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Bound states ofAA and AAA systems
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We study possible bound states of thd andAAA systems by using a two-body interaction derived from
the chiral quark cluster model. The systems of two and three deltas, which will appear in nature as dibaryon
and tribaryon resonances with zero strangeness, have large similarities with the corresponding two- and three-
nucleon systems. The two deepest bouthd states are those with angular momentum and isospin
(j,i)=(1,0) and {,i)=(0,1) which have the same quantum numbers as®®e’D, (deuteron and 'S,
(virtual) NN states. Similarly, the more strongly bouA@ A state is that with angular momentum and isospin
(3,1)=(3,3) which has precisely the same quantum numbers as the tFfB6856-28187)02806-9

PACS numbes): 14.20.Gk, 14.20.Pt, 12.40.Yx, 21.45¢

I. INTRODUCTION the ordering of the differerAA andAAA states.
We will use delta-delta interactions derived from the chi-

The possible existence of nonstrange dibaryon resonancés! quark cluster model that reproduces the nucleon-nucleon
has been studied in the past by considering the bound-stag@tal7—-9]. This model containsr and o exchange in addi-
problem for theNA andAA systemg1-5]. Since theA is  tion to the quarks and gluori¥-9]. The main advantage of
an unstable particle, bound-state solutions of the two-bod$he model comes from the fact that it works with a single
system will actually appear in nature as resonances that déid-meson vertex. Therefore its parametecsupling con-
cay mainly into two nucleons and one pion or into two nucle-Stants, cutoff masses, etare independent of the baryon to
ons and two pions, respectively. If we now make a straightWhich the quarks are coupled, the difference among them

forward generalization of this concept, we can investigate th&€iNg generated by SP) scaling.

possible existence of tribaryon resonances that decay main Tk_]e_ln‘etlme of the bOl.deA andAAA systems should

into three nucleons and either one, two, or three pions, b e similar to that of the& in the caselof very weakly bound

looking into the bound-state problem of tNeNA, NAA, and ystems and larger if the system is very strongly bound.
' ' Therefore, these dibaryon and tribaryon resonances will have

AAIA;YS}?”:S’ respectlvgllly. ider the simplest h widths similar or smaller than the width of the so that, in
n this irst paper we will consider the Simplest case wher rinciple, they are experimentally observable.

we have only identical particles, i.e., we will discuss here th In order to perform our calculations we will assume that
bound-state problems of th&A and AAA systems. The 0 A js 3 stable particle, that is, we will neglect the width of

cases of combined systems of nucleons and deltas will bfﬁe A and the effects of the retardation in the one-pion-
studied in future works. exchange interaction of theA subsystem. These two effects

In order to perform theAAA calculations we will take  have been estimated recently in the case of the sinhler
advantage of the experience gained in the three-nucleogystem[5]. There, it was found that the assumption of a
bound-state problem. In that case one knows that the domigaple A leads to very reliable predictions for the mass of
nant configuration of the system is that in which all particles\ A resonances since the effects of retardation and width of
are in S-wave states. However, in order to get reasonablgne A are responsible for producing the width of the
results for the binding energy, tf@wave two-body ampli-  yesonance but have almost no effect over its mass. Thus, this
tudes used as input in the Faddeev equations must alreadyes us confidence that our predictions for the masses of the
contain the effect of the tensor force. Thus, for example, i\ A and AAA states will not change very much when the
the case of the Reid soft-core potential if one considers onlyystaple nature of tha is explicitly taken into account.
the S-wave configurations but neglects the tensor force in the  Finajly, we want to emphasize that the possible detection
two-body subsystems the triton is unbound. However, if 0N gibaryon and tribaryon resonances does not constitute an
includes the effect of the tensor force in the nucleon-nucleoryotic subject since, in principle, any nucleus with at least
°S;-°D; channel but uses only thS, and °S; components  three nucleons can serve as test system that may be excited
of the two-body amplitudes in the three-body equationsyy forming a tribaryon.
(two-channel calculationone gets a triton binding energy of
6.6 MeV. Notice that including the remaining configurations
(34-channel calculatignleads to a triton binding energy of
7.35 MeV [6]. This means that theS-wave truncated
T-matrix approximation leads to a binding energy which dif- We consider two deltas in a relati@state interacting
fers from the exact value by less than 1 MeV. Therefore bythrough a potential that contains a tensor force. Thus, there is
means of our approach we will not study exact binding ena coupling to theAA D wave so that the Lippmann-
ergies but which are the best candidates for bound states a®thwinger equation of the system is of the form

Il. THE TWO-BODY SYSTEM
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TABLE .
AA state with total angular momentujmand isospini .

(I,s)

(0,0,(2,2
(0,0,(2,2
0,9,(2,9,2,3
0,1,(2,2,(2,3
0,2,(2,0.,(2,2
0,2,(2,0.,(2,2
0,3,(2,1,(2,3
0,3,(2,1,(2,3

—
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t}is'lﬂsﬂ(p, p”; E)

:V}iS,VS (p p//)+2 p/de V|S| s’ (p,pr)

narn

Xm :IS 178 (p/'p//;E), (1)

wherej andi are the angular momentum and isospin of the
are the initial, intermediate,

and final orbital angular momentum and spin of the system,
respectively. We give in Table | the two-body channels that

system, whilds, |’s’, andl”s”

are coupled together for the eight possible valueg ahd

i that involve two deltas in a relativ@ state. Notice that the

1. For bound-state  the matrixM ™" '(Eg) vanishes, i.e.,
problemsE<0 so that the singularity of the propagator is

Pauli principle requires that{)' *s*'= —

never touched and we can forget itedn the denominator. If
we make the change of variables

1+x’

p’=b1_x,, 2

whereb is a scale parameter and similarly forandp”, we
can write Eq.(1) as

r\ 2
21+x

1-x’

|S| S( X” E) V|S| S”( ,X")+z
I"s’

2b Is,I’s’ ’

Xﬁzdx V (x,x")

nan

I"s’,1"g AN
th“ (X" x";E). 3

We solve this equation by replacing the integral frem to
1 by a Gauss-Legendre quadrat{it€] which results in the
set of linear equations

N
E 2 nls ml's (E)tl S s( m'Xk;E):VljiS'I”S”(Xn,Xk),
|'s" M=
(4)

with

Coupled channelsl(s) that contribute to a given

TABLE Il. Quark model parameters.

m, (MeV) 313
b (fm) 0.518
as 0.485
a; (MeVfm 2 46.938
Qe 0.027
m, (fm™1) 3.421
m, (fm™1) 0.70
A (fm™Y) 4.2
MDISMS (B = 8. 811+ Bsg — W2 L% 2
ji nmll’ Csg’ m 1—Xpm (1_Xm)2
XVIS,l'S' ) 1 (5)
ji (Xnvxm p /MA

andw,, andx,, are the weights and abscissas of the Gauss-
Legendre quadraturflQ] while p;, is obtained by putting
X' =Xn, in EQ. (2).

For the solution of the three-body system we will use only
the component of th& matrix with1=1"=0, so that for that
purpose we define th&-wave amplitude

t5(p,p"; E)=t2>®(p,p";E). (6)

If a bound state exists at an enelgy, the determinant of

IM;i(Eg)|=0. (7)

We took the scale parametér of Eq. (2) asb = 3
fm ! and used a Gauss-Legendre quadrature Witk 20
points[10].

The interaction between two deltas was obtained from the
chiral quark cluster model developed elsewhidE In this
model baryons are described as clusters of three interacting
massive (constituent quarks, the mass coming from the
breaking of the chiral symmetry. The ingredients of the
quark-quark interaction are confinement, one-gl(oOGE),
one-pion(OPB), and one-sigmdOSE exchange terms, and
whose parameters are fixed from tié&l data. Explicitly, the
quark-quark qq) interaction is

qu(Fij):Vcor(Fij)+Ver(Fij)+V0P5(Fij)+VOSE(Fij),( \

whereFij is theij interquark distance and

Veor Tij) = —ac\i-\jr3 (9)
Voed(Fii) oy X[ Gl PSR-
oG r — -3 —~0T;-0
1] 4 | jr” a 3I ]

(10
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Verd )= 2 o [ymry - A3 Y(AT) a. is the confinement strength, thés are the SUB) color
OPETH) ™ Yo N2 2 T me ' matrices, ther’s (7's) are the spir(isospin Pauli matrices,
A3 S is the usual tensor operatan, (m,, m,) is the quark
X ai- o+ | H(m,rj)— _SH(Arij)}SiJ] (pion, sigma mass,«s is the qg-gluon coupling constant,
mz acn IS the gg-meson coupling constant, and a cutoff pa-
- - rameter. In order to derive AA potential from the basic
KT Ty 11 gq interaction defined above we use a Born-Oppenheimer
4m A2 A approximation
VoseTij) = ach_Z_Az—Zm [Y(mgr”) Y(Arij)}.
(12 ‘o -
VAA(LST)AAA(L’S’T)(R):gtS%'T(R)_gtS%T ), (14)
where
e X 3 3
Y(X)= o H(x)= 1+§+x7 Y(X). (13 where

<*PL ST(R)|E.<, 1qu<r.,>|\lfL‘°‘T<R>>

5 (I :)
ST

(15

In the last expression the quark coordinates are integrated - 33 3
out keepingR fixed, the resulting interaction being a func- hgi®' =(—)s*¥27S(2s+1)(2s'+1 W(Ef S3is S')
tion of the A-A distance. The parameters of the model are
summarized in Table Il. From this table dn,, baryonic VR 3 3 3
coupling constant can be consistently derived by quark scal- X(-) VE2i+D @I+ DW 5 515507,
ing [11]. The value is the one inconsistently used by most of
the mesonicAA potentials[12], in the sense that they only (18
consider the quark model to obtain the vertex coupling con-
stant.

are the spin-isospin coefficients for the case of three deltas
with W the Racah coefficient. We give in Table IIl the con-
IIl. THE THREE-BODY SYSTEM tributing two-b_ody (_:hannels for all the possible values of
total spin and isospin of the three-delta system.
If we restrict ourselves to the configurations where all If we now apply the transformations
three particles are ils-wave states, the Faddeev equations
for the bound-state problem in the case of three identical

particles with total spir and total isospirl are[13] pi= b1+_x pi= bH_X (19)
1 T 1—x
TE(pi.q; iE):ZZ:, hgl'sri’fo dq; 1ty 14y’
S’ =D —- =D —
q+q;j/2 a bl_Y’ % bl_Y“ 20
Xf lzldp]tSI(pl 1p| !E 3q2/4MA)
i then Eq.(16) becomes
Pj d;
2 2 -
—pj/M,y—3qj/4M, q; 1 2b
s’ |(Xy E) 22 SISI f (l_y/)Zdy,
X Sl (pjlqjvE)! (16) -1
. X'y 2b r¢si ”. 2
wheret®' are the two-body amplitudes defined by F6), X o (1_X,)2dx (XX E—30i/4M,)
3, 3 )\ Pj /T
py=| P} + 707~ Zfl?) , (17) “E—pZIM,—3qzam, g, 'S XY
(21)

and
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TABLE IIl. Two-body channels &,i) that contribute to a given
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AAA state with total spirS and isospinl .

S [ (s,i)

1/2 1/2 (1,2,(2,1

1/2 3/2 (1,0,(1,2,(2,9,2,3

1/2 5/2 (1,2,(2,,(2,3

1/2 712 (1,2,(2,3

1/2 9/2 2.3

3/2 1/2 (0,1,(1,2,(2,,(3,2

3/2 32 (0,1,(0,3,(1,0,(1,2),

(2,0,(2,3,(3,0,(3,2

3/2 5/2 (0,2,(0,3,(1,2,(2,D,
2,3,(3,2

3/2 712 0,3,(1,2,(2,3,(3,2

32 9/2 0,3,(2,3

5/2 1/2 (1,2,(2,0,(3,2

5/2 32 (1,0,(1,2,(2,1,(2,3,
(3,0,(3,2

5/2 5/2 (1,2,(2,0,(2,3,(3,2

5/2 712 (1,2,(2,3,(3,2

5/2 9/2 23

72 1/2 2,0,(3,2

712 3/2 (2,0,(2,3,(3,0,(3.2

712 5/2 (2,0,2,3,3,2

712 712 (2,3,(3,2

712 9/2 2,3

9/2 1/2 (3,2

9/2 32 (3,0,(3,2

9/2 5/2 (3,2

9/2 712 (3,2

9/2 9/2

Since the variabl& runs from—1 to 1, we can make the

expansion in terms of Legendre polynomials

<1|iT§i|(x,y;E)=nZ1

so that the integral equation in two variablgl) becomes

S(Y;E)P(x),

an integral equation in one variable

Ay;E)=2 E
s'i’ m=1
where
SIT'IS i m(y y E)
—(2n+1)h5's'

P;

S i m(y E)

“E- Pi/M,— 307 /4M

SIFI s'i m(y’y/ , E)

a-y)? Jldx

)('Jr 2b 2
XJ = ,)zdx P.(X)tS(x,X";E—3q%/4M )

Pm(X").

(22

(23

(29)

TABLE IV. Binding energiesB, of the AA states with total
angular momentunj and isospini. We also give between paren-
theses the energies obtained by neglecting the tensor force.

B, (MeV)

108.4100.3
0.4unbound
138.5122.7
5.74.9)
30.521.8
Unboundunbound
29.99.3
Unboundunbound

—

W WMNNREPFP OO
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We now approximate the integral in EQ3) by a Gauss-
Legendre quadraturglQ] in order to obtain the system of
homogeneous linear equations

L N
mzl '(21 Msm] s'i mk(E)Ts i m(yk)zo, (25)
s'i’ M=L1 K=

with

MESTMKE) = 500 81r SnmOi— WiIBEMS ™y, Y\ E),
(26)

wherew, andy, are, respectively, the weights and abscissas
of the Gauss-Legendre quadrat{it®].

In order for Eq.(25) to have a solution, the Fredholm
determinant of the system must vanish, so that a bound state
exists at the energlg if

|MS|(EB)| =0. (27)

Thus, our method of solution consists simply in searching for
the zeros of the Fredholm determinant as a function of en-
ergy.

We checked our program by comparing with known re-
sults for the three-nucleon bound-state problem with the
Reid soft-core potentigl14]. We found very stable results
taking for the scale parameter=3 fm 1, a number of Leg-
endre polynomiald. =10, and a number of Gauss-Legendre
pointsN=12.

IV. RESULTS

We give in Table IV our results for thAA system. Out
of the eight possibleAA channels six have a bound state
(there are no excited states in any of the channdisis
interesting that the deepest bound state is the) € (1,0)
which has precisely the same quantum numbers as the deu-
teron, while the next deepest bound state is the
(j,i)=(0,1) which has precisely the quantum numbers of the
NN 1S, virtual state. This clearly shows that there is a quali-
tative similarity between thda A and NN systems. In order
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3 I cussion of theAAA results, these repulsive cores in the
(3,2) and (2,3) channels largely determine the three-body
spectrum.

We show in Table V the results for tleA A system with
and without including the tensor force in the two-body inter-
action. We give bottB; the binding energy of the system
and B;— B, the separation energy, wheBg is the binding
energy of the deepest bound two-body channel that contrib-
1 utes to the three-body stafeee Tables Ill and 1Y The full
model has seven bound states while the model without tensor
force has only three. Notice, however, that the extra states
n produced by including the tensor force are barely bound, i.e.,
1 they have very small separation energies, so that there is
1 really not much difference by including the tensor force. The

more strongly bound three-body stdtbat is, the one with

the largest separation eneygg the (S,1)=(3,3) which has

precisely the quantum numbers of the triton. This shows
21 1 again like in the two-body case the similarity between the
L AAA andNNN systems. As stated in the Introduction, our
procedure only provides an approximation to the binding en-
r (fm) ergies, therefore it is meaningless to go further in the com-
parison with theN NN system, the main objective being the
FIG. 1. Wave function of theAA bound state in the comparison in the ordering of the different states. In fact, the
(j,1)=(1,0) channel. We show the three components correspondin%ost interesting comparison would be to calculate A
to the statesl(s)=(0,1), (,s)=(2,1), and {,5)=(2.3). and AAA bound states by means of a baryonic interaction,

to show the effect of the tensor force we also give in parenyvhere the strong r.epuIS|on, that is a consequence of the

theses the corresponding binding energies that are obtained Harl_< substructure is absent. We are actually working along

one neglects the tensor force. As one can see, the effect §iS line [16].

the tensor force is to add somewhat to the attraction but The reason why the§(I) = (3,3) state is the more strongly

without changing the qualitative behavior of the spectrum. bound is very simple. As shown in Table IlI, this is the only
We show in Fig. 1 the bound-state wave function of thestate where none of the two-body channels with a strong

(j,i)=(1,0) channel which has the same quantum numbergepulsive core $,i)=(2,3) or (3,2) contribute. In all the

as the deuteron. This channel has three components, namebther three-body states the strong repulsion of the

(1,)=(0,1), (,s)=(2,1), and (,s)=(2,3). The probability (s j)=(2,3) and (3,2) channels either completely destroys

of the (,5)=(0,1) state is 97% while thel (§)=(2,1) and  the hound state or allows just a barely bound one.

(2,3) states have each one a probability of 1.5%. This wave _ (51 : )
function may be useful in calculations of theA compo- The state ,1)=(3,2) comes next with respect to separa
nents of the deuteron. tion energy. Notice that like in theS(I)=(3,3) state, the

The channelsj(i)=(2,3) and (3,2) are unbound becauseseparation energy comes out very similar whether we include
they have a strong repulsive barrier at short distances in ther not the tensor force. This means that the tensor force
S-wave central interaction. This strong repulsion originatesessentially shifts both the two-body and three-body binding
from the quark Pauli blocking produced by the saturation ofenergies by roughly a constant amount.
states that occurs when the total spin and isospin are near The third state that is bound in both the scheme with
their maximum value$l15]. As we will see next in the dis- tensor force and the one without it is thg,()=(,3) and

TABLE V. Binding energiesB; and separation energies again Iikg in the two previous cases the separation energy is
Bs— B, of the AAA states with total spi§ and isospin. We also Nt S0 different between the two schemes.
give between parentheses the corresponding energies obtained by The state §,1)=(2,3) has a somewhat anomalous behav-
neglecting the tensor force. ior since it has a relatively large separation energy in the
scheme with tensor forceBg—B,=4.6 MeV) while it is

Y (fm*?)

S ! B; (MeV) Bs—B, (MeV) unbound in the scheme without tensor force. This behavior is
1/2 12 84.073.0 53.551.2 sort qf accidental and it can be understood as follows. As
1/2 3/2 139.2unbound 0.7 seen in Table Ill, there are four two-body channels contrib-
1/2 7/2 6.3unbound 0.6 uting to the G,1)=(%,3) state, the two attractive ones
3/2 1/2 109.5100.6 1.1(0.3 (s,i)=(2,1) and (3,0) and the two repulsive ones
5/2 1/2 39.128.9 8.6(7.1) (s,i)=(2,3) and (3,2). In the case without tensor force, the
712 1/2 31.7unbound 1.2 channels (2,1) and (3,0) have bound statds=-at-21.8 and

7/2 3/2 35.1unbound 4.6 E=—9.3 MeV, respectively, so that the poles in the scatter-

ing amplitudes of these two-body channels are very far apart
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