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Quasiparticle random-phase approximation andfB-decay physics:
Higher-order approximations in a boson formalism

M. Sambataré” and J. Suhonéhn'
Listituto Nazionale di Fisica Nucleare, Sezione di Catania Corso ltalia 57, 1-95129 Catania, Italy
’Department of Physics, University of Jypkgla Post Office Box 35, SF-40351 Jgkala Finland
(Received 4 March 1997

The quasiparticle random-phase approximati@RPA) is reviewed and higher-order approximations are
discussed with reference @-decay physics. The approach is fully developed in a boson formalism. Working
within a schematic model, we first illustrate a fermion-boson mapping procedure and apply it to construct
boson images of the fermion Hamiltonian at different levels of approximation. The quality of these images is
tested through a comparison between approximate and exact spectra. Standard QRPA equations are derived in
correspondence with the quasi-boson limit of the first-order boson Hamiltonian. The use of higher-order
Hamiltonians is seen to improve considerably the stability of the approximate solutions. The mapping proce-
dure is also applied to Fern#l operators: exact and approximate transition amplitudes are discussed together
with the Ikeda sum rule. The range of applicabilty of the QRPA formalism is analyzed.

[S0556-28187)01208-9

PACS numbegps): 21.60.Jz, 23.46:s

[. INTRODUCTION ation of the results rather difficult and encourages then every
effort devoted to a further development of the theory.
Within a microscopic approach to nuclear structure, the Several attempts have been made so far to improve
random-phase approximatidRPA) plays a prominent role BB-decay results working, first of all, on the stability of the
in the analysis of all those cases which are unaccessible QRPA solutions. We quote, as examples, those based on the
shell-model calculations. Currently, in fact, it provides theinclusion of proton-neutron pairingj13], particle number
simplest theory of excited states of the nucleus which admitprojection[11,12 and higher-order correctiod4]. How-
the possibility of including correlations in the nuclear groundever, none of these approaches has proved to be fully satis-
state[1]. factory. Interesting results have been obtained instead within
An aspect of the RPA which holds an important rolethe renormalized QRPARQRPA [17-2(. This method
within this theory is represented by its recourse to the sosearches to go beyond the QBA by never resorting to the use
called “quasi-boson approximation(QBA) [2]. This ap- of the HF state and can be traced back to some old works of
proximation, which consists in replacing the correlated RPAHara [21], Rowe [22], and da Providencid23]. Further
ground state with the uncorrelated Hartree-F@di) state, elaborated, it has also been applied to metallic cluster phys-
causes the RPA excitation operatdpairs of particle-hole ics[24]. Similar attempts to overcome QBA have been made
creation-annihilation operators in the standard thetoybe-  within the self-consistent RPA approa¢®s,26 of which,
have as bosons. Obviously the consequences of this approxiewever, we are not aware of any applicationgealecay
mation become more serious the more important the correlgshysics.
tions are, which, therefore, implies severe restrictions on the The approach which is discussed in this paper and which
range of applicability of the theory itself. aims at improving the standard QRPA theory is fully devel-
A field in which the limitations of the RPAor, better, of  oped in a boson formalism. The boson space is that built on
its variation the quasiparticle RPAQRPA] have been the images of the QRPA raising operators, and a mapping
clearly pointed out in recent years is that gfdecay and procedure relates fermion operators with their images in this
double-beta BB)-decay physics[3-16€]. In this case, the boson space. Dealing with boson operators has the merit that
QRPA provides the most frequently followed approach tothe QBA can be avoided. On the other hand, one has to deal
deal with the nuclear structure aspects of these processes. Aith all natural problems inherent in the mapping mecha-
important result which has emerged from the calculationsism.
performed so far is that matrix elements associated with the In order to simplify the discussion of the method, allow-
BB processes, at least in the two-neutrinov@B) decay ing at the same time a comparison between approximate and
modes, are highly sensitive to the particle-particle compoexact results, we will work within a schematic model. This
nent of the residual interactiof8—9]. On the other hand, the model has been recently formulated in connection v@th
physical value of this force is usually close to a point inandgB-decay physic$27—29 and used as a test for QRPA
which QRPA calculations “collapse.” This makes the evalu- and RQRPA calculations30]. We will begin illustrating the
mapping procedure and apply it to construct boson images of
the model Hamiltonian at different levels of approximation.
*Electronic address: samba@ct.infn.it The degree of reliabilty of these images will be tested by
"Electronic address: suhonen@jyfl.jyu.fi comparing approximate and exact spectra. Standard QRPA
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equations will be derived in correspondence with the QBA(whereu?+v?=1, i=p,n). It can be showr30] that the

limit of the first-order boson Hamiltonian. The use of higher- Hamiltonian(1), with AT, C expressed as in Eq&), (4), can

order images will provide a natural way to go beyond thebe obtained by means of this Bogoliubov transformation per-

standard QRPA. formed separately for protons and neutrons starting from the
Calculations will be performed in which exact and QRPA Hamiltonian

excitation energies, at different levels of approximation, will

be compared. The quality of the approximate wave functions H=Hp+H +Hps, (7)

will also be tested by examining exact and approximate ex-

pectation values of the quasiparticle operator. Finally, weVhere

will discuss Fermig transition amplitudes and the related

lkeda sum rule. _ _ Ho=€p> al 8pm—GpShSp, )
The paper is organized as follows. In Sec. I, we describe m

the model and, in Sec. Ill, the mapping procedure. In Sec.

IV, we will review the QRPA in the boson formalism and — T _ t

illustrate the higher-order approximations. In Sec. V, we will Hn e”% Anmnm ™ GuShSn. ©

present the results and, finally, in Sec. VI, we will summa-

rize the results and draw the conclusions. Hes=2x:B B i —2k:P P, (10)
Il. THE MODEL t s r o i 15 1oy
Sp:§% Ama pm> Sn=§% anm@ nme 1D
The model Hamiltonian for our calculations has the form
_ t tat _ _
He=eC+ N ATA+ N, (ATATHAA), (1) 3 22 al anm BT=(8), (12)
where the operatofA,AT,C} satisfy the SU(2) Lie Algebra

c P =>alal, P=FP) (13

[AAT]=1-55. [CAT]=2A, (2 m

under the hypothesis thagg=j,=j, G,=G,=G and by ne-
glecting the so-called scattering terB$=[aa,]’=° and
B. In this operation, also the single-particle terms are ne-
glected since their contribution is irrelevant. One obtains

with Q being a parameter which will be specified in the
following. Hg resembles the Hamiltonian of the Lipkin
model[31] but with, in addition, thex,; term.

A model Hamiltonian of this form is not new to applica-
tions in the context of RPA calculations. We quote, as an QO
example, the work of Beaumel and Chonj&2]. These au- €= 56, 14
thors relate the above Hamiltonian to a system of two
Q-fold levels filled by() identical fermions. In this case,is
the Hartree-Fock energy between the two levels and the op-
eratorsAT andC are expressed in terms of operators which
create a hole in the Fermi sea or a particle in the upper level.

In the present work, wishing to work in a quasiparticle \\hare
formalism, we follow the approach of Hirscét al. [30].
These authors expre#g andC in terms of protor(neutron N;
quasiparticle creation (a) and annihilation operators: vi=\5q 1TPN,

ATZ[agal]ﬁo, ©) N:
Ui=\/1—$- i=p,n, (18)

C=% a;mapnﬁ—% a;manm. (4

N1=4Q x(Uvi+oiud) —k(uiui+uivh)], (195

No=4Q(x+K)Upv pUnvy, (16

17)

andQ=j+3. A detailed derivation of the coefficientsand

These quasiparticle operators are associated with a systemwfcan be found in Ref.2].

protons and neutrons occupying both a singlehell. If In choosing the parameteXs, \, of Eqg. (1) for our cal-

al,,is the operator which creates a proton with angular mo<£ulations, ‘;\ie W"]'c kﬁeFJ the _cliepfentze)nce EAS), (1|6) on :he
tumi d iecti T —(—1)i-mgt is it parametgr ,x of the Hamiltonian 7 In particular, calcu-

rpen umJp an prT()Jeql()Jrnm, 2 pm=( ) ) ey IS its lations will be performed for two different values gf and

time reversal, and,,, @ n, are the equivalent operators for ¢4  ranging in a given interval, as specified in Sec. V. The

neutrons, a Bogoliubov transformati¢h] relates these op- reas0n for this choice is that, as it has already been observed

erators to the above quasiparticle operators: in Ref.[30], calculated quantities like excitation energies and
Pt ~ B transition amplitudes will exhibit a dependence on these
@pm=Up3pm~Vp@pm, ) parameters similar to that observed for the realistic quantities

- . - in terms of the particle-particle gf,) and particle-hole
apm= U papm T Up@pm, (6) (g strengths[3-5]. In this way, the model Hamiltonian
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(1), although not meant to reproduce actual nuclear properB. Due to the orthonormality of the statéz3), this require-
ties, will provide at least some qualitative features of a realment simply amounts to a search for a boson oper@tgr
istic pn-QRPA calculation. such that

In the following, then, whenever talking about exact en-
ergies and eigenstates, we will always mean those obtained 1 1 (n|OLIn)=(n|Ogln’)  0=n.n’'=20)

i izati i — —=(n n'y=(n n =n,n'<2Q,
from the diagonalization of Ed1) in the space of states N, N, F B
{Iny=(AN"0), 0=n=20}, (19 24

_ o whereN,=(n|n). This condition, which preserves matrix el-
where|0) is the vacuum of the quasiparticle operators. Thesements between corresponding states and, therefore, is of
eigenvalues are, of course, not those of the Hamiltoffan  Marumori-type[2], defines the operatd®s .
since, as just noticedj ¢ (1) only provides an approximation  An important aspect of the mapping procedure concerns
of Eq. (7). However, aiming in this work at a relative com- the n-body structure of the boson ima@®; . There are, in
parison among RPA-type calculations at different orders an@yrinciple, infinite combinations of one-body plus two-body
providing Hamiltonian(1), an appropriate tool for these cal- pjys... up to Z)-body boson operators which can satisfy
culations, an examination of the spectra of Ef).goes be-  Eq. (24). However, wishingOg to define a boson image of
yond the goals of the present paper. _ O at all orders, namely independently of the maximum di-

To conclude this section, we notice that for the diagonalmension 2 of B, one has to proceed step by step. Let us

ization of Eq.(1) we have made use of the following expres- gefine (1) as the fermion space built in terms of the states
sions which can be easily derived by means of the COMMUzontaining up to oné' operator, i.e.

tation relations2):

LN FW={|0),AT|0)} (25)
(OIA"HR(ANN[0)=] 2eN+24 N_(N2+1)5+ a } and similarly for bosons
x(0|AN(ATN|0), (20 BY={|0),b"|0)}. (26)

0l ANH -(ATN=2]0y = X.(0|AN(ATIN|0Y, 21 The most general _Hermitian _b_oson opgratt_)r_ acting within
(ol F(ADTE10) = OJATATTI0) @D B() (we are assumin@g Hermitian, for simplicity has the
with form

1 Og1=a+B(b"+b)+ yb'b. (27
NeATIN[AY — | N Ny N-1, A tyN—1
(0]A™(AD)T0) (N (2)Q><O|A (ADT0), In order for this operator to be the image ©f in B, it

(22)  must satisfy conditiori24). This implies

and where )=n!/(n—m)!m!. a=(0|Og|0), (283

_ T
Ill. THE MAPPING PROCEDURE B=(0[O=A"[0), (280

=(0|AOAT|0)— (0| Og|0). 28
That of fermion-boson mapping is a subject widely 7=(0]AO:AT|0) = (0]OF[0) (289

treated in literature and several techniques are kn®@h | et us now proceed one step further and consider the corre-
The one which we have employed in this paper follows thespondence between
main lines of a procedure which has had several applications
in the past both in the fermion-boson correspondei@zd F(@={|0),AT|0),ATAT|0)} (29)
and in the fermion-fermion ong35,36. We refer to Ref.
[36] for a general discussion of the method. In this caseand
however, due to the “essential” structure of the fermion
states(19), the procedure takes a very simple form.

Let b™,b be creation, annihilatiod=0 boson operators,
|0) the corresponding vacuum and let us define the states

Wishing the image o0 in B® to be at the same time
1 image inB(), the most general expression for this operator
In)= W(b*)”IO), O=n=2Q. (23)  has to be written as

1
B(?= |O),bT|0),EbTbT|O) . (30)

, Og ,=0g 1+ #b'bbb+ (bbb +bTbb)+ s(bTb'+bb).
We can establish a one-to-one correspondence between the ' (31)
fermion state$19) and the boson ondg3). Let us callF the
space built in terms of the staté$9) and B that built in ~ The new coefficients, e,¢ can be evaluated making use of
terms of the state23). We define the boson image of the Eq. (24) as it has already been done fergB,y. The proce-
fermion operatoOr in B a boson operatdDg such that all  dure can be extended in a similar way upQg ,, which is
the eigenvalues oD¢ in F are also eigenvalues @g in  then the exact image @ in the correspondende— B.
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Boson images: NP = )P +c.bbTb+c,bTbb, (39
The model Hamiltonian and B transition operators (B =B s ! ?

In this section, we will show two applications of the map- with
ping procedure just discussed: the first one will refer to the

fermion Hamiltonian(1), while the second one will refer to _ [4_ i_ )

the Fermi g transition operator€12). In the case of the €1 ZQUPU”( 1 2Q 1), (393
Hamiltonian(1), the boson operator which one constructs at

the first two levels of approximatiotby ordering these ac- 1

cording to the maximum number of the,b operators con- C2= 29Up“n( V 1- E_l)- (39

tained in each terinreads

It is also
HY=ab™o+ B(b'h'+bb), (32

(BHE'=((BHE)!, =12 (40)
One should notice that the scattering teris B of Eq. (36)

do not contribute to matrix elements of this operator between
states(19) so that they do not play any role in the mapping

for the first-order approximation, and

HZ=HL+ yb'™bbb+ s(b™b'bb+b'bbb) (33

with F—B. In Sec. V, we will compare calculations performed
a=2e+\q, (349  both with (37)§" and 87).
1 IV. QRPA AND HIGHER-ORDER APPROXIMATIONS
B:)\Z 1— E, (34b)

One of the standard approaches to RPA is that proposed

A by Rowe with his equation of motion methgd] and is fully
(340 developed in the fermion space. To briefly resume this ap-
proach with reference to our model, we introduce the phonon

1 1 1 creation operator
52)”( \/( 1= 3_0) 1= E) - \/1_ E) (340

for the second-order approximation. As it emerges from theand we define the excited and ground states by the conditions
above equations, all the coefficients exceptepend onj.

This j dependence closely reflects the structure of the fer- |Q)=Q"0), Q|0)=0. (42

mion states involvedthrough the condition24)] into the

definition of the coefficients. In the limif—o, which is  Minimization of the one-phonon energg=(Q|Hg|Q)/
equivalent to transforming the fermion operators into bosons,Q|Q) with respect to the amplitudeX and Y leads, to-
B—N\,, while y,6—0. Moreover, still in this limit, no con-  gether with Eq(42), to

tributions arise from next order approximations so that the

boson Hamiltonian reduces to (0|[8Q,[H£,Q™1/0)=&0[[5Q,Q™|0), (43

Q'=XAT-YA (41)

HEY = ab™+X,(b'b+bb). (35  where€ is the excitation energy of the system. This expres-
sion is evaluated in the two casé®=A" A under the ap-
proximation|0)— |0), namely within QBA, and gives rise to
the well-known system of equations

This boson Hamiltonian, where no memory is kept of the
internal structure of the quasiparticle paié due to the
j—oo limit, will be called in the following as the “zeroth-
order” boson approximation dff, i.e., H(B.O). It represents AX+BY = EqppaX,  —BX— AY=EqrppY,  (44)
the QBA limit of HEY. In the next section, we will test
numerically the “quality” of H), HY, H) as boson im-  where
ages ofHg. .
For what concerns the Ferngi transition operator§l2), A=(O|[A,[Hg ,AT]]|0)=2€+Ny,
in the quasiparticle formalism, one has
- X T B=—(0|[A,[Hg,A]]|0)=2),,
“=2Q(upp,A'+vu,A—uyuB' +ovv,B). (36

P (UpunA oA U8+ 00nB). (39 and Eoppa=[(26+X1)2— 413 M2
By proceeding as for the boson Hamiltonian, but taking into  Working in our boson formalism, we define, in full anal-
account that thgg operatorg(36) are not Hermitian, we ob- ogy with Egs.(41), (42), the phonon creation operator
tain at the first two levels of approximation

(B =V2Q(upb"+v,u,b) (37) _ _
and the corresponding excited and ground states by the con-
and ditions

q'=Xb"-Yb (45)
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TABLE I. Comparison of the spectra of the Hamiltonidli (1) in the basig19), for three values of the
parametek’, with the corresponding spectra of the boson Hamiltonta® (35), HSY (32), andHE (33)
in the basig23). Spectra oH¢ anngz) coincide within 0.2% so that they have been reported in the same
column, for simplicity. Calculations refer to the choig¢=0.5. No significant changes are observed for

x=0.0.
k'=0.5 k'=1.0 k'=1.5

HO P M@ He MO MO RO RO WD RO
-0.120 -0.107 -0.104 -0.471 -0.401 -0.311 -4.374 -3.799 -0.823
1.680 1.718 1.795 0.221 0.397 0.910 -3.773 -3.274 -0.276
3.480 3.544 3.800 1.020 1.260 2.594 -1.042 -0.883 1.396
5.287 5.373 5.873 2.278 2.480 4.506 -0.251 -0.080 3.179
7.098 7.206 7.987 3.498 3.693 6.579 0.852 0.962 5.256
9.061 9.159 10.116 5.756 5.846 8.759 3.383 3.419 7.507
10.982 11.080 12.240 7.413 7.476 11.004 4.879 4.877 9.877

13.826 13.822 14.333 11.147 11.055 13.272 9.196 9.020 12.313
16.034 16.006 16.370 13.226 13.092 15.524 11.175 10.942 14.760
21.145 20.928 18.323 19.598 19.222 17.712 18.444 17.914 17.156
23.725 23.471 20.148 22.113 21.680 19.771 20.909 20.301 19.413

Iq)=q"0), q|8)=0. (46) SO that, with respect to the cabty’ (wherey=5=0), one
has now to evaluate extra matrix elements of the type
The one-phonon energy which is derived from the minimi-(0|b™b|0) and (0b'b'|0). This can be done by inverting

zation of Eg=(q|Hg|q)/(q|q) is, of course, subordinated to expression45) (and H.c) so that
the choice of the boson Hamiltonian. Minimizing

(@H®a)/(qlq), with HY given by Eq.(35), leads straight b'=Xq"+Yq, (50
to Eqs.(44). Therefore, ifEL) is the excitation energy re-

. P (0) which leads to the new expressions
sulting from this minimizationEg”=Eqrpa. IN other words,

the effect of the QBA, which in Rowe’s approach is intro- A=a+4yY2+66XY, (51
duced in the evaluation of Eq43) via the replacement
|0)—10), is now equivalently incorporated in the boson B=2B+2yXY+65Y2. (52

Hamiltonian(35). But we have seen in the previous section ) )
thatH( is only a special case of the first-order boson imagePU€ © this dgpendence(z()x and5 on theX,Y amplitudes,
which we can construct with our mapping procedure. Therefne minimization of Q|2HB |a)/(ala) leads to a set of non-
fore, the use of higher-order approximations suchH§y  llnear equations foE®), X, \1( which is difficult to solve
(32) andH® (33) is expected to correspond to an improve- analytically as forE® andEY. In the next section, how-
ment of the approximated energies and wave functions. €ver, we will see numerically hoW{? compares with the
H® differs from H only by having the coefficieng  lower-order approximation&g”, E§ in the cases we have
Eq. (34b in place of N,. Correspondingly, minimizing Studied.
(alHE”a)/(qlq) leads to the excitation energy

V. RESULTS
Eg): \/(26+ )\1)2_4)\5 1— i) (47) Following the indications of Ref.30], we have made the
20Q) choice
which differs fromE{Y) by the factor (1 1/2Q). As one j=9/2, Z=4, N=6, e=1 MeV. (53)
could expect, this factor becomes more significant the ) ) )
smaller thej value. In order to avoid dealing with small numbers, we have also
The use oHQ presents itself more complicated. In fact, 'edefined the two parameteksand x as follows
k—k'=20k, x—x'=2Qy. (59

A=(0|[b,[HE" b"1][0)
Calculations have been performed in the two cases

x' =0,0.5 whilek’ has been kept as a variable in the interval
0,2.

=(0]|a+4yb™b+38(b'b"+bb)|0) (48)
and

B= —(al[b,[ng) ,b]]|6) A. The boson Hamiltonians

_ _ Before examining QRPA and higher-order calculations
=(0[2B+2ybb+ 65b*b|0) (49 we will concentrate on the analysis of the boson Hamilto-
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T T T values since, in agreement with the already observed simi-
larity between the spectra oH{® and HY, it is
EQ~EL). We show, instead, the energies which result
from the diagonalization oH{® (c). These exhibit a mini-
mum for k’ in the interval(1.1)-(1.2). It turns out that the
standard(or zeroth-order, in our notatigrQRPA energies
are quite good approximations of these energies, deviating
from them only for values of the variable’ approaching
their minimum. Second-order QRPA energigg’ reproduce
quite well those ofHg particularly in the region of the col-
lapse point of the standard QRPA. There occurs also in this
case a collapse but at largkt so that, globally, the new
energies appear to have gained stability if compared to the
standard QRPA ones.

E (MeV)

C. Expectation values of the quasiparticle number operator

A comparison between relative energies, as the one dis-
cussed in the previous subsection, does not provide by itself
a decisive element to judge the quality of different approxi-
mations. In this subsection, we will examine two quantities
which will help us to shed further light upon this quality.
These are the expectation values of half the quasiparticle
number operatorC/2 (4), in the ground state and in the first

k' excited state.
The image ofC/2 in the boson spacB is the operator

FIG. 1. Comparison of the lowest excitation energies resulingNg=b'b. This is an exact boson image in the mapping
from the diagonalization dfi- (1) in the basig19) (solid line) with F—B since it exactly fulfills the condition24) for every

the standarda) and second-ordéb) QRPA values. Also shown are n. It is easy to se¢making use of the transformatiqs0)]
the values obtained from the diagonalization of the boson Hamilthat
tonianH (35) in the basig23) (c).

No=(0|Ng|0)=Y?. (55
nians constructed in the previous section. In Table I, W8+ is also true that
show the energies resulting from the diagonalization of the
three boson Hamiltoniand Y, HY, HY) in the spaceB (0|gNsa’|0)=(0|[q,[Ng.q'11/0)+ (O|Ng|0) (56)
Eqg. (23) and compare them with those bfr in the space
F Eqg. (19. Calculations refer to three different values of so that
k' (0.5, 1.0, 1.5 while x'=0.5 (x'=0.0 spectra do not _ o
show significant differenceésOne notices thafa) spectra of AN=(0|gNgq'[0)— (0|Ng|0)=X3+Y2=1+2Y2
H® andH{, for this choice of the parameters, are close to (57)

each other bUHg) E)O?tter ap%)lr)OXImatHF, a§ expectgctb) This quantity is therefore predicted to be always larger than
the_quahty_of theHg’ andHg™ spectra rapidly deteriorates 1 (unlessY=0) and it should increase proportionally ¥
for increasingk’ so that, even though_ t_hese spectra are ratheggim"aﬂy toN,. In Figs. 2 and 3, we shoN, andAN in the
good atk’=0.5, they become definitely bad &t=1.5.  eroth-(a) and second-ordefb) QRPA calculations and in
Spectra oH{ reproduce almost perfectly the correspondingthe exact casetsolid line). As for the excitation energies,
ones ofH for all values ofk” in the interval(0,2), differ-  zeroth- and first-order results are quite similar and we have
ences remaining within 0.2%. Due to these minor differ-omitted the last ones for simplicity. Looking at the exact
ences, we have shown the spectra-lé:’f) andH¢g in the same quantities it is evident that there is a clear disagreement be-
column. tween their behavior and the above predictions. Only up to
In conclusion, then, the second-order boson Hamiltoniark’ slightly larger than 1AN indeed grows as alsi, does.
H® emerges as an excellent boson imageHgf in the  But for larger values ok’ these two quantities start behaving
whole range ok’, while the quality ofH{) andH{" strictly ~ oppositely,N, continuing its growth, whileAN going to-
depends on the variable and remains acceptable only for ward zero. Above the threshold ~1, it becomes therefore
small values of it. impossible to find an¥,Y compatible with these two quan-
tities. This fact reveals a clear failure of the QRPA approach
B. Excitation energies beyond this point, no matter which order of approximation
we are considering, and so provides a severe constraint on
In Fig. 1, we compare the excitation energigff’ (@) and  the range of applicability of this theory. Remaining in the
Eg) (b) with the values resulting from the diagonalization of interval 0<k’<1, in the case ofAN, the second-order
He (1) (solid line). We do not show for simplicity thE(Bl) QRPA results show a much better agreement with the exact



788 M. SAMBATARO AND J. SUHONEN 56

FIG. 2. Comparison of the expectation valuequdlf) the qua- FIG. 3. Differences between the expectation valuegaff) the
siparticle number operatoiC/2 (4), in the ground state of the quasiparticle number operat@t/2 (4), in the first excited state and
HamiltonianHg (1) with the values obtained in the stand#@aiiand  in the ground state. Solid line refers to the eigenstates of the Hamil-
second-ordetb) QRPA. tonianHg (1) while lines(a),(b) are the standard and second-order

QRPA results, respectively.
ones if compared with standard QRPA. In the caséNgf
one notices a clear difference between zeroth- and secontfix elements to be positive. Similarly to what has been ob-
order approximations: in the first case, there appears thgerved in the case dfy, zeroth- and second-order approxi-
well-known overestimation of the ground-state correlationgnations show different behaviors, the first ones
while, in the second one, there occurs an underestimation ¢fnderestimating the exact quantities and the second ones
the same quantities. In this case, second-order QRPA resul@yerestimating them. For what concerns fhié matrix ele-
do not reach the same qualitative level asiiN. ments, however, it is worthy noticing that the crossing of
zero exhibited by the exact valueskdt~1.4,1.5 is not re-
produced by the second-order QRPA results. This crossing is
o ) ~_shown both by the zeroth- and first-order QRPA calculations

Similarly to the expectation values of the quasiparticleaithough in a region ok’ quite close to their collapse points.
number operator, the comparison of matrix elements of theyigence for this crossing is widely discussed in literature
B operatorgSec. Ill) can add further elements of valuation [3-10.
upon the quality of the approximate wave functions. In Fig.  pifferently from the quasiparticle number operator case,
4, we show the transition amplitudes of these operators b&yhere Ng=b'b is an exactimage of C/2 in the mapping
tween ground and first excited states. In each figure, uppgt_, g, in the case of thes operators, we have already seen
lines concerns™ transitions while the lower oné8™ tran- iy sec. |11 that (3*)( are only the first-order images of the
sitions. Solid I|ne§ have bgen f:alculated by using the €igeNsorresponding fermion operatof®. To better understand
states of the fermion Hamiltoniail) and the operator36) e reasons of the bad behavior exhibited by the second-
(and H'C)’l’v?l'l)e Imes(a),(_b) refer to matrix elements of the order QRPA results fok’>1, the same calculations have
images B7)g”’ (37),(40) in the zeroth- and second-order been repeated by making use of thﬁio(BZ) operators

QRPA calculations, respectiv_e(yve omit also in this case (38),(40). In these cases the matrix elements become
first-order results These matrix elements are given by

(0la(BH)E10)=2Q (v uX+uw,Y), (58

D. Fermi B transition amplitudes

(0la(B*)P]0) = V2Qu,u,X(1-3G Y?)

_ _ +2Qup,Y(1-3GY?~G), (60)
(0]a(B7)E"[0) =20 (upwaX+uvpu,Y). (59
(0la(B)[0)=2Qu,w X(1-3GY?)
Only the relative sign of these matrix elements can be fixed . Pn
unambiguously. In these figures, we have takenghema- +12Qv,u,Y(1-3GY?~G), (61)
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whereN(P) is the total number of neutror{protons of the
system. The derivation of Eq64) simply results from the
completeness of the stat@s’)} and from the commutator

(8,87 1=N-2. (65)

As it is well known, an interesting aspect of the QRPA is
that it fulfills exactly this sum rule. In our boson formalism,
due to the fact, stressed in the previous subsection, that the
boson imagesf#™)g can be constructed at different levels of
approximation, one is forced to distinguish different cases. If
one assumes the operatog ) (37), (40) as the images
of 8=, it is easy to verify that Eq(64) is fulfilled exactly and
so irrespective of the order of the QRPA calculations and of
the magnitude of the ground-state correlations. By assuming
instead B*)?) (38),(40) as images of the operatog”,
things become more complicated. One finds now

S —S"=(N-2)[1-(4G+G?)Y?+3G?Y*], (66)

where the factoG is given in Eq.(62). Therefore, the sum
rule is not exactly fulfilled depending on tiveamplitude and
so on the order of the QRPA calculation. With reference to
k' our second-order results, however, due also to the smallness
of the factorG, we find that the deviation of Eq66) from

FIG. 4. Fermig transition amplitudes between the ground and the yalue N-—Z) remains \.Nlthm few percent. This further
first excited states. In each plot, upper curves refer to&hdran- Conflrrr_ls(\zl\)lhat was Sta_ted in Sec. V; rg%mely, that the use of
sitions, while lower curves refer to the" ones. Solid lines are the (87)g~ operators in place of 7))y~ introduces only
obtained with the operatord2) and the eigenstates of the Hamil- Minor changes in th@ transition amplitudes.
tonianHg (1) while lines(a),(b) are the standard and second-order
QRPA results, respectivefsee Eqs(58), (59)]. VI. SUMMARY AND CONCLUSIONS

In this article the QRPA has been reviewed in a boson
formalism and higher-order approximations have been dis-
cussed. A fermion-boson mapping procedure has been first

G=1-1/1-—. (62) illustrated within an exactly solvable model. Boson images
20 of the model Hamiltonian have been constructed at the first
two levels of approximation and the corresponding one-
No significant changes=<(5%) have emerged, however, phonon excitation energies derived. Standard QRPA ener-
from the new calculations. Therefore, the bad behavior of thgjies, resulting in correspondence with the QBA limit of the
B matrix elements in the second-order QRPA calculationsirst-order boson Hamiltonian, have been compared with the
cannot be ascribed to a bad quality of the image operatorsrst- and second-order energies. Only minor changes have
(B5)E but rather confirms the conclusions obtained so fatbeen found in the first case while these changes have become
of an unreliability of the whole theory wheki approaches much more evident for excitation energies calculated with
the second-order QRPA collapse point. the second-order Hamiltonian. In this case, the new energies
have gained stability getting quite close to the exact solutions
near the collapse point of the standard QRPA.
. . ] o The quality of the solutions has been further tested by

To conclude this section, we discuss, within our model, &yamining first of all the matrix elements of the quasiparticle
peculiar aspect of thg transition amplitudes: the Ikeda sum nymber operator in the ground and first excited states. While
rule. By defining the totap~ strengths evidencing an overall better fit of the exact values in the case

of the second-order solutions, the comparison between exact
. . ) and approximate results has pointed out a rapid deterioration
S = EV: IKv|B=1gs)|*, (63) of the quality of the second ones near the new collapse point.
Furthermore, still in this region, it has been evidenced a

where the summation extends over a complete set of state,t!%reakdOWn of the whole QRPA formalism, independently of

|gs) is the ground state of the system g8d are the opera- € level qf approximation of the bos_on Hgmi]tonian em-
tors (12), it is seen that ployed. This result has also found confirmation in the analy-

sis of theg transition amplitudes3* amplitudes, in particu-
lar, have not been found to reproduce the crossing of zero
S —-S*=N-2, (64) exhibited by the exact values. This has been verified by mak-

where

E. Ikeda sum rule
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ing use of both first- and second-ordéf boson operators. in the results and their use does not appear justified in the
Therefore, in correspondence with a better quality of the expresent calculations.
citation energies found in second-order QRPA calculations,
we have not observed a similar improved quality in the val-
ues of these observables. ACKNOWLEDGMENTS
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