
PHYSICAL REVIEW C JULY 1997VOLUME 56, NUMBER 1
Bound states ofDD and DDD systems
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We study possible bound states of theDD andDDD systems by using a two-body interaction derived from
the chiral quark cluster model. The systems of two and three deltas, which will appear in nature as dibaryon
and tribaryon resonances with zero strangeness, have large similarities with the corresponding two- and three-
nucleon systems. The two deepest boundDD states are those with angular momentum and isospin
( j ,i )5(1,0) and (j ,i )5(0,1) which have the same quantum numbers as the3S1-

3D1 ~deuteron! and 1S0
~virtual! NN states. Similarly, the more strongly boundDDD state is that with angular momentum and isospin

(J,I )5( 12 ,
1
2 ) which has precisely the same quantum numbers as the triton.@S0556-2813~97!02806-9#

PACS number~s!: 14.20.Gk, 14.20.Pt, 12.40.Yx, 21.45.1v
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I. INTRODUCTION

The possible existence of nonstrange dibaryon resona
has been studied in the past by considering the bound-
problem for theND andDD systems@1–5#. Since theD is
an unstable particle, bound-state solutions of the two-b
system will actually appear in nature as resonances tha
cay mainly into two nucleons and one pion or into two nuc
ons and two pions, respectively. If we now make a straig
forward generalization of this concept, we can investigate
possible existence of tribaryon resonances that decay ma
into three nucleons and either one, two, or three pions,
looking into the bound-state problem of theNND, NDD, and
DDD systems, respectively.

In this first paper we will consider the simplest case wh
we have only identical particles, i.e., we will discuss here
bound-state problems of theDD and DDD systems. The
cases of combined systems of nucleons and deltas wil
studied in future works.

In order to perform theDDD calculations we will take
advantage of the experience gained in the three-nuc
bound-state problem. In that case one knows that the do
nant configuration of the system is that in which all partic
are in S-wave states. However, in order to get reasona
results for the binding energy, theS-wave two-body ampli-
tudes used as input in the Faddeev equations must alr
contain the effect of the tensor force. Thus, for example
the case of the Reid soft-core potential if one considers o
theS-wave configurations but neglects the tensor force in
two-body subsystems the triton is unbound. However, if o
includes the effect of the tensor force in the nucleon-nucl
3S1-

3D1 channel but uses only the
1S0 and

3S1 components
of the two-body amplitudes in the three-body equatio
~two-channel calculation! one gets a triton binding energy o
6.6 MeV. Notice that including the remaining configuratio
~34-channel calculation! leads to a triton binding energy o
7.35 MeV @6#. This means that theS-wave truncated
T-matrix approximation leads to a binding energy which d
fers from the exact value by less than 1 MeV. Therefore
means of our approach we will not study exact binding
ergies but which are the best candidates for bound states
560556-2813/97/56~1!/84~6!/$10.00
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the ordering of the differentDD andDDD states.
We will use delta-delta interactions derived from the c

ral quark cluster model that reproduces the nucleon-nucl
data@7–9#. This model containsp ands exchange in addi-
tion to the quarks and gluons@7–9#. The main advantage o
the model comes from the fact that it works with a sing
qq-meson vertex. Therefore its parameters~coupling con-
stants, cutoff masses, etc.! are independent of the baryon t
which the quarks are coupled, the difference among th
being generated by SU~2! scaling.

The lifetime of the boundDD andDDD systems should
be similar to that of theD in the case of very weakly boun
systems and larger if the system is very strongly bou
Therefore, these dibaryon and tribaryon resonances will h
widths similar or smaller than the width of theD so that, in
principle, they are experimentally observable.

In order to perform our calculations we will assume th
theD is a stable particle, that is, we will neglect the width
the D and the effects of the retardation in the one-pio
exchange interaction of theDD subsystem. These two effec
have been estimated recently in the case of the simplerND
system@5#. There, it was found that the assumption of
stableD leads to very reliable predictions for the mass
ND resonances since the effects of retardation and width
the D are responsible for producing the width of theND
resonance but have almost no effect over its mass. Thus,
gives us confidence that our predictions for the masses o
DD andDDD states will not change very much when th
unstable nature of theD is explicitly taken into account.

Finally, we want to emphasize that the possible detect
of dibaryon and tribaryon resonances does not constitute
exotic subject since, in principle, any nucleus with at le
three nucleons can serve as test system that may be ex
by forming a tribaryon.

II. THE TWO-BODY SYSTEM

We consider two deltas in a relativeS-state interacting
through a potential that contains a tensor force. Thus, the
a coupling to theDD D wave so that the Lippmann
Schwinger equation of the system is of the form
84 © 1997 The American Physical Society
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56 85BOUND STATES OFDD AND DDD SYSTEMS
t j i
ls,l 9s9~p,p9;E!

5Vji
ls,l 9s9~p,p9!1(

l 8s8
E
0

`

p82dp8Vji
ls,l 8s8~p,p8!

3
1

E2p82/MD1 i e
t j i
l 8s8,l 9s9~p8,p9;E!, ~1!

where j and i are the angular momentum and isospin of t
system, whilels, l 8s8, and l 9s9 are the initial, intermediate
and final orbital angular momentum and spin of the syste
respectively. We give in Table I the two-body channels t
are coupled together for the eight possible values ofj and
i that involve two deltas in a relativeS state. Notice that the
Pauli principle requires that (2) l1s1 i521. For bound-state
problemsE,0 so that the singularity of the propagator
never touched and we can forget thei e in the denominator. If
we make the change of variables

p85b
11x8

12x8
, ~2!

whereb is a scale parameter and similarly forp andp9, we
can write Eq.~1! as

t j i
ls,l 9s9~x,x9;E!5Vji

ls,l 9s9~x,x9!1(
l 8s8

E
21

1

b2S 11x8

12x8D
2

3
2b

~12x8!2
dx8Vji

ls,l 8s8~x,x8!

3
1

E2p82/MD
t j i
l 8s8,l 9s9~x8,x9;E!. ~3!

We solve this equation by replacing the integral from21 to
1 by a Gauss-Legendre quadrature@10# which results in the
set of linear equations

(
l 8s8

(
m51

N

M ji
nls,ml8s8~E!t j i

l 8s8,l 9s9~xm ,xk ;E!5Vji
ls,l 9s9~xn ,xk!,

~4!

with

TABLE I. Coupled channels (l ,s) that contribute to a given
DD state with total angular momentumj and isospini .

j i ( l ,s)

0 1 ~0,0!,~2,2!
0 3 ~0,0!,~2,2!
1 0 ~0,1!,~2,1!,~2,3!
1 2 ~0,1!,~2,1!,~2,3!
2 1 ~0,2!,~2,0!,~2,2!
2 3 ~0,2!,~2,0!,~2,2!
3 0 ~0,3!,~2,1!,~2,3!
3 2 ~0,3!,~2,1!,~2,3!
,
t

M ji
nls,ml8s8~E!5dnmd l l 8dss82wmb

2S 11xm
12xm

D 2 2b

~12xm!2

3Vji
ls,l 8s8~xn ,xm!

1

E2pm8
2/MD

, ~5!

andwm andxm are the weights and abscissas of the Gau
Legendre quadrature@10# while pm8 is obtained by putting
x85xm in Eq. ~2!.

For the solution of the three-body system we will use on
the component of theT matrix with l5 l 950, so that for that
purpose we define theS-wave amplitude

tsi~p,p9;E![tsi
0s,0s~p,p9;E!. ~6!

If a bound state exists at an energyEB , the determinant of

the matrixM ji
nls,ml8s8(EB) vanishes, i.e.,

uM ji ~EB!u50. ~7!

We took the scale parameterb of Eq. ~2! as b 5 3
fm21 and used a Gauss-Legendre quadrature withN 5 20
points @10#.

The interaction between two deltas was obtained from
chiral quark cluster model developed elsewhere@8#. In this
model baryons are described as clusters of three interac
massive ~constituent! quarks, the mass coming from th
breaking of the chiral symmetry. The ingredients of t
quark-quark interaction are confinement, one-gluon~OGE!,
one-pion~OPE!, and one-sigma~OSE! exchange terms, and
whose parameters are fixed from theNN data. Explicitly, the
quark-quark (qq) interaction is

Vqq~rW i j !5Vcon~rW i j !1VOGE~rW i j !1VOPE~rW i j !1VOSE~rW i j !,
~8!

whererW i j is the i j interquark distance and

Vcon~rW i j !52aclW i•lW j r i j
2 , ~9!

VOGE~rW i j !5
1

4
aslW i•lW j H 1r i j 2

p

mq
2F11

2

3
sW i•sW j G

3d~rW i j !2
3

4mq
2r i j

3 Si j J , ~10!

TABLE II. Quark model parameters.

mq (MeV) 313
b (fm) 0.518

as 0.485
ac (MeV fm22) 46.938

ach 0.027
ms (fm21) 3.421
mp (fm21) 0.70
L (fm21) 4.2
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86 56GARCILAZO, FERNÁNDEZ, VALCARCE, AND MOTA
VOPE~rW i j !5
1

3
ach

L2

L22mp
2 mpH FY~mpr i j !2

L3

mp
3 Y~Lr i j !G

3sW i•sW j1FH~mpr i j !2
L3

mp
3 H~Lr i j !GSi j J

3tW i•tW j , ~11!

VOSE~rW i j !52ach

4mq
2

mp
2

L2

L22ms
2msFY~msr i j !2

L

ms
Y~Lr i j !G ,

~12!

where

Y~x!5
e2x

x
, H~x!5S 11

3

x
1

3

x2DY~x!. ~13!
at
c-
r

ca
t o
y
on

al
n
ic
ac is the confinement strength, thelW ’s are the SU~3! color

matrices, thesW ’s (tW ’s! are the spin~isospin! Pauli matrices,
Si j is the usual tensor operator,mq (mp , ms) is the quark
~pion, sigma! mass,as is the qq-gluon coupling constant
ach is theqq-meson coupling constant, andL a cutoff pa-
rameter. In order to derive aDD potential from the basic
qq interaction defined above we use a Born-Oppenheim
approximation

VDD~LST!→DD~L8S8T!~R!5jLST
L8S8T~R!2jLST

L8S8T~`!, ~14!

where
jLST
L8S8T~R!5

^CDD
L8S8T~RW !u( i, j51

6 Vqq~rW i j !uCDD
LST~RW !&

A^CDD
L8S8T~RW !uCDD

L8S8T~RW !&A^CDD
LST~RW !uCDD

LST~RW !&
. ~15!
ltas
n-
of
In the last expression the quark coordinates are integr
out keepingR fixed, the resulting interaction being a fun
tion of theD-D distance. The parameters of the model a
summarized in Table II. From this table anfpDD baryonic
coupling constant can be consistently derived by quark s
ing @11#. The value is the one inconsistently used by mos
the mesonicDD potentials@12#, in the sense that they onl
consider the quark model to obtain the vertex coupling c
stant.

III. THE THREE-BODY SYSTEM

If we restrict ourselves to the configurations where
three particles are inS-wave states, the Faddeev equatio
for the bound-state problem in the case of three ident
particles with total spinS and total isospinI are @13#

TSI
si~pi ,qi ;E!52(

s8 i 8
hSI
si,s8 i 8E

0

`

dqj

3E
uqi2qj /2u

qi1qj /2

dpj t
si~pi ,pi9 ;E23qi

2/4MD!

3
pj

E2pj
2/MD23qj

2/4MD

qj
qi

3TSI
s8 i 8~pj ,qj ;E!, ~16!

wheretsi are the two-body amplitudes defined by Eq.~6!,

pi95S pj21 3

4
qj
22

3

4
qi
2D 1/2, ~17!

and
ed

e

l-
f

-

l
s
al

hSI
si,s8 i 85~2 !s813/22SA~2s11!~2s811!WS 32 3

2
S
3

2
;ss8D

3~2 ! i 813/22IA~2i11!~2i 811!WS 32 3

2
I
3

2
; i i 8D ,

~18!

are the spin-isospin coefficients for the case of three de
with W the Racah coefficient. We give in Table III the co
tributing two-body channels for all the possible values
total spin and isospin of the three-delta system.

If we now apply the transformations

pi5b
11x

12x
, pj5b

11x8

12x8
, ~19!

qi5b
11y

12y
, qj5b

11y8

12y8
, ~20!

then Eq.~16! becomes

TSI
si~x,y;E!52(

s8 i 8
hSI
si,s8 i 8E

21

1 2b

~12y8!2
dy8

3E
x82

x81 2b

~12x8!2
dx8tsi~x,x9;E23qi

2/4MD!

3
pj

E2pj
2/MD23qj

2/4MD

qj
qi
TSI
s8 i 8~x8,y8;E!.

~21!
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56 87BOUND STATES OFDD AND DDD SYSTEMS
Since the variablex runs from21 to 1, we can make the
expansion in terms of Legendre polynomials

qiTSI
si~x,y;E!5 (

n51

L

TSI
sin~y;E!Pn~x!, ~22!

so that the integral equation in two variables~21! becomes
an integral equation in one variable

TSI
sin~y;E!5(

s8 i 8
(
m51

L E
21

1

dy8BSI
sin,s8 i 8m~y,y8;E!

3TSI
s8 i 8m~y8;E!, ~23!

where

BSI
sin,s8 i 8m~y,y8;E!

5~2n11!hSI
si,s8 i 8

2b

~12y8!2
E

21

1

dx

3E
x82

x81 2b

~12x8!2
dx8Pn~x!tsi~x,x9;E23qi

2/4MD!

3
pj

E2pj
2/MD23qj

2/4MD
Pm~x8!. ~24!

TABLE III. Two-body channels (s,i ) that contribute to a given
DDD state with total spinS and isospinI .

S I (s,i )

1/2 1/2 ~1,2!,~2,1!
1/2 3/2 ~1,0!,~1,2!,~2,1!,~2,3!
1/2 5/2 ~1,2!,~2,1!,~2,3!
1/2 7/2 ~1,2!,~2,3!
1/2 9/2 ~2,3!
3/2 1/2 ~0,1!,~1,2!,~2,1!,~3,2!
3/2 3/2 ~0,1!,~0,3!,~1,0!,~1,2!,

~2,1!,~2,3!,~3,0!,~3,2!
3/2 5/2 ~0,1!,~0,3!,~1,2!,~2,1!,

~2,3!,~3,2!
3/2 7/2 ~0,3!,~1,2!,~2,3!,~3,2!
3/2 9/2 ~0,3!,~2,3!
5/2 1/2 ~1,2!,~2,1!,~3,2!
5/2 3/2 ~1,0!,~1,2!,~2,1!,~2,3!,

~3,0!,~3,2!
5/2 5/2 ~1,2!,~2,1!,~2,3!,~3,2!
5/2 7/2 ~1,2!,~2,3!,~3,2!
5/2 9/2 ~2,3!
7/2 1/2 ~2,1!,~3,2!
7/2 3/2 ~2,1!,~2,3!,~3,0!,~3,2!
7/2 5/2 ~2,1!,~2,3!,~3,2!
7/2 7/2 ~2,3!,~3,2!
7/2 9/2 ~2,3!
9/2 1/2 ~3,2!
9/2 3/2 ~3,0!,~3,2!
9/2 5/2 ~3,2!
9/2 7/2 ~3,2!
9/2 9/2
We now approximate the integral in Eq.~23! by a Gauss-
Legendre quadrature@10# in order to obtain the system o
homogeneous linear equations

(
s8 i 8

(
m51

L

(
k51

N

MSI
sinj ,s8 i 8mk~E!TSI

s8 i 8m~yk!50, ~25!

with

MSI
sinj ,s8 i 8mk~E!5dss8d i i 8dnmd jk2wkBSI

sin,s8 i 8m~yj ,yk ;E!,
~26!

wherewk andyk are, respectively, the weights and abscis
of the Gauss-Legendre quadrature@10#.

In order for Eq.~25! to have a solution, the Fredholm
determinant of the system must vanish, so that a bound s
exists at the energyEB if

uMSI~EB!u50. ~27!

Thus, our method of solution consists simply in searching
the zeros of the Fredholm determinant as a function of
ergy.

We checked our program by comparing with known r
sults for the three-nucleon bound-state problem with
Reid soft-core potential@14#. We found very stable result
taking for the scale parameterb53 fm21, a number of Leg-
endre polynomialsL510, and a number of Gauss-Legend
pointsN512.

IV. RESULTS

We give in Table IV our results for theDD system. Out
of the eight possibleDD channels six have a bound sta
~there are no excited states in any of the channels!. It is
interesting that the deepest bound state is the (j ,i )5(1,0)
which has precisely the same quantum numbers as the
teron, while the next deepest bound state is
( j ,i )5(0,1) which has precisely the quantum numbers of
NN 1S0 virtual state. This clearly shows that there is a qua
tative similarity between theDD andNN systems. In order

TABLE IV. Binding energiesB2 of the DD states with total
angular momentumj and isospini . We also give between paren
theses the energies obtained by neglecting the tensor force.

j i B 2 ~MeV!

0 1 108.4~100.3!
0 3 0.4~unbound!
1 0 138.5~122.7!
1 2 5.7~4.8!
2 1 30.5~21.8!
2 3 Unbound~unbound!
3 0 29.9~9.3!
3 2 Unbound~unbound!
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88 56GARCILAZO, FERNÁNDEZ, VALCARCE, AND MOTA
to show the effect of the tensor force we also give in par
theses the corresponding binding energies that are obtain
one neglects the tensor force. As one can see, the effe
the tensor force is to add somewhat to the attraction
without changing the qualitative behavior of the spectrum

We show in Fig. 1 the bound-state wave function of t
( j ,i )5(1,0) channel which has the same quantum numb
as the deuteron. This channel has three components, nam
( l ,s)5(0,1), (l ,s)5(2,1), and (l ,s)5(2,3). The probability
of the (l ,s)5(0,1) state is 97% while the (l ,s)5(2,1) and
(2,3) states have each one a probability of 1.5%. This w
function may be useful in calculations of theDD compo-
nents of the deuteron.

The channels (j ,i )5(2,3) and (3,2) are unbound becau
they have a strong repulsive barrier at short distances in
S-wave central interaction. This strong repulsion origina
from the quark Pauli blocking produced by the saturation
states that occurs when the total spin and isospin are
their maximum values@15#. As we will see next in the dis-

TABLE V. Binding energies B3 and separation energie
B32B2 of theDDD states with total spinS and isospinI . We also
give between parentheses the corresponding energies obtain
neglecting the tensor force.

S I B3 ~MeV! B32B2 ~MeV!

1/2 1/2 84.0~73.0! 53.5~51.2!
1/2 3/2 139.2~unbound! 0.7
1/2 7/2 6.3~unbound! 0.6
3/2 1/2 109.5~100.6! 1.1~0.3!
5/2 1/2 39.1~28.9! 8.6~7.1!
7/2 1/2 31.7~unbound! 1.2
7/2 3/2 35.1~unbound! 4.6

FIG. 1. Wave function of theDD bound state in the
( j ,i )5(1,0) channel. We show the three components correspon
to the states (l ,s)5(0,1), (l ,s)5(2,1), and (l ,s)5(2,3).
-
d if
of
ut

rs
ely,

e

he
s
f
ar

cussion of theDDD results, these repulsive cores in th
(3,2) and (2,3) channels largely determine the three-b
spectrum.

We show in Table V the results for theDDD system with
and without including the tensor force in the two-body inte
action. We give bothB3 the binding energy of the system
andB32B2 the separation energy, whereB2 is the binding
energy of the deepest bound two-body channel that con
utes to the three-body state~see Tables III and IV!. The full
model has seven bound states while the model without te
force has only three. Notice, however, that the extra sta
produced by including the tensor force are barely bound,
they have very small separation energies, so that ther
really not much difference by including the tensor force. T
more strongly bound three-body state~that is, the one with

the largest separation energy! is the (S,I )5( 12,
1
2) which has

precisely the quantum numbers of the triton. This sho
again like in the two-body case the similarity between t
DDD andNNN systems. As stated in the Introduction, o
procedure only provides an approximation to the binding
ergies, therefore it is meaningless to go further in the co
parison with theNNN system, the main objective being th
comparison in the ordering of the different states. In fact,
most interesting comparison would be to calculate theDD
andDDD bound states by means of a baryonic interacti
where the strong repulsion, that is a consequence of
quark substructure is absent. We are actually working al
this line @16#.

The reason why the (S,I )5( 12,
1
2) state is the more strongly

bound is very simple. As shown in Table III, this is the on
state where none of the two-body channels with a stro
repulsive core (s,i )5(2,3) or (3,2) contribute. In all the
other three-body states the strong repulsion of
(s,i )5(2,3) and (3,2) channels either completely destro
the bound state or allows just a barely bound one.

The state (S,I )5( 52,
1
2) comes next with respect to separ

tion energy. Notice that like in the (S,I )5( 12,
1
2) state, the

separation energy comes out very similar whether we incl
or not the tensor force. This means that the tensor fo
essentially shifts both the two-body and three-body bind
energies by roughly a constant amount.

The third state that is bound in both the scheme w

tensor force and the one without it is the (S,I )5( 32,
1
2) and

again like in the two previous cases the separation energ
not so different between the two schemes.

The state (S,I )5( 72,
3
2) has a somewhat anomalous beha

ior since it has a relatively large separation energy in
scheme with tensor force (B32B254.6 MeV! while it is
unbound in the scheme without tensor force. This behavio
sort of accidental and it can be understood as follows.
seen in Table III, there are four two-body channels contr

uting to the (S,I )5( 72 ,
3
2 ) state, the two attractive one

(s,i )5(2,1) and (3,0) and the two repulsive on
(s,i )5(2,3) and (3,2). In the case without tensor force, t
channels (2,1) and (3,0) have bound states atE5221.8 and
E529.3 MeV, respectively, so that the poles in the scatt
ing amplitudes of these two-body channels are very far a

by

ng
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and only the deepest one contributes effectively to the th
body bound-state problem. In the case with tensor force
the other hand, channels (2,1) and (3,0) have bound stat
E5230.5 andE5229.9 MeV, respectively, so that th
poles in the scattering amplitudes of these two channels
very close together and both of them contribute effectively
the three-body bound state.
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@1# H. Arenhövel, Nucl. Phys.A247, 473 ~1975!.
@2# M. P. Locher, M. E. Sainio, and A. Svarc, Adv. Nucl. Phy

17, 47 ~1986!.
@3# A. Valcarce, H. Garcilazo, and F. Ferna´ndez, Phys. Rev. C52,

539 ~1995!.
@4# A. Valcarce, H. Garcilazo, and F. Ferna´ndez, Phys. Rev. C54,

1010 ~1996!.
@5# H. Garcilazo~unpublished!.
@6# C. R. Chen, G. L. Payne, J. L. Friar, and B. F. Gibson, Ph

Rev. Lett.55, 374 ~1985!.
@7# A. Faessler, F. Ferna´ndez, G. Lu¨beck, and K. Shimizu, Phys

Lett. 112B, 201 ~1982!; M. Oka and K. Yazaki, Prog. Theor
Phys.66, 556 ~1980!; 66, 572 ~1980!.

@8# F. Ferna´ndez, A. Valcarce, U. Straub, and A. Faessler, J. Ph
G 19, 2013~1993!.
.

s.

@9# A. Valcarce, A. Buchmann, F. Ferna´ndez, and A. Faessler
Phys. Rev. C50, 2246~1994!.

@10# M. Abramowitz and I. A. Stegun,Handbook of Mathematica
Functions~Dover, New York, 1972!.

@11# G. E. Brown and W. Weise, Phys. Rep.22, 279 ~1975!.
@12# R. B. Wiringa, R. A. Smith, and T. L. Ainsworth, Phys. Rev.

29, 1207~1984!.
@13# H. Garcilazo, L. Mathelitsch, and H. Zankel, Phys. Rev. C32,

264 ~1985!.
@14# E. P. Harper, Y. E. Kim, and A. Tubis, Phys. Rev. Lett.28,

1533 ~1972!.
@15# F. Ferna´ndez, A. Valcarce, P. Gonza´lez, and V. Vento, Phys.

Rev. C47, 1807~1993!.
@16# H. Garcilazo, F. Ferna´ndez, A. Valcarce, and R. D. Mota~un-

published!.


