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Effects of repulsive forces on thermal fluctuations

N. Canosa and R. Rossignoli
Departamento de Fı´sica, Universidad Nacional de La Plata, Casilla de Correo 67, 1900 La Plata, Argentina

~Received 13 January 1997!

We investigate the treatment of repulsive interactions in the presence of thermal fluctuations in hot finite
systems, within the context of the static path approximation~SPA! and the ensuing SPA plus random-phase
approximation treatment. We show that static repulsive variables can be correctly treated in the stationary-
phase approximation. Results are shown for models containing both attractive and repulsive terms, where the
accuracy of the previous methods and the effects of repulsive terms are analyzed.@S0556-2813~97!05008-5#

PACS number~s!: 21.10.Ma, 05.30.2d, 21.30.Fe, 24.60.Ky
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I. INTRODUCTION

The description of finite nuclei at finite temperature@1#
has attracted renovated interest in recent years. From
experimental side, the recent development of crystal-ball
tectors will provide more detailed information of excited n
clei, particularly in the quasicontinuum region. On the the
retical side, there has been a noteworthy improvement in
microscopic treatment of nuclei at finite temperatu
through the application of the Hubbard-Stratonovich~HS!
transformation@2# and the ensuing path-integral represen
tion of the partition function. Using Monte Carlo technique
these path integrals can in principle be calculated exactl
finite configuration spaces@3#.

At the same time, the path-integral formulation allow
one to derive a very elegant microscopic theory of statist
fluctuations through the static path approximation~SPA!
@4–9#, which contains the most significant finite-size effec
beyond mean field at finite temperature, such as the coe
ence of shapes in transitional regions and the concom
smoothing of the sharp mean-field phase transitions. Th
fluctuations can also be qualitatively introduced by mean
semimacroscopic Landau prescriptions@10–12# ~which,
however, do not yield a microscopic partition function lik
the SPA! and have been shown to be essential for the
scription of the basic features of giant dipole resonan
@13,14# and of collective transitions in the decay of hot n
clei @15#. Further correlations beyond SPA can be incorp
rated with the SPA plus random-phase approximation~RPA!
treatment@16–20#, which includes in addition the small
amplitude quantal fluctuations and was shown to be v
accurate forattractive interactions, above a certain brea
down temperature, normally very small.

The SPA and SPA plus RPA@to be denoted for brevity a
correlated SPA~CSPA!# have so far been applied to pu
attractive forces. The aim of this work is to analyze the e
tension of these methods to Hamiltonians that also con
repulsiveterms. This is important for the microscopic unde
standing of the pairing plus quadrupole plus dipole Ham
tonian, a minimal microscopic model for the description
giant resonances in hot nuclei@21,22#, where the dipole term
is repulsive. This extension is also nontrivial since repuls
terms lead to complex static fields within the SPA and a
CSPA treatment in all variables cannot be straightforwar
applied. In this work we shall show that the repulsive sta
560556-2813/97/56~2!/791~9!/$10.00
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fields can be accurately treated in the stationary-phase
proximation, for arbitrary values of the attractive stati
fields, except for very low temperatures in special situatio
This allows us to develop a partial CSPA treatment wh
large-amplitude fluctuations are restricted to the variables
sociated with attractive terms, but where the RPA correcti
contain the effects of the repulsive forces. This provides
fact a justification of more phenomenological treatments
the dipole Hamiltonian, where statistical fluctuations are
stricted to the pairing and quadrupole shape deformatio
The present work extends considerably Ref.@23#, where just
a pure repulsive interaction without attractive terms w
studied. We also examine the case, not previously con
ered, where the repulsive terms modify the mean field, wh
requires a special adjustment of the integration path wit
the SPA.

In Sec. II we discuss in detail the formal treatment
repulsive forces within the SPA and CSPA. The RPA c
rection to the SPA is evaluated exactly. We then examine
Sec. III models containing both attractive and repuls
terms, where the accuracy of the present methods and
effects of repulsive terms on the generalized thermal R
frequencies and thermodynamic distributions are analyz
An important outcome is that repulsive terms may enha
tunneling effects between mean-field minima, and this can
correctly described by the CSPA within its range of applic
bility. We also examine repulsive terms that modify th
mean field, including a particular case where the SPA
exact, to set limits to the validity of the stationary-pha
approximation for the static repulsive variables. Finally, co
clusions are drawn in Sec. IV.

II. FORMALISM

A. SPA in the presence of repulsive forces

We consider a general fermionic Hamiltonian containi
just one- and two-body terms. Within a finite configuratio
space, it can be always written in the separable form@3#

H5H02
1

2(n
vnQn

2 , ~1!

whereH0 and Qn are Hermitian one-body~one particle or
one quasiparticle! operators. Using the HS transformation@2#
and separating explicitly the attractive (vn.0) and repulsive
791 © 1997 The American Physical Society
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792 56N. CANOSA AND R. ROSSIGNOLI
(vn,0) terms in Eq.~1!, the grand canonical~GC! partition
function can be cast as the path integral

Z5Tr exp@2bH8#

5E D@x#D@y#Tr T̂ expH 2E
0

b

dt H8@x~ t !,y~ t !#J ,

~2!

whereH85H2mN, T̂ denotes time ordering, and

H8~x,y!5H02mN1 (
n,vn.0

S xn
2

2vn
2xnQnD

2 (
n,vn,0

S yn
2

2uvnu
1ynQnD ~3!

is a one-body operator. The integral over the variabley
associated with the repulsive terms is to be taken along
imaginaryaxis ~we assumeb.0).

In the SPA, just the time independent paths in Eq.~2! are
considered. This leads to

ZSPA5E
2`

`

d~x!E
2`

`

d~y8!Z~x,y01 iy8!, ~4!

Z~x,y!5Tr exp@2bH8~x,y!#5exp@2bF~x,y!#, ~5!

dS x
y8 D5 )

n,vn:0
S b

2puvnu D
1/2Sdxn

dyn8
D,

where y0 is a set of real constants, arbitrary in princip
which determine the integration path. If the operatorsQn

commute with each other and withH02mN, Eq. ~4! is exact
and independent of y0 for all b. In the general case, it be
comes exact and independent ofy0 for b→0 ~i.e., at high
temperaturesT51/kb) up to orderb, and the shifty0 can be
employed to optimize the SPA at low temperatures and
evaluate the integral overy8 in the stationary-phase approx
mation, as discussed below.

The stationary points of the potentialF(x,y) are deter-
mined by the self-consistent Hartree equations

xn5vn^Qn&x,y[vnTr$exp@2bH8~x,y!#Qn%/Z~x,y!, ~6!

yn52uvnu^Qn&x,y . ~7!

At a real solution of Eqs.~6! and ~7!, F(x,y) becomes the
Hartree grand potentialFH , which, in the pure attractive
case where allvn.0, is anupperbound to the exact gran
potentialF, implying ZH[e2bFH<Z5e2bF, while in the
repulsive case where allvn,0, it is a lower bound, implying
ZH>Z ~see Appendix A!. For x→6`, F(x,y)→` and
along the realxn axis F(x,y) will possess one or severa
minima ~degenerate when symmetries ofH are broken! de-
termined by Eq.~6!. In small finite systems, these minim
will be normally flat, particularly in transitional regions, an
the SPA integral overx will take into account the large
amplitude thermal fluctuations around these solutions.

On the other hand, along the realyn axis F(x,y)→2`
for yn→6` and the real solution of Eq.~7! corresponds to a
e

o

maximum, i.e., a minimum ofZ(x,y). For fixedx, this real
solution isunique, as]2F(x,y)/]yn

2,0 for realx,y @see Eq.
~9! below#. However, along the imaginary axis
Re@Z(x,y01 iy8)# has a maximum aty850 for any real y0,
although it may exhibit oscillatory behavior and sig
changes. The integral overy8 represents rather a type o
projection that will decrease the partition function. For
givenx, the oscillations disappear or become attenuated iy0
is chosen as the real solution of Eq.~7!, in which case
Im@Z(x,y01 iy8)# is also stationary aty850 and the inner
integral in Eq.~4! can be evaluated in the saddle-point a
proximation. This leads to

ZSPA'E
2`

`

d~x!Z„x,y0~x!…C0~x!, ~8!

wherey0(x) is the real solution of Eq.~7! for fixed x and

C0~x!5DetF2uvnu
]2F~x,y!

]yn]yn8
U

y5y0~x!
G21/2

5DetFdnn81uvnu(
k,k8

^kuQnuk8&

3^k8uQn8uk&Fkk8G21/2

, ~9!

Fkk85
f k2 f k8

lk82lk

~kÞk8!, Fkk5b f k~12 f k!,

with uk&,lk the single-particle eigenstates and eigenvalue
H8„x,y0(x)… and f k the Fermi occupation probabilities~as-
suming a GC ensemble!. The labelsn,n8 in Eq. ~9! are re-
stricted to the repulsive terms. Note thatFkk8.0 for b.0
~with Fkk8→Fkk if lk→lk8) so that C0(x),1. If

@H8(x,y),N#Þ0, (kÞk8→
1
2 (kÞk8 , where the prime indicates

the sum over the extended quasiparticle space of dou
dimension@9#.

Equation~8! will practically coincide with the full integral
~4!, except for very low temperatures@where, excluding the
commuting case, Eq.~4! is not accurate either# and will
therefore be exact forT→`. The factorC0(x) decreasesthe
partition function, improving the Hartree resultZ„x,y0(x)…,
although its effect on the normalized distribution overx @the
integrand in Eq.~8! is now positive definite and can be in
terpreted as a thermodynamic probability# will be normally
quite small. If, forvn,0, ^Qn&x,050 ;x, the repulsive terms
do not modify the Hartree mean field andy0(x)50, in which
case their only effect at the SPA level is the factorC0(x).

B. RPA correlations

Further effects of the repulsive terms will appear only
low temperatures, where quantum fluctuations become
portant. The energy2] lnZ/]b obtained from Eq.~8! will
approach just the Hartree energy for lowT, omitting further
correlations that will be sensitive to the presence of repuls
forces. The time-dependent variables in Eq.~2! can be ex-
panded as
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56 793EFFECTS OF REPULSIVE FORCES ON THERMAL . . .
xn~ t !5 (
m52`

`

xn
meivmt, vm52pm/b ~10!

@similarly for yn(t)# and Eq.~2! can be written as an integra
over the coefficientsxn

m ,yn
m . In the CSPA@16,17# the inte-

grals over thestatic componentsxn
0 are fully retained, while

those overxn
mÞ0 , representing the time-dependent or qua

tum fluctuations, are evaluated in the saddle-point appr
mation. The small amplitude quantum fluctuations are t
incorporated. In the present situation, we integrate in ad
tion over yn

mÞ0 and yn
0 in the saddle-point approximation

The result, obtained after an expansion of the logarithm
the propagator in Eq.~2! up to second order inxn

mÞ0 ,yn
m , is

ZCSPA5E
2`

`

d~x!Z„x,y0~x!…C0~x!CRPA~x!, ~11!

CRPA~x!5 )
m51

`

DetF dnn82vn

3 (
kÞk8

^kuQnuk8&^k8uQn8uk&~ f k2 f k8!

ivm1lk82lk
G21

,

~12!

wheren,n8 run over the full set of operators. Equation~12!
can be evaluated exactly in terms of the generalized R
frequenciesva(x), defined as the roots@16#

DetF dnn82vn (
kÞk8

^kuQnuk8&^k8uQn8uk&~ f k2 f k8!

2va1lk82lk
G50,

which become the conventional thermal Hartree RPA f
quencies ifx is a solution of Eq.~6!. Their total number with
a definite sign is equal to the total number of pairsk,k8.
Defining in additionla(x)[lk82lk (k,k8), Eq. ~12! be-
comes

CRPA~x!5 )
m51

`

)
a

vm
2 1la

2~x!

vm
2 1va

2~x!
~13!

5)
a

sinh@ 1
2 bla~x!#/la~x!

sinh@ 1
2 bva~x!#/va~x!

, ~14!

where Euler’s formula has been applied for evaluating

product overm @20#. As 1
2 sinh21(1

2bv)5e2bv/2/(12e2bv) is
the oscillator partition function,CRPA(x) is proportional to
the quotient between the partition function of independ
RPA bosons with energiesva(x) to that of uncorrelated
pairs with energiesla(x), considered as bosons. The ad
tional factorsla

21(x),va
21 arise due to the exclusion of th

m50 term in Eq.~13! and make Eq.~14! positive definite
even if, for somea,x, va(x)50 ~as, for instance, in Gold
stone modes! or if va(x) becomesimaginary, provided in
this caseubva(x)u,2p.

For highT, CRPA(x)→1 in a finite space. The RPA cor
rections become important for lowT ~i.e., below the relevan
mean-field critical temperatureTc) and will contain the most
-
i-
s
i-

f

A

-

e

t

significant effects of the repulsive terms on the normaliz
distribution overx. Some of the lowest frequenciesva(x)
will normally become imaginary~or complex! for T,Tc for
x away from a stable Hartree solution, in which case Eq.~11!
will not be applicable in the regions wher
b2v2(x)<24p2, which will arise below a certain tempera
tureTc8,Tc . For T,Tc8, CRPA(x) is no longer positive defi-
nite and exhibits poles. This indicates the failure of t
saddle-point approximation forxn

mÞ0 in these regions due to
the onset of large-amplitude quantum fluctuations@16#. Note
also that the CSPA is not directly applicable to the full SP
treatment~4!, as the ensuing energieslk will normally be-
come complex for sufficiently large y8 and
CRPA(x,y01 iy8) is not necessarily positive definite~at any
temperature!.

III. APPLICATION

We consider a model space of 2V single-particle states
upn&, p51, . . . ,V, n561, and define the fermionic qua
sispin operators@24#

Jz5
1

2(p,n
ncpn

† cpn , Jn5Jx1 inJy5(
p

cpn
† cp2n , ~15!

which satisfy the standard SU~2! commutation relations. Any
two-body quasispin Hamiltonian can be written, after a su
able rotation, as

H5 (
i 5x,y,z

« iJi2v iJi
2/V. ~16!

The linearized SPA Hamiltonian and the partition functi
~5! become@r[(x,y,z)#

H~r !5(
i

Vr i
2/4v i1l iJi , l i5« i2r i , ~17!

Z~r !5Tr exp@2bH~r !#

5expF2bV(
i

r i
2

4v i
G $2cosh@bgl#%V/2g, ~18!

wherel5(lx
21ly

21lz
2)1/2 andg51/4 in the GC ensemble

and g51/2 in the restricted SU~2! canonical ensemble~see
Appendix B!. Equation~18! holds also for complexl i . The
Hartree equations become

r i52v i^Ji& r /V52v i tanh@bgl#
l i

l
, ~19!

which are independent ofV, and the ensuing Hartree part
tion functionZ(r 0) yields the leading order of the exact pa
tition function ~B3! for V→` and fixedv i .

A. Lipkin model

We consider first the Hamiltonian

H5«Jz2vJx
2/V1v8Jy

2/V. ~20!
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794 56N. CANOSA AND R. ROSSIGNOLI
For v5v85VV, H becomes the well-known Lipkin Hamil
tonian @24#

H5«Jz2V~Jx
22Jy

2!5«Jz2
1
2 V~J1

2 1J2
2 !, ~21!

which contains an attractive plus a repulsive term. We se
what followsv.0, v8.0. The SPA partition function is

ZSPA5
bV

4p~vv8!1/2E2`

`

dxE
2`

`

dy8Z~x,iy8! ~22!

'S bV

4pv D 1/2E
2`

`

dx Z~x,0!C0~x!, ~23!

C0~x!5$11v8tanh@bgl~x!#/l~x!%21/2,

l~x!5~«21x2!1/2, ~24!

whereZ(x,y) denotes Eq.~18! for r5(x,y,0). The present
repulsive term does not affect the mean field (^Jy&x,050), so
that y0(x)50 ; x.

The difference between Eqs.~22! and ~23! is negligible
for all T, including the T→0 limit, and also for allv8.0,
including v8@v ~it is less than 2% in all cases forV510).
For v5v8, we can recast Eq.~22! explicitly as a one-
dimensional integral writingx5s coshf, y85s sinhf, for
uxu.uy8u, and conversely for uxu,uy8u, such that
s25ux22y82u, obtaining

ZSPA5
bV

2pvE0

`

s ds K0S bVs2

4v DebVs2/4v@Z~s,0!1Z~0,is!#,

whereK0(u)52*0
`e2u cosh2fdf is the modified Bessel func

tion of the second kind. Although fors.«, Z(0,is) ~the
contribution from the regionuy8u.uxu) can be negative, its
magnitude is negligible in comparison withZ(s,0) and no
cancellation effects arise. The difference with Eq.~23! is less
than 0.06% for allT.0 in the case of Fig. 1.

The Hartree mean field is the same as forv850. Equation
~19! becomes

x5vx tanh@bgl~x!#/l~x! ~25!

and possesses, in addition to the normal solutionx50, a
‘‘deformed’’ solution x56x0 for v.« and T,Tc , which
breaks the parity symmetry~i.e., ^Jx&x0

Þ0; in the exact case

@H,eipJz#50 and^Jx&50) and leads to the absolute maxim
of Z(x,0) for T,Tc . The second-order deformed to norm
Hartree transition at

Tc52g«/ lnS v1«

v2« D ~26!

becomes, however, considerably smooth for smallV in the
exact partition function, and this smoothing is accurately
scribed by the SPA. In the thermal Hartree-Fock~HF! ap-
proximation, Eqs.~B10! and ~B11!, the final effect of ex-
change terms is the renormalizationv→v(121/V) in the
Hartree expressions. The repulsive term leads in the HF
proximation to an essentially constant shift in the ene
in

l

-

p-
y

@strictly constant forg51/2; see Eq.~B13!#, which does not
alter the mean field picture and equations.

We examine now the RPA correlations. There is a sin
collective RPA frequencyv(x) and Eq.~11! becomes@see
Eq. ~B7!#

CRPA~x!5
sinh@ 1

2 bl~x!#v~x!

sinh@ 1
2 bv~x!#l~x!

, ~27!

v2~x!5l2~x!$12v«2tanh@bgl~x!#l3~x!%

3$11v8tanh@bgl~x!#/l~x!% ~28!

'4vv8l2~x!DetF]2F~x,iy8!

]h i]h j
G

y850

, h5~x,y8!,

~29!

where F52T lnZ(x,iy8)/V @equality in Eq. ~29! would
strictly hold if the last term in Eq.~B9!, arising from the
diagonal termn5n8 in Eq. ~B8!, were omitted in the second
derivative; this term vanishes forT→0#. In particular,

v2~0!5@«2v tanh~bg«!#@«1v8tanh~bg«!#, ~30!

v2~x0!5x0
2~11v8/v ! ~T,Tc!, ~31!

wherex0 is the symmetry-breaking solution of Eq.~25!, are
the conventional thermal Hartree RPA frequencies~squared!.
Note thatv2(0),0 for T,Tc ~and v.«), indicating the
instability of the normal Hartree solution. For arbitraryx, we
havev2(x).0 ;x for T.Tc or v,«, whereas forv.« and
T,Tc , v2(x),0 in the vicinity ofx50, corresponding ap-

FIG. 1. Top: quotient between approximate and exact partit
functions for the Hamiltonian~20!, for v/«52, V510, and
v85v ~left! and v850 ~right!. Bottom: average energy forv85v
~left! and the differenceDE5E(v85v)2E(v850) ~right! as a
function of temperature. In all panels, SPA denotes Eq.~23!, which
is undistinguishable from Eq.~22!, CSPA denotes Eq.~11!, and H
and HF denotes the thermal Hartree and Hartree-Fock results.
Hartree critical temperature isTc /«50.91.
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56 795EFFECTS OF REPULSIVE FORCES ON THERMAL . . .
proximately to the region whereF(x,0) has a negative cur
vature. The breakdown of the CSPA occurs at the temp
ture Tc8,Tc determined by

b2v2~0!524p2 ~32!

and indicates the onset forT,Tc8 of large-amplitude tunnel-
ing across the barrier between the two degenerate defor
mean-field minima. The equationb2v2(0)524p2m2 deter-
mines the temperature for the breakdown of the Gauss
approximation forxm in Eq. ~10!, reflected in the appearanc
of themth pole inCRPA(x) ~note that form50, this equation
determines the critical temperatureTc).

The repulsive term increasesuv(x)u and henceuv(0)u,
increasing thus the breakdown temperatureTc8 @for v8→`,
Tc8→Tc , with Tc2Tc85O(v821)#. This reflects the enhance
ment of tunneling effects by the repulsive term~see below!.
Note also that the CSPA is not applicable to the full SP
treatment~4!, as l(x,iy8)5(«21x22y82)1/2 acquires arbi-
trary large imaginary values for largey8, and CRPA(x,iy8)
will exhibit poles at any temperature.

Numerical results shown in Figs. 1 and 2 correspond
the ensemble withg51/2. The CSPA partition function~11!
is almost exact forT.Tc8 . The accuracy forv85v is similar
to that for the pure attractive casev850, but Tc8 is higher
~for v52«, Tc8/«50.26 for v85v and Tc8/«50.16 for
v850). The SPA is also quite accurate forT.Tc , where the
factor C0(x) accounts for the most important effects of th
repulsive term, although for lowT the SPA approaches jus
the Hartree results, which are independent ofv8. In the case
depicted, theT50 Hartree energy lies slightly below th
exact ground-state energy forv85v, which implies
ZSPA.Zex andESPA,Eex for low T. In contrast, all approxi-

FIG. 2. Top left: the squared RPA frequency, Eq.~28!, as a
function ofx ~in units of«) for the cases of Fig. 1 and~a! T51.1Tc

and~b! T50.3Tc . The dotted line depicts the squared uncorrela
pair energyl2(x). Top right: corresponding normalized distributio
P(x)}Z(x)C0(x)CRPA(x) at the same temperatures. The dott
line depicts the main SPA contributionP(x)}Z(x) ~independent of
v8). Bottom: averages ofJx

2 andJy
2 .
a-

ed

n

o

mations are lower bounds toZex for v850. Nevertheless, the
detailed increase in the average energy due to the repu
term is accurately described only by the CSPA~for T.Tc8).
Note that the HF approximation predicts just a constant
crease~it is zero at the Hartree level!, which is too large.
This shift makes theT50 HF energy an upper bound, bu
the Hartree energy lies in this case closer to the exact ene
We also mention that CSPA results for the level dens
~evaluated in the saddle-point approximation! are undistin-
guishable from the exact ones.

The RPA frequency and the final CSPA distribution a
depicted in Fig. 2. For T.Tc8 , CRPA(x).1 when
v2(x),l2(x) ~and vice versa!, so that, in particular,
CRPA(x).1 whenv(x) is imaginary. The RPA correction
will then increase the normalized distributio
@*2`

` P(x)dx51# near the origin forT,Tc , particularly
near the breakdown temperature. This effect is strongly
hanced by the repulsive term, due to the increase inuv(0)u
and the fact that forv8.0, v2(x).l2(x) andCRPA(x),1
for largex @in the case depicted,CRPA(x),1 already at the
mean-field solution forT,Tc#. Thus, at the RPA level the
repulsive term lowers the potential barrier between the me
field wells, favoring tunneling. The factorC0(x) decreases
the partition function, but its effect on the normalized dist
bution is very small. In the pure attractive casev850,
v2(x),l2(x), and CRPA(x).1 ;x. The variation of
CRPA(x) is here smaller and its main effect is to decrease
partition function, without altering significantly the distr
bution shape. Note that the RPA energy correction
fixed x is essentiallyEb@v(x)#2Eb@l(x)#, where Eb(v)
51

2 vcoth(bv/2! is the average bosonic energy, and it is po
tive whenCRPA(x),1 ~and vice versa!. Forv850 it is nega-
tive for all x, while for v85v, it is negative nearx50 and
positive otherwise.

The RPA corrections will have a visible effect on th
averages~Fig. 2, bottom!

^Ji
2&5Vb21] lnZ/]v i , i 5x,y, ~33!

which represent the total strength of the operatorsJx ,Jy .
The CSPA results are again almost exact above the br
down, while the SPA is quite reliable forT.Tc . The repul-
sive term decreases^Jx

2& for low T and this is correctly de-
scribed only by the CSPA~the exact result forv850 is close
to the SPA!. It also decreaseŝJy

2& @note that in the HF ap-
proximation, ^Jy

2&5V/4 for all T and v8>0, while
^Jx

2&5V/4 for T.Tc ~B13!#. At the CSPA breakdown, the
exact values of̂Jx

2& and^Jy
2& exhibit a rather sharp decreas

as T decreases. In this region the ground-state contribu
becomes dominant in the expectation value and the tunne
between the two mean-field wells becomes important. T
higher breakdown temperature forv85v reflects the larger
splitting between the exact ground and first excited state
H ~it is 0.27« for v85v52« and 0.037« for v850). This is
in agreement with the decrease in the potential barrier
tween the mean-field wells given by the CSPA.

d



o

a

e
ds

e

f

re

3,
r
io
n

ct

e

e
iv
tio
th

y

em

r

l

ion

,

the

796 56N. CANOSA AND R. ROSSIGNOLI
B. Repulsive term modifying the mean field

We consider now

H5«Jz2vJx
2/V1v8Jz

2/V, ~34!

where we setv>0, v8>0. The repulsive term will in this
case modify the mean field, leading to a renormalization
the unperturbed single-particle energy«. This effect will de-
pend nevertheless on temperature and, within the SPA,
on the deformationx.

It is instructive to consider first the casev50, where the
SPA isexact, in order to test Eq.~8!. The exact energies ar
obviously «M1v8M2/V and the ground state correspon

to M52 1
2 V for v8,vc85«V/(V21) and to

M52@ 1
2 (V«/v811)# for v8.vc8 , with M50 for v8.V«

~we assume V even!. It undergoes V/2 transitions
M→M11 asv8 increases from 0 toV«, becoming degen-
erate forv8.vc8 . The SPA partition function is

ZSPA5S bV

4pv8
D 1/2E

2`

`

dz8Z~z01 iz8!, ~35!

whereZ(z) denotes Eq.~18! for r5(0,0,z) and is exact and
independentof z0. The RPA corrections vanish (CRPA51).
The saddle-point approximation to Eq.~35! reads

ZSPA'Z~z0!@11v8bg~12z0
2/v82!#21/2, ~36!

with z0 determined from the Hartree equation

z05v8tanh@bg~«2z0!#. ~37!

For v8.0, 0,z0,«, so that the repulsive term decreas
the final single-particle energylz5«2z0 @cf. Eq. ~17!#. For
T→0, z0→min(v8,«). The transition atv85« reflects the

onset of ground states withuM u, 1
2 V, but no further transi-

tion occurs in the Hartree approach asv8 or T increases (z0
vanishes asv8bg« for T→`). Instead, forv8.« andT→0,
^Jz&z0

→2V«/2v8, which represents the classical limit o

continuous Mof the exact ground state. The ensuing Hart
energy^H&z0

is exact in this limit only for integerV«/2v,
lying otherwisebelow the exact energy. As seen in Fig.
the Hartree partition functionZ(z0) provides a rather poo
estimate. This is also the case in the HF approximat
@where the final effect is again the replaceme
v8→v8(121/V) plus a constant shift in the energy#.

The approximation~36! is nevertheless practically exa
for all T, exceptfor T→0 whenv8.«. This is apparent as
the energy obtained from Eq.~36! approaches the Hartre
result in this limit. ForT→0 andv8.« (T,0.1« in the case
of Fig. 4! the exact SPA integral~35! projectsfrom the trace
the matrix element with the correct integer value ofM and
the energy obtained from Eq.~35! does not approach th
Hartree energy. In this limit cancellations between posit
and negative values of the integrand along the integra
path take place and the saddle-point approximation for
static repulsive variables fails. Note that Re@Z(z01 iz8)# has
a maximum atz850 for any real choice ofz0 ~Fig. 3!, but
becomes highly oscillating at lowT if z0 is different from the
f

lso

s

e

n
t

e
n
e

Hartree solution. Only forT→0 andv8.« do the oscilla-
tions, though attenuated, subsist even for this point.

In the full casev.0, v8.0, the SPA becomes

ZSPA5
bV

4p~vv8!1/2E2`

`

dxE
2`

`

dz8Z~x,z01 iz8! ~38!

'S bV

4pv D 1/2E
2`

`

dx Z„x,z0~x!…C0~x!, ~39!

where Z(x,z) corresponds tor5(x,0,z) in Eq. ~18!. The
Hartree equations are

x5vx tanh@bgl~x,z!#/l~x,z!, ~40!

z5v8~«2z!tanh@bgl~x,z!#/l~x,z!, ~41!

with l(x,z)5@(«2z)21x2#1/2, andz0(x) in Eq. ~39! is the
real solution of Eq. ~41! for fixed x. This implies an
x-dependent ‘‘unperturbed’’ single-particle energ
lz(x)5«2z0(x).

Let us examine first the solutions of the combined syst
~40! and ~41!. If a symmetry-breaking solutionx56x0Þ0
exists, Eq.~41! yields z5(«2z)v8/v, i.e., z5v8«/(v1v8),
independentof temperature. This implieslz[«2z5«v/
(v1v8). The symmetry-breaking solution will then exist fo
v.lz , i.e., v1v8.«, and will be similar to that of the
Lipkin model for «5lz , with a transition to the norma

FIG. 3. Top: quotient between approximate and exact partit
functions for the Hamiltonian~34!, for v50, v8/«52, andV510.
SPA denotes the full integral~35!, exact in the present case
SPA~sp! the saddle-point approximation~36!, and H and HF the
thermal Hartree and Hartree-Fock results. Bottom: real part of
integrand in Eq.~35! @scaled toZ(z0)# for different values of the
shift z ~in units of «). z050.62 denotes the Hartree solution.
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phase atT5Tc @given by Eq.~26! for «5lz#. For T.Tc or
v1v8,«, x vanishes andz becomes again temperature d
pendent, being identical to the casev50, previously dis-
cussed. Ifv8.«, the symmetry-breaking solution exists fo
anyv.0 ~for T,Tc). The present repulsive term favors th
the onset of the symmetry-breaking phase through the
crease inlz . For v5v8, lz5«/2.

In Eq. ~39!, x is not restricted to the self-consistent sol
tion andz0(x) will depend on bothx and T. The effect is
again to decreaselz(x) for small x and low T @for T→0,
lz(0)→0 for v8.«# while for uxu→`, z0(x) vanishes. The
difference between Eqs.~38! and ~39! is again negligible,
even forT→0 if v1v8.« @and if z0 in Eq. ~38! is close to
the saddle pointz0(x)# since the residual effects of the re
pulsive term on the deformed ground state are small@for
fixed x, the difference between the integrand in Eq.~39! and
the inner integral in Eq.~38! decreases asuxu increases#. In
any case, Eq.~38! is no longer exact forT→0.

The factorCRPA(x) has the same form~27!, with

v2~x!5l2~x!1
v8x22v@«2z0~x!#2

l~x!
tanh@bgl~x!#, ~42!

where l(x)[l„x,z0(x)… @v2(x) is approximately given
again by Eq.~29! with y8→z8#. At the symmetry-breaking
solution x56x0, v2(x0)5x0

2(11v8/v), which is identical
to Eq. ~31!, but the behavior differs for otherx. Again, for
T.Tc , v2(x).0 ;x, whereas forT,Tc , v2(0),0 and
v(x) becomes imaginary in the vicinity of the origin, a
depicted in Fig. 4. However, the effect ofv8 in Eq. ~42! is to

FIG. 4. Top left: quotient between approximate and exact pa
tion functions forv85v5« in Eq. ~34! and V510. SPA denotes
Eq. ~39!, which is undistinguishable from Eq.~38!, while SPA8
denotes the result neglectingC0(x) in Eq. ~39!. Top right: squared
RPA frequency~42!, for T50.3Tc . The result forv850 in Eq.~42!
is also shown. The thick dotted line depicts the uncorrelated
energyl2

„x,z0(x)…, the light dotted linelz
25@«2z0(x)#2. Bottom:

average energy andJz (v, x, andE are in units of«85«/2). The
CSPA results overlap with the exact ones~same line conventions a
top left panel!.
e-

increasev2(x) for xÞ0, without alteringv(0), so that it
will not increase the breakdown temperatureTc8 , determined
from Eq. ~32! ~in the case depicted,Tc8/«850.1). Moreover,
Tc8 will in this case decreasewith increasing v8 since
«2z0(0) and hencev(0) will decrease,vanishing for
v8→` @in this limit Tc85O(v822)]. Accordingly, the in-
crease in the normalized distribution near the origin due
CRPA(x) will be small~similar in the case depicted to that fo
v850 in Fig. 2!. Tunneling effects become suppressed
the present repulsive term, as confirmed by the tiny splitt
between the exact ground and first excited states~just
0.001«8 in the case depicted!.

The CSPA equation~11! is again practically exact for
thermodynamic quantities above the breakdown temperat
as seen in Fig. 4, whereas the SPA in the form~39! remains
quite accurate forT.Tc . In this case we have depicted th
average ofJz , which remains constant in the symmetr
breaking phase in the Hartree and HF approaches. The C
reproduces with extreme accuracy the detailed lo
temperature behavior. TheT50 Hartree energy lies quite
below the exact ground state and the RPA energy correct
for low T are now more visible. The HF approximatio
leads, in this case, to a rather good energy estimate forT50.

IV. CONCLUSION

We have shown that within the SPA, the integrals ov
the static repulsive variables can be accurately evaluated
not too low temperatures in the stationary-phase approxi
tion, around the unique real Hartree solution obtained
given values of the attractive static variables. This enab
one to treat the remaining quantal fluctuations also in
Gaussian approximation, above a certain breakdown t
peratureTc8,Tc . The ensuing CSPA treatment, with th
static integrals restricted to the attractive terms, continue
provide a very accurate description of static observables
T.Tc8 , while the SPA remains quite reliable forT.Tc . The
present scheme indicates, for instance, how to implem
rigorously the CSPA within the pairing plus quadrupole pl
dipole model.

At the SPA level, repulsive terms lead to a decrease in
partition function, but their influence on the normalized the
modynamic distribution is negligible beyond the Hartr
contribution. More important effects arise at the RPA lev
for T,Tc , where repulsive terms may lead to an enhan
ment of tunneling effects between the symmetry-break
mean-field solutions, as seen in the Lipkin model, which
correctly described by the CSPA forT.Tc8 . In this case
configurations away from the stable mean field become
evant in the CSPA also at low temperatures.
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APPENDIX A

The Hamiltonian~1! can be written as

H5H~x!2
1

2(n
vnS Qn2

xn

vn
D 2

,

H~x!5H01(
n

xn
2

2vn
2xnQn . ~A1!

In the pure attractive case where allvn.0 ~andQn is Her-
mitian!, H(x)2H is positive definite for realx and
@H8[H2mN, H8(x)[H(x)2mN#

Tr exp@2bH8#>Tr exp@2bH8~x!# ~vn.0!, ~A2!

so thatF<F(x). In the repulsive case where allvn,0,
H2H(x) is positive definite and

Tr exp@2bH8#<Tr exp@2bH8~x!# ~vn,0!, ~A3!

implying F>F(x). The maximum and minimum value o
the right-hand side in Eqs.~A2! and ~A3!, respectively, is
obtained whenx is the self-consistent Hartree solutio
xn5vn^Qn&x . The Hartree grand potentialFH5F(xH) is
then an upper~lower! bound toF in the attractive~repulsive!
case. If@H(x),N#50, these inequalities hold also in a c
nonical ensemble, in which case the Hartree average en

EH5^H0&xH
2

1

2(n
vn^Qn&xH

2

provides, forT→0, an upper~lower! bound to the ground-
state energy in the pure attractive~repulsive! case. If both
types of terms are present there is no rule.

On the other hand, the finite-temperature HF partit
function follows from a variational principle and always fu
fills

ZHF[Tr exp@2b~^H82HHF8 &HF1HHF8 !#<Tr exp@2bH8#,

~A4!

i.e.,FHF>F, whereHHF8 is the self-consistent operator

HHF8 5(
a

]^H8&HF

]^Pa&HF
Pa ,

with $Pa%5$ci
†cj% a complete or reduced set of one-bo

operators. SincêQn
2&HF>^Qn&HF

2 , the exchange contribu
tions to the average energy included in HF are nega
~positive! in the pure attractive~repulsive! case, implying
FHF<FH (FHF>FH).

APPENDIX B

In the two-level model, many-body states can be cla
fied into multiplets of definite quasispinJ, whose multiplici-
ties Y(J), 0<J<V/2, depend on the ensemble consider
@25#. In canonical ensembles, forN5V fermions,

Y~J!5S V

V/22JD
a

2S V

V/22J21D a

, ~B1!
gy

n

e

i-

d

where a51 in the restricted SU~2! canonical ensemble o
2V many-body states~only one particle for eachp is al-
lowed! and a52 in the full canonical ensemble of (V

2V)
many-body states. In the GC ensemble (22V states!

Y~J!5S 2V

V22JD 2S 2V

V22J22D . ~B2!

In this case half integer values ofJ are also included. The
exact partition function for a quasispin Hamiltonian rea
then

Tr exp~2bH !5 (
J50

V/2

Y~J! (
M52J

J

e2bEJM, ~B3!

where EJM are the exact energies~we assumedN5V, in
which casem50 in the GC ensemble!. For H5l•J, Eq.
~B3! becomes

Tr exp~2bl•J!5(
J

Y~J!
sinhbl~J1 1

2 !

sinh1
2 bl

, ~B4!

wherel5Al•l. Equation~B4! holds also for complexl. In
the GC ensemble, Eq.~B4! can be factorized as

Tr exp~2bl•J!5@~11ebl/2!~11e2bl/2!#V, ~B5!

whereas in the SU~2! canonical ensemble,

Tr exp~2bl•J!5~ebl/21e2bl/2!V. ~B6!

Equations~B5! and ~B6! lead then to Eq.~18!. The mean-
field dynamics is nevertheless the same in these ensem
The ensemble affects the value of critical temperatures,
not the type of Hartree solutions and transitions.

Denoting now withupn& the single-particle eigenstates o
l•J, we obtain, settingg51/4 in the GC ensemble an
g51/2 in the SU~2! canonical ensemble,

(
p,n,p8,n8

^pnuJi up8n8&^p8n8uJj upn&~ f n2 f n8!

iv1ln82ln

5
1

2
V

tanh~bgl!

v21l2 FlS d i j 2
l il j

l2 D 2v« i jk

lk

l G , ~B7!

wherevÞ0, ln5nl/2, f n5(11e4gbln)21, i , j 5x,y,z, and
« i jk is the antisymmetric tensor. We also have

^J&l[(
p,n

^pnuJupn& f n52 1
2 V tanh@bgl#

l

l
,

2
]^Ji&l

]l j
[ (

p,n,p8,n8
^pnuJi up8n8&^p8n8uJj upn&Fnn8

~B8!

5
1

2
VF tanh~bgl!

l S d i j 2
l il j

l2 D 1
bg

cosh2~bgl!

l il j

l2 G ,

~B9!
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where Fnn85( f n2 f n8)/(ln82ln) (nÞn8) and Fnn

54gb f n(12 f n).
The HF partition function and equations become

ZHF5Tr exp@2b~^H2l•J&l1l•J!#, ~B10!

l5]^H&l /]^J&l . ~B11!

For the Hamiltonian~16!, ^H&l can be calculated in the GC
ensemble with the expression
nd

ys

tt.

ett
1
2 ^JiJj1JjJi&l5^Ji&l^Jj&l~121/V!1d i j V

3~ 1
2 ^J&l

2/V21 1
8 !, ~B12!

where^J&25^J&•^J&, which follows from Wick’s theorem.
This no longer holds in canonical ensembles. In the c
~B6! we obtain instead

1
2 ^JiJj1JjJi&l5^Ji&l^Jj&l~121/V!1 1

4d i j V. ~B13!

In the Hartree approximation, only the direct term^Ji&^Jj&,
of orderV2, is retained. The remaining terms~exchange con-
tributions! are of orderV.
s.
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