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Quasiparticle random-phase approximation andb-decay physics:
Higher-order approximations in a boson formalism
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The quasiparticle random-phase approximation~QRPA! is reviewed and higher-order approximations are
discussed with reference tob-decay physics. The approach is fully developed in a boson formalism. Working
within a schematic model, we first illustrate a fermion-boson mapping procedure and apply it to construct
boson images of the fermion Hamiltonian at different levels of approximation. The quality of these images is
tested through a comparison between approximate and exact spectra. Standard QRPA equations are derived in
correspondence with the quasi-boson limit of the first-order boson Hamiltonian. The use of higher-order
Hamiltonians is seen to improve considerably the stability of the approximate solutions. The mapping proce-
dure is also applied to Fermib operators: exact and approximate transition amplitudes are discussed together
with the Ikeda sum rule. The range of applicabilty of the QRPA formalism is analyzed.
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I. INTRODUCTION

Within a microscopic approach to nuclear structure,
random-phase approximation~RPA! plays a prominent role
in the analysis of all those cases which are unaccessib
shell-model calculations. Currently, in fact, it provides t
simplest theory of excited states of the nucleus which adm
the possibility of including correlations in the nuclear grou
state@1#.

An aspect of the RPA which holds an important ro
within this theory is represented by its recourse to the
called ‘‘quasi-boson approximation’’~QBA! @2#. This ap-
proximation, which consists in replacing the correlated R
ground state with the uncorrelated Hartree-Fock~HF! state,
causes the RPA excitation operators~pairs of particle-hole
creation-annihilation operators in the standard theory! to be-
have as bosons. Obviously the consequences of this app
mation become more serious the more important the corr
tions are, which, therefore, implies severe restrictions on
range of applicability of the theory itself.

A field in which the limitations of the RPA@or, better, of
its variation the quasiparticle RPA~QRPA!# have been
clearly pointed out in recent years is that ofb-decay and
double-beta (bb)-decay physics,@3–16#. In this case, the
QRPA provides the most frequently followed approach
deal with the nuclear structure aspects of these processe
important result which has emerged from the calculatio
performed so far is that matrix elements associated with
bb processes, at least in the two-neutrino (2nbb) decay
modes, are highly sensitive to the particle-particle com
nent of the residual interaction,@3–9#. On the other hand, the
physical value of this force is usually close to a point
which QRPA calculations ‘‘collapse.’’ This makes the eval
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ation of the results rather difficult and encourages then ev
effort devoted to a further development of the theory.

Several attempts have been made so far to impr
bb-decay results working, first of all, on the stability of th
QRPA solutions. We quote, as examples, those based on
inclusion of proton-neutron pairing@13#, particle number
projection @11,12# and higher-order corrections@14#. How-
ever, none of these approaches has proved to be fully s
factory. Interesting results have been obtained instead wi
the renormalized QRPA~RQRPA! @17–20#. This method
searches to go beyond the QBA by never resorting to the
of the HF state and can be traced back to some old work
Hara @21#, Rowe @22#, and da Providencia@23#. Further
elaborated, it has also been applied to metallic cluster ph
ics @24#. Similar attempts to overcome QBA have been ma
within the self-consistent RPA approach@25,26# of which,
however, we are not aware of any application tob-decay
physics.

The approach which is discussed in this paper and wh
aims at improving the standard QRPA theory is fully dev
oped in a boson formalism. The boson space is that buil
the images of the QRPA raising operators, and a mapp
procedure relates fermion operators with their images in
boson space. Dealing with boson operators has the merit
the QBA can be avoided. On the other hand, one has to
with all natural problems inherent in the mapping mech
nism.

In order to simplify the discussion of the method, allow
ing at the same time a comparison between approximate
exact results, we will work within a schematic model. Th
model has been recently formulated in connection withb-
andbb-decay physics@27–29# and used as a test for QRP
and RQRPA calculations@30#. We will begin illustrating the
mapping procedure and apply it to construct boson image
the model Hamiltonian at different levels of approximatio
The degree of reliabilty of these images will be tested
comparing approximate and exact spectra. Standard QR
782 © 1997 The American Physical Society
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56 783QUASIPARTICLE RANDOM-PHASE APPROXIMATION . . .
equations will be derived in correspondence with the Q
limit of the first-order boson Hamiltonian. The use of highe
order images will provide a natural way to go beyond t
standard QRPA.

Calculations will be performed in which exact and QRP
excitation energies, at different levels of approximation, w
be compared. The quality of the approximate wave functi
will also be tested by examining exact and approximate
pectation values of the quasiparticle operator. Finally,
will discuss Fermib transition amplitudes and the relate
Ikeda sum rule.

The paper is organized as follows. In Sec. II, we descr
the model and, in Sec. III, the mapping procedure. In S
IV, we will review the QRPA in the boson formalism an
illustrate the higher-order approximations. In Sec. V, we w
present the results and, finally, in Sec. VI, we will summ
rize the results and draw the conclusions.

II. THE MODEL

The model Hamiltonian for our calculations has the fo

HF5eC1l1A†A1l2~A†A†1AA!, ~1!

where the operators$A,A†,C% satisfy the SU~2! Lie Algebra

@A,A†#512
C

2V
, @C,A†#52A†, ~2!

with V being a parameter which will be specified in th
following. HF resembles the Hamiltonian of the Lipki
model @31# but with, in addition, thel1 term.

A model Hamiltonian of this form is not new to applica
tions in the context of RPA calculations. We quote, as
example, the work of Beaumel and Chomaz@32#. These au-
thors relate the above Hamiltonian to a system of t
V-fold levels filled byV identical fermions. In this case,e is
the Hartree-Fock energy between the two levels and the
eratorsA† andC are expressed in terms of operators wh
create a hole in the Fermi sea or a particle in the upper le

In the present work, wishing to work in a quasipartic
formalism, we follow the approach of Hirschet al. @30#.
These authors expressA† andC in terms of proton~neutron!
quasiparticle creationap

† (an
†) and annihilation operators:

A†5@ap
†an

†#J50, ~3!

C5(
m

apm
† apm1(

m
anm

† anm . ~4!

These quasiparticle operators are associated with a syste
protons and neutrons occupying both a singlej shell. If
apm

† is the operator which creates a proton with angular m

mentum j p and projectionm, ã pm
† 5(21) j 2map2m

† is its

time reversal, andanm
† , ã nm

† are the equivalent operators fo
neutrons, a Bogoliubov transformation@1# relates these op
erators to the above quasiparticle operators:

apm
† 5upapm

† 2vpãpm , ~5!

ãpm5vpapm
† 1upãpm , ~6!
-

l
s
-

e

e
c.

l
-

n

o

p-

l.

of

-

~whereui
21v i

251, i 5p,n). It can be shown@30# that the
Hamiltonian~1!, with A†, C expressed as in Eqs.~3!, ~4!, can
be obtained by means of this Bogoliubov transformation p
formed separately for protons and neutrons starting from
Hamiltonian

H5Hp1Hn1H res, ~7!

where

Hp5ep(
m

apm
† apm2GpSp

†Sp, ~8!

Hn5en(
m

anm
† anm2GnSn

†Sn, ~9!

H res52x:b2b1:22k:P2P1:, ~10!

Sp
†5

1

2(m apm
† ã pm

† , Sn
†5

1

2(m anm
† ã nm

† , ~11!

b25(
m

apm
† anm , b15~b2!†, ~12!

P25(
m

apm
† ã nm

† , P15~P2!†, ~13!

under the hypothesis thatj p5 j n[ j , Gp5Gn[G and by ne-
glecting the so-called scattering termsB†5@ap

†ãn#J50 and
B. In this operation, also the single-particle terms are
glected since their contribution is irrelevant. One obtains

e5
V

2
G, ~14!

l154V@x~up
2vn

21vp
2un

2!2k~up
2un

21vp
2vn

2!#, ~15!

l254V~x1k!upvpunvn, ~16!

where

v i5A Ni

2V
, i 5p,n, ~17!

ui5A12
Ni

2V
, i 5p,n, ~18!

andV5 j 1 1
2 . A detailed derivation of the coefficientsu and

v can be found in Ref.@2#.
In choosing the parametersl1, l2 of Eq. ~1! for our cal-

culations, we will keep the dependence Eqs.~15!, ~16! on the
parametersk,x of the Hamiltonian~7!. In particular, calcu-
lations will be performed for two different values ofx and
for k ranging in a given interval, as specified in Sec. V. T
reason for this choice is that, as it has already been obse
in Ref. @30#, calculated quantities like excitation energies a
b transition amplitudes will exhibit a dependence on the
parameters similar to that observed for the realistic quanti
in terms of the particle-particle (gpp) and particle-hole
(gph) strengths@3–5#. In this way, the model Hamiltonian
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784 56M. SAMBATARO AND J. SUHONEN
~1!, although not meant to reproduce actual nuclear prop
ties, will provide at least some qualitative features of a re
istic pn-QRPA calculation.

In the following, then, whenever talking about exact e
ergies and eigenstates, we will always mean those obta
from the diagonalization of Eq.~1! in the space of states

$un&5~A†!nu0&, 0<n<2V%, ~19!

whereu0& is the vacuum of the quasiparticle operators. Th
eigenvalues are, of course, not those of the Hamiltonian~7!
since, as just noticed,HF ~1! only provides an approximation
of Eq. ~7!. However, aiming in this work at a relative com
parison among RPA-type calculations at different orders
providing Hamiltonian~1!, an appropriate tool for these ca
culations, an examination of the spectra of Eq.~7! goes be-
yond the goals of the present paper.

To conclude this section, we notice that for the diagon
ization of Eq.~1! we have made use of the following expre
sions which can be easily derived by means of the com
tation relations~2!:

^0uANHF~A†!Nu0&5F2eN1l1S N2~ 2
N11!

1

V
1

N

V D G
3^0uAN~A†!Nu0&, ~20!

^0uANHF~A†!N22u0&5l2^0uAN~A†!Nu0&, ~21!

with

^0uAN~A†!Nu0&5S N2~2
N!

1

V D ^0uAN21~A†!N21u0&,

~22!

and where (m
n )5n!/(n2m)!m!.

III. THE MAPPING PROCEDURE

That of fermion-boson mapping is a subject wide
treated in literature and several techniques are known@33#.
The one which we have employed in this paper follows
main lines of a procedure which has had several applicat
in the past both in the fermion-boson correspondence@34#
and in the fermion-fermion one@35,36#. We refer to Ref.
@36# for a general discussion of the method. In this ca
however, due to the ‘‘essential’’ structure of the fermio
states~19!, the procedure takes a very simple form.

Let b†,b be creation, annihilationJ50 boson operators
u0) the corresponding vacuum and let us define the state

un)5
1

An!
~b†!nu0), 0<n<2V. ~23!

We can establish a one-to-one correspondence betwee
fermion states~19! and the boson ones~23!. Let us callF the
space built in terms of the states~19! and B that built in
terms of the states~23!. We define the boson image of th
fermion operatorOF in B a boson operatorOB such that all
the eigenvalues ofOF in F are also eigenvalues ofOB in
r-
l-

-
ed

e

d

l-

u-

e
ns

,

the

B. Due to the orthonormality of the states~23!, this require-
ment simply amounts to a search for a boson operatorOB
such that

1

ANn

1

ANn8

^nuOFun8&5~nuOBun8! 0<n,n8<2V,

~24!

whereNn5^nun&. This condition, which preserves matrix e
ements between corresponding states and, therefore,
Marumori-type@2#, defines the operatorOB .

An important aspect of the mapping procedure conce
the n-body structure of the boson imageOB . There are, in
principle, infinite combinations of one-body plus two-bod
plus . . . up to 2V-body boson operators which can satis
Eq. ~24!. However, wishingOB to define a boson image o
OF at all orders, namely independently of the maximum
mension 2V of B, one has to proceed step by step. Let
defineF (1) as the fermion space built in terms of the sta
containing up to oneA† operator, i.e.,

F ~1!5$u0&,A†u0&% ~25!

and similarly for bosons

B~1!5$u0!,b†u0)%. ~26!

The most general Hermitian boson operator acting wit
B(1) ~we are assumingOF Hermitian, for simplicity! has the
form

OB,15a1b~b†1b!1gb†b. ~27!

In order for this operator to be the image ofOF in B(1), it
must satisfy condition~24!. This implies

a5^0uOFu0&, ~28a!

b5^0uOFA†u0&, ~28b!

g5^0uAOFA†u0&2^0uOFu0&. ~28c!

Let us now proceed one step further and consider the co
spondence between

F ~2!5$u0&,A†u0&,A†A†u0&% ~29!

and

B~2!5H u0),b†u0),
1

A2
b†b†u0)J . ~30!

Wishing the image ofOF in B(2) to be at the same time
image inB(1), the most general expression for this opera
has to be written as

OB,25OB,11fb†b†bb1e~b†b†b1b†bb!1d~b†b†1bb!.
~31!

The new coefficientsd,e,f can be evaluated making use
Eq. ~24! as it has already been done fora,b,g. The proce-
dure can be extended in a similar way up toOB,2V which is
then the exact image ofOF in the correspondenceF→B.
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Boson images:
The model Hamiltonian and b transition operators

In this section, we will show two applications of the ma
ping procedure just discussed: the first one will refer to
fermion Hamiltonian~1!, while the second one will refer to
the Fermi b transition operators~12!. In the case of the
Hamiltonian~1!, the boson operator which one constructs
the first two levels of approximation~by ordering these ac
cording to the maximum number of theb†,b operators con-
tained in each term! reads

HB
~1!5ab†b1b~b†b†1bb!, ~32!

for the first-order approximation, and

HB
~2!5HB

~1!1gb†b†bb1d~b†b†b†b1b†bbb! ~33!

with

a52e1l1 , ~34a!

b5l2A12
1

2V
, ~34b!

g52
l1

2V
, ~34c!

d5l2SAS 12
1

3V D S 12
1

2V D2A12
1

2V D , ~34d!

for the second-order approximation. As it emerges from
above equations, all the coefficients excepta depend onj .
This j dependence closely reflects the structure of the
mion states involved@through the condition~24!# into the
definition of the coefficients. In the limitj→`, which is
equivalent to transforming the fermion operators into boso
b→l2, while g,d→0. Moreover, still in this limit, no con-
tributions arise from next order approximations so that
boson Hamiltonian reduces to

HB
~0!5ab†b1l2~b†b†1bb!. ~35!

This boson Hamiltonian, where no memory is kept of t
internal structure of the quasiparticle pairsA† due to the
j→` limit, will be called in the following as the ‘‘zeroth-
order’’ boson approximation ofHF , i.e., HB

(0) . It represents
the QBA limit of HB

(1) . In the next section, we will tes
numerically the ‘‘quality’’ of HB

(0) , HB
(1) , HB

(2) as boson im-
ages ofHF .

For what concerns the Fermib transition operators~12!,
in the quasiparticle formalism, one has

b25A2V~upvnA†1vpunA2upunB†1vpvnB!. ~36!

By proceeding as for the boson Hamiltonian, but taking in
account that theb operators~36! are not Hermitian, we ob-
tain at the first two levels of approximation

~b2!B
~1!5A2V~upvnb†1vpunb! ~37!

and
e

t

e

r-

s,

e

o

~b2!B
~2!5~b2!B

~1!1c1b†b†b1c2b†bb, ~38!

with

c15A2VupvnSA12
1

2V
21D , ~39a!

c25A2VvpunSA12
1

2V
21D . ~39b!

It is also

~b1!B
~ i !5„~b2!B

~ i !
…

†, i 51,2. ~40!

One should notice that the scattering termsB†, B of Eq. ~36!
do not contribute to matrix elements of this operator betwe
states~19! so that they do not play any role in the mappin
F→B. In Sec. V, we will compare calculations performe
both with (b2)B

(1) and (b2)B
(2) .

IV. QRPA AND HIGHER-ORDER APPROXIMATIONS

One of the standard approaches to RPA is that propo
by Rowe with his equation of motion method@1# and is fully
developed in the fermion space. To briefly resume this
proach with reference to our model, we introduce the phon
creation operator

Q†5XA†2YA ~41!

and we define the excited and ground states by the condit

uQ&5Q†u 0̃&, Qu 0̃&50. ~42!

Minimization of the one-phonon energyE5^QuHFuQ&/
^QuQ& with respect to the amplitudesX and Y leads, to-
gether with Eq.~42!, to

^ 0̃ u@dQ,@HF ,Q†##u 0̃&5E^ 0̃ u@dQ,Q†#u 0̃&, ~43!

whereE is the excitation energy of the system. This expre
sion is evaluated in the two casesdQ5A†,A under the ap-
proximationu 0̃&→u0&, namely within QBA, and gives rise to
the well-known system of equations

AX1BY5EQRPAX, 2BX2AY5EQRPAY, ~44!

where

A5^0u@A,@HF ,A†##u0&52e1l1 ,

B52^0u@A,@HF ,A##u0&52l2,

andEQRPA5@(2e1l1)224l2
2] 1/2.

Working in our boson formalism, we define, in full ana
ogy with Eqs.~41!, ~42!, the phonon creation operator

q†5Xb†2Yb ~45!

and the corresponding excited and ground states by the
ditions
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TABLE I. Comparison of the spectra of the HamiltonianHF ~1! in the basis~19!, for three values of the
parameterk8, with the corresponding spectra of the boson HamiltoniansHB

(0) ~35!, HB
(1) ~32!, andHB

(2) ~33!
in the basis~23!. Spectra ofHF andHB

(2) coincide within 0.2% so that they have been reported in the s
column, for simplicity. Calculations refer to the choicex850.5. No significant changes are observed
x50.0.

k850.5 k851.0 k851.5
HB

(0) HB
(1) HB

(2) ,HF HB
(0) HB

(1) HB
(2) ,HF HB

(0) HB
(1) HB

(2) ,HF

-0.120 -0.107 -0.104 -0.471 -0.401 -0.311 -4.374 -3.799 -0.82
1.680 1.718 1.795 0.221 0.397 0.910 -3.773 -3.274 -0.27
3.480 3.544 3.800 1.020 1.260 2.594 -1.042 -0.883 1.396
5.287 5.373 5.873 2.278 2.480 4.506 -0.251 -0.080 3.179
7.098 7.206 7.987 3.498 3.693 6.579 0.852 0.962 5.256
9.061 9.159 10.116 5.756 5.846 8.759 3.383 3.419 7.507
10.982 11.080 12.240 7.413 7.476 11.004 4.879 4.877 9.87
13.826 13.822 14.333 11.147 11.055 13.272 9.196 9.020 12.31
16.034 16.006 16.370 13.226 13.092 15.524 11.175 10.942 14.7
21.145 20.928 18.323 19.598 19.222 17.712 18.444 17.914 17.1
23.725 23.471 20.148 22.113 21.680 19.771 20.909 20.301 19.4
i
o
g

-

o-
t
n

on
g
re

e-

th

t,

pe

-

lso

ses
al

ns
to-
uq)5q†u 0̃), qu 0̃)50. ~46!

The one-phonon energy which is derived from the minim
zation ofEB5(quHBuq)/(quq) is, of course, subordinated t
the choice of the boson Hamiltonian. Minimizin
(quHB

(0)uq)/(quq), with HB
(0) given by Eq.~35!, leads straight

to Eqs.~44!. Therefore, ifEB
(0) is the excitation energy re

sulting from this minimization,EB
(0)[EQRPA. In other words,

the effect of the QBA, which in Rowe’s approach is intr
duced in the evaluation of Eq.~43! via the replacemen
u 0̃&→u0&, is now equivalently incorporated in the boso
Hamiltonian~35!. But we have seen in the previous secti
thatHB

(0) is only a special case of the first-order boson ima
which we can construct with our mapping procedure. The
fore, the use of higher-order approximations such asHB

(1)

~32! andHB
(2) ~33! is expected to correspond to an improv

ment of the approximated energies and wave functions.
HB

(1) differs from HB
(0) only by having the coefficientb

Eq. ~34b! in place of l2. Correspondingly, minimizing
(quHB

(1)uq)/(quq) leads to the excitation energy

EB
~1!5A~2e1l1!224l2

2S 12
1

2V D , ~47!

which differs from EB
(0) by the factor (121/2V). As one

could expect, this factor becomes more significant
smaller thej value.

The use ofHB
(2) presents itself more complicated. In fac

A[~ 0̃ u@b,@HB
~2! ,b†##u 0̃ !

5~ 0̃ ua14gb†b13d~b†b†1bb!u 0̃ ! ~48!

and

B[2~ 0̃ u@b,@HB
~2! ,b##u 0̃ !

5~ 0̃ u2b12gbb16db†bu 0̃ ! ~49!
-

e
-

e

so that, with respect to the caseHB
(1) ~whereg5d50), one

has now to evaluate extra matrix elements of the ty
( 0̃ ub†bu 0̃) and ( 0̃ub†b†u 0̃). This can be done by inverting
expression~45! ~and H.c.! so that

b†5Xq†1Yq, ~50!

which leads to the new expressions

A5a14gY216dXY, ~51!

B52b12gXY16dY2. ~52!

Due to this dependence ofA andB on theX,Y amplitudes,
the minimization of (quHB

(2)uq)/(quq) leads to a set of non
linear equations forEB

(2) , X, Y which is difficult to solve
analytically as forEB

(0) and EB
(1) . In the next section, how-

ever, we will see numerically howEB
(2) compares with the

lower-order approximationsEB
(0) , EB

(1) in the cases we have
studied.

V. RESULTS

Following the indications of Ref.@30#, we have made the
choice

j 59/2, Z54, N56, e51 MeV. ~53!

In order to avoid dealing with small numbers, we have a
redefined the two parametersk andx as follows

k→k8[2Vk, x→x8[2Vx. ~54!

Calculations have been performed in the two ca
x850,0.5 whilek8 has been kept as a variable in the interv
~0,2!.

A. The boson Hamiltonians

Before examining QRPA and higher-order calculatio
we will concentrate on the analysis of the boson Hamil
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nians constructed in the previous section. In Table I,
show the energies resulting from the diagonalization of
three boson HamiltoniansHB

(0) , HB
(1) , HB

(2) in the spaceB
Eq. ~23! and compare them with those ofHF in the space
F Eq. ~19!. Calculations refer to three different values
k8 ~0.5, 1.0, 1.5!, while x850.5 (x850.0 spectra do no
show significant differences!. One notices that~a! spectra of
HB

(0) andHB
(1) , for this choice of the parameters, are close

each other butHB
(1) better approximateHF , as expected;~b!

the quality of theHB
(0) andHB

(1) spectra rapidly deteriorate
for increasingk8 so that, even though these spectra are ra
good at k850.5, they become definitely bad atk851.5.
Spectra ofHB

(2) reproduce almost perfectly the correspondi
ones ofHF for all values ofk8 in the interval~0,2!, differ-
ences remaining within 0.2%. Due to these minor diff
ences, we have shown the spectra ofHB

(2) andHF in the same
column.

In conclusion, then, the second-order boson Hamilton
HB

(2) emerges as an excellent boson image ofHF in the
whole range ofk8, while the quality ofHB

(0) andHB
(1) strictly

depends on the variablek8 and remains acceptable only fo
small values of it.

B. Excitation energies

In Fig. 1, we compare the excitation energiesEB
(0) ~a! and

EB
(2) ~b! with the values resulting from the diagonalization

HF ~1! ~solid line!. We do not show for simplicity theEB
(1)

FIG. 1. Comparison of the lowest excitation energies result
from the diagonalization ofHF ~1! in the basis~19! ~solid line! with
the standard~a! and second-order~b! QRPA values. Also shown are
the values obtained from the diagonalization of the boson Ha
tonianHB

(0) ~35! in the basis~23! ~c!.
e
e

er

-

n

values since, in agreement with the already observed s
larity between the spectra ofHB

(0) and HB
(1) , it is

EB
(0);EB

(1) . We show, instead, the energies which res
from the diagonalization ofHB

(0) ~c!. These exhibit a mini-
mum for k8 in the interval~1.1!-~1.2!. It turns out that the
standard~or zeroth-order, in our notation! QRPA energies
are quite good approximations of these energies, devia
from them only for values of the variablek8 approaching
their minimum. Second-order QRPA energiesEB

(2) reproduce
quite well those ofHF particularly in the region of the col-
lapse point of the standard QRPA. There occurs also in
case a collapse but at largerk8 so that, globally, the new
energies appear to have gained stability if compared to
standard QRPA ones.

C. Expectation values of the quasiparticle number operator

A comparison between relative energies, as the one
cussed in the previous subsection, does not provide by it
a decisive element to judge the quality of different appro
mations. In this subsection, we will examine two quantit
which will help us to shed further light upon this quality
These are the expectation values of half the quasipar
number operator,C/2 ~4!, in the ground state and in the firs
excited state.

The image ofC/2 in the boson spaceB is the operator
NB5b†b. This is an exact boson image in the mappi
F→B since it exactly fulfills the condition~24! for every
n. It is easy to see@making use of the transformation~50!#
that

N0[~ 0̃ uNBu 0̃ !5Y2. ~55!

It is also true that

~ 0̃ uqNBq†u 0̃ !5~ 0̃ u@q,@NB ,q†##u 0̃ !1~ 0̃ uNBu 0̃ ! ~56!

so that

DN[~ 0̃ uqNBq†u 0̃ !2~ 0̃ uNBu 0̃ !5X21Y25112Y2.
~57!

This quantity is therefore predicted to be always larger th
1 ~unlessY50! and it should increase proportionally toY2

similarly to N0. In Figs. 2 and 3, we showN0 andDN in the
zeroth- ~a! and second-order~b! QRPA calculations and in
the exact cases~solid line!. As for the excitation energies
zeroth- and first-order results are quite similar and we h
omitted the last ones for simplicity. Looking at the exa
quantities it is evident that there is a clear disagreement
tween their behavior and the above predictions. Only up
k8 slightly larger than 1,DN indeed grows as alsoN0 does.
But for larger values ofk8 these two quantities start behavin
oppositely,N0 continuing its growth, whileDN going to-
ward zero. Above the thresholdk8;1, it becomes therefore
impossible to find anyX,Y compatible with these two quan
tities. This fact reveals a clear failure of the QRPA approa
beyond this point, no matter which order of approximati
we are considering, and so provides a severe constrain
the range of applicability of this theory. Remaining in th
interval 0<k8<1, in the case ofDN, the second-order
QRPA results show a much better agreement with the e

g

l-
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ones if compared with standard QRPA. In the case ofN0,
one notices a clear difference between zeroth- and sec
order approximations: in the first case, there appears
well-known overestimation of the ground-state correlatio
while, in the second one, there occurs an underestimatio
the same quantities. In this case, second-order QRPA re
do not reach the same qualitative level as inDN.

D. Fermi b transition amplitudes

Similarly to the expectation values of the quasiparti
number operator, the comparison of matrix elements of
b operators~Sec. III! can add further elements of valuatio
upon the quality of the approximate wave functions. In F
4, we show the transition amplitudes of these operators
tween ground and first excited states. In each figure, up
lines concernb2 transitions while the lower onesb1 tran-
sitions. Solid lines have been calculated by using the eig
states of the fermion Hamiltonian~1! and the operators~36!
~and H.c.!, while lines~a!,~b! refer to matrix elements of the
images (b6)B

(1) ~37!,~40! in the zeroth- and second-orde
QRPA calculations, respectively~we omit also in this case
first-order results!. These matrix elements are given by

~ 0̃ uq~b1!B
~1!u 0̃ !5A2V~vpunX1upvnY!, ~58!

~ 0̃ uq~b2!B
~1!u 0̃ !5A2V~upvnX1vpunY!. ~59!

Only the relative sign of these matrix elements can be fi
unambiguously. In these figures, we have taken theb2 ma-

FIG. 2. Comparison of the expectation values of~half! the qua-
siparticle number operator,C/2 ~4!, in the ground state of the
HamiltonianHF ~1! with the values obtained in the standard~a! and
second-order~b! QRPA.
d-
he
s
of
lts

e

.
e-
er

n-

d

trix elements to be positive. Similarly to what has been o
served in the case ofN0, zeroth- and second-order approx
mations show different behaviors, the first on
underestimating the exact quantities and the second o
overestimating them. For what concerns theb1 matrix ele-
ments, however, it is worthy noticing that the crossing
zero exhibited by the exact values atk8;1.4,1.5 is not re-
produced by the second-order QRPA results. This crossin
shown both by the zeroth- and first-order QRPA calculatio
although in a region ofk8 quite close to their collapse points
Evidence for this crossing is widely discussed in literatu
@3–10#.

Differently from the quasiparticle number operator ca
where NB5b†b is an exact image of C/2 in the mapping
F→B, in the case of theb operators, we have already see
in Sec. III that (b6)B

(1) are only the first-order images of th
corresponding fermion operatorsb6. To better understand
the reasons of the bad behavior exhibited by the seco
order QRPA results fork8.1, the same calculations hav
been repeated by making use of the (b6)B

(2) operators
~38!,~40!. In these cases the matrix elements become

~ 0̃ uq~b1!B
~2!u 0̃ !5A2VvpunX~123GY2!

1A2VupvnY~123GY22G!, ~60!

~ 0̃ uq~b2!B
~2!u 0̃ !5A2VupvnX~123GY2!

1A2VvpunY~123GY22G!, ~61!

FIG. 3. Differences between the expectation values of~half! the
quasiparticle number operator,C/2 ~4!, in the first excited state and
in the ground state. Solid line refers to the eigenstates of the Ha
tonianHF ~1! while lines ~a!,~b! are the standard and second-ord
QRPA results, respectively.



r,
th
n
to
fa

l,
m

at

is
,

t the
of
. If

of
ing

to
ness

r
of

on
dis-
first
es

first
e-

ner-
e
the
ave
ome
ith
gies
ons

by
cle
hile
ase
xact
tion
int.
a

of
-

ly-

ero
ak-

nd

il-
e

56 789QUASIPARTICLE RANDOM-PHASE APPROXIMATION . . .
where

G[12A12
1

2V
. ~62!

No significant changes (&5%) have emerged, howeve
from the new calculations. Therefore, the bad behavior of
b1 matrix elements in the second-order QRPA calculatio
cannot be ascribed to a bad quality of the image opera
(b6)B

(1) but rather confirms the conclusions obtained so
of an unreliability of the whole theory whenk8 approaches
the second-order QRPA collapse point.

E. Ikeda sum rule

To conclude this section, we discuss, within our mode
peculiar aspect of theb transition amplitudes: the Ikeda su
rule. By defining the totalb6 strengths

S65(
n

u^nub6ugs&u2, ~63!

where the summation extends over a complete set of st
ugs& is the ground state of the system andb6 are the opera-
tors ~12!, it is seen that

S22S15N2Z, ~64!

FIG. 4. Fermib transition amplitudes between the ground a
first excited states. In each plot, upper curves refer to theb2 tran-
sitions, while lower curves refer to theb1 ones. Solid lines are
obtained with the operators~12! and the eigenstates of the Ham
tonianHF ~1! while lines ~a!,~b! are the standard and second-ord
QRPA results, respectively@see Eqs.~58!, ~59!#.
e
s
rs
r

a

es,

whereN(P) is the total number of neutrons~protons! of the
system. The derivation of Eq.~64! simply results from the
completeness of the states$un&% and from the commutator

@b†,b2#5N̂2Ẑ. ~65!

As it is well known, an interesting aspect of the QRPA
that it fulfills exactly this sum rule. In our boson formalism
due to the fact, stressed in the previous subsection, tha
boson images (b6)B can be constructed at different levels
approximation, one is forced to distinguish different cases
one assumes the operators (b6)B

(1) ~37!, ~40! as the images
of b6, it is easy to verify that Eq.~64! is fulfilled exactly and
so irrespective of the order of the QRPA calculations and
the magnitude of the ground-state correlations. By assum
instead (b6)B

(2) ~38!,~40! as images of the operatorsb6,
things become more complicated. One finds now

S22S15~N2Z!@12~4G1G2!Y213G2Y4#, ~66!

where the factorG is given in Eq.~62!. Therefore, the sum
rule is not exactly fulfilled depending on theY amplitude and
so on the order of the QRPA calculation. With reference
our second-order results, however, due also to the small
of the factorG, we find that the deviation of Eq.~66! from
the value (N2Z) remains within few percent. This furthe
confirms what was stated in Sec. V, namely, that the use
the (b6)B

(2) operators in place of (b6)B
(1) introduces only

minor changes in theb transition amplitudes.

VI. SUMMARY AND CONCLUSIONS

In this article the QRPA has been reviewed in a bos
formalism and higher-order approximations have been
cussed. A fermion-boson mapping procedure has been
illustrated within an exactly solvable model. Boson imag
of the model Hamiltonian have been constructed at the
two levels of approximation and the corresponding on
phonon excitation energies derived. Standard QRPA e
gies, resulting in correspondence with the QBA limit of th
first-order boson Hamiltonian, have been compared with
first- and second-order energies. Only minor changes h
been found in the first case while these changes have bec
much more evident for excitation energies calculated w
the second-order Hamiltonian. In this case, the new ener
have gained stability getting quite close to the exact soluti
near the collapse point of the standard QRPA.

The quality of the solutions has been further tested
examining first of all the matrix elements of the quasiparti
number operator in the ground and first excited states. W
evidencing an overall better fit of the exact values in the c
of the second-order solutions, the comparison between e
and approximate results has pointed out a rapid deteriora
of the quality of the second ones near the new collapse po
Furthermore, still in this region, it has been evidenced
breakdown of the whole QRPA formalism, independently
the level of approximation of the boson Hamiltonian em
ployed. This result has also found confirmation in the ana
sis of theb transition amplitudes.b1 amplitudes, in particu-
lar, have not been found to reproduce the crossing of z
exhibited by the exact values. This has been verified by m

r
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ing use of both first- and second-orderb1 boson operators
Therefore, in correspondence with a better quality of the
citation energies found in second-order QRPA calculatio
we have not observed a similar improved quality in the v
ues of these observables.

Finally, we have examined the Ikeda sum rule show
that this is exactly fulfilled when theb6 boson operators ar
calculated at the first order of approximation. The high
orderb6 operators have introduced only negligible chang
m

uc

,

ki

ys
-
s,
-

g

-
s

in the results and their use does not appear justified in
present calculations.
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