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Variational approach to anharmonic collective motion
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We derive large-amplitude collective equations of motion from the variational principle for the time-
dependent Schro¨dinger equation. These equations reduce to the well-known diabatic formulas for vibrational
frequencies in the small-amplitude limit. The finite-amplitude expression allows departures from the harmonic
behavior of giant resonances to be simply estimated. The relative shift of the second phonon falls with nuclear
massA asA24/3 in the three modes we consider: monopole, dipole, and quadrupole. Numerically, the effect is
very small in heavy nuclei, as was found with other approaches.@S0556-2813~97!05108-X#

PACS number~s!: 21.10.Re, 21.60.2n, 24.30.Cz
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I. INTRODUCTION

There has been recent interest in the harmonicity of c
lective motion, with experimental data now available
double-phonon excitations of the giant dipole resona
@1–3#. Time-dependent mean-field theory provides a use
tool to study this topic, and a number of calculations ha
been reported@4–15#. Since the calculations in the fu
mean-field theory are rather opaque, it may be of some
terest to find simple approximations that contain the sa
physics. The resulting equations of motion are quite intuit
when expressed in Hamiltonian form. With the nonline
equation of motion we can calculate the anharmonicity in
giant dipole resonance, relevant to the measurement
@1,2#.

A very successful general procedure to find approxim
tions is to employ to the variational principle for the Schr¨-
dinger equation@16#

dE dt^Cu i ] t2HuC&50. ~1!

This is of the form of the Lagrangian variational principl
with the integrand playing the role of the Lagrangian. T
variational principle has been attributed to Dirac; it gives
natural way to derive the time-dependent Hartree-Fock
proximation@17# and has been widely employed in that co
nection. It also produces useful equations of motion w
more restricted assumptions about the wave function. No¨ren-
berg and co-workers@18,19# put collective motion into the
dynamics by adding variational fields corresponding to p
sible velocity potentials and the corresponding displacem
fields. Our treatment is a special case of theirs in which o
two coordinates are kept, the minimum number that can g
Hamiltonian dynamics.

It is well known that collective motion can be generat
by a local velocity fieldQ(rW) acting on a ground-state wav
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function @20–22#. To get any kind of Hamiltonian dynamics
an additional degree of freedom corresponding to displa
ments is required. There is a natural choice for the displa
ment field, which has been extensively investigated by B
higas et al. @23#. These authors studied small-amplitud
motion, using sum rules to simplify the discussion. We u
the same fields and shall follow their notation, but we are
restricted to small amplitudes. The result will be formulas
anharmonic effects that involve only integrals over groun
state densities. The energy shift of the second phonon e
tation D (2)E is calculated from the semiclassical requantiz
tion of the Hamiltonian equations of motion. Th
semiclassical requantization recently has been favora
compared with the boson expansion approach in the con
of a solvable model@24#. We find that this quantity is of
order v0 /A4/3, wherev0 is the harmonic frequency of th
phonon andA is the atomic mass number. This strongA
dependence makes the shift very small in practice.

II. ANHARMONIC COLLECTIVE DYNAMICS

As mentioned above, the starting point is the variatio
principle, Eq. ~1! above. If uC& is varied in the space o
Slater determinants, the result is time-dependent Hart
Fock theory. Interesting simplified models are constructed
restrictinguC& further. In Refs.@25,26# uC& is taken to be an
antisymmetrized product of Gaussian single-particle wa
functions. In this paper we shall assume that the motion
completely collective in the sense that it can be generated
a single-particle velocity fieldQ(rW),

uC~ t501!&5eiQuC0&. ~2!

Here uC0& is the ground-state wave function. The opera
Q of course acts on all the single-particle coordinates;
shall write operators of the form( iM (rW i) asM (rW). Integrat-
ing the time-dependent Schro¨dinger equation starting from
the initial condition of Eq.~2! gives the series

uC~ t !&5~11 iQ1t@H,Q#1••• !uC0&. ~3!
839 © 1997 The American Physical Society
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840 56G. F. BERTSCH AND H. FELDMEIER
Our ansatz will be implemented by taking the function
form for uC& from a unitary generalization of Eq.~3!. We
multiply the fieldsQ and @H,Q# by time-dependent coeffi
cients that define our dynamic variables. The operators
exponentiated to make the transformation of the wave fu
tion unitary. Thus we consider a trial wave function of t
form

uCab&5eia~ t !QuCb&5eia~ t !Qeb~ t !mN[H,Q] uC0&. ~4!

We have put in a factor of the nucleon massmN for later
convenience. This trial wave function is a special case of
~2.7! of Ref. @19# with a single fieldQ. The two unitary
transformations defined here were employed in Ref.@23# in
treating small-amplitude collective motion. The commuta
@H,Q# occurs very frequently and we shall loosely follo
the notation of Ref.@23# with the abbreviation

Q1[mN@H,Q#. ~5!

When Eq.~4! is inserted into Eq.~1!, the following Lagrang-
ian is obtained for the coordinatesa andb:

^Cabu i ] t2HuCab&52ȧ^CbuQuCb&2^CbuHuCb&

2
a2

2mN
^Cbu@Q,Q1#uCb&. ~6!

The derivation is in Appendix A, along with the equations
motion that follow from the Lagrange equations. We w
find the phonon frequencies by requantizing the equation
motion, but this requires a Hamiltonian formulation. Th
we seek a transformation of variables (a,b)→(x,p) to-
gether with a HamiltonianH(x,p) such that the equations o
motion can be expressed in the form

ṗ52]xH, ~7!

ẋ5]pH.

Reference@17# describes a procedure for obtaining a cano
cal pair of variables when there are two degrees of freed
However, the choice of variables in@17# is inconvenient in
that it does not produce a quadratic Hamiltonian in the m
mentum. From Eq.~6! it is easy to see that the choic
x5^CbuQuCb&, p5a gives a canonical pair (x,p) with a
simple kinetic-energy term in the Hamiltonian. However, t
Hamiltonian is difficult to express explicitly in terms of th
x. Therefore, we use instead the canonical pair (b,pb) with

pb5a^Cbu@Q,Q1#uCb&,

which allows us to keepb as the coordinate variable.1 The
Hamiltonian in this representation may be written as

H~b,pb!5
pb

2

2m~b!
1U~b!, ~8!

with

1Since both are canonical pairs it can be shown t
pdx5pbdb, so that the phase integral~Appendix B! is invariant.
l

re
c-
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r
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of
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m~b!5mN^Cbu@Q,Q1#uCb&, ~9!

U~b!5^CbuHuCb&.

The reader may verify that the Hamiltonian equations~7!
defined this way are equivalent to Eqs.~A11! and ~A12!.

To make use of the equations of motion, we need
evaluateb-dependent matrix elements appearing in Eq.~9!.
This can be done in two different ways, depending
whether we apply the operator exp(bQ1) to the left or to the
right. The first way is to apply explicitly the operator on th
wave function. We shall only consider nonrelativistic Ham
tonians with local potentials, so the operat
Q15mN@H,Q# is a first-order derivative:

Q152
¹2Q

2
2¹Q•¹. ~10!

The exponentiated operator exp(bQ1) acting on a function of
a single coordinate variable, such asx, may be expressed in
closed form as

ebQ1f ~x,y,z!5A]xQ~x8!

]xQ~x!
f ~x8,y,z!. ~11!

The displaced coordinatex8 is obtained by integrating from
x8 a distancex2x8 that satisfies

b5E
x8

x ds

]xQ~s!
. ~12!

The derivation of this formula may be found in Ref.@27#.
The other way to calculate matrix elements is to apply

unitary transformation to the operator being evaluated. T
we use the identity

^CbuMuCb&5^C0u~e2bQ1MebQ1!uC0&. ~13!

This will turn out to be very convenient for matrix elemen
of scaling displacements.

The special case whereQ is a quadratic function of the
coordinates gives a particularly simple form for the tran
formed coordinates@23#, namely, they are scaled by a facto
For example, for the fieldQ5x2/2, the transformation is

ebQ1~x,y,z!e2bQ15~x8,y8,z8!5~e2bx,y,z! ~14!

and the wave functionCb is given by

Cb~x,y,z!5e2b/2C0~e2bx,y,z!. ~15!

III. A MODEL HAMILTONIAN

We wish to apply the equations of motion to a variety
giant resonances and will need a detailed model forH in
order to constructU(b)5^CbuHuCb&. A good balance be-
tween simplicity and realism is provided by the Skyrme-li
form for the Hamiltonian density,

h5r0@t1van21vbn7/3#, ~16!

wheret is the kinetic-energy density andn the density, both
in units of nuclear matter densityr0. The coefficientsva and
t
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56 841VARIATIONAL APPROACH TO ANHARMONIC . . .
vb are determined to reproduce nuclear saturation den
r0'0.16 fm23 ~with the corresponding Fermi energ
eF'36 MeV! and the nuclear matter binding energyB'16
MeV per nucleon. If we expressn in units of the saturation
density the parameters may be expressed as

va524B2
6

5
eF'2107 MeV, ~17!

vb53B1
3

5
eF'70 MeV.

The power dependence of the third term in Eq.~16! is not
obvious. From many-body theory, one expects the energ
a dilute Fermi gas to be a series in powers ofkF or n1/3.
Equation ~16! thus represents the first three terms of th
series. The parametrizationn7/3 for the third term also pre-
dicts a compressibility not far from that required by the e
pirical monopole systematics. It should be mentioned t
Eq. ~16! lacks momentum-dependent interactions, which
certainly present in the empirical single-particle Ham
tonian.

For treating the giant dipole resonance, we also nee
know the isospin dependence ofH. The kinetic energy has
an obvious isospin dependence arising from the sepa
Fermi energies of neutrons and protons. We shall
isospin-dependent potential-energy terms with the same
sity dependence as in Eq.~16! and require the isospin depen
dence of the semiempirical mass formula to be reproduc
The binding energy per particlee(n,nt)5h/nr0 in the
Fermi gas approximation is expressed as follows, with p
ton and neutron densities writtennp5n/21nt and
nn5n/22nt :

e~n,nt!5
3

5
eF

n2/3

2 F S 11
2nt

n D 5/3

1S 12
2nt

n D 5/3G
1van1vbn4/31vtnt

2/n. ~18!

Expanding this in powers ofnt , we have

e~n,nt!'e~n,0!1S 4

3
eFn2/31vtnD S nt

n D 2

. ~19!

The semiempirical mass formula has isospin depend
terms,

B~A,Z!5B~A,A/2!1bsym

~N2Z!2

A2 1bc

Z2

A4/3
1••• ,

~20!

with bsym'25 MeV. Assuming that neutrons and proto
occupy the same volume,nt /n5(Z2N)/2A and we may
relate the coefficient in Eq.~18! to bsym as

4eF

3
1vt54bsym. ~21!

Putting in the Fermi energyeF'36 MeV, we find numeri-
cally

vt'50 MeV. ~22!
ity
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IV. FINITE-AMPLITUDE EXCITATIONS

We now treat the excitation of the giant monopole, dipo
and quadrupole modes of vibration. For each multipole,
will define a collective fieldQ and then evaluate the ha
monic frequency and the nonlinear corrections. The fu
tions that are required for this are the expectation of
Hamiltonian in theb-deformed state, which we expand as

U~b!5
k

2
b21

k3

3
b31

k4

4
b41••• . ~23!

We have defined the energy scale so thatU(0)50. The lin-
ear term in the expansion vanishes because of the stabili
the ground state. We also need to expand the inertia to
ond order inb. We write this as

m~b!5mN^Cbu@Q,Q1#uCb&5m~11m1b1m2b21••• !.
~24!

The key formulas are the equation for the frequency in
harmonic limit

v05Ak

m

and the formula for the energy shift of the second phonon
is convenient to express this in terms of an energy param
Eanh as

D~2!E5E222E11E052
v0

2

Eanh
. ~25!

The derivation of the expression forEanh in terms of the
nonlinear coefficientsk3 ,k4 ,m1 andm2 is given in Appendix
B. The result is

Eanh
215

5

12

k3
2

k3 2
3

8

k4

k22
k3m1

4k2 2
m1

2

16k
1

m2

4k
. ~26!

All the k’s in this equation scale with mass number
ki;A, while the mi ’s are independent ofA in the droplet
limit. We thus see that the anharmonicity energy scaleEanh
varies with mass number as

Eanh;A.

We now consider the various multipoles in turn, starting w
the isoscalar monopole and quadrupole modes.

A. Monopole

The monopole fieldQ for a uniform sphere with a shar
edge would be proportional to thej 0 spherical Bessel func
tion, but in practice the nuclear surface cannot be igno
even for large nuclei. The compressibility is less in the s
face and this has the consequence that the velocity pote
is more like the simple scaling form@28#

Q5r 2/2. ~27!

We shall construct the nonlinear dynamics with this field.
is most convenient to apply the transformation to the Ham
tonian in this case. The inertia is
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842 56G. F. BERTSCH AND H. FELDMEIER
m~b!5mN^Cbu@Q,Q1#uCb&5e2bmN^C0ur 2uC0&

5e2bmNA^r 2&, ~28!

where ^r 2& denotes the mean-square radius of the gro
state. The expectation value of the Hamiltonian is

^CbuHuCb&5r0Fe22bE d3r t0~rW !1e23bvaE d3rn0
2~rW !

1e24bvbE d3rn0
7/3~rW !G , ~29!

wheret0(rW) denotes the kinetic-energy density of the grou
state uC0& and n0(rW) the particle density. This formula i
derived using the relations~13! and~15!, which yield for the
monopole field

e2bQ1t0~rW !ebQ15e25bt0~e2brW !

and

e2bQ1n0~rW !ebQ15e23bn0~e2brW !.

We next expand Eq.~29! in the power series inb. The linear
term vanishes because of the saturation condition,~17!. The
quadratic term, giving the effective restoring force, is

k5]b
2^CbuHuCb&ub505r0F4E d3r t0~rW !19vaE d3rn0

2~rW !

116vbE d3rn0
7/3~rW !G . ~30!

For a spherical drop with radiusR, this is equal toA times
the nuclear matter compressibilityK if one can make the
large-A approximation n0(rW)5u(R2r ), which yields
r0*d3rn0

2(rW)5r0*d3rn0
7/3(rW)5A and ^C0u2¹2/2mNuC0&

5r0*d3r t0(rW)53eFA/5. Surface effects of course spoil th
approximation, and the fact of the matter is that they have
exaggerated importance because theva and vb are both
large, but with opposite sign. However, for our purposes i
an unnecessary refinement to improve on the nuclear m
approximation. The harmonic approximation for the fr
quency is then the well-known collective formula

v0
25

K

mN^r 2&
. ~31!

The nonlinear coefficients in the expansion ofU andm(b)
are given numerically in Table I. Combining these accord
to Eq. ~26!, we obtain for the anharmonicity parameter

Eanh540A MeV.

TABLE I. Coefficients of the collective inertia expansion~24!.

Mode m/A m1 m2

monopole mN^r 2& 2 2
quadrupole 2mN^r 2& 2 2
dipole 32mN/63 0 20.58/R2
d

n

s
ter
-

g

This is more than a factor ofA larger than the vibrationa
frequency, implying that the shift will be very small. Fo
example, for 208Pb the shift from Eq.~B7! is D (2)E50.05
MeV. This of course is completely insignificant as a meas
able effect.

B. Giant quadrupole

The theory of the giant quadrupole anharmonicity is ve
similar. We define the isoscalar quadrupole field as

Q5z22
1

2
~x21y2! ~32!

and hence the wave function transforms as@see Eq.~15!#

Cb~x,y,z!5ebQ1C0~x,y,z!5C0~ebx,eby,e22bz!.

To evaluate matrix elements of various fields, we shall
sume that the ground state of the nucleus is spherical. T
the inertia is given by

^Cbu@Q,Q1#uCb&52e2bmN^C0ur 2uC0&52AmNe2b^r 2&
~33!

and the collective potential energy in the Hamiltonian is

^CbuHuCb&5S 1

3
e24b1

2

3
e2bD K C0U 2¹2

2mN
UC0L ~34!

'~e24b12e2b!
eF

5
A.

In the last step we have used the Fermi gas estimate for
kinetic energy. Expanding these as power series inb, we
obtain the coefficients in Tables I and II. The harmonic lim
is given by the simple formula

v0
25

k

m
5

12eF

5mN^r 2&
. ~35!

The power series expansion to higher order is also ra
simple for the quadrupole since the only nuclear parame
that enter areA,eF , and ^r 2&. It turns out that there are
strong cancellations among the different terms in Eq.~26!,
giving for the anharmonicity parameter

Eanh5
288

25
AeF . ~36!

This is larger than the parameter for the monopole, imply
that the shift would be even smaller.

TABLE II. Coefficients of the collective Hamiltonian expansio
~23!.

Mode k/A k3 /A k4 /A

monopole K5230.0 MeV 2867.0 1580.0
quadrupole 24eF/55173.0 MeV 173.0 346.0
dipole ~kinetic! 88eF/45R2 0 3.2eF /R4

dipole ~potential! 10vt/9R2 0 20.8vt /R4
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C. Giant dipole resonance

The fieldQ for the giant dipole resonance is not as simp
as the other cases. In light nuclei, the energetics of the g
dipole state suggests that theQ is close to being the simple
operatortzz, but this form gives the wrongA dependence to
describe the dipole energies in heavy nuclei. The Steinwe
Jensen model takes an opposite extreme, positing tha
displacement field vanishes at the nuclear surface. This
be generated by a velocity field such as

Q5tzz~12r 2/3R2!,

whereR is the nuclear radius. We will adopt this form t
investigate the nonlinearity, although the model predicts
high a frequency for the dipole. The displacement field th
has the form

Q15
x21y213z223R2

3R2 ]z1
5z

3R2 1
2z

3R2 ~x]x1y]y!.

The coordinateb associated with thisQ1 has the dimensions
of length. Unlike in the monopole and quadrupole cases,
were unable to find an analytic form for the needed expe
tion values. This is due to the mixing of the Cartesian co
dinates inQ1. Instead, we use the expansion~A4! explicitly
to evaluate the inertia and the kinetic-energy term of
Hamiltonian. For the inertia, we must expand to second or
as

^Cbu@Q,Q1#uCb&5^Cbu@Q,Q1#uCb&

2b^Cbu@Q1 ,@Q,Q1##uCb&

1
b2

2
^Cbu@Q1 ,@Q1 ,@Q,Q1###uCb&.

We shall evaluate this by approximating the density as
of a uniform drop. The result is

m5AmNS 32

63
2

2944

5103

b2

R2 1••• D .

Notice thatb appears in the nonlinear terms in the dime
sionless ratiob/R.

The kinetic-energy operator is treated by applying E
~A4! to each of the two gradients that it contains. The al
bra is very tedious and we have used a computer program
the manipulations. We quote here as an example thex gra-
dients expanded to second order inb,

]x85]x1
2b

3R2 ~z]x1x]z!1
b2

9R2 @5x1~3R21x22y22z2!]x

12xy]y16xz]z#.

We actually need the gradient evaluated to fourth order,
it does not seem useful to display the full expression.
evaluate the kinetic energy in the Fermi gas approxima
by applying the transformed gradient to a plane-wave st
taking the modulus squared, and integrating over a sphe
Fermi surface. For each term inb, we keep only the highes
power ofR. This is
nt
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K CbU 2¹2

2m UCbL 5
3

5
eFA1

44

45
eFA

b2

R2

1
168 853

212 625
eFA

b4

R4 1•••.

It still remains to evaluate the potential energy. We fou
this easier to do by applying the transformation to the wa
function and explicitly constructing the transformed sing
particle density to the needed order inb. We will again
approximate the ground state as a uniform sphere, wh
means that gradients of the wave function are ignored
evaluating the effect of the operator. Of course, the wa
function gradients cannot be ignored in the surface reg
but we have constructed the operatorQ to have no surface
contributions. We only need the wave function to third ord
in b to evaluate the potential energy to fourth order. T
wave function is

uCb&5S 11bQ11
b2

2
Q1

21
b3

6
Q1

31••• D uC0&.

Calculating the density from this, we see that both t
isovector and isoscalar densities are affected by the trans
mation. The densities are given to orderb2 as

nb~rW !512~152x22y2265z2!
b2

9R2 1•••,

ntb~rW !52
5zb

3R2 1•••.

Inserting the densities in the potential-energy function,
find the expression for the potential energy to orderb4,

^CbuvuCb&5^C0uvuC0&1
5

9
vt A

b2

R2 2
260

1701
vt A

b4

R4 1•••.

Notice that the coefficients ofbn are all of the form of a
constant timesA/Rn. This implies thatEanh will depend on
nuclear size asA. There is a cancellation between the kine
and potential contributions tok4, so the resulting anharmo
nicity is very small,

uEanhu.100A MeV,

giving once more a negligible energy shift for the doub
excitation.

V. CONCLUSION

Our conclusion, that anharmonic effects are extrem
small in giant vibrations, is in agreement with earlier studi
However, the preciseA dependence had not been made cle
For example, in Ref.@8#, the authors stated thatD (2)E should
scale withA as D (2)E;A22/3. See also@29#. This implies
that Eanh would be independent ofA, disagreeing with our
linear A dependence.

One aspect of the original experimental findings on
double dipole phonon caused considerable discussion.
was the apparent increased strength of the second phono
compared to the harmonic limit. In our treatment, the ener
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844 56G. F. BERTSCH AND H. FELDMEIER
weighted sum rule is respected for all initial states and s
is not possible to alter the strength of the second phono
its energy does not change from the harmonic limit. It
likely that the apparent increase in strength from these
periments was due to the presence of other multipoles
contribute incoherently to the cross sections.

Our model could be improved in a number of ways. T
actual field for the dipole has a considerable amount of s
face displacement, even for heavy nuclei, and a more re
tic field could be employed. The Hamiltonian should inclu
momentum-dependent interactions to be more realis
However, there is no reason to think that these improvem
would change the picture in a qualitative way and it har
seems worthwhile to calculate the very small effect m
accurately.

More interesting and challenging is the development o
nonlinear collective description of the low collective mode
in particular the octupole vibration. Part of the doubly e
cited octupole has been identified recently in208Pb @30#, but
the only theory up to now is the rather opaque seco
random-phase approximation. To use our treatment,
would have to find a nearly local operator that would gen
ate the low octupole, i.e., a field for which the associa
sum rule would be nearly exhausted by the low mode.
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APPENDIX A: DERIVATION OF EQUATION
OF THE MOTION

We shall evaluate the variational principle,~1! using, as a
trial wave function~4!,

uCab&5exp~ iaQ!exp~bmN@H,Q# !uC0&5exp~ iaQ!uCb&.

The variational principle will be used to determine the co
ficients a and b; Q is some local function of position an
uC0& is the ground state. The variation with respect toa and
b in Eq. ~1! yields the usual Lagrangian equations of moti

d

dt

]L
]ȧ

2
]L
] a

50, ~A1!

d

dt

]L
]ḃ

2
]L
] b

50, ~A2!

whereL is the integrand in Eq.~1!,

L5^Cabu i ] tuCab&2^CabuHuCab&. ~A3!

From this point it is simply algebra to reduce Eqs.~A1!–
~A3! to a more transparent form. We shall use an identity
expanding the operator producte2ABeA in commutators,
it
if

x-
at

r-
is-

c.
ts

y
e

a
,
-

d
e

r-
d

m
f
-
i-

-

r

e2ABeA5B1@B,A#1
1

2
†@B,A#,A‡

1
1

3!
@†@B,A#,A‡,A#1•••. ~A4!

We also need two corollary identities

]a~e2aABeaA!5e2aA@B,A#eaA ~A5!

and

e2AAeA5A. ~A6!

We begin by examining the second term in Eq.~A3!,
^CabuHuCab&. Thea dependence is made more explicit b
expandinge2 iaQHeiaQ in commutators. IfQ is local ~and
H is quadratic in the momenta!, the third- and higher-orde
commutators vanish. From Eqs.~A4! and ~5! the expansion
is

^CabuHuCab&5^CbuHuCb&1 i
a

mN
^CbuQ1uCb&

1
a2

2mN
^Cbu@Q,Q1#uCb&. ~A7!

Next we argue that the middle term in this sum vanish
First observe that by Eq.~A6! ^CbuQ1uCb&5^C0uQ1uC0&
does not depend onb. The fact thatuC0& is a stationary state
of the Hamiltonian implies

05]a^Ca,b50uHuCa,b50&ua505
i

mN
^C0uQ1uC0&

5
i

mN
^CbuQ1uCb&. ~A8!

The time derivative in Eq.~A3! contains two terms

^Cabu i ] tuCab&52ȧ^CbuQuCb&1 i ḃ^CbuQ1uCb&.

The second term vanishes by Eq.~A8!. The complete expres
sion for the Lagrangian then becomes

L52ȧ^CbuQuCb&2^CbuHuCb&

2
a2

2mN
^Cbu@Q,Q1#uCb&. ~A9!

The dependence ona is now entirely explicit. InsertingL
into Eq. ~A1! yields

2] t^CbuQuCb&1
a

mN
^Cbu@Q,Q1#uCb&50. ~A10!

This is simplified with the help of Eq.~A5! to

ḃ5
a

mN
. ~A11!

We next carry out the derivatives in the second Lagrang
equation,~A2! to obtain
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ȧ]b^CbuQuCb&1]b^CbuHuCb&

1
a2

2mN
]b^Cbu@Q,Q1#uCb&50. ~A12!

This is as far as we can simplify it without approximatio
beyond the basic ansatz~4!. The harmonic limit is obtained
by using the expansion~A4! and by keeping in Eq.~A12!
only linear terms ina and b. By the stationarity of the
ground state]b^CbuHuCb&ub5050 and the equation of mo
tion reduces to

ȧ^C0u@Q,Q1#uC0&1b^C0u@@H,Q1#,Q1#uC0&50.
~A13!

The frequency of oscillation@23# is then given by inserting
Eq. ~A11! into Eq. ~A13! as

v25
^C0u@@H,Q1#,Q1#uC0&
mN^C0u@Q,Q1#uC0&

5
M3

M1
, ~A14!

where Mn is the nth energy moment of the transitio
strength,

Mn5(
i

^0uQu i &2~Ei2E0!n.

APPENDIX B: ANHARMONICITY

In this appendix we derive the frequency shift of multip
phonon excitations due to the anharmonicity of the equa
of motion ~A12!. Our derivation proceeds through the Boh
Sommerfeld quantization of the classical orbits. This
quires the phase integral

f5E p dx

using a Hamiltonian representation of the equations of m
tion. The condition that an eigenstate be at energyE is that
classical phase accumulated over the orbit be an inte
multiple of 2p. Taking the form~8! for the Hamiltonian, the
energyEn of the nth state satisfies

f~En!5E
b1

b2A2m~b!@En2U~b!#db5np,

n50,1,2, . . . , ~B1!

where b1,2 are the classical turning points given b
U(b1,2)5En .2

We now assume that the anharmonicity is weak, so
all quantities can be expanded in power series inb, which
we wrote as Eqs.~23! and~24!. To evaluate the integral Eq
~B1! to a given order inb, we change variable to make th
energy difference under the square root a simple quad
function. Defining a variablez5AU(b)/E, we write the in-
tegral as

2If the additional phase ofp/4 is added for each turning point, Eq
~B1! gives the exact energies in the harmonic limit.
n

-

-

ral

at

tic

f~E!5A2EE
21

1
A12z2Am~b!

db

dz
dz. ~B2!

The second square root and derivative are expanded in p
ers ofb. The latter is obtained via the series forb(z),

b5A2E

k Fz2
21/2k3

3k3/2
E1/2z21S 5

9

k3
2

k3 2
k4

2k2DEz31•••G ,

~B3!

with the derivative

db5A2E

k F1223/2
k3

3k3/2
E1/2z

1S 5

3

k3
2

k3 2
3k4

2k2DEz21•••Gdz.

The integrals are then elementary to evaluate, giving,
f,

f5p
E

v0
1pS 5

12

k3
2

k3 2
3

8

k4

k22
k3m1

4k2 2
m1

2

16k
1

m2

4k D E2

v0
1•••,

~B4!

where v05Ak/m is the small-amplitude harmonic fre
quency. The anharmonicity in this limit is controlled by th
combination of nonlinear coefficients in parentheses. It
the dimensions of inverse energy and we shall abbrevia
as

Eanh
215

5

12

k3
2

k3 2
3

8

k4

k22
k3m1

4k2 2
m1

2

16k
1

m2

4k
. ~B5!

To find the energy shifts, we insert Eq.~B4! into Eq. ~B1!
and invert the resulting power series that expressesn in
terms ofE. The result is

En5nv02n2
v0

2

Eanh
1•••. ~B6!

The shift of the double phonon with respect to the sing
phonon excitation is of direct experimental interest. To lea
ing order, this is evaluated from Eq.~B6! as

D~2!E5E222E11E0522
v0

2

Eanh
. ~B7!

Equation~B6! is used in Sec. IV.
Another way to derive the frequency shift would be

find the classical frequencies at energiesv0 and 2v0. Those
energies correspond to wave packets made of statesn50,1
andn51,2, respectively. Thus the classical frequencies c
respond to the energy differencesE12E0 and E22E1, re-
spectively, and the shift would be calculated as

D~2!E5v~v1!2v~v0!. ~B8!

Classical orbital perturbation theory may be used to expr
these frequencies in terms of the anharmonicitiesm1 , m2 ,
k3, andk4. We have verified that the two methods give t
same result for thek4 dependence.
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