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Periodic numerical solutions of the time-dependent Hartree-Fock equations
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We propose a numerical algorithm for finding periodic solutions of the time-dependent Hartree-Fock equa-
tions. We show that this algorithm preserves the particle number and the total energy exactly. We demonstrate
the method by calculating the periodic breathing mode of4He. We discuss the generalization to more realistic
cases, including multidimensional periodic modes.@S0556-2813~97!05508-8#

PACS number~s!: 21.60.Jz, 21.10.Re, 02.70.2c, 27.10.1h
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I. INTRODUCTION

It has been known for some time that approximate bou
state energies of many-body systems can be found from
periodic solutions of the time-dependent Hartree-Fo
~TDHF! equations@1–3#. A quantization rule is needed t
return to full quantum mechanics, since TDHF is partly cla
sical. In the simplest cases~nonchaotic, one dimensional!,
this rule is usually analogous to Bohr-Sommerfeld quanti
tion @4–6#, and tests with simple models have been ve
encouraging@7,8#. An accurate calculation of the period
TDHF solutions is a key element of the method. The work
Chomazet al. @9# emphasizes this point and proceeds to c
struct periodic solutions to the one-body density matrix e
ploying a symplectic theory. These solutions have been
most reliable to date using realistic nuclear interactio
However, as demonstrated in Ref.@10#, a range of solutions
having different periods is needed to use effectively
requantization method. Except for semianalytic model st
ies testing the requantization method, no calculations w
realistic nuclear forces have been carried out@5,7,10#.

In the present work we present an algorithm for ac
rately solving the periodic time-dependent Hartree-Fo
equations. Our method is based on a discrete wave func
approach which preserves the total energy exactly. A sim
approach was used long ago in the study of nuclear collis
@11#. However, we differ from this earlier work in sever
respects, but most importantly in the treatment of unitar
We present the method in Sec. II, and in Sec. III we desc
the search procedures for obtaining the TDHF periodic
bits. We give the period of the breathing mode of4He as a
function of its amplitude or of its energy. In Sec. IV we giv
a brief discussion of the stability of the algorithm and t
generalization to more realistic cases, which include mult
560556-2813/97/56~2!/857~6!/$10.00
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mensional periodic modes. Throughout the paper we s
employ units where\5c5m51.

II. PROBABILITY AND ENERGY CONSERVATION

The search for quasiperiodic solutions of the TDHF eq
tions has been pursued for some time. Chomazet al. @9#
provided the first successful algorithm which might lead
general numerical solutions. However, difficulties in conv
gence prevented these authors from applying their met
more widely. The problem was studied in detail by one of
@10#, and it was shown that it is essential to use a discret
tion scheme which preserves exactly the conservation l
for energy and probability in the time evolution. In Ref.@10#
this was done by using densities and currents, but there
other ways.

In our approach, we deal directly with the dynamics of t
one-body wave functions governed by the TDHF equatio
Our method is similar to that employed by one of us@12# for
the evolution of nuclear hydrodynamics in terms of a nonl
ear Schro¨dinger equation.

We begin by writing the one-body TDHF equations

i
]

]t
ca52 1

2 ¹2ca1w~r!ca , ~1!

where w(r) is the one-body potential, assumed to depe
only on the local densityr. We write the time-discretized
form of these equations as

uca
n11&2uca

n&52 i eH~n1 1
2 !~ uca

n&1uca
n11&)/2, ~2!

wheren is the index for thenth time step, whose size ise. So
far the space discretization is not explicit. The one-bo

Hamiltonian H, assigned the timen1 1
2 , has to be deter-

mined. One condition onH is that it be Hermitian, which
857 © 1997 The American Physical Society
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insures unitarity and therefore conservation of probabil
This is obvious if one writes Eq.~2! as

uca
n11&5U~n1 1

2 !uca
n&, ~3!

with

U~n1 1
2 !5

12 1
2 i eH~n11/2!

11 1
2 i eH~n11/2!

. ~4!

If H is Hermitian, thenU is unitary, and the overlap matri
is constant in time:

^ca~n11!ucb~n11!&5^ca~n!ucb~n!&.

Therefore the total particle number(a^ca
n uca

n& is conserved.

To determineH(n1 1
2 ) more fully, we now invoke the

time-discretized version of energy conservation. We are
ing an interaction of the Skyrme type; this is essential. T
conserved energyE, which should be independent ofn, is

E5(
a

^ca
n11uK1V~rn11!uca

n11&5(
a

^ca
n uK1V~rn!uca

n ,

~5!

whereK is the kinetic energy,r is the density given by

rn~r !5(
a

u^r uca
n&u2,

and

V~r!52
a

2
r1

b

21s
r11s.

On the other hand, according to Eq.~1!, the one-body Hamil-
tonian must have the form

H~n1 1
2 !5K1w~n1 1

2 ,r !.

In the continuous-time formulation,w is given by

w~r!5
d

dr
@rV~r!#. ~6!

We shall derive a discretized-timew(n1 1
2 ) which will re-

duce to this in the limite→0. A similar result was obtained
in Appendix B of Ref.@11#, where TDHF was used to stud
heavy-ion collisions.

It should be obvious that the equation

^ca
n11uH~n1 1

2 !uca
n11&5^ca

n uH~n1 1
2 !uca

n& ~7!

follows from Eqs.~3! and ~4! sinceH(n1 1
2 ) andU(n1 1

2 )
certainly commute. Summing Eq.~7! over a we get

(
a

^ca
n11uK1w~n1 1

2 ,r !uca
n11&5(

a
^ca

n uK1w~n

1 1
2 ,r !uca

n&,

which we can compare with Eq.~5!. When we subtract one
equation from the other, the kinetic energy drops out and
get
.

s-
e

e

(
a

^ca
n11uV~rn11!2w~n1 1

2 ,r !uca
n11&5(

a
^ca

n uV~rn!

2w~n1 1
2 ,r !uca

n&,

which can be rewritten

E dr$rn11[V(rn11)2w(n1 1
2 ,r )] %5E dr$rn@V~rn!

2w(n1 1
2 ,r )#%.

Even though this is a global condition onr , it can be satisfied
by adopting a simple local relation between the poten
energies, namely

w~n1 1
2 !5

rn11V~rn11!2rnV~rn!

rn112rn
, ~8!

which is indeed a discretization of Eq.~6!. For the particular
SkyrmeV~r! mentioned above, this is

w~n1 1
2 !52

a

2
~rn111rn!1

b

21s

~rn11
21s2rn

21s!

~rn112rn!
.

Overall, the advantage of our approach above is that
ing the total energy as a local condition, instead of a glo
condition, can be easily programed with an iterative pro
dure similar to the one in Ref.@13#, and generalized to more
complex systems. The details of the iterative algorithm
given in the next section.

III. NUMERICAL ALGORITHM

The solutionsca that we seek for Eq.~1! are not really
periodic; they are quasiperiodic in the Floquet sense@5#.
Truly periodic functionsfa can be defined by

ca~r ,t !5e2 ilatfa~r ,t !,

with

fa~r ,t1t!5fa~r ,t !.

The quantityla is known either as the quasienergy or as t
chemical potential. The equation satisfied byfa is

i
]

]t
fa5~H2la!fa . ~9!

We consider the monopole vibrations of4He, using a
simple version of the Skyrme force, and we neglect the C
lomb interaction between protons. This definiteness lead
some simplifications in describing our algorithm. General
ing to more complex many-body systems is straightforw
and is discussed later. For the simple case, the spin and
spin degrees of freedom can be summed over, and the
maining wave function is the solution of a one-dimension
s-wave radial equation with fourfold degeneracy. If we d
fine this wave functionu by

fa~r ,t !5
ua~r ,t !

r
Ylm~ r̂ !xa~s!xa~t!, ~10!

with the normalization*druua(r )u251, then the TDHF
equation becomes
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i
]

]t
ua~r ,t !52

1

2

]2

]r 2 ua~r ,t !1@w~r!2la#ua~r ,t !,

~11!

wherew(r)5(3/4)t0r1(3/16)t3r2 and where the density i

r~r ,t !5
1

4pr 2 (
a

gauua~r ,t !u2. ~12!

For 4He, there is only one occupied orbital and the deg
eracyga equals 4. Hereafter we shall drop the subscripta for
simplicity. The parameterst0 andt3 are given in Ref.@14# as
t0521090.0 MeV fm3 andt3517288.0 MeV fm6. The total
energy is

E5gaE
0

`

dru* ~r !F2
1

2

d2

dr2 u~r !1V~r!u~r !G , ~13!

whereV(r)5(3/8)t0r1(1/16)t3r2.
In searching for the numerical solutions we first discret

this equation in space and time. Withne denoting the time,
Eq. ~11! takes the form

uun11&2uun&52 i e@K1w~n1 1
2 !2l#~ uun&1uun11&)/2,

~14!

wheren51,2 . . .N and the space index is again suppress
The potential operatorw is diagonal in space and given b
Eq. ~8!. The iterative procedure we use to reach the perio
solution is quite general and can be summarized as follo
Here we specialize to the case of monopole nuclear mot

Initialization. We obtain an initial guess for the perio
t0 and the parameterl0 from a trial wave functionuu0

1&,
which has a large component of an oscillating mode. In
calculation we use as initial trial wave function the grou
state of the nucleus in a constraining potential fieldgr 2, i.e.,
we let

w~r!→w~r!1gr 2, ~15!

with g.0. As in Ref. @15#, we examine the trajectory o
^r 2& in time with l50, and we determine an approxima
period t0.Ne. From the phase angl
u05arĝ u0

N11uu0
1&.l0t0, we determine an initial valuel0 .

In the kth iteration of the procedure, we follow the tim
evolution of the trial wave functionuuk

n& using Eqs.~14! and
~8!. At the end of the time evolution we obtain a wave fun
tion uuk

N11&. The perodicity condition should requir
uuk

1&5uuk
N11& a periodic solution. At each step of the iter

tions we useuk5arĝ uk
N11uuk

1&5Dlktk to correct the value of
lk with

lk115lk1Dlk .

For the intermediate steps, Eq.~14! and ~8! are exactly sat-
isfied.

For a periodic solution there is one more equation to s
isfy exactly,

uuk
1&2uuk

N&52 i e@K1wk~N1 1
2 !2lk#~ uuk

1&1uuk
N&)/2.

~16!
-

e

d.

ic
s.
n.

r

-

t-

We use this equation to correct the trial wave functionuuk
1&

and obtain a new wave function for the next iteratio
uuk11

1 &. We first solve Eq.~16! for the wave functionuuk
1&8

from the givenuuk
N& and the potentialwk(N1 1

2 ), and then
take a linear combination ofuuk

1& and uuk
1&8 as the new trial

wave functionuuk11
1 &. Again we analyzê r 2& and obtain a

new estimate for the periodtk11 .
We repeat the procedure given above until the des

precision for the periodic solution is reached.

IV. DISCUSSION

The search for periodic orbits is different from the sear
for static solutions, where there exists a definite static so
tion at a definite energy. For the TDHF periodic orbits t
energy range starts with the ground-state energy and
creases continuously, and they form a continuously infin
set of solutions. This leads to the following possible dif
culty. The iterative procedure starts with a trial wave fun
tion, and this wave function needs to be modified at the e
of each iteration. When we modify the wave function, th
may modify the period or the energy. Thus, even though
have imposed the periodicity condition, we are unable
control the convergence of the approximate solution to so
imposed value of the period or of the energy. Conseque
we may end up with an iteration procedure which kee
modifying the period or the energy without ever convergin
To avoid this problem we have to change our strategy. T
new strategy will be referred to hereafter as fine tuning.
fine tuning, instead of fixing the period and the antislidi
point ~to be discussed shortly!, we allow them to change
toward the trial wave function at the end of each iteratio
Figure 2 shows the effect of fine tuning turned on at t
100th iteration. At that point we see a significant improv
ment in the periodicity, and from then on the wave functi
converges rapidly and consistently.

Our calculations show that this procedure is stable a
good convergence is reached. A few comments are in or
~i! The conservation of energy and particle number is b
into our algorithm at each time and iteration step. We ha
tested this aspect of our algorithm numerically. A typical r
may contain 104 time steps, performed in double precisio
For each time step the nonlinear equation~14! must be
solved. We solve it by successive approximations, wh
may involve 10 to 20 iterations. At the end of the run we fi
that the total particle number has been preserved up to
part in 1015, and the total energy up to one part in 1013.
Because the iterative procedure preserves the total par
number and the total energy, it is quite stable and the sta
ity is not affected by the number of iterations at each st
~ii ! As explained in Ref.@10#, the conservation of particle
number and energy reduces the total number of equation
2, which allows us to impose two additional crucial equ
tions, thephasecondition and theantisliding condition. In
our realization we impose thephasecondition by requiring
that the first space component of the wave functionuk

1(1) be
real. Theantislidingcondition is realized by keeping the re
part of uk

1(1) fixed within certain appropriate bounds. O
experience shows that an adjustment of this value may
celerate the convergence of the iterative procedure. When
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convergence slows down, we modify this quantity to a va
betweenuk

1(1) anduk
N11(1). ~iii ! For the periodic orbits a

different energies, we have used different magnitudes for
parameterg of the constraining potential field, ranging from
1.531025 to 731024 ~in natural units!. The higher the en-
ergy, the stronger the potential strength.~iv! The conver-
gence of the periodicity is measured by the standard de
tion of the difference between the space components of
wave functionsuuk

1& and uuk
N11&, i.e.,

sk5A 1

M (
j

uuk
1~ j !2uk

N11~ j !u2,

where M is the number of mesh points in space. This
significantly more sensitive than the difference of the po
tions on thê r 2& trajectory.

In order to test this algorithm, we have studied the mo
pole vibrations of 4He. A set of periodic solutions corre
sponding to differentg values of the constraining field ar
given in Table I. However, there is in fact a continuous sp
trum of periodic solutions@10#. The trajectory of the square
radius for the mode labeled solution 1 in the table is plot
in Fig. 1 for more than ten periods. The variations obser

TABLE I. Four of the periodic solutions studied in the prese
work. Given in the table are the period, the frequency, and
excitation energy for each case. Note that these are members
continuous family of periodic solutions, obtained from particu
initial conditions as described in the text.

Solution Period
(fm/c)

Frequency
(MeV/h)

Excitation energy
~MeV!

1 44.847 27.646 0.056
2 45.035 27.531 0.913
3 45.500 27.250 3.01
4 46.280 26.790 7.57

FIG. 1. The trajectorŷr 2(t)& of monopole vibrations in Helium
as a function of time for the caset544.847 fm/c. The constant,
r 051.797 fm, is the value of the ground-state rms radius.
e

e
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he
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-
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d

in this figure give a good idea of the size of the monop
vibrations. No deviation from periodicity can be observ
here at all; the difference between two wave functions se
rated by a period is less than one part in 108. The standard
deviation is a much more stringent test of periodicity and
shown in Fig. 2 for solution 1, as the equations are iterate
convergence. In this case the convergence parameters re
periodicity to one part in 23108. The shape of the vibra
tions, i.e., the variation ofr(r ), is plotted in Fig. 3.

In Fig. 4 we show the excitation spectrum as a function
the period. We note that the period varies linearly with t

t
e
f a

FIG. 2. The standard deviation in the periodic wave function
a function of iteration number for the periodic solution shown
Fig. 1. The structure at iteration number 100 represents the p
when the algorithm begins reevaluating the period at each itera

FIG. 3. The difference between the density at timet and the
density at time 0 plotted for two different times as a function
r . The two times correspond to maximum~full line! and minimum
~dashed line! values of̂ r 2(t)&. Note that the densities are weighte
with the factorr 2 for display purposes.
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excitation energy when the latter is low; at higher energy
plot acquires some curvature. The RPA frequency can
easily extrapolated from this figure. In order to requant
these solutions, calculations over a broader range of per
or energies would be needed.

For heavier nuclei we need more than one wave func
to describe the collective states. We have extended the a
formulation to the spherical nuclei16O and 40Ca. For the
case of 16O we used two wave functions,s wave andp
wave. For 40Ca we also added ad wave and a seconds
wave. The orthonormality of the twos waves is ensured by
using Gramm-Schmidt orthonormalization at each modifi
tion of the wave functions. The above approach can be s
ply generalized to such systems with multiple wave fun
tions. Our preliminary runs have shown that the iterat
procedure works well and gives good results for the TD
periodic orbits of systems such as16O and 40Ca.

The Skyrme force used here represents the short ra
nature of the strong interaction. For an extension of the
gorithm to a full Skyrme Hamiltonian for heavy nuclei, th
numerical algorithm preserving exact energy conservatio
still a major issue. The spin-isospin dependence will not
troduce further complications directly, except for an increa
in the number of wave functions required. It is the mome
tum dependence of the Skyrme force which needs to be

FIG. 4. Theclassical-likeexcitation spectrum for the monopol
vibrations in 4He. Here the spectrum is shown over the limit
range calculated for the present paper.
,

e
e

e
ds

n
ve
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-

-
e

ge
l-

is
-
e
-
e-

considered, since it introduces nonlocal interactions in
picture. The problem can be solved, but there is a cos
higher complication.

Spherical symmetry only works for spherical nuclei a
monopole excitations. Monopole excitations mainly serve
a testing ground for the algorithm. More interesting phys
lies in giant resonances and quadrupole excitations. In th
cases we have to replace the spherical symmetry by a r
tional symmetry, and we have to describe the nucleus in
or even three space dimensions. Even though the algor
may not change, the increase in space dimensions will ca
a dramatic increase in needed computational resources, s
it involves an increase in the number of variables by a
mension factor, accompanied in all likelihood by a slo
down of the convergence sequence. The increase in com
tation is often measured by the square of the dimens
factor.

It seems, therefore, that moving up in space dimensi
cannot be done unless we can achieve a radical improvem
in the speed of convergence of our algorithm. Such an
provement, based on the ideas of Ref.@10#, is in fact being
implemented right now and we hope to report on the res
in the near future.

V. CONCLUSION

In this article we have proposed a numerical algorith
which preserves the total particle number and the total
ergy. These conservation laws are essential for the calc
tion of large amplitude periodic orbits. We have demo
strated the use of the algorithm for the monopole vibratio
in 4He, employing simple Skyrme forces. As has be
widely discussed in the literature, these periodic solutio
may have great relevance to the collective excitations o
many-particle system. We will apply the method develop
here to realistic quantum systems in nuclear physics and
lecular physics.
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