containing suchG-matrix ladders, one can always avoid
double counting. Let us note in passing that all the diagrams
summarized by Figs. 12) and 13b) actually consist of
G-matrix ladders.

Let us now assembl€, 1) and (4, 0) subdiagrams to
construct complete diagrams. The subdiagrams in Figs) 12
and 12b) can only be assembled with thre=0 version of
the subdiagram in Fig. 1B). This yields the diagrams in
Figs. 14a) and 14b). Similarly, the subdiagram in Fig. 8
can only be assembled with time=0 version of the subdia-
gram in Fig. 12c). This yields the diagram in Fig. 1¢). The
n=0 version of the subdiagram in Fig. &2 can be com-

()

(a) (b)

FIG. 11. Diagrams obtained from Fig. () when the box la- FIG. 13. Subdiagrams with four undifferentiated external hole
beledG" is replaced byn G matrices. The illustrated cases corre- lines and no internal hole line. These subdiagrams are referred to as
spond ton=0, 1, and 2. (4, 0 subdiagrams in the text.
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k k k
k k k
{a) (b) (c)

k k k
k k k
(d) (e)

FIG. 14. First members of the infinite series of diagrams which K
can be built by assemblin@®, 1) subdiagrams witi{4, 0) subdia-
grams.

(b)

k
k
{a)
k k
(f) k k
(c) (d)
(e}

bined with both then=0 andn=1 versions of the subdia-
gram in Fig. 18b). This yields the diagrams depicted in Figs.
14(d), 14(e), and 14f). One checks that, in general,
G-matrix ladders in the complete diagrams will be avoided k k
only by combining then version of the subdiagram in Fig.
12(c) with then—1, n, or n+ 1 versions of the subdiagram
in Fig. 13b). Using the Bethe-Brandow-Petsche@RBP) FIG. 16. First members of the infinite series of diagrams which
theorem[6], one sees that the whole series(®f 1)+(4, 0)  can be built by assembling tw@, 0) subdiagrams.
diagrams withoutU insertions boils down to the two dia-
grams depicted in Fig. 15 where the label “on” means thatcorresponding binding energy diagrams. For instance, by
the G matrices in the middle of the diagrams should be cal-cutting a hole line in the hole-hole diagram of Fig. 1, one
culated on the energy shell. The diagram&l3s cancelled accounts for the two diagrams of Fig. 17.
by the diagram 1¢4) when the auxiliary potential for hole
states is chosen self-consistently at the one hole line level,
i.e., is identified by the BHF contribution to the mass opera-
tor [see Fig. @a)]. The diagram 1€b) renormalizes the BHF In this paper, we have discussed the enumeration prob-
contribution[7]. lems appearing within the hole line expansion method. The
To complete the example, let us consider the diagramsiagrams contributing to a given ordeicannot be obtained
resulting from the assembly of tw@, 0) subdiagrams. The by the straightforward enumeration of the diagrams with
diagram in Fig. 18) can only be assembled with time=0 hole lines. What matters is the number of independent hole
version of the diagram in Fig. 18). This yields the dia- lines, i.e., the number of hole lines whose momenta are not
grams depicted in Figs. & and 16b). Then version of the  fixed by momentum conservation. From a practical point of
subdiagram 1®) can be combined with both theand the view, this immediately leads us to inquire whether there is an
n+1 version of the same subdiagram. The diagrams corraipper bound on the numbhrof hole lines which can appear
sponding ton=0 are depicted in Figs. 16—16(f). Again  in the diagrams contributing to a given order Here, we
the BBP theorem can be used to reduce the whole series bave discussed the binding energy and mass operator cases
(4, 0+(4, 0 diagrams to the two diagrams of Fig. 17, wherefor which we have found the upper bounds given by Egs.
the middleG matrix has to be calculated on the energy shell.(2.5 and(2.11), respectively. We have also shown that it is
Note finally that all the mass operator diagrams composedot necessary to enumerate all the diagrams within these up-
of two subdiagramssee Figs. 14—17can be obtained from

k k
k k
(on) (on) (on) (on)
k k
{a) (b) k k
(a)

(b)

(f)

V. SUMMARY AND DISCUSSION

FIG. 15. Diagrams resulting from the BBP summation of the
whole series of2, 1)+(4, 0) diagrams withoutJ insertions. The FIG. 17. Diagrams resulting from the BBP summation of the
labels “on” mean that the middI& matrices should be calculated whole series of4, 0+(4, 0) diagrams. The labels “on” mean that
on the energy shell. the middleG matrices should be calculated on the energy shell.
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per bounds. Indeed, we have proved that the diagrams with

h>1 can be constructed from a well defined number of sub-

diagrams whose enumeration is much easier than that of the

diagrams they are composing. As far as we know, the enu-

meration problems posed by the hole line expansion were

considered systematically only [&] and[8]. Referencq 2]

was concerned with the enumeration of the4 contribu-

tions to the binding energy of nuclear matter. Actually, the

method which was used to arrive at the full set of these

diagrams was not described at all. We can check, however,

that all these diagrams have at most six hole lines, i.e., sat-

isfy in thel =4 case the upper bound given in general by Eq.

(2.5). Let us also emphasize that the combination diagrams FIG. 18. Example of diagram which would be considered as a
of [2], which are defined at a given ordef the hole line c_ombinatioq diagram according {@] although it consists of a
expansion as the diagrams whose energy denominators, pcdPgle subdiagram.

sibly after applying the BBP theorem, do not involve the

excitation ofl particles above the Fermi surface, should notergy of nuclear matter but the enumeration of diagrams is
be identified with the diagrams composed of subdiagramsonsidered at any ordérof the hole line expansion. It was
which have been considered in the present paper. An exlso found that the enumeration work is “bounded” by an
ample of a combination diagram which is not composed oinequality which has to be satisfied at any given ofdéee
subdiagrams is given in Fig. 18. On the other hand, all diaEq. (34) of [8]). Note, however, that the method used &
grams composed of subdiagrams are combination diagrams. an algebraic one and as a consequence this inequality is
This statement can be proved by noting that it is logicallydifferent from our inequality Eq(2.5): it refers more to the
equivalent to the statement that diagrams which are not conalgebraic expression of the binding eneigge Eq.(30) of
bination diagrams cannot be disconnected by suppressiri@]) than to the structure of the diagrams. This leads to some
their hole lines. The latter statement is obvious because thextra work of elimination of unwanted diagranisee point
diagrams which are not combination diagrams at the orde(ii) in the rule summary of8]) which is avoided here by

| of the hole line expansion coincide with the so-calledtaking into account the structure in subdiagrams. Finally,
I-body cluster diagrams, i.e., with the diagrams which, aftenote that the quantity denoted Byin [8], i.e., the number of
suppression of their hole lines, appearlaspgoing lines momentum conservation conditions for hole lines which ap-
connected by a certain number of antisymmetrigechatri-  ply in a diagram, can actually be determined readily by
ces. As with[2], [8] is also concerned with the binding en- means of the tree analysis we described in Sec. Il.
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