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We derive large-amplitude collective equations of motion from the variational principle for the time-
dependent Schdinger equation. These equations reduce to the well-known diabatic formulas for vibrational
frequencies in the small-amplitude limit. The finite-amplitude expression allows departures from the harmonic
behavior of giant resonances to be simply estimated. The relative shift of the second phonon falls with nuclear
massA asA~*?in the three modes we consider: monopole, dipole, and quadrupole. Numerically, the effect is
very small in heavy nuclei, as was found with other approadi&3556-28137)05108-X

PACS numbdss): 21.10.Re, 21.606:n, 24.30.Cz

I. INTRODUCTION function[20-22. To get any kind of Hamiltonian dynamics,
an additional degree of freedom corresponding to displace-
There has been recent interest in the harmonicity of colments is required. There is a natural choice for the displace-
lective motion, with experimental data now available onment field, which has been extensively investigated by Bo-
double-phonon excitations of the giant dipole resonancéiigas et al. [23]. These authors studied small-amplitude
[1-3]. Time-dependent mean-field theory provides a usefumotion, using sum rules to simplify the discussion. We use
tool to study this topic, and a number of calculations havethe same fields and shall follow their notation, but we are not
been reported4-15. Since the calculations in the full restricted to small amplitudes. The result will be formulas for
mean-field theory are rather opaque, it may be of some inanharmonic effects that involve only integrals over ground-
terest to find simple approximations that contain the samestate densities. The energy shift of the second phonon exci-
physics. The resulting equations of motion are quite intuitivetation A?)E is calculated from the semiclassical requantiza-
when expressed in Hamiltonian form. With the nonlineartion of the Hamiltonian equations of motion. The
equation of motion we can calculate the anharmonicity in thesemiclassical requantization recently has been favorably
giant dipole resonance, relevant to the measurements a@bmpared with the boson expansion approach in the context
[1,2]. of a solvable mode[24]. We find that this quantity is of
A very successful general procedure to find approximaorder wy/A*3, where w, is the harmonic frequency of the
tions is to employ to the variational principle for the Schro phonon andA is the atomic mass number. This stroAg
dinger equationi16] dependence makes the shift very small in practice.

5f dt(W|id,—H|¥)=0. (1) Il. ANHARMONIC COLLECTIVE DYNAMICS

As mentioned above, the starting point is the variational
This is of the form of the Lagrangian variational principle, principle, Eq. (1) above. If|[W) is varied in the space of
with the integrand playing the role of the Lagrangian. TheSjater determinants, the result is time-dependent Hartree-
variational principle has been attributed to Dirac; it gives aFock theory. Interesting simplified models are constructed by
natural way to derive the time-dependent Hartree-Fock aprestricting| W) further. In Refs[25,26] | ) is taken to be an
proximation[17] and has been widely employed in that con- antisymmetrized product of Gaussian single-particle wave
nection. It also produces useful equations of motion withfunctions. In this paper we shall assume that the motion is
more restricted assumptions about the wave functiomeMo  completely collective in the sense that it can be generated by
berg arld co—workerél&_lq_ put cpllecuve motion into the single-particle velocity fiel@(r),
dynamics by adding variational fields corresponding to pos-
sible velocity potentials and the corresponding displacement
fields. Our treatment is a special case of theirs in which only
two coordinates are kept, the minimum number that can give
Hamiltonian dynamics. Here | W) is the ground-state wave function. The operator
It is well known that collective motion can be generatedQ ©f course acts on all the single-particle coordinates; we

by a local velocity fieldQ(r) acting on a ground-state wave shall write operators of the form;M(r;) asM(r). Integrat-

ing the time-dependent Sclioger equation starting from

the initial condition of Eq.(2) gives the series

W (t=0.))=€'W¥). (2)
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Our ansatz will be implemented by taking the functional m(lB)sz<\Ifﬁ|[Q,Ql]|\IIB>, 9)
form for |¥) from a unitary generalization of E¢3). We
multiply the fieldsQ and[H,Q] by time-dependent coeffi- U(B)=(W 4/ H| V).

cients that define our dynamic variables. The operators are
exponentiated to make the transformation of the wave funcThe reader may verify that the Hamiltonian equatidis
tion unitary. Thus we consider a trial wave function of the defined this way are equivalent to E¢a11) and(A12).
form To make use of the equations of motion, we need to
, ‘ evaluateB-dependent matrix elements appearing in .
W, 5) =€ 9V gy =l QUMK Wy ) (4)  This can be done in two different ways, depending on
. whether we apply the operator egaj;) to the left or to the
We have put in a factor of the nucleon masg for later  (ight. The first way is to apply explicitly the operator on the

convenience. This trial wave function is a special case of Eqyaye function. We shall only consider nonrelativistic Hamil-
(2.7) of Ref. [19] with a single fieldQ. The two unitary tgnians with  local potentials, so the operator

transformations defined here were employed in R3] in o —m [H,Q] is a first-order derivative:
treating small-amplitude collective motion. The commutator

[H,Q] occurs very frequently and we shall loosely follow V2Q
the notation of Ref[23] with the abbreviation Q=——~-VQ-V. (10
Qu=my[H.Q]. ©) The exponentiated operator e@d¥;) acting on a function of
When Eq.(4) is inserted into Eq(1), the following Lagrang- & Single coordinate variable, such»asmay be expressed in
ian is obtained for the coordinatesand : closed form as
. : 9 4
<‘I’a5||5t_H|‘I’aﬁ>:_a<‘I’B|Q|‘I’ﬁ>_<‘I’B|H|‘Pﬁ> eﬁQlf(X,y,z): ;%(();))f(x’,y,z)_ (11)
2 X

o
- z_m<q'/3|[Qle]|q’ﬁ>- ®  The displaced coordinate’ is obtained by integrating from

x' a distancex—x' that satisfies

The derivation is in Appendix A, along with the equations of

motion that follow from the Lagrange equations. We will _JX ds 12

find the phonon frequencies by requantizing the equations of p= x 05Q(S)” (12

motion, but this requires a Hamiltonian formulation. Thus

we seek a transformation of variables,3)—(x,p) to-  The derivation of this formula may be found in RE27].

gether with a Hamiltoniafk{(x,p) such that the equations of ~ The other way to calculate matrix elements is to apply the

motion can be expressed in the form unitary transformation to the operator being evaluated. Thus
we use the identity

=—0yH, 7
P " (W 5| M|V gy = (Wl (e FUMEP) | W). (13

X=dpH. This will turn out to be very convenient for matrix elements
Referencd17] describes a procedure for obtaining a canoni-°f scaling displacements.

cal pair of variables when there are two degrees of freedom. Th? speua! case whe_@ IS a qyadra'uc function of the
However, the choice of variables [17] is inconvenient in coordinates gives a particularly simple form for the trans-

that it does not produce a quadratic Hamiltonian in the mOjFormed coolrdir;ateE’ZS%_, r;anlel)z/}zther)]/ are SC?"Ed by a factor.
mentum. From EqJ(6) it is easy to see that the choice O €xample, for the fiel@=x/2, the transformation is
x=(¥4|Q|¥y), p=a gives a canonical pair(p) with a 0By v 7)e~ A= (x' v’ 7')= (e Bx.y z 14
simple kinetic-energy term in the Hamiltonian. However, the (x.y.2) (x%y"z)=( vz (14
Hamiltonian is difficult to express explicitly in terms of this gnd the wave functio’ , is given by

x. Therefore, we use instead the canonical pgimp(;) with

pﬁ:a<q’ﬁ|[Q,Q1]|‘I’ﬁ>,

which allows us to keep as the coordinate variableThe

Y 4(x,y,2)=e P20 (e Px,y,z). (15)

. A MODEL HAMILTONIAN

Hamiltonian in this representation may be written as We wish to apply the equations of motion to a variety of
p2 giant resonances and will need a detailed modelHom
H(B.pg) = B +U(B), (8)  order to con_sFrucU(,B)=<‘lf3|_H|\Pﬁ>_. A good balance be-
2m(B) tween simplicity and realism is provided by the Skyrme-like

_ form for the Hamiltonian density,
with

h=po[ 7+ van°+vpn”?], (16)

!Since both are canonical pairs it can be shown thatwherer is the kinetic-energy density amdthe density, both
pdx=p,dpB, so that the phase integréAppendix B is invariant. in units of nuclear matter densipg. The coefficients , and
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v, are determined to reproduce nuclear saturation density IV. FINITE-AMPLITUDE EXCITATIONS

po~0.16 fm~2 (with the corresponding Fermi energy
ec~36 MeV) and the nuclear matter binding enerBy- 16
MeV per nucleon. If we express in units of the saturation
density the parameters may be expressed as

We now treat the excitation of the giant monopole, dipole,
and quadrupole modes of vibration. For each multipole, we
will define a collective fieldQ and then evaluate the har-
monic frequency and the nonlinear corrections. The func-
tions that are required for this are the expectation of the

6
va=—4B— geF~ —107 MeV, (17 Hamiltonian in theB-deformed state, which we expand as

3 U()= 5 Bt 2 o g (23
vp=3B+ geF%70 MeV. 2 3 4 '
. . ) We have defined the energy scale so H&0)=0. The lin-
The power dependence of the third term in EZf) is N0t oar term in the expansion vanishes because of the stability of
obvious. From many-body theory, one expects the energy ghe ground state. We also need to expand the inertia to sec-
a dilute Fermi gas to be a series in powerskefor n'/, ond order in3. We write this as
Equation (16) thus represents the first three terms of that '
series. The parametrizatiori” for the third term also pre-  m(8)=my(¥ 4[Q,Q]|¥ gy =m(1+m; B+ myB2+ - -).
dicts a compressibility not far from that required by the em- (29
pirical monopole systematics. It should be mentioned that ) )
Eq. (16) lacks momentum-dependent interactions, which are he key formulas are the equation for the frequency in the

certainly present in the empirical single-particle Hamil- harmonic limit

tonian. K
For treating the giant dipole resonance, we also need to wo= \ﬁ
know the isospin dependence ldf The kinetic energy has m

an obvious isospin dependence arising from the separate .
Fermi energies pof neEtrons and protgns. We shallp ad&md the formula for the energy shift of the second phonon. It

isospin-dependent potential—energy terms with the same deft convenient to express this in terms of an energy parameter

sity dependence as in E@.6) and require the isospin depen- —anh as
dence of the semiempirical mass formula to be reproduced. w2
The binding energy per particle(n,n,)=h/npy in the A(Z)E=52_251+ Eo=2 0 i (25)
Fermi gas approximation is expressed as follows, with pro- Eann
ton_ ?;El r?eutron densities writtem,=n/2+n. and The derivation of the expression fd,,, in terms of the
Mp=N/e=N,. nonlinear coefficientks,k,,m; andm, is given in Appendix
3 n? 2n_ | 5/3 2n.\5/3 B. The result is
e(n,n7)=—ep—3[ 1+ T) +( - T) }
572 n c1 5 ki 3k ksmy m] LM -
v+ opn®+ o /. (19 a5 8Kk a4k 1ek | ak' (2O
Expanding this in powers ai., we have All the k’'s in this equation scale with mass number as
) ki~A, while them;’s are independent of in the droplet
4 n. limit. We thus see that the anharmonicity energy séalg,
~ T 23 Or
e(n,n;)~e(n,0)+| 7€xn™+ov.n ( ) - (9 yaries with mass number as
The semiempirical mass formula has isospin dependent Eant~A.
terms, i . . . . .
We now consider the various multipoles in turn, starting with
(N—2Z)2 72 the isoscalar monopole and quadrupole modes.
B(A,Z) = B(A,A/Z) + bsymT + bCAT/3+ e

(20) A. Monopole
The monopole field for a uniform sphere with a sharp
with bg,~25 MeV. Assuming that neutrons and protonsedge would be proportional to thjg spherical Bessel func-

occupy the same volumey, /n=(Z—N)/2A and we may tion, but in practice the nuclear surface cannot be ignored

relate the coefficient in E¢(18) to bgy, as even for large nuclei. The compressibility is less in the sur-
4 face and this has the consequence that the velocity potential
e . . . i
3F +0,=Abg . 21 s more like the simple scaling forfi28]
Q=r?/2. (27

Putting in the Fermi energg-~36 MeV, we find numeri- ) ) ) o
cally We shall construct the nonlinear dynamics with this field. It

is most convenient to apply the transformation to the Hamil-
v,~50 MeV. (22)  tonian in this case. The inertia is
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TABLE I. Coefficients of the collective inertia expansic2d). TABLE II. Coefficients of the collective Hamiltonian expansion

(23).

Mode m/A my m,
Mode k/IA ks /A kalA

monopole mn(r?) 2 2

quadrupole p(r?) 2 2 monopole K=230.0 MeV —867.0 1580.0

dipole 32, /63 0 —0.58R? guadrupole 24-/5=173.0 MeV  173.0 346.0
dipole (kinetic) 88er/45R? 0 3.2 /R*
dipole (potentia) 10v /9R? 0 —0.8,/R*

m(B)=mn(¥ 4l[Q. Q11| ¥ g) =e*Pmy(Wo|r?| ¥ o)

=e?PmyA(r?), (28)  This is more than a factor oA larger than the vibrational

. frequency, implying that the shift will be very small. For
where (r?) denotes the mean-square radius of the groun%xgmpleyforggggb ?he shift from Eq(B7) is Aé)E=0.05

state. The expectation value of the Hamiltonian is MeV. This of course is completely insignificant as a measur-

. . able effect.
(W 5H[W g)=po efzﬁf dSrTo(r)Jre*gﬁvaf d3rn3(r)
B. Giant quadrupole
+e—4ﬁvbf d3rn(7)’3( N1, (29) The theory of the giant quadrupole anharmonicity is very
similar. We define the isoscalar quadrupole field as
wherero(F) denotes the kinetic-energy density of the ground 1
- . . . . Q=7— =(x>+y?) (32
state|W,) and ny(r) the particle density. This formula is 2 y
derived using the relationd.3) and(15), which yield for the
monopole field and hence the wave function transformgsee Eq.(15)]
e ARy (r)efRi=e 57 (e Fr) W 5(X,y,2) =P (x,y,2) = Vo(ePx,ePy,e”?z).
and To evaluate matrix elements of various fields, we shall as-
sume that the ground state of the nucleus is spherical. Then
e AQny(r)efRi=e 3Fny(e Ar). the inertia is given by

We next expand Eq29) in the power series i. The linear (¥ 5l[Q, Q11| g) =26 my(Wo|r?| W o) = 2Amye?#(r?)
term vanishes because of the saturation conditibr), The (33

quadratic term, giving the effective restoring force, is and the collective potential energy in the Hamiltonian is

N N 2
4f d3rro(r)+9vaf d3rn3(r) (‘PB|H|‘I’ﬁ>=<%e_4ﬁ+ EGZB)<\pO

2my

k:3é<wﬁ|H|q’ﬁ>|B:0:Po -

‘1’0> (34)

3,713 2
+160bf dsrng (r)} (30 ~(e’4ﬁ+2ezﬁ)%A.
For a spherical drop with radiug, this is equal toA times
the nuclear matter compressibilitg if one can make the In the last step we have used the Fermi gas estimate for the
largeA approximation no(r)=6(R-r), which vyields kinetic energy. Expanding these as power serie@,inve
Pofdarng(F):Pofdg T3)=A and (W — V2/2my| W) obtain the coefficients in Tables | and Il. The harmonic limit

3 - Mo 2" is given by the simple formula
=pof d°r 7o(r) = 3egA/5. Surface effects of course spoil this

approximation, and the fact of the matter is that they have an K 1%
exaggerated importance because theand v, are both w(z):—:—Fz. (35
large, but with opposite sign. However, for our purposes it is M 5my(r)

an unnecessary refinement to improve on the nuclear matter ) , ) )
approximation. The harmonic approximation for the fre- The power series expansion to higher order is also rather

quency is then the well-known collective formula simple for the quadrupole since the only nuclear parameters
that enter areA,er, and(r?). It turns out that there are

5 K strong cancellations among the different terms in &%),
Wp="—— 7 (31)  giving for the anharmonicity parameter
mMn(r<)
The nonlinear coefficients in the expansionlbfand m(3) E h:@AeF. (36)
are given numerically in Table I. Combining these according am 25

to Eq. (26), we obtain for the anharmonicity parameter o ) )
This is larger than the parameter for the monopole, implying

E.ni—=40A MeV. that the shift would be even smaller.
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C. Giant dipole resonance —Vv2 3 44  p?
The fieldQ for the giant dipole resonance is not as simple 2m 5 457 R
as the other cases. In light nuclei, the energetics of the giant A
dipole state suggests that tReis close to being the simple +168 853 Aﬁ_+
4 . A+
operatorr,z, but this form gives the wrongé dependence to 212 6259 R

describe the dipole energies in heavy nuclei. The Steinwedel- ) ) )
Jensen model takes an opposite extreme, positing that the !t Still remains to evaluate the potential energy. We found
displacement field vanishes at the nuclear surface. This cdfiS easier to do by applying the transformation to the wave

be generated by a velocity field such as function and explicitly constructing the transformed single-
particle density to the needed order gh We will again
Q=r,z(1-r?/3R?), approximate the ground state as a uniform sphere, which

means that gradients of the wave function are ignored in
whereR is the nuclear radius. We will adopt this form to evaluating the effect of the operator. Of course, the wave-
investigate the nonlinearity, although the model predicts todunction gradients cannot be ignored in the surface region,
high a frequency for the dipole. The displacement field therbut we have constructed the opera@rto have no surface

has the form contributions. We only need the wave function to third order
in B to evaluate the potential energy to fourth order. The
x*+y?+32%— 3R? 5z 2z wave function is
1= 3R2 d,+ W + F(Xax'i‘ yﬁy) BZ BS

_ Z 02+ 034...
The coordinate8 associated with thi®; has the dimensions [Wg)=|1+AQu+ 7 Qut g it o).

of length. Unlike in the monopole and quadrupole cases, we ] ) )

were unable to find an analytic form for the needed expectaCalculating the density from this, we see that both the
tion values. This is due to the mixing of the Cartesian coorisovector and isoscalar densities are affected by the transfor-
dinates inQ;. Instead, we use the expansiohd) explicitly ~ mation. The densities are given to orde as

to evaluate the inertia and the kinetic-energy term of the

e So 2 . B?
I;:mntoman. For the inertia, we must expand to second order ng(r)=1-(15-x2—y?~ GSZZ)W T
(WI[Q.QuIW 5)=(W4|[Q.QulI W) o __ OB

I"ITB(I')Z—W'F cee
—B(V4l[Q1,[Q, Q111 ¥ )
B2 Inserting the densities in the potential-energy function, we
+ 7<‘I’B|[Q1,[Ql,[Q,Ql]]]Wﬁ)- find the expression for the potential energy to or@éy

2 260 4
We shall evaluate this by approximating the density as thatW glv|¥ g) =(¥o|v| Vo) + 9Vr A%— 17010 A%‘f‘ -

of a uniform drop. The result is

32 2944 32 Notice that the coefficients g8" are all of the form of a
My| = — —— Ez o]l constant time#\/R". This implies thatE,,, will depend on
63 5103R nuclear size a#. There is a cancellation between the kinetic

) ) ) ] ) and potential contributions th,, so the resulting anharmo-
Notice thatB appears in the nonlinear terms in the d'me”'nicity is very small

sionless ratigs/R.
The kinetic-energy operator is treated by applying Eq. |Eand >100A MeV,
(A4) to each of the two gradients that it contains. The alge-
bra is very tedious and we have used a computer program f@iving once more a negligible energy shift for the double
the manipulations. We quote here as an examplextgea-  excitation.
dients expanded to second orderdn

m:

V. CONCLUSION

28 2
0=y + 352 (20 X07) + Gz [Bx+ (BR?+x?—y?—27%) 4, Our conclusion, that anharmonic effects are extremely
small in giant vibrations, is in agreement with earlier studies.
+2Xydy+6Xx2d,]. However, the precisA dependence had not been made clear.

For example, in Ref.8], the authors stated thA{?)E should
We actually need the gradient evaluated to fourth order, buscale withA as APE~A~22 See alsq29]. This implies
it does not seem useful to display the full expression. Wehat E,, would be independent oA, disagreeing with our
evaluate the kinetic energy in the Fermi gas approximatiorinear A dependence.
by applying the transformed gradient to a plane-wave state, One aspect of the original experimental findings on the
taking the modulus squared, and integrating over a sphericalouble dipole phonon caused considerable discussion. This
Fermi surface. For each term @ we keep only the highest was the apparent increased strength of the second phonon as
power ofR. This is compared to the harmonic limit. In our treatment, the energy-
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weighted sum rule is respected for all initial states and so it 1
is not possible to alter the strength of the second phonon if e "Be*=B+[B,A]+ 5[[B.ALA]
its energy does not change from the harmonic limit. It is
likely that the apparent increase in strength from these ex- 1
periments was due to the presence of other multipoles that + 3B ALALAL+-- - (A4)
contribute incoherently to the cross sections. '

Our model could be improved in a number of ways. Thewe also need two corollary identities
actual field for the dipole has a considerable amount of sur-
face displacement, even for heavy nuclei, and a more realis- d. (e **Be*)=e *A[B,Ale*? (A5)
tic field could be employed. The Hamiltonian should include
momentum-dependent interactions to be more realisticand
However, there is no reason to think that these improvements ~ApA—
would change the picture in a qualitative way and it hardly e "AeT=A. (AB)

seems worthwhile to calculate the very small effect more e begin by examining the second term in Ea3)

accurately. v s H|Y The o dependence is made more explicit b
More interesting and challenging is the development of aéxsaﬁr']dJngg@i;xQHeng inp commutators. IfQ is local F(Jand Y

nonlinear collective description of the low collective modes, , 3¢ quadratic in the momenitathe third- and higher-order

in particular the octupole vibration. Part of the doubly ex- ; ;
cited octupole has been identified recently?##Pb[30], but commutators vanish. From Eq#4) and (5) the expansion

the only theory up to now is the rather opaque second

random-phase approximation. To use our treatment, one o

would have to find a nearly local operator that would gener- (W oplH|W ) = (W H|W g) +i — (W | Qq| ¥ p)
X . : ; My

ate the low octupole, i.e., a field for which the associated

sum rule would be nearly exhausted by the low mode. 2

+ ;m(‘l'5|[Q:Q1]|‘I’ﬂ>- (A7)
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APPENDIX A: DERIVATION OF EQUATION _ _<\Pﬁ|Ql|\Ifﬁ> (A8)
OF THE MOTION my

We shall evaluate the variational principl@) using, as a The time derivative in Eq(A3) contains two terms
trial wave function(4), _ _
(W o6li 04| W o5y = — (W | QW g) +1i B(W 5| Q| W ).

|V o) =exp(i @Q)exp( Bmy[H, Q1) | Vo) = exp(i aQ)[ W 4).
The second term vanishes by E48). The complete expres-
The variational principle will be used to determine the coef-sion for the Lagrangian then becomes
ficients @ and B; Q is some local function of position and .
|W,) is the ground state. The variation with respecttand L=—a(¥4|Q|¥ ) —(VH|P )
B in Eq. (1) yields the usual Lagrangian equations of motion

2
o
~ 5 (Vpl[Q,Q1][Wp). (A9)
diL JL 2my (Yl QIS
————=0, (A1)
dtja da The dependence oa is now entirely explicit. InsertingC
into Eq. (Al) yields
doL oL 0 (A2)
————=0, o
dtgp B _3t<‘l’ﬁ|Q|‘I’,8>+m_N<‘PB|[Q,Q1]|‘I’3>:0- (A10)
where . is the integrand in Eq(1), This is simplified with the help of EqA5) to
£:<\Paﬁ|iat|\lfaﬁ>_<q}aﬁ|H|\Pa,3>' (A3) B: mi (All)
N

From this point it is simply algebra to reduce E¢al)-
(A3) to a more transparent form. We shall use an identity folWe next carry out the derivatives in the second Lagrangian
expanding the operator produgt”Be” in commutators, equation,(A2) to obtain
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. L q
gV gl QY ) F IV gl HIY ) $(E)= \/ZEJ \/1—22\/m(,8)—d§dz. (82)
2 -1
o
+—a ¥ , Ty =0. Al2 o .
2my sV ellQ-QullY ) (A12) The second square root and derivative are expanded in pow-

ers of 8. The latter is obtained via the series {6(z),
This is as far as we can simplify it without approximation

beyond the basic ansat#). The harmonic limit is obtained ~_[2E 2Y%, oo B k3 kK, 2
by using the expansiofA4) and by keeping in Eq(A12) “Vkl% 3312 BT+ 9K 2k EZ 4.,
only linear terms ina and 8. By the stationarity of the

B3
ground state) z(W g|H| ¥ z)| s—o=0 and the equation of mo- (B3
tion reduces to with the derivative

a(Wol[Q,Qu][Wo) + B(Wol[[H,Q1],Qu]|Wo)=0. 2E[ ks i
(Al3) dﬁ: T 1-2 3k_3/2E Z
The frequency of oscillatiof23] is then given by inserting 5Kk 3Kk
Eq. (All) into Eq.(A13) as D T
g.(A11) g.(A13) +(3Eg Zk)z dz

(Wo|[[H,Q1]1,Q11|Wo) M3
2_ _
N mN<"I}0|[Q1Q1]|\P0> Ml, (A14)

The integrals are then elementary to evaluate, giving, for
¢|

where M,, is the nth energy moment of the transition £ 5 k% 3k, kymy mi m, | E2
strength, b=m—+ —

D ) wo 12k 8k 4k® 16k 4k
My= 20 (0[QIi)*(Ei~Eo)" (B4)

where wgo=+Vk/m is the small-amplitude harmonic fre-
APPENDIX B: ANHARMONICITY quency. The anharmonicity in this limit is controlled by the

) . ) ) . combination of nonlinear coefficients in parentheses. It has
In this appendix we derive the frequency shift of multiple the dimensions of inverse energy and we shall abbreviate it
phonon excitations due to the anharmonicity of the equationyg

of motion (A12). Our derivation proceeds through the Bohr-
Sommerfeld quantization of the classical orbits. This re-

., 5K 3k, kemy mi m,

quires the phase integral Ea= 1213 812 akZ 16k 2k (BS)
¢:f p dx To find the energy shifts, we insert E@4) into Eq. (B1)
and invert the resulting power series that expresses

. o , . terms ofE. The result is
using a Hamiltonian representation of the equations of mo- )

tion. The condition that an eigenstate be at endtgg that 5 @o

classical phase accumulated over the orbit be an integral En=Nwo—n Eanh+"" (B6)
multiple of 27r. Taking the form(8) for the Hamiltonian, the
energyE, of the nth state satisfies The shift of the double phonon with respect to the single-
phonon excitation is of direct experimental interest. To lead-
B(E,) = fﬁz J2m(B)[E,—U(B)]dB=nm, ing order, this is evaluated from E(B6) as
B1 w2
APE=E,—2E,+Ey= —2—>. (B7)
n=0,1,2..., (B1) Eann

where f1, are the classical tuming points given by Eq}i?\?)ct)r?é??/?/;? ligegelr?viet%el\:r.equency shift would be to

u (,812) =E, 2 . . . .
We now assume that the anharmonicity is weak, so that"d the classical frequencies at energigsand 2w. Those

all quantities can be expanded in power serie@jrnwhich energies correspon.d to wave packets ”.‘ade of Sml
we wrote as Eqs23) and(24). To evaluate the integral Eq. andn=1,2, respectively. _Thus the classical frequencies cor-
(B1) to a given order in3, we change variable to make the respond to the energy differences —Eo and E,—E,, re-
energy difference under the square root a simple quadratiRPectively, and the shift would be calculated as
function. Defining a variable= U (B)/E, we write the in- APE=w(wl)— o(wg). (B8)
tegral as
Classical orbital perturbation theory may be used to express
these frequencies in terms of the anharmonicitigs m,,
2If the additional phase of/4 is added for each turning point, Eq. kg, andk,. We have verified that the two methods give the
(B1) gives the exact energies in the harmonic limit. same result for th&, dependence.
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