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Effects of repulsive forces on thermal fluctuations
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We investigate the treatment of repulsive interactions in the presence of thermal fluctuations in hot finite
systems, within the context of the static path approximat®RA) and the ensuing SPA plus random-phase
approximation treatment. We show that static repulsive variables can be correctly treated in the stationary-
phase approximation. Results are shown for models containing both attractive and repulsive terms, where the
accuracy of the previous methods and the effects of repulsive terms are ang§@e66-28137)05008-3

PACS numbes): 21.10.Ma, 05.306-d, 21.30.Fe, 24.60.Ky

I. INTRODUCTION fields can be accurately treated in the stationary-phase ap-
proximation, for arbitrary values of the attractive static
The description of finite nuclei at finite temperatidd  fields, except for very low temperatures in special situations.
has attracted renovated interest in recent years. From thEhis allows us to develop a partial CSPA treatment where
experimental side, the recent development of crystal-ball delarge-amplitude fluctuations are restricted to the variables as-
tectors will provide more detailed information of excited nu- sociated with attractive terms, but where the RPA corrections
clei, particu]a”y in the quasicontinuum region_ On the theo_Contain the effects of the repulsive forces. This provides in
retical side, there has been a noteworthy improvement in thEct a justification of more phenomenological treatments of
microscopic treatment of nuclei at finite temperature,the dipole Hamiltonian, where statistical fluctuations are re-
through the application of the Hubbard-Stratonovi¢ts)  Stricted to the pairing and quadrupole shape deformations.
transformation{2] and the ensuing path-integral representa-The present work extends considerably R28], where just
tion of the partition function. Using Monte Carlo techniques,@ Pure repulsive interaction without attractive terms was
these path integrals can in principle be calculated exactly igtudied. We also examine the case, not previously consid-
finite configuration spaces]. ered, where the repulsive terms modify the mean field, which
At the same time, the path-integral formulation allows requires a special adjustment of the integration path within
one to derive a very elegant microscopic theory of statisticathe SPA.
fluctuations through the static path approximatit®PA) In Sec. Il we discuss in detail the formal treatment of
[4-9], which contains the most significant finite-size effectsfepulsive forces within the SPA and CSPA. The RPA cor-
beyond mean field at finite temperature, such as the coexistection to the SPA is evaluated exactly. We then examine in
ence of shapes in transitional regions and the concomitargeC. Il models containing both attractive and repulsive
smoothing of the sharp mean-field phase transitions. Thed&€ms, where the accuracy of the present methods and the
fluctuations can also be qualitatively introduced by means offfects of repulsive terms on the generalized thermal RPA
semimacroscopic Landau prescriptioi$0—14 (which, frequencies and thermodynamic distributions are analyzed.
however, do not yield a microscopic partition function like An important outcome is that repulsive terms may enhance
the SPA and have been shown to be essential for the detunneling effects between mean-field minima, and this can be
scription of the basic features of giant dipole resonance§orrectly described by the CSPA within its range of applica-
[13,14] and of collective transitions in the decay of hot nu- Pility. We also examine repulsive terms that modify the
clei [15]. Further correlations beyond SPA can be incorpo-mean field, including a particular case where the SPA is
rated with the SPA plus random-phase approximatRRA) exact, to set limits to the validity of the stationary-phase
treatment[16—20, which includes in addition the small- approximation for the static repulsive variables. Finally, con-
amplitude quantal fluctuations and was shown to be verglusions are drawn in Sec. IV.
accurate forattractive interactions, above a certain break-
down temperature, normally very small. Il. FORMALISM
The SPA and SPA plus RPo be denoted for brevity as
correlated SPACSPA] have so far been applied to pure
attractive forces. The aim of this work is to analyze the ex- We consider a general fermionic Hamiltonian containing
tension of these methods to Hamiltonians that also contaifust one- and two-body terms. Within a finite configuration
repulsiveterms. This is important for the microscopic under- space, it can be always written in the separable fiBin
standing of the pairing plus quadrupole plus dipole Hamil-
tonian, a minimal microscopic model for the description of H=H.— EE v,Q2 )
giant resonances in hot nuc&1,22, where the dipole term 0 24 Tvew
is repulsive. This extension is also nontrivial since repulsive
terms lead to complex static fields within the SPA and a fullwhereHy and Q,, are Hermitian one-bodyone particle or
CSPA treatment in all variables cannot be straightforwardlyone quasiparticleoperators. Using the HS transformatid
applied. In this work we shall show that the repulsive staticand separating explicitly the attractive (>0) and repulsive

A. SPA in the presence of repulsive forces
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(v,<0) terms in Eq(1), the grand canonicdlGC) partition ~ maximum i.e., a minimum ofZ(x,y). For fixedx, this real
function can be cast as the path integral solution isunique asd?F(x,y)/dy><0 for realx,y [see Eq.
(9) below]. However, along the imaginary axis,
R Z(x,yot+iy’)] has a maximum a’' =0 for anyrealyy,
R B although it may exhibit oscillatory behavior and sign
=f D[x]D[y]Tr T exp[—f dt H’[x(t),y(t)]], changes. The integral over' represents rather a type of
0 projection that will decrease the partition function. For a
2 givenx, the oscillations disappear or become attenuatgg if
R is chosen as the real solution of E(f), in which case
whereH’'=H— uN, T denotes time ordering, and Im[Z(x,yot+iy’)] is also stationary ay' =0 and the inner
integral in Eq.(4) can be evaluated in the saddle-point ap-
proximation. This leads to

Z=Trexd—pBH']

x5
HI(X,y):HO_MN+Vu§:>O (2 —XVQV
Zgpp~ f:d(x)Z(x,yo(x))CO(x), (8)

- X

v,0,<0

y2
4y, ®
whereyy(x) is the real solution of Eq(7) for fixed x and

—-1/2
y_yO(X)]

= De‘{: 5,”,/"‘ |UV|2 <k|QV|k’>
kK

is a one-body operator. The integral over the variables

associated with the repulsive terms is to be taken along the

imaginary axis (we assumeg>0). Co(x)= De{ —v,|
In the SPA, just the time independent paths in &j.are

considered. This leads to

P F(X,Y)
&yvayv’

Zopa— f " d(x) f T dyHZyotiy), (4

—o0 —o0

-1/2

><<k’|QV’|k>Fkk’ ) (9)

Z(x,y)=Trexd —BH'(x,y)]=exd — BF(x,y)], (5

B ) 1/2 dXV)

X
v,v,20 (27T|Uy| dy;/

1= fk_fk’
y

d

Frw= (k#K"),  Fu=Bf(1-1),
Kk~ Nk
wherey, is a set of real constants, arbitrary in principle,
which determine the integration path. If the operat@s
commute with each other and with,— wN, Eq. (4) is exact
and independent ofgyfor all 8. In the general case, it be- ) .
comes exact and independentyaf for 3—0 (i.e., at high Stricted to the repulsive terms. Note tig, >0 for 5>0
temperatured = 1/k8) up to order, and the shify, canbe ~ With Fie—Fic if M=) so that Co(x)<1. If
employed to optimize the SPA at low temperatures and tdH'(X,y),N]#0, Sy — 33y, Where the prime indicates

evaluate the integral over' in the stationary-phase approxi- the sum over the extended quasiparticle space of doubled

with |k),\ the single-particle eigenstates and eigenvalues of
H'(x,yo(x)) and f, the Fermi occupation probabiliti€gs-
suming a GC ensembleThe labelsy,v’ in Eq. (9) are re-

mation, as discussed below. dimension[9].
The stationary points of the potentidi(x,y) are deter- Equation(8) will practically coincide with the full integral
mined by the self-consistent Hartree equations (4), except for very low temperatur¢where, excluding the

commuting case, Eq(4) is not accurate eith¢rand will
X,=v{Q,)xy=v,TrH{exd — BH'(x,¥)]Q,}/Z(X,y),  (6)  therefore be exact fofF— . The factorCy(x) decreaseshe
partition function, improving the Hartree resd(x,yq(x)),
Yo=—1v,{Qu)xy- (7)  although its effect on the normalized distribution oxdithe
integrand in Eq(8) is now positive definite and can be in-

At a real solution of Eqs(6) and (7), F(x,y) becomes the terpreted as a thermodynamic probabilityill be normally

Hartree grand potenFiaFH, which, in the pure attractive quite small. If, forv,<0,(Q, ), o= 0 Vx, the repulsive terms
case where alb,>0, is anupperbound to the exact grand 4 ot modify the Hartree mean field apg(x) =0, in which

- implyi =e PFu<z=e"BF while i . ;
potential 7, implying Zy=e "H<Z=e ", while in the 550 their only effect at the SPA level is the fadBy(x).
repulsive case where all, <0, it is alower bound, implying

Zy=Z (see Appendix A For x— *o, F(x,y)— and

along the realx, axis F(x,y) will possess one or several

minima (degenerate when symmetriestéfare brokep de- Further effects of the repulsive terms will appear only at

termined by Eq.(6). In small finite systems, these minima low temperatures, where quantum fluctuations become im-

will be normally flat, particularly in transitional regions, and portant. The energy-4dInZ/dB obtained from Eq.8) will

the SPA integral ovex will take into account the large- approach just the Hartree energy for IGwomitting further

amplitude thermal fluctuations around these solutions. correlations that will be sensitive to the presence of repulsive
On the other hand, along the reg) axis F(X,y)— — forces. The time-dependent variables in E2). can be ex-

for y,— * and the real solution of Eq7) corresponds to a panded as

B. RPA correlations
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* _ significant effects of the repulsive terms on the normalized
X,(t)= > xMelemt @ =2am/ B (10 distribution overx. Some of the lowest frequencies,(x)
m=-=e will normally become imaginaryor complex for T<T, for
x away from a stable Hartree solution, in which case ()
will  not be applicable in the regions where
B?w?(x)<— 42, which will arise below a certain tempera-
m . . ture T.<T.. ForT<T., Cgrpa(X) is no longer positive defi-
those ovemfo, representing thg tlme-dependept or quan-,;;e acnd exhibits polces. This indicates the failure of the
tum fluctuations, are evaluated in the saddle-point approx'éaddle—point approximation fo«‘ﬁo in these regions due to

mation. The small amplitude quantum fluctuations are thu : :
incorporated. In the present situation, we integrate in addi?he onset of large-amplitude quantum fluctuatiphl. Note

tion overyrymto and )/3 in the saddle-point approximation. also that the CSPA is not directly applicable to the full SPA

. ! . reatment(4), as the ensuing energias will normally be-
The result, obtained after an expansion of the logarithm OLome complex for  sufficienty large y’  and

[similarly fory,(t)] and Eq.(2) can be written as an integral
over the coefficients)',y"'. In the CSPA[16,17] the inte-
grals over thestatic components<‘3 are fully retained, while

the propagator in E¢2) up to second order mrvmﬁo Yy is Crpa(X,yo+iy’) is not necessarily positive definitat any
m temperaturg
ZCSPA:f d(X)Z(X,Y0o(X))Co(X) Crpa(X), (1D
o lll. APPLICATION
- We consider a model space of)2single-particle states
CRPA(X)ZHLII De‘{ Sy U, lpv), p=1,...Q, v==*1, and define the fermionic qua-
sispin operator§24|
(KIQ,K (K |Qu[k)(Fi=Fi) |
X ; , 1 t _ R t
ort A — Ay JZ_EpEV Vel ,Cou, JV—JX+|vJy—% chCow, (15)

(12)
which satisfy the standard $2) commutation relations. Any

wherev,v" run over the full set of operators. Equatitl?)  two-body quasispin Hamiltonian can be written, after a suit-
can be evaluated exactly in terms of the generalized RPAple rotation, as

frequenciesw (x), defined as the roo{d6]

KO e H= > &Ji—0v;3%Q. (16)
Del{é,,,,r—v,,z (KIQuIK")(K'[Qur[K)(fi mlzo S ST

kZk' —wut N — Ny
The linearized SPA Hamiltonian and the partition function
which become the conventional thermal Hartree RPA fre{5) become[r=(x,y,z)]
quencies ix is a solution of Eq(6). Their total number with
a definite sign is equal to the total number of pdirsk’.

Defining in addition\ ,(x)=\ — X, (k<k’), Eq. (12) be- H(r)=2 Qrildoi+NJi, Ni=gi—r;, (17
comes
o w2+)\i(x) Z(r)=Trexgd —BH(r)]
Crpa(X) = H - 13

2
i

= exp[ —-BOY, 4r— {2coshiByn]}¥2,  (18)

m=1"a wr2n+ wi(x)
Uj

SINH 3 BN (X) /N o(%)
= — : (14 wherex=(\;+\;+\2)¥ and y=1/4 in the GC ensemble
a SNtz Bwy(X)]/wa(X) and y=1/2 in the restricted S(2) canonical ensemblésee
ppendix B. Equation(18) holds also for compleX;. The
artree equations become

where Euler's formula has been applied for evaluating thtﬁ
product ovem [20]. As 3sinh {(3Bw)=e#“?/(1—e P*) is
the oscillator partition functionCrpa(X) is proportional to N
the quotient between the partition function of independent ri=2vi{Ji) 1Q=—vitanf ByA ], (19
RPA bosons with energies,(x) to that of uncorrelated
pairs with energiea ,(x), considered as bosons. The addi-
tional factorsx ,*(x),w ! arise due to the exclusion of the
m=0 term in Eq.(13) and make Eq(14) positive definite
even if, for somen,X, w,(x)=0 (as, for instance, in Gold-
stone modesor if w,(x) becomesmaginary, provided in o
this casd Bw,(X)|<2r. A. Lipkin model

For highT, Crpa(X)—1 in a finite space. The RPA cor- We consider first the Hamiltonian
rections become important for loWw (i.e., below the relevant ) )
mean-field critical temperatufg,) and will contain the most H=gJ,~vJ/Q+v'J)/Q. (20

which are independent d2, and the ensuing Hartree parti-
tion functionZ(r) yields the leading order of the exact par-
tition function (B3) for ) —o0 and fixedv; .
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Forv=v'=QV, H becomes the well-known Lipkin Hamil- T L s =1 T ]
tonian[24] A\ PA - i =
15 _‘\\\ g{.[F _ 15k 4
H=2d,-V(R-J)=ed;= 3 VAL HI2), @D ¢ |\ Bt -] ¢
S prEes— 3
which contains an attractive plus a repulsive term. We set in P 1N
what followsv>0, v’ >0. The SPA partition function is L .
z —BQ fde'wd Z(x,iy") (22
= X "Z(x,iy’
SPA Am(oo V2] . y y
BQ 1/2 o N '
W(m) Jide Z(X,O)CO(X), (23) g

Co(x)={1+v"tant ByA(x) /N (x)} 2,

AX) = (2+x%)Y2, (24)

05 1 1.5 2
T/T, T/T.
whereZ(x,y) denotes Eq(18) for r=(x,y,0). The present
repulsive term does not affect the mean figld,f, c=0), so FIG. 1. Top: quotient between approximate and exact partition
thatyy(x)=0 V x. functions for the Hamiltonian(20), for v/e=2, Q=10, and

The difference between Eq&22) and (23) is negligible v'=v (left) andv’=0 (right). Bottom: average energy for' =v
for all T, including the T—0 limit, and also for ally’>0,  (left) and the differenceAE=E(v'=v)—E(v'=0) (right) as a
includingv’>v (it is less than 2% in all cases f6t= 10). _functlo_n _of temperature. In all panels, SPA denotes(28), which
For v=0v', we can recast Eq(22) explicitly as a one- IS undistinguishable from Ed22), CSPA denotes Eq11), and H
dimensional integral writingc=s coshp, y' =s sinhg, for and HF dgnotes the thermal Hartree and Hartree-Fock results. The
Ix|>|y’|, and conversely for |x|<|y'|, such that Hartree critical temperature 1, /e=0.91.

2_|y2_\r2 ‘o
s°=[x"~y"?], obtaining [strictly constant fory=1/2; see Eq(B13)], which does not

BQ (= BOs? s alter the mean field picture and equations.
ZSPAZZ_J s ds |<0( 7 )eﬁﬂs M[Z(s,00+2Z(0jis)], We examine now the RPA correlations. There is a single
mvJo v collective RPA frequencyo(x) and Eq.(11) becomegsee
Eq. (B7
whereKq(u)=2[ge U <>"%d4 is the modified Bessel func- a. (B7)]
tion of the second kind. Although fos>¢, Z(0,is) (the inH X 8\
contribution from the regiony’|>|x|) can be negative, its Crpa(X) = sinft2 8 (x)]w(x), (27)
magnitude is negligible in comparison witt(s,0) and no sini 3 Bw(x) I\ (X)
cancellation effects arise. The difference with E2p) is less
than 0.06% for allT>0 in the case of Fig. 1. 0?(X)=N?(x){1—ve’tanf ByA () IN3(X)}
The Hartree mean field is the same asuf6= 0. Equation ,
(19) becomes X{1+v tani ByN(X) /N (X)} (28
x=vx tani ByA(x)]/\(X) (25) ~4vv’)\2(x)De{ PPF(x,iy") p=(xy")
anan o L L 1
and possesses, in addition to the normal solutienO, a s yr=o (29)

“deformed” solution x=*x, for v>¢ and T<T,, which
breaks the parity symmetiy.e.,(J,), #0; in the exact case, where F=—T InZ(x,iy')/Q [equality in Egq. (29 would
[H,e'™2]=0 and(J,)=0) and leads to the absolute maxima strictly hold if the last term in Eq(B9), arising from the
of Z(x,0) for T<T,. The second-order deformed to normal diagonal termv= " in Eq. (B8), were omitted in the second

Hartree transition at derivative; this term vanishes fd@—0]. In particular,
+ »?(0)=[e—v tan e)|[e+v'tan )], (30
T.—2ye/ln Z—Z) 26) (0)=[ hBye)ll hBye)], (30
0¥ (Xg)=x5(1+v'lv) (T<Ty), (3D

becomes, however, considerably smooth for srfialh the

exact partition function, and this smoothing is accurately dewherex, is the symmetry-breaking solution of E®5), are
scribed by the SPA. In the thermal Hartree-FqelF) ap-  the conventional thermal Hartree RPA frequencgzgiared
proximation, Egs.(B10) and (B11), the final effect of ex- Note thatw?(0)<0 for T<T. (and v>¢), indicating the
change terms is the renormalization-v(1—1/Q) in the instability of the normal Hartree solution. For arbitracywe
Hartree expressions. The repulsive term leads in the HF apravew?(x)>0 Vx for T>T, orv<e, whereas fov >¢ and
proximation to an essentially constant shift in the energyT<T,, w?(x)<0 in the vicinity ofx=0, corresponding ap-
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mations are lower bounds &, for v’ =0. Nevertheless, the
detailed increase in the average energy due to the repulsive
term is accurately described only by the CSBé& T>T/).

Note that the HF approximation predicts just a constant in-
crease(it is zero at the Hartree levelwhich is too large.
This shift makes th& =0 HF energy an upper bound, but
the Hartree energy lies in this case closer to the exact energy.
We also mention that CSPA results for the level density
(evaluated in the saddle-point approximaji@re undistin-
guishable from the exact ones.

The RPA frequency and the final CSPA distribution are
depicted in Fig. 2. ForT>T., Cgpa(X)>1 when
w?(X)<\%(x) (and vice versp so that, in particular,
Crpa(X)>1 whenw(x) is imaginary. The RPA correction
will then increase the normalized distribution
[[Z.P(x)dx=1] near the origin forT<T., particularly
near the breakdown temperature. This effect is strongly en-
hanced by the repulsive term, due to the increasevii®)|
and the fact that fop’ >0, w?(x)>N?(x) and Cgpa(X)<1

FIG. 2. Top left: the squared RPA frequency, Eg8), as a for largex [in the case depictedgzpa(X) <1 already at the
function ofx (in units ofe) for the cases of Fig. 1 an@ T=1.1Tc  mean-field solution folf <T.]. Thus, at the RPA level the
and(b) T=0.3T.. The dotted line depicts the squared uncorrelatedrepy|sive term lowers the potential barrier between the mean-

pair energy\?(x). Top right: corresponding normalized distribution field wells, favoring tunneling. The factdBy(x) decreases
P(x)=Z(X)Co(X)Crea(x) at the same temperatures. The dottedy, 1 ition function, but its effect on the normalized distri-

line depicts th in SPA tributi Z ind dent of . . .
NS cepic's e main contributid?(x)=Z(x) (independent o bution is very small. In the pure attractive casé=0,

’). Bottom: averages of2 andJZ.
v") ges d y w?(X)<\?(x), and Cgrpa(X)>1 Vx. The variation of
proximately to the region wher&(x,0) has a negative cur- Crea(X) is here smaller and its main effect is to decrease the
vature. The breakdown of the CSPA occurs at the temperaflart't'on function, without altering significantly the distri-

ture T, <T, determined by bution shape. Note that the RPA energy correction for
¢ fixed x is essentiallyEy[ w(X)]—E,[A(X)], where Ey(w)
B?w?(0)=—4m? (32)  =lwcoth(Bwl2) is the average bosonic energy, and it is posi-

o ) tive whenCgpa(X) <1 (and vice versa Forv' =0 itis nega-
and indicates the onset far<T of large-amplitude tunnel- +tive for all x. while for v’ =uv . it is negative neak=0 and

ing across the barrier between the two degenerate deform%sitive otherwise.

mean-field minima. The equatiggfw?(0)= —47°m? deter- " The RPA corrections will have a visible effect on the
mines the temperature for the breakdown of the Gauss'aﬂverage:{Fig. 2. botton
approximation fox™ in Eq. (10), reflected in the appearance '

of themth pole iINnCrpa(X) (Note that form=0, this equation
determines the critical temperatufg).

The repulsive term increase®(x)| and hencew(0)|,
increasing thus the breakdown temperatUife[for v’ — oo,
T.—Te, with T.—T.=0(v' " 1)]. This reflects the enhance-
ment of tunneling effects by the repulsive tefsee below.

Note also that the CSPA is not applicable to the full SPA . ) : )
treatment(4), as\(x,iy’) = (e2+x2—y'2) 12 acquires arbi- down, while the SPA is quite reliable f@r>T.. The repul-

trary large imaginary values for large, and Crpa(x,iy’)  SV€ term decreasdd?) for low T and this is corrgctly de-
will exhibit poles at any temperature. scribed only by the CSP#&he exact result fov’ =0 is close
Numerical results shown in Figs. 1 and 2 correspond td0 the SPA. It also decrease&)7) [note that in the HF ap-
the ensemble withy=1/2. The CSPA partition functioftl) ~ proximation, (J7)=Q/4 for all T and v'=0, while
is almost exact folf >T/ . The accuracy fo’ =v is similar ~ (J2)=Q/4 for T>T, (B13)]. At the CSPA breakdown, the
to that for the pure attractive casé=0, but T, is higher  exact values ofJ?) and(Ji) exhibit a rather sharp decrease
(for v=2¢, Ti/e=0.26 for v'=v and T,/e=0.16 for asT decreases. In this region the ground-state contribution
v'=0). The SPAis also quite accurate fbr T, where the becomes dominant in the expectation value and the tunneling
factor Cy(x) accounts for the most important effects of the between the two mean-field wells becomes important. The
repulsive term, although for low the SPA approaches just higher breakdown temperature fof =v reflects the larger
the Hartree results, which are independent ofin the case  splitting between the exact ground and first excited states of
depicted, theT=0 Hartree energy lies slightly below the H (itis 0.27 for v’ =v=2¢ and 0.03% for v'=0). This is
exact ground-state energy foo’=wv, which implies in agreement with the decrease in the potential barrier be-
Zgpp>Zey aNdEgpa<Eg, for low T. In contrast, all approxi- tween the mean-field wells given by the CSPA.

(3H=QB7 %9 InZlov;, i=xy, (33

which represent the total strength of the operatiys], .
The CSPA results are again almost exact above the break-
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B. Repulsive term modifying the mean field S A B B B L N
. SPA  —]
We consider now SPA(sp) v ]

H=gJ,—vd2/Q+v'J2/Q, (34)

Zap / Zex

where we seb=0, v'=0. The repulsive term will in this 1
case modify the mean field, leading to a renormalization of s
the unperturbed single-particle energyThis effect will de- I ]
pend nevertheless on temperature and, within the SPA, also - 1
on the deformatiorx. el A T R

It is instructive to consider first the case=0, where the :

T/e

SPA isexact in order to test Eq(8). The exact energies are R T e e o

obviouslysM +v'M?/Q and the ground state corresponds 6 - .

to M=-1% for v'<v.=eQ/(Q-1) and to [ T/e=06
M=—[3(Qelv’'+1)] for v’ >v., with M=0 forv’>Qe
(we assume ) even. It undergoes (/2 transitions
M—M+1 asv’ increases from 0 té)e, becoming degen-
erate forv'>v/. The SPA partition function is

Re[Z(iz' + z)]

Zgpp=

po |\ (- ]
) f dz'Z(zy+iz'), (35) ST T R ST R
v’ —o 05 00 05 1

Z/

whereZ(z) denotes Eq(18) for r=(0,0z) and is exact and
independentf z;. The RPA corrections vanisiCgpa=1).
The saddle-point approximation to E@5) reads

FIG. 3. Top: quotient between approximate and exact partition
functions for the Hamiltonia34), for v =0, v'/e=2, andQ) = 10.
SPA denotes the full integral35), exact in the present case,
SPA(sp the saddle-point approximatiof86), and H and HF the

~ 2y1-12
Zspr=2(2)[1+v' BY(1-25v'?)]" (38 thermal Hartree and Hartree-Fock results. Bottom: real part of the
_ ) _ integrand in Eq(35) [scaled toZ(z,)] for different values of the
with z, determined from the Hartree equation shift z (in units of £). z,=0.62 denotes the Hartree solution.
zo=v'tan By(e —2o)]. (37 Hartree solution. Only foT—0 andv’>e do the oscilla-

) tions, though attenuated, subsist even for this point.

the final single-particle energy,= ¢ —z, [cf. Eq. (17)]. For

T—0, zg—min(v',e). The transition av’ =¢ reflects the 8O

onset of ground states witM|<3Q, but no further transi- ZspA=—mf dxf dz'Z(x,zy+iz") (38
tion occurs in the Hartree approachwsor T increases, 4m(vo’)

vanishes as' Bye for T—x). Instead, fon'>¢ andT—0, 1o

(3,02, —Qel2v’, which represents the classical limit of g( ) f dX Z(,25(X))Ca (), 39
continuous Mof the exact ground state. The ensuing Hartree 4w ol °

energy(H)Z is exact in this limit only for integefle/2v,

lying otherW|sebeIowthe exact energy. As seen in Fig. 3, Where Z(x,z) corresponds ta=(x,02) in Eq. (18). The
the Hartree partition functio(z,) provides a rather poor Hartree equations are

estimate. This is also the case in the HF approximation

[where the final effect is again the replacement x=vX tanf By\(X,2)]/IN(X,2), (40
v'—v’(1-1/Q) plus a constant shift in the enerigy
The approximatior(36) is nevertheless practically exact z=v'(e—2)tanf ByN(X,2) ]I\ (X,2), (41)

for all T, exceptfor T—0 whenv’>¢. This is apparent as

the energy obtained from E{36) approaches the Hartree with N(x,z)=[(e— 2)2+x2]Y2, andzy(x) in Eq. (39) is the
result in this limit. ForT—0 andv’>¢ (T<0.le in the case real solution of Eq.(41) for fixed x. This implies an
of Fig. 4) the exact SPA integrdB5) projectsfrom the trace  x-dependent  “unperturbed”  single-particle  energy
the matrix element with the correct integer valueMdfand A (X) =& —2zy(X).

the energy obtained from Eq35) does not approach the Let us examine first the solutions of the combined system
Hartree energy. In this limit cancellations between positive(40) and (41). If a symmetry-breaking solutior==*x,# 0
and negative values of the integrand along the integratioexists, Eq.41) yields z=(e—2z)v'/v, i.e.,z=v'el(v+v’),
path take place and the saddle-point approximation for théndependentof temperature. This implies\,=¢—z=¢ev/
static repulsive variables fails. Note that[Réz,+iz’')] has (v+v'). The symmetry-breaking solution will then exist for
a maximum atz’ =0 for anyreal choice ofzy (Fig. 3), but  v>\,, i.e.,, v+v'>¢, and will be similar to that of the
becomes highly oscillating at low if z, is different from the  Lipkin model for e=\,, with a transition to the normal
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increasew?(x) for x+0, without alteringw(0), sothat it
will not increase the breakdown temperatiife, determined
from Eq.(32) (in the case depicted,/e’=0.1). Moreover,
T¢ will in this case decreasewith increasingv’ since
£—20(0) and hencew(0) will decrease,vanishing for
v'—oo [in this limit T.=0(v’'~?)]. Accordingly, the in-
crease in the normalized distribution near the origin due to
Crpa(X) will be small(similar in the case depicted to that for
v'=0 in Fig. 2. Tunneling effects become suppressed by
the present repulsive term, as confirmed by the tiny splitting
between the exact ground and first excited staest
0.00%k’ in the case depicted

The CSPA equation{ll) is again practically exact for
thermodynamic quantities above the breakdown temperature,
as seen in Fig. 4, whereas the SPA in the f¢89) remains
quite accurate fof >T.. In this case we have depicted the
average ofJ,, which remains constant in the symmetry-
breaking phase in the Hartree and HF approaches. The CSPA
) ) reproduces with extreme accuracy the detailed low-
. FIG. 4: Top Iefti quotlen_t between approximate and exact part"temperature behavior. THE=0 Hartree energy lies quite
tion functions forv’=v =2 in Eq. (34) and 2 =10. SPA denotes .\ the exact ground state and the RPA energy corrections

Eqg. (39), which is undistinguishable from Eq38), while SPA for | 1 isible. The HF imati
denotes the result neglecti@y(x) in Eg. (39). Top right: squared or low 1 aré now more visibie. € approximation

RPA frequency(42), for T=0.3T, . The result for’ =0 in Eq.(42) leads, in this case, to a rather good energy estimat€£db.

is also shown. The thick dotted line depicts the uncorrelated pair
energy\?(x,zo(x)), the light dotted line\2=[ & — z4(x) ]?. Bottom:

T
CSPA ——

SPA  -----

average energy andl, (o, X, andE are in units ofe’ =¢/2). The IV. CONCLUSION
CSPA results overlap with the exact orisame line conventions as o )
top left panel. We have shown that within the SPA, the integrals over

the static repulsive variables can be accurately evaluated for
phase alr =T, [given by Eq.(26) for e=\,]. For T>T, or  Not too low temperatures in the stationary-phase approxima-

v+v'<e, x vanishes and becomes again temperature de-tion, around the unique real Hartree solution obtained for
pendent, being identical to the case=0, previously dis- given values of the attractive static variables. This enables

cussed. Ifo’ >, the symmetry-breaking solution exists for ©N€ to treat the remaining quantal fluctuations also in the

anyv>0 (for T<T,). The present repulsive term favors thus aussian approximation, above a certain breakdown tem-

the onset of the symmetry-breaking phase through the deratureTc<T.. The ensuing CSPA treatment, with the
crease inv,. Forv=ov', \,=¢/2. static integrals restricted to the attractive terms, continues to

In Eq. (39), x is not restricted to the self-consistent solu- Provide a very accurate description of static observables for
tion andzy(x) will depend on bottx and T. The effect is 1> Tc. While the SPA remains quite reliable foe>T . The
again to decreask,(x) for smallx and lowT [for T—0, Present scheme indicates, for instance, how to implement
\,(0)—0 for v’ >e] while for |x| -, zy(x) vanishes. The rigorously the CSPA within the pairing plus quadrupole plus

difference between Eq€38) and (39) is again negligible, dipole model. _ _
even forT—0 if v+v’>e [and ifz, in Eq. (38) is close to At the SPA level, repulsive terms lead to a decrease in the
the saddle poinky(x)] since the residual effects of the re- Partition function, but their influence on the normalized ther-
fixed x, the difference between the integrand in E3p) and ~ contribution. More important effects arise at the RPA level

the inner integral in Eq(38) decreases ax| increasep In  for T<Tc, where repulsive terms may lead to an enhance-
any case, Eq38) is no longer exact fof —0. ment of tunneling effects between the symmetry-breaking

The factorCrpa(x) has the same forrf27), with mean-field solutions, as seen in the Lipkin model, which are
correctly described by the CSPA far>T.. In this case
v'x2—v[e—20(X)]? configurations away from the stable mean field become rel-
w?(X)=N2(x)+ N(X) tanH ByN(X)], (42 evant in the CSPA also at low temperatures.

where N (X)=\(X,z9(X)) [0?(x) is approximately given
again by Eq.(29) with y’—z']. At the symmetry-breaking
solution x= * o, ®?(Xe)=x3(1+v'/v), which is identical N.C. and R.R. acknowledge support from CONICET and
to Eq. (31), but the behavior differs for othet. Again, for ~ CICPBA respectively, and a grant from Fundaciéntor-
T>T., 0?(x)>0 Vx, whereas forT<T., w?(0)<0 and chas. The authors are grateful to J. L. Egido for the hospital-
o(X) becomes imaginary in the vicinity of the origin, as ity at the Universidad Auteoma de Madrid, where part of
depicted in Fig. 4. However, the effectof in Eq.(42) isto  this work was done.
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APPENDIX A

The Hamiltonian(1) can be written as

XV

2
QV—U—) ,

14

H=H(x>—%2 vv(

2
X,
H(X):HO+2 E_XVQV'

14

(A1)

In the pure attractive case where al>0 (andQ,, is Her-
mitian), H(x)—H is positive definite for realx and
[H'=H—uN, H'(x)=H (%)~ uN]
Trexd—pH']=Trexd —pH'(X)]  (v,>0), (A2)
so that F<F(x). In the repulsive case where all, <0,
H—H(x) is positive definite and
Trexd—BH']sTrexd —BH'(x)] (v,<0), (A3)
implying 7= F(x). The maximum and minimum value of
the right-hand side in EqSA2) and (A3), respectively, is
obtained whenx is the self-consistent Hartree solution
X,=v,{Q,)x. The Hartree grand potentigh,=F(xy) is
then an uppeflower) bound toF in the attractivegrepulsive
case. If[H(x),N]=0, these inequalities hold also in a ca-

nonical ensemble, in which case the Hartree average energy

1
EH: <H0>XH_ EEV v V<QV>§H

provides, forT—0, an upperlower) bound to the ground-

N. CANOSA AND R. ROSSIGNOLI

56
wherea=1 in the restricted S(2) canonical ensemble of
2% many-body stategonly one particle for eaclp is al-
lowed and =2 in the full canonical ensemble ofyy})
many-body states. In the GC ensemblé] 2tates

y |

In this case half integer values dfare also included. The
exact partition function for a quasispin Hamiltonian reads
then

2Q
0—-2J

2Q

0—-23-2 (B2)

Y(J)=(

Qr J

Tr exq—BH):JZ:O Y(J)M;J e PEm, (B3)

where E;), are the exact energigsve assumedN=(}, in
which caseu=0 in the GC ensemb)e For H=\-J, Eq.
(B3) becomes

sinhB\(J+ 3)

. (B4
sinhg B\ &4

Tr exp(—BA-J):}J: Y(J)

where\ = A+ \. Equation(B4) holds also for complex. In
the GC ensemble, EqB4) can be factorized as

Tr exp(— BA-J)=[(1+ePM?)(1+e AV2)12 (B5)
whereas in the S(2) canonical ensemble,
Tr exp(— BN-J) = (ePM24+ e AN2)Q (B6)

Equations(B5) and (B6) lead then to Eq(18). The mean-

state energy in the pure attractigepulsive case. If both
types of terms are present there is no rule.
On the other hand, the finite-temperature HF partition

field dynamics is nevertheless the same in these ensembles.
The ensemble affects the value of critical temperatures, but

function follows from a variational principle and always ful-
fills

Zye=Tr exf = B(H' —H{puet Hyp IS Tr exd — BH'],
(A4)
i.e., Fue=F, whereH/c is the self-consistent operator

, I(H " Yne

with {Pa}={cfrcj} a complete or reduced set of one-body
operators. SincéQ?)=(Q,)%r, the exchange contribu-

tions to the average energy included in HF are negative"

(positive in the pure attractiverepulsive case, implying
FursFu (Fur=Fu).

APPENDIX B

In the two-level model, many-body states can be classi-

fied into multiplets of definite quasispih whose multiplici-

ties Y(J), 0=<J=<(/2, depend on the ensemble considered

[25]. In canonical ensembles, fot=) fermions,

lantond]

Q
02—

Q

0/2-J-1 (B1)

Y(J)=(

not the type of Hartree solutions and transitions.

Denoting now with|pv) the single-particle eigenstates of
A-J, we obtain, settingy=1/4 in the GC ensemble and
v=1/2 in the SW2) canonical ensemble,

(pr|Jilp" v }(p'v'|Jjlpr)(f,—f,)

iw-l-)\V,—)\,,
)_wsijk

wherew#0, N ,=v\/2, f,=(1+e*P) 71 i j=x,y,z, and
;i Is the antisymmetric tensor. We also have

! ’
v,p v

1 tanh(By\)

_E w2+ 2\2

P,

Ay

)\ l

NN

= B7)

ij

N A
<J>>\E;} (pvdlpy)f,==—30Q tanl”[ﬁw\]xy

NJp)
ST S (ol v v 3 PRF
i p’V]p/’V/
(B8)

1
"2

A A2

J+

|2

costf(ByN) A2
(B9)
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where Fvv’:(fv_fv’)/()\v’_)\v) (yqﬁ V,) and Fvv %<\]|J]+J]J|>)\=<J|>)\<JJ>)\(1_1/Q)+5”9
=4ypf,(1-1,).
The HF partition function and equations become X (3(3)2/0%+3), (B12)
where (J)2=(J)-(J), which follows from Wick’s theorem.
Zye=Trexg —B((H—N-I)\+NX-J)],  (B10)  This no longer holds in canonical ensembles. In the case
(B6) we obtain instead
A=3(H)\/3{J),. (B11) 3 (319, + 3,3 = (IN(I(1-1/0) +35;Q. (B13)

In the Hartree approximation, only the direct te(d)(J;),
For the Hamiltoniar(16), (H), can be calculated in the GC of order)?, is retained. The remaining terrfexchange con-
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