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Nucleon-nucleon potential in the 1IN, expansion
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The nucleon-nucleon potential is analyzed using tie, Bxpansion of QCD. Tha&lN potential is shown to
have an expansion in I‘_ll(f, and the strengths of the leading order central, spin-orbit, tensor, and quadratic
spin-orbit forces(including isospin dependencare determined. Comparison with a successful phenomeno-
logical potential(Nijmegen shows that the larghl, analysis explains many of the qualitative features ob-
served in the nucleon-nucleon interaction. Thal1£xpansion implies an effective Wigner supermultiplet
symmetry for light nuclei. Results for baryons containing strange quarks are presented in an appendix.
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I INTRODUCTION Vin=V3+ Vo0, 0+ VgL - S+ VIS ,+ VaQs,
The two-body nucleon-nucleon interaction is the basic in- +(Vg+ Vo oyt Vigh -S+VIS+VEQi) 11 7,
gredient that is used in calculating the properties of nuclei. (1.1)

There are a number of phenomenologically successful mod-
els for the interaction, typically constructed using meson exyhere
change contributions. Unfortunately there is no direct con-

nection between these models and the underlying theory of S;,=30-To, T—01- 05, (1.2
the strong interactions, QCD. Until recently, the only way
that QCD and the physics of nucleon interactions could be Q1= 3(o1-L), (05 L)}

rigorously related has been through symmetry arguments. By

making use of symmetry and effective field theory, one canrhe four termsvi,,V!_ constitute the central potential, while
calculate the low energy dynamics using a small number o{,uT ViLSv and ViQ are the tensor interaction, the spin-orbit
parameters that are fitted to the experimental data. SuGferaction, and the quadratic spin-orbit interaction, respec-
theories can be quite predlctlve,' but Sft'". remain somewh ively; the ten functionS/ia can in general be velocity depen-
remote from QCD—one WOUId."ka priori arguments for dent. The main result of this paper is that the strength of the
the sizes of the phenomenological parameters. ; i . . .
A , ten functionsV; can be determined in the N} expansion,
Recently, there has been significant progress in better un- a

derstanding the implications of QCD for hadronic physics byand are as given in Table |. As is apparent from this table,

; ; 2
exploiting the “hidden” expansion parameter of QCD— the actual expansion parameter is !"d“clb“t IN. Thus
1/N,, whereN.=3 is the number of colorf1-5]. In the ~ €VEN though the actual valug;=3 is not very large, an

large N, limit, one finds that meson-baryon interactions re-&XPansion |n.]b(|§- can be quite predictive.
spect an SU) spin-flavor symmetry—the same symmetry _The organlzatlon of this paper is as foIIow§. In Sec. Il we
found in the nonrelativistic quark modgl,6]. It has also  Priefly review general properties of baryons in the lalge
been shown that the N/ expansion can provide information limit. In Sec. Il we den_ve the result_s given m:l'able I. These
about the nucleon-nucleon potent[d. In particular, Ref. I’.ES,L,HIS are compared in Sec. IV with the “Nijmegen poten-
[7] analyzed the central potential f&dN scattering and tial” of Refs. [8,9]_—a phenomenologlcally_ successful model
showed that the N, expansion gave a qualitative under- _of tthN !nteractlon; we show that thg hierarchy of Tablg |
standing of its spin and isospin structure. is ev!dent inNN phenomer)ology. Sectlon V extends the (_1|s—
In this paper we extend the analysis[@ to include the ~ CUSSION of Ref[7] concerning how the Wigner supermultip-
entire NN potential. Naively, one might think that the let symmetry m|.ght arise in light nuclei as a consequence of
N, limit is not relevant for analyzing nuclear physics. e 1Nc expansion. This is followed by conclusions, and an
Nuclear matter forms a classical crystalNg=c, and so append|_x in _whlch_we extend our analysis to hyperon inter-
there must be a phase transition betweér=3 and N, actions(i.e., including thes quark.
=, While the 1N; expansion is not reliable for studying
bulk properties of nuclear matter, it does allow one to ana- .
lyze the spin and isospin dependence of the nuclear forcér'.UCIeo'"'nmeon potential.
One expects that the symmetry properties ofXi¢ interac-

TABLE I. 1/N. counting rules for the different terms in the

, : , Isospi V. \Y v \Y \Y

tion will be independent of the phase of the many body o>"" 0 v LS T Q

ground state. 11 N, 1N, 1N, 1N, N3
The general form of the potential for elastic, nonrelativis- 7, . r, 1IN, N, 1N, N, 1N,

tic NN scattering is
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56 NUCLEON-NUCLEON POTENTIAL IN THE 1N, EXPANSION 7

cients, and provide an efficient way of doing group theory
computations. A Skyrme model basis, for example, would
have worked just as weftL2].

The lowest lying eigenstates &f with baryon number
B=1 have isospinl and spin S satisfying I=S
=1,35 ... . The first two states can be identified with the
N and A; the higher spin states do not exist fdg=3. To
leading order, this baryon tower is degenerate with nMss
~N.. One can show that it transforms as an irreducible
representatiorithe totally symmetrid\.-index tensor of an
approximate S{) spin-flavor symmetry; this is the symme-
try under which the quark operatoug, ul, df , d| trans-
form as the four-dimensional fundamental representation

FIG. 1. A QCD contribution tdH leading in 1IN, . This diagram  [1,6]. For N.=3 the{N,A} spin states transform as the 20-
can be described in spin-flavor space as a product of three of thgimensional representation of &4, familiar from the quark
one-quark operators given in E@.1). model.

Additional information can be obtained by considering
matrix elements of operators between baryon st8tend

The largeN, limit is defined by taking the number of B’ restrictgd to hav&=1~1. I_:or example, matrix elements
colorsN,. of QCD to be large while simultaneously rescaling ©f the basis operator@.1) satisfy
the QCD couplings ag—g/+/N,, keepingA ocp fixed [10].
The 1N, expansion has proven to be a powerful tool for
analyzing baryon properties, since baryon structure simpli-

fies considerably in this limit. Antiquarks in thg baryon are \atrix elements of many body operators can be analyzed as
suppressed, and as baryons consisilpfjuarks interacting g using various relations among powers of the basic op-

yvith 1/N, strengt.h,lthe Hartree approximation becomes exack 1orsS 12 andGid [1,3]. This allows one to greatly re-
in the IargeNF limit [11]. AIthough one cannot .solve the duce the’nur’nber of Iineérlyindependent terms in @) at
Hartree equations due to the nonlinearity of glue interactions

one can nevertheless determine a number of useful pro erti""1 given order in M. Using these techniques, one is able to
. ) Properti&Row that the matrix element of a genenatjuark operator
of the spin and flavor properties of the baryons and theiry )" . . P, .
0,'4 with B=0, isospinl and spinS, is of size[3] (see also

Il. THE LARGE N, QCD ANALYSIS

(B'|SIN(|B)~(B'[1/N¢|B)~1/N,, (B'|G/NB)~1.
2.3

interactions. : L
To analyze the flavor and spin structure of the Hartred -7 for a derivation
Hamiltonian in the case of two light flavors, it is convenient JLAM) I—s|
to use as an operator basis the one-quark operators of the (B'[O}[g/Ng[B)=<1/Ng > (2.9
qguark model

The fact that the operators with the largest matrix elements
o havel =S was first observed in the Skyrme modi#B], and
2 % (21 isknown as the ‘t;=J; rule.”

Equations(2.2—(2.4) are the central results behind the
whereq=(u,d) andq" are the creation and annihilation op- large N, gr)alysi_s of baryons. One consequence is that the
erators for thes andd quark flavors, and, 72 are the stan- Mass splittings in the baryon towee.g., betweeN andA)
dard SU2) Pauli matrices acting on spin and isospin, respec@'€ Of size M [2,11]. This result is in good agreement with
tively. The g andq' operators do not carry color, and are the real world where the rat'az_(MA_MN)/(MA+MN)2
bosonic. The Hartree Hamiltonian can then be constructed a5 0-13, while the largeN. prediction atN.=3 is R~1/Ng
monomials of these operators. An important result from large= 0-11. Consequences of §@.3) for theNN interaction are
N. QCD is that the Hartree Hamiltonian takes the formexplored in the next section.

i a
Si:qT %q, |a:qT %q, Gia:qT

[3-5]
Ill. THE NUCLEON-NUCLEON INTERACTION
"S S ’l‘ t G n—s—t
H=N.>Y, > vemnl — (_ _) . (22 There are two independent three-momenta for baryon-
n st N¢/ \Ng/ \ N¢ baryon scattering in the center-of-mass frame, which can

. conveniently be taken to be
where the operator§S,|,G} are given in Eq(2.2), the co-
efficientsv are O(1) functions of momenta, and we have d=Pin~Poutr K= PinT Pout- 3.1
suppressed isospin, spin, and vector indices which are con-
tracted such thatl is rotation and isospin invariant. An ex- These momenta are to be considered independeNt; oh
ample of a contribution tdd is pictured in Fig. 1. It is im- the 1N. expansion. To leading order inN/, the entire
portant that although we make use of the quark modebaryon tower is degenerate afj,|=|p,,{ for elastic scat-
operator basis, Eq2.2) makes no assumption about the va- tering, up toO(l/Ng) corrections, and sq-k=0 to the same
lidity of the quark model; the quark model operators are aorder. The general baryon-baryon interaction potential is
representation of the spin-flavor Clebsch-Gordon coeffithen a matrix
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moments; the following subsections are organized accord-
ingly asAL =0 (the central forcg AL=1 (spin-orbit force,
N andAL=2 (the tensor and quadratic spin-orbit forces

/ A. AL =0: The central potential
This is the case analyzed in RET). The central force can

be written as a sum of products of one-quark operators as in
Eqg. (2.2, where the operators act on either tNg or N,

nucleon states, and the coefficients,, are general scalar

a\ functions of|q| and [k|. It follows from Eg. (2.3) that the

N leading contribution will have n&'/N, or 13/N, operators,
2 since each of these implies a\Ni/suppression; instead it will

consist solely of powers d&'?/N. By rotational symmetry,
FIG. 2. An example of a contribution to tHéN interaction at since thev coefficients are scalars, tk&® operators must be

the level of quarks and gluons. This diagram can be described ifontracted to form spin invariants. Similarly, isospin symme-
spin-flavor space as a single one-quark operator acting on the firéty implies that theG'# must be contracted to form isospin
baryonN;, and two one-quark operators acting on e line.  invariants. From these constraints, it is possible to show that
Nothing physical depends on how one assigns the final quark lineat leading order in N, the most general form for the cen-
to N; or N, so long as one considers all possible interactions. tral potential ig[7]

Veentra™ NCE Un 2 (3.9
n=0 N

c

N¢ had had n
V(0,k)={(Pout: ¥: ~ Pout: S|H|Pin.@; —Pin.B), (3.2 ( Gy Gz)

whereH is the Hartree Hamiltoniaf2.2) and «,...,8 denote

internal quantum numbers of the baryons, such as spin, fla- o
vor, and particle typde.g.,N or A). Throughout this paper whereG;-G,#G?G45 . In general, the coefficients, are
we will define theNN potential as the above matrix element functions of bothq|?, |k|?, and obey the rule E¢3.3). One
restricted to the space of nucleons. We do not consider segan further restrict the powers él. éz in Eq. (3.4) to be
ond order effects due to virtudl’s, etc. completely symmetric in th&, indices, and in thes, indi-

There are two ways that M factors can suppress terms .e5 ‘hefore the two sets of indices are contracted.
in the potential. The first arises from spin-flavor structure |; ig straightforward to verify that Eq(3.4) is the most

and the powers of N in Eq. (2.3. The second source of ganeral form of the leading ordé&r. =0 potential. We have
suppression arises in velocity dependent interactions ar's'ngrgued that it can only involve powers of the? operators
as relativistic corrections. Since the nucleon velocity equal '

L ) ?n the basis of Eq(2.3); what must be shown is that the
P/M~1/N, each power of velocity is equivalent to &L/ j,5iceq are contracted as above in E24). By the operator
suppression. In the nonrelat|V|§t|c '|Imlt' for baryons, a aduction rule [3] any terms in which two indices of
t-channel meson exchange contributionvtas only a func- GiaGi (where bothG's act on the same baryprre con-
tion of g. A u-channel contribution is only a function &f, d with h other byl &% ik %bc b
and can be expressed as an exchange potential. Relativis@cted With each other by”, 5, €, or €™ can be
corrections allow a single meson exchange contribution t&!iminated in favor of terms with fewer powers 6f. Thus
V to be a function of botly andk. Meson exchange in the the only allowed invariants are obtained by contracting the
t-channel is then a function af andk/M, with each power indices ofGY* with those ofG3’, as in Eq.(3.4). More com-
of k being accompanied by one factor 8. Similarly, Plicated contractions, such as
u-channel meson exchange is a functiorkandg/M. This
shows that if a general velocity dependent potential is ex- éilaéilbéizbéia, (3.5
panded in a Taylor series ik and g, a term of the form

rkS H
a'k™ is suppressed by can be written as

N7, n=min(r,s). (3.3

~ ~ 2, ~1AjbrAibAja_ ~iaAjb
Combining this source of N, suppression with Eq(2.3) (G1-G2)™+GiaGr[G2 G2 ~ G2 G2 ]
will allow us to determine the size and spin-flavor structure =(G;- Gy)?— APGRAGIPINGIGE . (3.6)
of the dominant terms in the potentl

An NN interaction at the QCD level gets contributions ] ~A = i

from complicated processes, such as pictured in Fig. 2. Eachne term with twoe symbols can be reduced &, - G, using
of these contributions can be expressed as a tensor functidfe relation i3], so that all contractions d&, with G, can
v(q,k) contracted with one-quark operatcﬁ‘s 12, andG'@ be written as powers 06;-G,. One can also restrict the
which act on either of the two nucleon states. The coefficienindices on powers o065, and G, to be completely symme-
functionv, in Eq. (2.2 and the operatoré‘ andG@ must  trized, since terms antisymmetric in the indice; can be elimi-
combine to be invariant under rotations. Our analysis is simnated using the operator identities. The serie&inG, ter-
plified by first expanding ¢, (and henceV) in multipole  minates afteN, terms, because an operator with more than
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N quark fields acting on a single baryon can be reexpressethis can be derived by arguments similar to those in the
in terms of operators witks N, quark fields: previous subsection. Time reversal and parity invariance re-
There are no N, corrections to Eq(3.4), except through  quires the coefficients, , in Eq. (3.9 to be proportional to

1/N. dependence in the unknown coefficients. All terms  (qx k) times an arbitrary function o§? andk?. In position
in the 1N, correction to Eq(3.4) are arbitrary polynomials space, a contribution of the foritd(g?) (gxk)-(S;+S,) is
in Gy, with one factor ofS; ,or 1§ ,. Itis easy to check that of the form[VU(r)xk]-S, which is the usual spin-orbit
all such terms have the wrong time-reversal properties tdorce. There is a hidden suppressing factor dfi 1fwhich
contribute to the baryon-baryon potential. Thus the first corfollows from Eq.(3.3)] in the spin-orbit force which is not
rection to Eq(3.4) contains a factor 08;-S, orl;-1, and is  manifest in Eq(3.9), since theAL =1 interaction necessar-
of order 1N§. ily involves bothq andk.

Equationg2.2), (2.4), and(1.1) define theN counting for The Wigner-Eckart theorem implies that there are only
the central potential. Larghi; QCD implies that the central two distinct operators when the expressi@m) for the AL
potential is of ordeiN,, but is determined by only two in- =1 amplitude is restricted to the nucleon sector. These are
dependent functions instead of fogat leading order in the two spin-orbit terms appearing in Hd.1). Thus we find
1/Ny):

V2(r)~1MNg, Vig(r)~1IN. (3.10
Vo(r)~Ne,  Vo(r)~Nc, (3.7 o _ . _
The spin-orbit force i0(1/Ng) in strength relative to the
while central force, and it is of comparable strength in the two
isospin channels.
Vg(r)~1/NC, thf(r)N N, (3.8 C. AL=2: The tensor and quadratic spin-orbit potentials

The AL=2 amplitude is obtained by requiring that the

As was not_ed |_r{7] _and will be discussed in S_ec. V, the coefficientsv in Eq. (2.2) transform under rotations asL
above relation implies that the central potential obeys an

effective Wigner supermultiplet symmetry. =2. The leading order amplitude is a polynomial in the
G’s that transforms aS=2, | =0. One can obtain an ampli-
tude that does not violate the=J, rule on each baryon line
B. AL=1: The spin-orbit potential by combiningl =S=1 amplitudes on each baryon into total
The AL=1 baryon interaction amplitude contains the I=0 _and tqtaIAL=2. The general form of the leading order
spin-orbit coupling term; it is obtained from the general Har-amplitude is

tree Hamiltonian Eq(2.2) by restricting attention to terms
n

for which the coefficient transforms as a vector under ro- Ne—1 ,_éilaéiza (;1. éz
tations. It follows that the one-quark operators multiplying Vi=N, > u'n‘—2 > , 3.1)
thewv coefficients must be combined to transform ad &) n=0 Ne Ne

representation under $)¢,in<X SU(2)isospin From Eq.(2.3)
we have seen that to contribute at leading order M. 1/an

n-quark operator must be a polynomial in tk&s alone.
However, one cannot make(&,0) operator with the correct
parity and time reversal properties purely out@fs. The o -~ o -~
spin-orbit force is suppressed relative to the central force, vaX(q'd —39%8" or k'kI—3k?s"),
and is an arbitrary polynomial i&'s, with one factor ofS or
I. The general form of thAL=1 amplitude is

where the coefficient! is a symmetric traceless tensor that
depends org and k. Time reversal invariance requires the
coefficients to have the form

wherev,, is a scalar function o§?, k2, and @-k)2.
If one restricts the interaction E@3.11) to the nucleon

Ne—1 | ASi1+ASi2 él'éZ n sector, one gets
Vis=N¢ nz—:o V| TN N2
¢ ¢ V%’:chnTl'Tz(q'Ulq'UZ_%q201'0’2)- (3.12
N2 (GRIZHGRIG (GG, " - -
+N, E vh o > > Te_rms withn>1 in Eq.(3.1) can be dropped,_because two
n=0 ' Ng Ng spin-1/2 nucleons can only give nonzero matrix elements for
N3 faAjad) L AlaAjasi\ [ A A \n operators with spins1l. Comparing with Eq(1.1), we see
NS o GGy $+G;GTS, ) (Gy-G, that
c = 3.n Ng N<2:
3.9 Vi~N,. (3.13

The other term in the tensor potenti&l®, has|l —S/=1 at
each nucleon line, and so by E@.4)
'An easy way to see this is to normal order the operators. A
normal ordered product involving with more th&h quark opera- o
tors on a baryon vanishes, which gives the desired identity. Vi~1Nc. (3.19



80 DAVID B. KAPLAN AND ANEESH V. MANOHAR 56

A similar and straightforward analysis f&fg gives the re-
sults listed in Table 1.

D. The NN potential and the A

One flaw in our discussion that should be eventually im- 1
proved upon is the treatment of tie The Hartree Hamil-
tonian(2.2) implicitly acts on the entiré =S baryon tower,
including both nucleons anfii's, all of which are degenerate

in the N.—oo limit. In our discussion of theNN potential, 73
we have simply projecte# to the nucleon sector. A more 0
sophisticated treatment would be to integrate A'® out of

the theory(keeping track of the N. mass splitting and to FIG. 3. The couplings for the NijmegétiN potential in Ref[9]
construct an effective theory for nucleons alone. This is aescaled by, . The values for this ratio predicted by larlye QCD
subtle analysi¢see, for exampld,14]) and beyond the scope in Eq. (4.3 are indicated by lines, and the shaded regions are the

of this paper. size of the expecte®(1/N.) corrections to the leading result. The
five regions in the plot(separated by vertical dashed linesmre
IV. COMPARISON OF LARGE N, QCD WITH A (fr_om left to righd the (1,S)=(0,0),(1,1),(1,0),(0,1), and, cou-
PHENOMENOLOGICALLY SUCCESSFUL MODEL plings.
Our largeN, results for the general nucleon-nucleon po- 910011A g4 A2
tential of Eq.(1.1) are displayed in Table I. For two flavors Vh~g, i AL
we have found that the strongelstN interactions are the M M2
central force term&/, andV_ , as well as the tensor force
V7, all three of which are~N.. The remaining contribu- Lo gI0 U091 924
tions to theNN potential, Wlth the exception o‘f/Q, are Vo~ Vi~ M2 AM A2' 4.1

relatively suppressed byO(l/NC) Finally, the isospin in-

variant quadratlc spin-orbit forcé/q is suppressed by

~O(1/N2) compared to the central potential, as it is both an | 9o G101
| # S interaction, as well as being a second order relativistic Ls™ MZ’ AM
effect suppressed by MI2. The results we have derived are

consistent with thd,=J; rule, but are more general. They g2 g2
are true in QCD in the N, expansion, and make no assump- Vo~ 9o G811 9 ,
tions about the origin of thé&IN interaction as being, for M4 AM3 ' AZM?2

example, due to the one meson exchange.

The results can be directly compared with nuclear potenwherel =0,1 correspond to theXi1 andr, - 7, isospin struc-
tial models in momentum space. A particularly simple phe-tures, respectivelyM is the nucleon mass, andis a strong
nomenological model to compare with is the meson exdnteraction scale characterizing the derivative expangien
change model “Nijmegen potential” of Ref§8,9]. In this  noted M in [8]). The parameterg,s correspond to the cou-
model, the NN potential is approximated in momentum pling constants of the model withchannel(isospin, spin=
space by a sum of Yukawa and Gaussian interactions timgg,S), in the nonrelativistic limit; in particular, the scalar
powers of momenta divided by masses, contracted with theouplinggg and vector couplinggy and fy of Ref.[8] are
spin and isospin Pauli matrices. The Yukawa potentials corgiven by g,9, 9,0, and g,;, respectively, wherd is the
respond to one-particle exchange of both real mesonmeson isospin(The pseudoscalar contributions are param-
(m,m, 75 ,p,0,¢,a9,y,€), while the Gaussian potentials are etrized differently i8] and are mentioned belowAs far as
labelled byP, f,, f;, anda,. The motivation for this form the N. scaling goesM ~N., while the A and the masses of
of the potential is unimportant here; it provides a phenomthe exchange mesons are &ll. In Eg.(4.1) we have omit-
enologically successful parametrization for &l potential ~ ted dimensionful quantities that do not scale with, such
that can be compared with Table I. Thé¢. dependence as the meson propagators d4¢-m?). By comparing the
should appear in the relative strengths of the potentials, anexpressions in Eq4.1) with our results in Table I, one sees
the 1M factors that appear when the potential is decomthat they are consistent provided that the couplipgsscale
posed as in Eq1.1). The strength of the contributions to the with N as
Nijmegen potential are simple to evaluate, since they are
presented explicitly in momentum space, and we can treat all g1 N2 11=sh (4.2
momenta and meson masses-ak in the 1N, expansion.

The N, dependence must then reside in the strengths of th&his N, scaling can be compared with the numerical values
couplings used in the Nijmegen potential, as well as the exgiven in Ref.[9]. In Fig. 3 we have plotted the couplings
plicit factors of the nucleon mass that appear in the formulasletermined numerically in Ref9], rescaled by their value
of Ref.[8]. One finds for the strength of the various terms infor f,. Sincef , is ag;; coupling, Eq.(4.2) implies that the
the potential leading largeN. prediction for the ratio is
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9 1, if [I-5]=0, If the two nucleons are in an even partial wave, they must be
01s= 1S . . 4.3 in a totally antisymmetric spinisospin state, so they are in a
f, 3 if [I-§=1. (0,1 or (1,0 state, i.e., irb, of SU(4)y . If the two nucleons

. . ... arein an odd partial wave, they must be in a totally symmet-
As can be seen from Fig. 3, there is good qualitative b y y Y

agreement between the larlye- prediction (4.3), and the {_Ig_sﬁ:q@olssg?[;r&aié’ so they are in(8,0) or (1,1) state,
g's va:ﬁes useiij in th? Nijmeglj_en potehntiﬁl. Omittted frg_rln Fig. We have shown in Sec. Il that the leading contributions
are the pseudoscalar couplings, which are not readily com- ; 0 /1 1

pared with heavy meson couplings, due to their special statr&% Stth fv::loNt g r?;i”gg:gi;gﬁg%?\:ﬁlaors; a,t(\)/r(g andvr. The

as pseudo-Goldstone bosons. However, the pseudoscalar me-
son couplings are related to the axial current couplings,
which have been analyzed in detail, and shown to agree with
1/N. predictions [15]. There are two couplings in the
Nijmegen potential, theb anda, coupling, that deviate sig-
nificantly from the 1N, pattern. The$ meson is a purss
state, and only couples to the nucleons through quark loop
Its coupling is OZI suppressed, and should be of orde

1/N. relative to thew couplings. The Nijmegen fits has

94/9,~0.1, which is a factor of 3 smaller than the naive )
1/N. prediction. Thea, coupling is even somewhat smaller. opirators Eq(5.2) have glfferint vkalges on the),0 ar?d
It must be stressed that the numerical parameters plotte(&’ _) representations, and so brea (8)y, symmetry when
acting on thelO representation of S4),,. Thus the central

in Fig. 3 were obtained by treating the couplings as phenom®

enological parameters in tiéN potential, chosen to provide potential breaks Wigner 3d)y, symmetry at leading order

the best fit toNN scattering data. There is no reason to!" the 0dd partial waves. The tensor fordg also violates
assume that th&IN force is actually due to single meson Wigner SU4),, symmetry at leading order, in all partial
exchange; in fact, thB contribution to the potential does not Waves.

correspond to single meson exchange at all, anéjtie the Nevertheless, there is reason to expect to see Wigner sym-
Nijmegen potentia| has a Gaussian propagator. The modanetry in |Ight nuclei. The nucleons inside a nucleus have low
subsumes such effects asn2exchangepm exchange, etc. Mmomentum, so the dominant interactiorsisave scattering,
within the phenomenological couplinggs. Only the pseu- With higher partial waves being kinematically suppressed.
doscalar meson Coup"ngs are related to the physica| mesoﬁ.urthermore, the tensor mean field is small in nuclei. There-
nucleon couplings, since the long distance part of k¢  fore all of the leading order violations of $4),, may be
potential is dominated by single meson exchange. Thus thexpected to be small.

agreement between Fig. 3 and the laNyeprediction (4.3) So why is SW4),, not evident in heavy nuclei? At sub-
contains more than the claim that meson-baryon couplingteading order(a relative 1N?2), the potentialsv9, Vg, VY,
obey thel,=J, rule. We take Fig. 3 to provide encouraging andV?s all break the Wigner symmetry. The mean fields of
evidence that our larghl; analysis of theNN interaction all but the spin-orbit force are small in nuclei. However, the

1, 01-0,71 7o, (5.2

which have the same value @8,1) or (1,0, i.e., they have
the same value on the entiferepresentation of SU(4y.
Thus at leading order ilN;, the central potential respects
igner SU(4)y symmetry is the two nucleons are in an even
partial wave. Violation of Wigner SU(4) from the central
potential in the even partial waves in @f(llNg) effect. The

describes the qualitative features seen in nature. importance of the spin-orbit force grows like", propor-
tional to the number of particles in the maximum angular
V. THE CENTRAL POTENTIAL AND WIGNER momentum shell. Therefore, for larde the spin-orbit force
SUPERMULTIPLET SYMMETRY is expected to overcome theNE/ suppression and destroy

the approximate Wigner supermultiplet symmetry. It may be
interesting to pursue this further, to determine at what values
of A one might expect S4),y symmetry to fail.

It was suggested in Reff7] that the approximate Wigner
supermultiplet symmetry observed in light nuclei could be
explained by the N, expansion of QCD. Under the Wigner
symmetry SW4),,, the fournucleonstatesp?, pl, nT, and
n| transform as the four-dimensional fundamental represen- VI. SUMMARY AND CONCLUSIONS

tation. Note that SU(4) is distinct from the quark model The 1N, expansion has been shown elsewhere to be a
SU(4), and that the former cannot be realized as a symmetry,seful tool in analyzing the properties of barydrtee analy-

at the quark level. Nevertheless, R¢T] argued that the  gjg presented here and in REF] shows that it also provides
1/N. expansion explains how SU(g¢)symmetry could 5 yseful tool for understanding qualitative features of the
emerge as an accidental symmetry in light nuclei. As thakyclear force. In particular, we have computed the relative
work only examined the central part of the gyengths of the various components of N interaction in

NN potential, it is worth reexamining the argument. the 1N, expansion(Table ) and argued that the predicted

_ Under SU4),, symmetry, a two-nucleon state transforms patterns are reproduced in phenomenological models of the
like 4x4=6,+10s, where the subscriptd and S denote N force(Fig. 3. We also extended the argument of R,

th_e antisymmetric and symmetric combinations. Under spifnat the approximate Wigner supermultiplet symmetry ob-
Xisospin, these representations decompose as served in light nucle{see[ 7] for examples and referengds

6—(0,)+(1,0, (5.2

10—(0,0+(1,1). 2See for examplé16,17.
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in fact understandable in terms of theNl/expansion. We TABLE Il. Summary of the operator basis for two and three
are aware of no other explanations for this peculiafg) flavors. The row 3-2 gives the operators for the case of three
symmetry. flavors classified according to their strangeness and isospin quan-

Aside from obtaining directly from QCD a qualitative ex- tum numbers.
planation for the spin, isospin, and tensor structure of the i i
NN potential, it is hoped that thed/ expansion could serve No- of flavors Spin  Flavor  Spin-flavor  All
as a guide toward better understanding the interactions of

J a ia "
baryons with strangeness, where the experimental data j S I7A ?‘i A Z\M
much poorer. To this end we have included the three flavor ‘? o Ag N A
analysis in the Appendix. Our hope is that this could prove AS=0 s I8N, GES
useful for understanding hypernuclei, as well as matter ir8—2 AS=1 K yie
extreme conditions where strangeness may play a significant AS=-1 kl {(iaT

role, such as in heavy ion collisions, or dense matter with
kaon condensatiofil8] or hyperons.

Table Il. An expansion using the operator bd#i2) gives us
ACKNOWLEDGMENTS the predictions of the N, expansion for three flavors, with-
, out assuming S(B) symmetry. One can also impose GY
We would like to thank G. Bertsch J.-L. Forest, V. Pan-symmetry, which places additional restrictions on the final

dharipande, and M. J. Savage for useful conversations. D.Kegyt. The results for two flavors are obtained by using only
was supported in part by U.S. DOE Grant No. DOE-ER-ha operators, 12, andG'2.

40561, and NSF Presidential Young Investigator Award NO.  The results of the paper can be generalized to the case of
PHY-9057135. A.M. was supported in part by U.S. Depart-iree light flavors. The analysis is more complicated because
ment of Energy Grant No. DOE-FG03-90ER40546. one also has to include operatdﬂlg, éL, Y@, andi® that
involve thes quark. We will simply give the final results
here.

The quark operator basis for three flavors is denoted by ~ 1he INc AL =0 interaction is

APPENDIX: THREE FLAVORS

j=0 Nc NN

N o A N ol Ay =S e Ag-Ap
SI:QT ?Q' 7A=QTTAQ, glA:QT ETAQ’ Nc “ Ng
(A1)

N.—1 " Y n n r

_ ' - o + > c2reN“+N32/A1 L) (g
whereQ=(u,d,s) andQ' are the creation and annihilation = ° N, \ N§
operators for the three light quark flavoiss 1,2,3 andA
=1,...,8.T% are the standard SB) matrices in the funda- The N, term violates S(B) symmetry, so its coefficient is
mental representation, normalized so tha&"®°=45"%2.  proportional to SUB) breaking in the baryon sector, which is
These one-quark operators act on a baryon state which is thigarameterized by, a dimensionless number of order 0.3. It
completely symmetric tensor produ@h spin ® flavor) of s clear from Eq(A3) that theN term violates S(B) sym-

N¢ qgarks. _ metry but respects S¥) symmetry, so that S(@) violation
It is convenient to break the operator bat#dl) for the s of ordere/N,, but SUA4) violation is of order INZ.
SU(6) generators by separating=(u,d,s) into q=(u,d) The AL=1 interaction for three flavors is

ands. Under this decompositioss’, 7*, and G break up
into linear combinations of

=1 Ng—1 S, N
= E 4 SIS\ [ Ar-Ay\
. fo'i ~ TTa i TO'iTa N‘23 =o M N¢ N¢
i _ a_ . ia_
S=q 2 @ I"=q 2@ G"=q @ N.—2 GIATA , GiATa\ [ x A \T
LS g Gy T1+G1 T [ Ar- Ay
o o o 2 N2 N2
Qi ot N — of Vie_ ot Z_na  ga_tya
S,;=s > S, Ng=s's, Y'“=s > g%, K9%=s'g?, Ne—3 &iAéJA:SjJF&iA&jA:Sj AL
(AZ) +2di 192 ¢“1 212(1‘ 2)
- . = N3 N2
and Y'3" and K*" which are the Hermitian conjugates of - N
Y'* andK®. For baryons witiN. quarks, and strangeness of < . ot Sos| (A Ay
N A - + > dye
order one,G" is of order N, Y'“ and K“ are of order S A . NZ
)/_N—c, andS,4, 12, S;, andN; are of order ong3]. Note that o
Y'* andK“ are strangeness changing operators. Ne 3 i GAGAS +GAGIASL | [ Ay Ay
The (properly normalizefl SU(6) generators \2G*, + Zo ds,e N3 N2 ’
C Cc

T7\2, andS/+/3 are collectively denoted b™. The op-
erator basis for two and three flavors are summarized in (A4)
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which is the three-flavor generalization of E®.9). Time

NUCLEON-NUCLEON POTENTIAL IN THE 1N, EXPANSION

reversal and parity invariance requires the coefficients in Eq.

(3.9 to be of the form

pin>< Pout»

times an arbitrary function aj?, k?, and @-k)2. As for the
case of two flavors, the coefficients in E&\4) are of order
1/N., so that theAL=1 amplitude is of order ug relative
to the central potential.

83
The AL=2 amplitude is
"4]-0:2 "’ ij QTQIZA Al']\z r
Ne r=0 Ne Ne

where the coefficient!! is a symmetric traceless tensor that
depends omp;, andp,. This is the three-flavor generaliza-
tion of Eq.(3.11).
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