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Periodic numerical solutions of the time-dependent Hartree-Fock equations
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We propose a numerical algorithm for finding periodic solutions of the time-dependent Hartree-Fock equa-
tions. We show that this algorithm preserves the particle number and the total energy exactly. We demonstrate
the method by calculating the periodic breathing modéé. We discuss the generalization to more realistic
cases, including multidimensional periodic mode¥0556-28187)05508-9

PACS numbses): 21.60.Jz, 21.10.Re, 02.76c, 27.10+h

[. INTRODUCTION mensional periodic modes. Throughout the paper we shall
employ units wherés=c=m=1.
It has been known for some time that approximate bound-
state energies of many-body systems can be found from the |l. PROBABILITY AND ENERGY CONSERVATION

periodic solutions of the time-dependent Hartree-Fock g search for quasiperiodic solutions of the TDHF equa-
(TDHF) equations[1-3|. A quantization rule is needed 10 tjons has been pursued for some time. Choregal. [9]
return to full quantum mechanics, since TDHF is partly clas-provided the first successful algorithm which might lead to
sical. In the simplest casdsonchaotic, one dimensional general numerical solutions. However, difficulties in conver-
this rule is usually analogous to Bohr-Sommerfeld quantizagence pre\/ented these authors from app|y|ng their method
tion [4-6], and tests with simple models have been verymore widely. The problem was studied in detail by one of us
encouraging7,8]. An accurate calculation of the periodic [10], and it was shown that it is essential to use a discretiza-
TDHF solutions is a key element of the method. The work oftion scheme which preserves exactly the conservation laws
Chomazet al.[9] emphasizes this point and proceeds to confor energy and probability in the time evolution. In REEO]
struct periodic solutions to the one-body density matrix em-this was done by using densities and currents, but there are
ploying a symplectic theory. These solutions have been thether ways.
most reliable to date using realistic nuclear interactions. In our approach, we deal directly with the dynamics of the
However, as demonstrated in REE0], a range of solutions ©one-body wave functions governed by the TDHF equations.
having different periods is needed to use effectively theQur method is similar to that employed by one offtg] for
requantization method. Except for semianalytic model studthe evolution of nuclear hydrodynamics in terms of a nonlin-
ies testing the requantization method, no calculations witt¢ar Schrdinger equation. _
realistic nuclear forces have been carried [&7,10. We begin by writing the one-body TDHF equations

In the present work we present an algorithm for accu- P
rately solving the periodic time-dependent Hartree-Fock i — Y,=—3V2,+W(p)i,, (1)
equations. Our method is based on a discrete wave function at

approach which preserves thg total energy exactly. A Si_m"a{}vherew(p) is the one-body potential, assumed to depend
approach was used long ago in the study of nuclear coII|S|on3n|y on the local density. We write the time-discretized
[11]. However, we differ from this earlier work in several .1 of these equations as

respects, but most importantly in the treatment of unitarity.

We present the method in Sec. II, and in Sec. Il we describe [ D —y™y=—ieH(n+ ([N +|¢2 N2, (2

the search procedures for obtaining the TDHF periodic or- ) ) ) o

bits. We give the period of the breathing mode“sfe as a  Wheren is the index for thenth time step, whose size & So
function of its amplitude or of its energy. In Sec. IV we give far the space discretization is not explicit. The one-body
a brief discussion of the stability of the algorithm and theHamiltonianH, assigned the timeé+ 3, has to be deter-
generalization to more realistic cases, which include multidi-mined. One condition ot is that it be Hermitian, which
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insures unitarity and therefore conservation of probability.

This is obvious if one writes Eq2) as
lwa D =U(n+3)]y5). 3

with

1= ZieH(n+1/2)

U(n+3)= _ .
1+ 2ieH(n+1/2)

(4)

If H is Hermitian, therlJ is unitary, and the overlap matrix
is constant in time:

(Pa(n+D)[hp(n+ 1)) = (o ()] hg(N)).

Therefore the total particle numbEr,("|4") is conserved.
To determineH(n+3) more fully, we now invoke the
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; <¢’;“|V<pn+1>—w(n+%,r>|w’;“>=§ (Y2 V(pp)

_W(n+%,r)|l//2>,

which can be rewritten

f df{pn+1[V(pn+1)—W(n+l,r)]}=fdf{pn[V(pn)

—w(n+3,r]}.

Even though this is a global condition onit can be satisfied
by adopting a simple local relation between the potential
energies, namely

V —pa
W(n+%):pn+l (Pn+1)— Pn (Pn)’
Pn+17 Pn

®

time-discretized version of energy conservation. We are us-
ing an interaction of the Skyrme type; this is essential. Thewhich is indeed a discretization of E(). For the particular

conserved energl, which should be independent of is

E=2 (g K Won el 95™) = 2 (WElK+ Vool
(5)

whereK is the kinetic energyp is the density given by

pn(r>=§ [(r |92,

and

B 1+o

o
Vp)==5 ptoop

On the other hand, according to Ed), the one-body Hamil-
tonian must have the form
H(n+3)=K+w(n+3,r).

In the continuous-time formulationy is given by

B
W(p)= % [pPV(p)]. (6)

We shall derive a discretized-tim&(n+ 3) which will re-
duce to this in the limitt— 0. A similar result was obtained
in Appendix B of Ref[11], where TDHF was used to study
heavy-ion collisions.

It should be obvious that the equation

WIH+ DY Y =(aHn+D)]yl) (D

follows from Egs.(3) and (4) sinceH(n+3) andU(n+ 3)
certainly commute. Summing E{7) over a« we get

2 (YK wn+ 30|y ) = 2 (YLlK+w(n

+ 2.0 ¥0),

which we can compare with E@5). When we subtract one

Skyrme)(p) mentioned above, this is
B (paii—pa" ")
2+0 (pns1—Pn)

o
W(rH'%): - E (pn+1tpn)t

Overall, the advantage of our approach above is that fix-
ing the total energy as a local condition, instead of a global
condition, can be easily programed with an iterative proce-
dure similar to the one in Ref13], and generalized to more
complex systems. The details of the iterative algorithm are
given in the next section.

IIl. NUMERICAL ALGORITHM

The solutionsy,, that we seek for Eq(l) are not really
periodic; they are quasiperiodic in the Floquet seftsp
Truly periodic functionsg, can be defined by

Po(rt)=e Malg (r,t),
with
a1+ 7)= (1 ,1).

The quantityA , is known either as the quasienergy or as the
chemical potential. The equation satisfied by is

14
$o=(H=No) g (€)

' ot
We consider the monopole vibrations 6He, using a

simple version of the Skyrme force, and we neglect the Cou-
lomb interaction between protons. This definiteness leads to
some simplifications in describing our algorithm. Generaliz-
ing to more complex many-body systems is straightforward
and is discussed later. For the simple case, the spin and iso-
spin degrees of freedom can be summed over, and the re-
maining wave function is the solution of a one-dimensional
s-wave radial equation with fourfold degeneracy. If we de-
fine this wave functioru by

u,(r,t)
r

¢a(rit): Ylm(F)Xa(o-)Xa(T)! (10)

equation from the other, the kinetic energy drops out and wavith the normalizationfdr|u,(r)|?=1, then the TDHF

get

equation becomes
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. d 92 We use this equation to correct the trial wave functiop)
e Ua(r,t)z—ia—rz Uy (N, ) +[W(p) =N Ju,(r,b), and obtain a new wave function for the next iteration,

(11)  |Uks1). We first solve Eq(16) for the wave functiorjuy)’

from the given|u{}') and the potentiaW,(N+ 3), and then
take a linear combination dfiy) and|u})’ as the new trial
1 wave function|u}, ;). Again we analyzér?) and obtain a
p(rt)=—— > glu.(r.t)2 (12)  new estimate for the periog,. ;.

4mr® g We repeat the procedure given above until the desired

4 . . ) precision for the periodic solution is reached.
For “He, there is only one occupied orbital and the degen-

eracyg, equals 4. Hereafter we shall drop the subsc#ifar

wherew(p) = (3/4)typ + (3/16)t3p? and where the density is

simplicity. The parameteity andt; are given in Ref[14] as IV. DISCUSSION

to=—1090.0 MeV fnf andt;=17288.0 MeV fri. The total

energy is The search for periodic orbits is different from the search
for static solutions, where there exists a definite static solu-

d? tion at a definite energy. For the TDHF periodic orbits the
~ 5 g2 U FUpun) ), (13 energy range starts with the ground-state energy and in-
creases continuously, and they form a continuously infinite
h - t o+ (1/1 2 set of solutions. This leads to the following possible diffi-
whereV(p) = (3/8)top + (1/16)ap culty. The iterative procedure starts with a trial wave func-

In searching for the numerical solutions we first discretizet_ d thi functi ds 10 b dified at th d
this equation in space and time. Witle denoting the time, lon, and this wave function needs to be modified at the en

E=gaf dru*(r)
0

Eq. (11) takes the form of each i;eration. When we modify the wave function, this
a. (D may modify the period or the energy. Thus, even though we
ULy — UMy = —i e K+w(n+3) =\ ](Ju™+|u"t1)/2, have imposed the periodicity condition, we are unable to

1 control the convergence of the approximate solution to some

imposed value of the period or of the energy. Consequently
wheren=1,2...N and the space index is again suppressedwe may end up with an iteration procedure which keeps
The potential operatow is diagonal in space and given by modifying the period or the energy without ever converging.
Eq. (8). The iterative procedure we use to reach the periodid 0 avoid this problem we have to change our strategy. The
solution is quite general and can be summarized as follows)ew strategy will be referred to hereafter as fine tuning. In
Here we specialize to the case of monopole nuclear motiorfine tuning, instead of fixing the period and the antisliding

Initialization. We obtain an initial guess for the period point (to be discussed shorllywe allow them to change

7o and the parametex, from a trial wave functionjud), ~ toward the trial wave function at the end of each iteration.
which has a large component of an oscillating mode. In oufigure 2 shows the effect of fine tuning turned on at the
calculation we use as initial trial wave function the ground100th iteration. At that point we see a significant improve-

state of the nucleus in a constraining potential figtd, i.e., ~ ment in the periodicity, and from then on the wave function
we let converges rapidly and consistently.

Our calculations show that this procedure is stable and

w(p)—W(p)+yr?, (15  good convergence is reached. A few comments are in order.

(i) The conservation of energy and particle number is built

with y>0. As in Ref.[15], we examine the trajectory of into our algorithm at each time and iteration step. We have
(r?) in time with A\=0, and we determine an approximate tested this aspect of our algorithm numerically. A typical run
period To=Ne. From the phase angle may contain 16 time steps, performed in double precision.

o= argu) " H|ud)=N\o7, We determine an initial valu,. For each time step the nonlinear equatid¥) must be

In the kth iteration of the procedure, we follow the time solved. We solve it by successive approximations, which
evolution of the trial wave functiofuf) using Eqs(14) and ~ may involve 10 to 20 iterations. At the end of the run we find

(8). At the end of the time evolution we obtain a wave func-that the total particle number has been preserved up to one

tion [uN*Y). The perodicity condition should require Part in 10°% and the total energy up to one part in'd0
|uﬁ>=|uN+l> a periodic solution. At each step of the itera- Because the iterative procedure preserves the total particle

tions wek usa9k=ar§KU’Q'+1IUﬁ>=A>\ka to correct the value of number and the total energy, it is qui_te sta_lble and the stabil-
Ay, with ity is not aﬁgcted.by the number of iterations at each_ step.
(i) As explained in Ref[10], the conservation of particle
Mes =Mt AN, number and energy red_uces the total nl_Jr_nber of eq_uations by
2, which allows us to impose two additional crucial equa-

For the intermediate steps, Ed.4) and (8) are exactly sat- tions, thephasecondition and theantisliding condition. In

isfied. our realization we impose thghasecondition by requiring
For a periodic solution there is one more equation to satthat the first space component of the wave functigft) be
isfy exactly, real. Theantisliding condition is realized by keeping the real
part ofuﬁ(l) fixed within certain appropriate bounds. Our
[u) —|uRy=—i e K+ W (N+3) =N J(Jup) + uR)) /2. experience shows that an adjustment of this value may ac-

(16) celerate the convergence of the iterative procedure. When the
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TABLE I. Four of the periodic solutions studied in the present E o
work. Given in the table are the period, the frequency, and the
excitation energy for each case. Note that these are members of a 10°
continuous family of periodic solutions, obtained from particular
initial conditions as described in the text.

Solution Period Frequency Excitation energy

(fm/c) (MeV/h) (MeV) 10° |
1 44.847 27.646 0.056 )
2 45.035 27.531 0.913 E
3 45.500 27.250 3.01
4 46.280 26.790 7.57 .7

convergence slows down, we modify this quantity to a value

betweenui(1) andu} **(1). (iii) For the periodic orbits at i

different energies, we have used different magnitudes for the 10° '0 . i . \
parametery of the constraining potential field, ranging from 10 10 10
1.5x10°° to 7x 10 4 (in natural unity. The higher the en- k

ergy, the stronger the potential strengtv) The conver- FIG. 2. The standard deviation in the periodic wave function as

gence of the_ periodicity is measured by the standard devieg function of iteration number for the periodic solution shown in
tion of the difference between the space components of th

) 1 NtTe ?ig. 1. The structure at iteration number 100 represents the point
wave functiongdu;) and|u, "), i.e.,

when the algorithm begins reevaluating the period at each iteration.

\/1 1. NAL :x (2 in this figure give a good idea of the size of the monopole
% NMm §]: |ui(D) —ue (DI vibrations. No deviation from periodicity can be observed
here at all; the difference between two wave functions sepa-
where M is the number of mesh points in space. This isfated by a period is less than one part irf.10he standard
significantly more sensitive than the difference of the posi-deviation is a much more stringent test of periodicity and is
tions on the(r?) trajectory. shown in Fig. 2 for solution 1, as the equations are iterated to
In order to test this a|gorithm’ we have studied the mono<onvergence. In this case the convergence parameters require
pole vibrations of*He. A set of periodic solutions corre- Periodicity to one part in X10°. The shape of the vibra-
sponding to differenty values of the constraining field are tions, i.e., the variation op(r), is plotted in Fig. 3.
given in Table I. However, there is in fact a continuous spec- In Fig. 4 we show the excitation spectrum as a function of
trum of periodic solution§10]. The trajectory of the squared the period. We note that the period varies linearly with the
radius for the mode labeled solution 1 in the table is plotted

in Fig. 1 for more than ten periods. The variations observed ' ' '
0-75 LA LI LA L L RN L LA BN B /,\\Apmin
0.010 A .
f\ || /\ s
&~ 025 . c
E p)
~ L)
(\ITO § -0.010
A
N,\_/ -0.25 - 1 i Apmax i
I U U U U U U U U U _0-030 L 1 n 1 n
0.0 20 4.0 6.0
_0-75 1 1 1 1 1 1 1 1 1 r (fm)

0.0 2.0 4.0 6.0 8.0 10.0 . . .
YT FIG. 3. The difference between the density at timand the

density at time O plotted for two different times as a function of
FIG. 1. The trajectoryr?(t)) of monopole vibrations in Helium r. The two times correspond to maximufull line) and minimum
as a function of time for the case=44.847 fm¢. The constant, (dashed lingvalues of(r2(t)). Note that the densities are weighted
ro=1.797 fm, is the value of the ground-state rms radius. with the factorr? for display purposes.
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- N ——— considered, since it introduces nonlocal interactions in the
. picture. The problem can be solved, but there is a cost in
] higher complication.
[ ] Spherical symmetry only works for spherical nuclei and
6L ] monopole excitations. Monopole excitations mainly serve as
I 1 a testing ground for the algorithm. More interesting physics
lies in giant resonances and quadrupole excitations. In these
— cases we have to replace the spherical symmetry by a rota-
% tional symmetry, and we have to describe the nucleus in two
S4T ] or even three space dimensions. Even though the algorithm
*:; I ] may not change, the increase in space dimensions will cause
] a dramatic increase in needed computational resources, since
i 1 it involves an increase in the number of variables by a di-
2r . mension factor, accompanied in all likelihood by a slow-
I ] down of the convergence sequence. The increase in compu-
] tation is often measured by the square of the dimension

[ ] factor.
! : : , ] It seems, therefore, that moving up in space dimensions
44.5 45.0 455  46.0 46.5 cannot be done unless we can achieve a radical improvement
T (MeV/c) in the speed of convergence of our algorithm. Such an im-

provement, based on the ideas of RdD], is in fact being
implemented right now and we hope to report on the results
in the near future.

FIG. 4. Theclassical-likeexcitation spectrum for the monopole
vibrations in “He. Here the spectrum is shown over the limited
range calculated for the present paper.

V. CONCLUSION

excitation energy when the latter is low; at higher energy the ) ) . .
plot acquires some curvature. The RPA frequency can be In this article we have proposed a numerical algorithm
easily extrapolated from this figure. In order to requantize gwhich preserves the total particle number and the total en-
these solutions, calculations over a broader range of periodd9Y- These conservation laws are essential for the calcula-
or energies would be needed. tion of large amplitude periodic orbits. We have demon-

For heavier nuclei we need more than one wave funcUor?”ated the use of the algorithm for the monopole vibrations
to describe the collective states. We have extended the abol® He, employing simple Skyrme forces. As has been
formulation to the spherical nucléifO and *°Ca. For the widely discussed in the literature, thesg penodp _solutlons
case of %0 we used two wave functions, wave andp may have_great relevance tq the collective excitations of a
wave. For%°Ca we also added d wave and a second many-partlc_le_system. We will apply the method _developed
wave. The orthonormality of the twe waves is ensured by here to realistic quantum systems in nuclear physics and mo-
using Gramm-Schmidt orthonormalization at each modifical€cular physics.
tion of the wave functions. The above approach can be sim-
ply generalized to such systems with multiple wave func-
tions. Our preliminary runs have shown that the iterative Partial support for this work was received from the fol-
procedure works well and gives good results for the TDHHowing agencies: the U.S. Department of Ene(B¥DE) un-
periodic orbits of systems such 4% and “°Ca. der Grant Nos. DE-FG05-94ER40883 and DE-ACO05-

The Skyrme force used here represents the short ran@sOR22464 with Oak Ridge National Laboratory, managed
nature of the strong interaction. For an extension of the alby Lockheed Martin Energy Research Corp.; the National
gorithm to a full Skyrme Hamiltonian for heavy nuclei, the Aeronautics and Space AdministatiNASA) under Grant
numerical algorithm preserving exact energy conservation i8lo. NAG8-996; and the U.S. DOE under cooperative agree-
still a major issue. The spin-isospin dependence will not inment No. DE-FC02-94ER40818 with the Massachusetts In-
troduce further complications directly, except for an increasestitute of Technology. The numerical calculations were done
in the number of wave functions required. It is the momen-on the CRAY T90 machine at the North Carolina Supercom-
tum dependence of the Skyrme force which needs to be reguting Center.
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