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Nucleon-nucleon potential in the 1/Nc expansion
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The nucleon-nucleon potential is analyzed using the 1/Nc expansion of QCD. TheNN potential is shown to
have an expansion in 1/Nc

2, and the strengths of the leading order central, spin-orbit, tensor, and quadratic
spin-orbit forces~including isospin dependence! are determined. Comparison with a successful phenomeno-
logical potential~Nijmegen! shows that the large-Nc analysis explains many of the qualitative features ob-
served in the nucleon-nucleon interaction. The 1/Nc expansion implies an effective Wigner supermultiplet
symmetry for light nuclei. Results for baryons containing strange quarks are presented in an appendix.
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I. INTRODUCTION

The two-body nucleon-nucleon interaction is the basic
gredient that is used in calculating the properties of nuc
There are a number of phenomenologically successful m
els for the interaction, typically constructed using meson
change contributions. Unfortunately there is no direct c
nection between these models and the underlying theor
the strong interactions, QCD. Until recently, the only w
that QCD and the physics of nucleon interactions could
rigorously related has been through symmetry arguments
making use of symmetry and effective field theory, one c
calculate the low energy dynamics using a small numbe
parameters that are fitted to the experimental data. S
theories can be quite predictive, but still remain somew
remote from QCD—one would likea priori arguments for
the sizes of the phenomenological parameters.

Recently, there has been significant progress in better
derstanding the implications of QCD for hadronic physics
exploiting the ‘‘hidden’’ expansion parameter of QCD—
1/Nc , whereNc53 is the number of colors@1–5#. In the
largeNc limit, one finds that meson-baryon interactions r
spect an SU~4! spin-flavor symmetry—the same symmet
found in the nonrelativistic quark model@1,6#. It has also
been shown that the 1/Nc expansion can provide informatio
about the nucleon-nucleon potential@7#. In particular, Ref.
@7# analyzed the central potential forNN scattering and
showed that the 1/Nc expansion gave a qualitative unde
standing of its spin and isospin structure.

In this paper we extend the analysis of@7# to include the
entire NN potential. Naively, one might think that th
Nc→` limit is not relevant for analyzing nuclear physic
Nuclear matter forms a classical crystal atNc5`, and so
there must be a phase transition betweenNc53 and Nc
5`. While the 1/Nc expansion is not reliable for studyin
bulk properties of nuclear matter, it does allow one to a
lyze the spin and isospin dependence of the nuclear fo
One expects that the symmetry properties of theNN interac-
tion will be independent of the phase of the many bo
ground state.

The general form of the potential for elastic, nonrelativ
tic NN scattering is
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VNN5V0
01Vs

0s1•s21VLS
0 L–S1VT

0S121VQ
0Q12

1~V0
11Vs

1s1•s21VLS
1 L–S1VT

1S121VQ
1Q12!t1•t2 ,

~1.1!

where

S12[3s1• r̂s2• r̂2s1•s2 , ~1.2!

Q125
1
2 $~s1•L !,~s2•L !%.

The four termsV0
i ,Vs

i constitute the central potential, whil
VT
i , VLS

i , andVQ
i are the tensor interaction, the spin-orb

interaction, and the quadratic spin-orbit interaction, resp
tively; the ten functionsVa

i can in general be velocity depen
dent. The main result of this paper is that the strength of
ten functionsVa

i can be determined in the 1/Nc expansion,
and are as given in Table I. As is apparent from this tab
the actual expansion parameter is not 1/Nc but 1/Nc

2. Thus
even though the actual valueNc53 is not very large, an
expansion in 1/Nc

2 can be quite predictive.
The organization of this paper is as follows. In Sec. II w

briefly review general properties of baryons in the largeNc
limit. In Sec. III we derive the results given in Table I. The
results are compared in Sec. IV with the ‘‘Nijmegen pote
tial’’ of Refs. @8,9#—a phenomenologically successful mod
of theNN interaction; we show that the hierarchy of Table
is evident inNN phenomenology. Section V extends the d
cussion of Ref.@7# concerning how the Wigner supermultip
let symmetry might arise in light nuclei as a consequence
the 1/Nc expansion. This is followed by conclusions, and
appendix in which we extend our analysis to hyperon int
actions~i.e., including thes quark!.

TABLE I. 1/Nc counting rules for the different terms in th
nucleon-nucleon potential.

Isospin V0 Vs VLS VT VQ

1•1 Nc 1/Nc 1/Nc 1/Nc 1/Nc
3

t1•t2 1/Nc Nc 1/Nc Nc 1/Nc
76 © 1997 The American Physical Society
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II. THE LARGE Nc QCD ANALYSIS

The largeNc limit is defined by taking the number o
colorsNc of QCD to be large while simultaneously rescalin
the QCD couplings asg→g/ANc, keepingLQCD fixed @10#.
The 1/Nc expansion has proven to be a powerful tool f
analyzing baryon properties, since baryon structure sim
fies considerably in this limit. Antiquarks in the baryon a
suppressed, and as baryons consist ofNc quarks interacting
with 1/Nc strength, the Hartree approximation becomes ex
in the largeNc limit @11#. Although one cannot solve th
Hartree equations due to the nonlinearity of glue interactio
one can nevertheless determine a number of useful prope
of the spin and flavor properties of the baryons and th
interactions.

To analyze the flavor and spin structure of the Hart
Hamiltonian in the case of two light flavors, it is convenie
to use as an operator basis the one-quark operators o
quark model

Ŝi5q†
s i

2
q, Î a5q†

ta

2
q, Ĝia5q†

s ita

4
q, ~2.1!

whereq5(u,d) andq† are the creation and annihilation op
erators for theu andd quark flavors, ands i ,ta are the stan-
dard SU~2! Pauli matrices acting on spin and isospin, resp
tively. The q and q† operators do not carry color, and a
bosonic. The Hartree Hamiltonian can then be constructe
monomials of these operators. An important result from la
Nc QCD is that the Hartree Hamiltonian takes the fo
@3–5#

H5Nc(
n

(
s,t

vstnS Ŝ

Nc
D sS Î

Nc
D tS Ĝ

Nc
D n2s2t

, ~2.2!

where the operators$Ŝ, Î ,Ĝ% are given in Eq.~2.1!, the co-
efficientsv areO(1) functions of momenta, and we hav
suppressed isospin, spin, and vector indices which are
tracted such thatH is rotation and isospin invariant. An ex
ample of a contribution toH is pictured in Fig. 1. It is im-
portant that although we make use of the quark mo
operator basis, Eq.~2.2! makes no assumption about the v
lidity of the quark model; the quark model operators are
representation of the spin-flavor Clebsch-Gordon coe

FIG. 1. A QCD contribution toH leading in 1/Nc . This diagram
can be described in spin-flavor space as a product of three o
one-quark operators given in Eq.~2.1!.
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cients, and provide an efficient way of doing group theo
computations. A Skyrme model basis, for example, wo
have worked just as well@12#.

The lowest lying eigenstates ofH with baryon number
B51 have isospin I and spin S satisfying I5S
5 1

2 ,
3
2 ,

5
2 , . . . . The first two states can be identified with th

N andn; the higher spin states do not exist forNc53. To
leading order, this baryon tower is degenerate with massM
;Nc . One can show that it transforms as an irreduci
representation~the totally symmetricNc-index tensor! of an
approximate SU~4! spin-flavor symmetry; this is the symme
try under which the quark operatorsu↑, u↓, d↑ , d↓ trans-
form as the four-dimensional fundamental representa
@1,6#. ForNc53 the$N,n% spin states transform as the 2
dimensional representation of SU~4!, familiar from the quark
model.

Additional information can be obtained by considerin
matrix elements of operators between baryon statesB and
B8 restricted to haveS5I;1. For example, matrix element
of the basis operators~2.1! satisfy

^B8uŜ/NcuB&;^B8u Î /NcuB&;1/Nc , ^B8uĜ/NcuB&;1.
~2.3!

Matrix elements of many body operators can be analyzed
well, using various relations among powers of the basic
eratorsŜi , Î a, andĜia @1,3#. This allows one to greatly re
duce the number of linearly independent terms in Eq.~2.2! at
a given order in 1/Nc . Using these techniques, one is able
show that the matrix element of a generaln-quark operator
ÔI ,S
(n) with B50, isospinI and spinS, is of size@3# ~see also

@7# for a derivation!

^B8uÔI ,S
~n!/Nc

nuB&&1/Nc
uI2Su. ~2.4!

The fact that the operators with the largest matrix eleme
haveI5S was first observed in the Skyrme model@13#, and
is known as the ‘‘I t5Jt rule.’’

Equations~2.2!–~2.4! are the central results behind th
largeNc analysis of baryons. One consequence is that
mass splittings in the baryon tower~e.g., betweenN andD!
are of size 1/Nc @2,11#. This result is in good agreement wit
the real world where the ratioR[(MD2MN)/(MD1MN)
50.13, while the largeNc prediction atNc53 is R;1/Nc

2

50.11. Consequences of Eq.~2.3! for theNN interaction are
explored in the next section.

III. THE NUCLEON-NUCLEON INTERACTION

There are two independent three-momenta for bary
baryon scattering in the center-of-mass frame, which
conveniently be taken to be

q5pin2pout, k5pin1pout. ~3.1!

These momenta are to be considered independent ofNc in
the 1/Nc expansion. To leading order in 1/Nc , the entire
baryon tower is degenerate andupinu5upoutu for elastic scat-
tering, up toO(1/Nc

2) corrections, and soq•k50 to the same
order. The general baryon-baryon interaction potential
then a matrix

he
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V~q,k!5^pout,g;2pout,duHupin ,a;2pin ,b&, ~3.2!

whereH is the Hartree Hamiltonian~2.2! anda,...,b denote
internal quantum numbers of the baryons, such as spin,
vor, and particle type~e.g.,N or D!. Throughout this pape
we will define theNN potential as the above matrix eleme
restricted to the space of nucleons. We do not consider
ond order effects due to virtualD’s, etc.

There are two ways that 1/Nc factors can suppress term
in the potential. The first arises from spin-flavor structu
and the powers of 1/Nc in Eq. ~2.3!. The second source o
suppression arises in velocity dependent interactions ari
as relativistic corrections. Since the nucleon velocity equ
p/M;1/Nc , each power of velocity is equivalent to a 1/Nc
suppression. In the nonrelativistic limit for baryons,
t-channel meson exchange contribution toV is only a func-
tion of q. A u-channel contribution is only a function ofk,
and can be expressed as an exchange potential. Relati
corrections allow a single meson exchange contribution
V to be a function of bothq andk. Meson exchange in the
t-channel is then a function ofq andk/M, with each power
of k being accompanied by one factor ofM . Similarly,
u-channel meson exchange is a function ofk andq/M . This
shows that if a general velocity dependent potential is
panded in a Taylor series ink and q, a term of the form
qrks is suppressed by

1/Nc
n , n5min~r ,s!. ~3.3!

Combining this source of 1/Nc suppression with Eq.~2.3!
will allow us to determine the size and spin-flavor structu
of the dominant terms in the potentialV.

An NN interaction at the QCD level gets contribution
from complicated processes, such as pictured in Fig. 2. E
of these contributions can be expressed as a tensor fun
v(q,k) contracted with one-quark operatorsŜi , Î a, andĜia

which act on either of the two nucleon states. The coeffici
function vstn in Eq. ~2.2! and the operatorsŜi andĜia must
combine to be invariant under rotations. Our analysis is s
plified by first expandingvstn ~and henceV! in multipole

FIG. 2. An example of a contribution to theNN interaction at
the level of quarks and gluons. This diagram can be describe
spin-flavor space as a single one-quark operator acting on the
baryonN1 , and two one-quark operators acting on theN2 line.
Nothing physical depends on how one assigns the final quark l
to N1 or N2 , so long as one considers all possible interactions.
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moments; the following subsections are organized acco
ingly asDL50 ~the central force!, DL51 ~spin-orbit force!,
andDL52 ~the tensor and quadratic spin-orbit forces!.

A. DL50: The central potential

This is the case analyzed in Ref.@7#. The central force can
be written as a sum of products of one-quark operators a
Eq. ~2.2!, where the operators act on either theN1 or N2
nucleon states, and the coefficientsvstn are general scala
functions of uqu and uku. It follows from Eq. ~2.3! that the
leading contribution will have noŜi /Nc or Î

a/Nc operators,
since each of these implies a 1/Nc suppression; instead it wil
consist solely of powers ofĜia/Nc . By rotational symmetry,
since thev coefficients are scalars, theĜia operators must be
contracted to form spin invariants. Similarly, isospin symm
try implies that theĜia must be contracted to form isospi
invariants. From these constraints, it is possible to show
at leading order in 1/Nc , the most general form for the cen
tral potential is@7#

Vcentral5Nc(
n50

Nc

vnS Ĝ1•Ĝ2

Nc
2 D n, ~3.4!

where Ĝ1•Ĝ2ÓĜ1
iaĜ2

ia . In general, the coefficientsvn are
functions of bothuqu2, uku2, and obey the rule Eq.~3.3!. One
can further restrict the powers ofĜ1•Ĝ2 in Eq. ~3.4! to be
completely symmetric in theĜ1 indices, and in theĜ2 indi-
ces, before the two sets of indices are contracted.

It is straightforward to verify that Eq.~3.4! is the most
general form of the leading orderDL50 potential. We have
argued that it can only involve powers of theĜia operators,
on the basis of Eq.~2.3!; what must be shown is that th
indices are contracted as above in Eq.~3.4!. By the operator
reduction rule @3# any terms in which two indices o
ĜiaĜjb ~where bothĜ’s act on the same baryon! are con-
tracted with each other byd i j , dab, e i jk , or eabc can be
eliminated in favor of terms with fewer powers ofĜ. Thus
the only allowed invariants are obtained by contracting
indices ofĜ1

ia with those ofĜ2
ia , as in Eq.~3.4!. More com-

plicated contractions, such as

Ĝ1
iaĜ1

jbĜ2
ibĜ2

ja , ~3.5!

can be written as

~Ĝ1•Ĝ2!
21Ĝia

1 Ĝ1
jb@Ĝ2

ibĜ2
ja2Ĝ2

iaĜ2
jb#

5~Ĝ1•Ĝ2!
22eabcĜ1

iaĜ1
jbeghcĜ2

igĜ2
jh . ~3.6!

The term with twoe symbols can be reduced toĜ1•G# 2 using
the relation in@3#, so that all contractions ofĜ1 with Ĝ2 can
be written as powers ofĜ1•Ĝ2 . One can also restrict the
indices on powers ofĜ1 and Ĝ2 to be completely symme
trized, since terms antisymmetric in the indices can be eli
nated using the operator identities. The series inĜ1•Ĝ2 ter-
minates afterNc terms, because an operator with more th
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Nc quark fields acting on a single baryon can be reexpres
in terms of operators with<Nc quark fields.

1

There are no 1/Nc corrections to Eq.~3.4!, except through
1/Nc dependence in the unknown coefficientsvn . All terms
in the 1/Nc correction to Eq.~3.4! are arbitrary polynomials
in G1,2

ia , with one factor ofS1,2
i or I 1,2

a . It is easy to check tha
all such terms have the wrong time-reversal properties
contribute to the baryon-baryon potential. Thus the first c
rection to Eq.~3.4! contains a factor ofŜ1•Ŝ2 or Î 1• Î 2 and is
of order 1/Nc

2.
Equations~2.2!, ~2.4!, and~1.1! define theNc counting for

the central potential. LargeNc QCD implies that the centra
potential is of orderNc , but is determined by only two in
dependent functions instead of four~at leading order in
1/Nc):

V0
0~r !;Nc , Vs

1~r !;Nc , ~3.7!

while

Vs
0~r !;1/Nc , Vs

1~r !;1/Nc . ~3.8!

As was noted in@7# and will be discussed in Sec. V, th
above relation implies that the central potential obeys
effective Wigner supermultiplet symmetry.

B. DL51: The spin-orbit potential

The DL51 baryon interaction amplitude contains th
spin-orbit coupling term; it is obtained from the general H
tree Hamiltonian Eq.~2.2! by restricting attention to term
for which the coefficientv transforms as a vector under ro
tations. It follows that the one-quark operators multiplyi
the v coefficients must be combined to transform as a~1,0!
representation under SU~2!spin3SU~2!isospin. From Eq.~2.3!
we have seen that to contribute at leading order in 1/Nc , an
n-quark operator must be a polynomial in theĜ’s alone.
However, one cannot make a~1,0! operator with the correc
parity and time reversal properties purely out ofĜ’s. The
spin-orbit force is suppressed relative to the central for
and is an arbitrary polynomial inĜ’s, with one factor ofŜor
Î . The general form of theDL51 amplitude is

VLS5Nc (
n50

Nc21

v1,n
i S Ŝ1i 1Ŝ2

i

Nc
D S Ĝ1•Ĝ2

Nc
2 D n

1Nc (
n50

Nc22

v2,n
i S Ĝ2

iaÎ 1
a1Ĝ1

iaÎ 2
a

Nc
2 D S Ĝ1•Ĝ2

Nc
2 D n

1Nc (
n50

Nc23

v3,n
i S Ĝ1

iaĜ2
jaŜ1

j 1Ĝ2
iaĜ1

jaŜ2
j

Nc
3 D S Ĝ1•Ĝ2

Nc
2 D n.

~3.9!

1An easy way to see this is to normal order the operators
normal ordered product involving with more thanNc quark opera-
tors on a baryon vanishes, which gives the desired identity.
ed

to
r-

n

-

e,

This can be derived by arguments similar to those in
previous subsection. Time reversal and parity invariance
quires the coefficientsvm,n

i in Eq. ~3.9! to be proportional to
(q3k) times an arbitrary function ofq2 andk2. In position
space, a contribution of the formU(q2)(q3k)•(S11S2) is
of the form @“U(r )3k#•S, which is the usual spin-orbi
force. There is a hidden suppressing factor of 1/Nc @which
follows from Eq. ~3.3!# in the spin-orbit force which is no
manifest in Eq.~3.9!, since theDL51 interaction necessar
ily involves bothq andk.

The Wigner-Eckart theorem implies that there are o
two distinct operators when the expression~3.9! for theDL
51 amplitude is restricted to the nucleon sector. These
the two spin-orbit terms appearing in Eq.~1.1!. Thus we find

VLS
0 ~r !;1/Nc , VLS

1 ~r !;1/Nc . ~3.10!

The spin-orbit force isO(1/Nc
2) in strength relative to the

central force, and it is of comparable strength in the t
isospin channels.

C. DL52: The tensor and quadratic spin-orbit potentials

The DL52 amplitude is obtained by requiring that th
coefficientsv in Eq. ~2.2! transform under rotations asDL
52. The leading order amplitude is a polynomial in th
Ĝ’s that transforms asS52, I50. One can obtain an ampli
tude that does not violate theI t5Jt rule on each baryon line
by combiningI5S51 amplitudes on each baryon into tot
I50 and totalDL52. The general form of the leading orde
amplitude is

VT
15Nc (

n50

Nc21

vn
i j
Ĝ1
iaĜ2

ja

Nc
2 S Ĝ1•Ĝ2

Nc
2 D n, ~3.11!

where the coefficientvn
i j is a symmetric traceless tensor th

depends onq and k. Time reversal invariance requires th
coefficients to have the form

vn3~qiqj2 1
3q

2d i j or k ik j2 1
3k

2d i j ! ,

wherevn is a scalar function ofq2, k2, and (q•k)2.
If one restricts the interaction Eq.~3.11! to the nucleon

sector, one gets

VT
15Ncvnt1•t2~q•s1q•s22

1
3q

2s1•s2! . ~3.12!

Terms withn.1 in Eq. ~3.11! can be dropped, because tw
spin-1/2 nucleons can only give nonzero matrix elements
operators with spin<1. Comparing with Eq.~1.1!, we see
that

VT
1;Nc . ~3.13!

The other term in the tensor potential,VT
0, hasuI2Su51 at

each nucleon line, and so by Eq.~2.4!

VT
0;1/Nc . ~3.14!

A
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A similar and straightforward analysis forVQ gives the re-
sults listed in Table I.

D. The NN potential and the D

One flaw in our discussion that should be eventually i
proved upon is the treatment of theD. The Hartree Hamil-
tonian ~2.2! implicitly acts on the entireI5S baryon tower,
including both nucleons andD’s, all of which are degenerat
in the Nc→` limit. In our discussion of theNN potential,
we have simply projectedH to the nucleon sector. A mor
sophisticated treatment would be to integrate theD’s out of
the theory~keeping track of the 1/Nc mass splitting! and to
construct an effective theory for nucleons alone. This i
subtle analysis~see, for example,@14#! and beyond the scop
of this paper.

IV. COMPARISON OF LARGE Nc QCD WITH A
PHENOMENOLOGICALLY SUCCESSFUL MODEL

Our large-Nc results for the general nucleon-nucleon p
tential of Eq.~1.1! are displayed in Table I. For two flavor
we have found that the strongestNN interactions are the
central force termsV0 andVs

t , as well as the tensor forc
VT

t , all three of which are;Nc . The remaining contribu-
tions to theNN potential, with the exception ofVQ , are
relatively suppressed by;O(1/Nc

2). Finally, the isospin in-
variant quadratic spin-orbit forceVQ is suppressed by
;O(1/Nc

4) compared to the central potential, as it is both
IÞS interaction, as well as being a second order relativis
effect suppressed by 1/M2. The results we have derived a
consistent with theI t5Jt rule, but are more general. The
are true in QCD in the 1/Nc expansion, and make no assum
tions about the origin of theNN interaction as being, for
example, due to the one meson exchange.

The results can be directly compared with nuclear pot
tial models in momentum space. A particularly simple ph
nomenological model to compare with is the meson
change model ‘‘Nijmegen potential’’ of Refs.@8,9#. In this
model, theNN potential is approximated in momentu
space by a sum of Yukawa and Gaussian interactions ti
powers of momenta divided by masses, contracted with
spin and isospin Pauli matrices. The Yukawa potentials c
respond to one-particle exchange of both real mes
(p,h,h8,r,v,f,a0 , f 0 ,e), while the Gaussian potentials a
labelled byP, f 2 , f 28 , anda2 . The motivation for this form
of the potential is unimportant here; it provides a pheno
enologically successful parametrization for theNN potential
that can be compared with Table I. TheNc dependence
should appear in the relative strengths of the potentials,
the 1/M factors that appear when the potential is deco
posed as in Eq.~1.1!. The strength of the contributions to th
Nijmegen potential are simple to evaluate, since they
presented explicitly in momentum space, and we can trea
momenta and meson masses as;1 in the 1/Nc expansion.
TheNc dependence must then reside in the strengths of
couplings used in the Nijmegen potential, as well as the
plicit factors of the nucleon mass that appear in the formu
of Ref. @8#. One finds for the strength of the various terms
the potential
-

a

-

n
c

-

-
-
-

es
e
r-
s

-

nd
-

re
all

e
x-
s

V0
I ;gI0

2 ,
gI0gI1L

M
,
gI1
2 L2

M2
,

Vs
I ;VT

I ;
gI0
2

M2
,
gI0gI1
LM

,
gI1
2

L2
, ~4.1!

VLS
I ;

gI0
2

M2
,
gI0gI1
LM

,

VQ
I ;

gI0
2

M4
,
gI0gI1

LM3
,
gI1
2

L2M2
,

whereI50,1 correspond to the 131 andt1•t2 isospin struc-
tures, respectively,M is the nucleon mass, andL is a strong
interaction scale characterizing the derivative expansion~de-
notedM in @8#!. The parametersgIS correspond to the cou
pling constants of the model witht-channel~isospin, spin!5
(I ,S), in the nonrelativistic limit; in particular, the scala
couplinggS and vector couplingsgV and f V of Ref. @8# are
given by gI0 , gI0 , and gI1 , respectively, whereI is the
meson isospin.~The pseudoscalar contributions are para
etrized differently in@8# and are mentioned below.! As far as
theNc scaling goes,M;Nc , while theL and the masses o
the exchange mesons are all;1. In Eq.~4.1! we have omit-
ted dimensionful quantities that do not scale withNc , such
as the meson propagators 1/(q21m2). By comparing the
expressions in Eq.~4.1! with our results in Table I, one see
that they are consistent provided that the couplingsgIS scale
with Nc as

gIS}Nc
~1/22uI2Su! . ~4.2!

This Nc scaling can be compared with the numerical valu
given in Ref. @9#. In Fig. 3 we have plotted the coupling
determined numerically in Ref.@9#, rescaled by their value
for f r . Sincef r is ag11 coupling, Eq.~4.2! implies that the
leading large-Nc prediction for the ratio is

FIG. 3. The couplings for the NijmegenNN potential in Ref.@9#
rescaled byf r . The values for this ratio predicted by largeNc QCD
in Eq. ~4.3! are indicated by lines, and the shaded regions are
size of the expectedO(1/Nc) corrections to the leading result. Th
five regions in the plot~separated by vertical dashed lines! are
~from left to right! the (I ,S)5(0,0),(1,1),(1,0),(0,1), andgf cou-
plings.
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ĝIS[
gIS

f r

5H 1, if uI2Su50,

1
3 , if uI2Su51.

~4.3!

As can be seen from Fig. 3, there is good qualitat
agreement between the large-Nc prediction ~4.3!, and the
gIS values used in the Nijmegen potential. Omitted from F
3 are the pseudoscalar couplings, which are not readily c
pared with heavy meson couplings, due to their special st
as pseudo-Goldstone bosons. However, the pseudoscala
son couplings are related to the axial current couplin
which have been analyzed in detail, and shown to agree
1/Nc predictions @15#. There are two couplings in th
Nijmegen potential, thef anda2 coupling, that deviate sig
nificantly from the 1/Nc pattern. Thef meson is a pures̄s
state, and only couples to the nucleons through quark lo
Its coupling is OZI suppressed, and should be of or
1/Nc relative to thev couplings. The Nijmegen fits ha
gf /gv'0.1, which is a factor of 3 smaller than the nai
1/Nc prediction. Thea2 coupling is even somewhat smalle

It must be stressed that the numerical parameters plo
in Fig. 3 were obtained by treating the couplings as pheno
enological parameters in theNN potential, chosen to provide
the best fit toNN scattering data. There is no reason
assume that theNN force is actually due to single meso
exchange; in fact, theP contribution to the potential does no
correspond to single meson exchange at all, and thea2 in the
Nijmegen potential has a Gaussian propagator. The m
subsumes such effects as 2-p exchange,rp exchange, etc
within the phenomenological couplingsgIS . Only the pseu-
doscalar meson couplings are related to the physical me
nucleon couplings, since the long distance part of theNN
potential is dominated by single meson exchange. Thus
agreement between Fig. 3 and the large-Nc prediction~4.3!
contains more than the claim that meson-baryon coupli
obey theI t5Jt rule. We take Fig. 3 to provide encouragin
evidence that our large-Nc analysis of theNN interaction
describes the qualitative features seen in nature.

V. THE CENTRAL POTENTIAL AND WIGNER
SUPERMULTIPLET SYMMETRY

It was suggested in Ref.@7# that the approximate Wigne
supermultiplet symmetry observed in light nuclei could
explained by the 1/Nc expansion of QCD. Under the Wigne
symmetry SU~4!w , the fournucleonstatesp↑, p↓, n↑, and
n↓ transform as the four-dimensional fundamental repres
tation. Note that SU(4)w is distinct from the quark mode
SU~4!, and that the former cannot be realized as a symm
at the quark level. Nevertheless, Ref.@7# argued that the
1/Nc expansion explains how SU(4)w symmetry could
emerge as an accidental symmetry in light nuclei. As t
work only examined the central part of th
NN potential, it is worth reexamining the argument.

Under SU~4!w symmetry, a two-nucleon state transform
like 43456A110S , where the subscriptsA and S denote
the antisymmetric and symmetric combinations. Under s
3isospin, these representations decompose as

6→~0,1!1~1,0!, ~5.1!

10→~0,0!1~1,1!.
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If the two nucleons are in an even partial wave, they must
in a totally antisymmetric spin̂isospin state, so they are in
~0,1! or ~1,0! state, i.e., in6A of SU(4)W . If the two nucleons
are in an odd partial wave, they must be in a totally symm
ric spin̂ isospin state, so they are in a~0,0! or ~1,1! state,
i.e., in 10S of SU(4)W .

We have shown in Sec. III that the leading contributio
to theNN potential~at strengthNc) areV0

0, Vs
1, andVT

1. The
first two terms correspond to the operators

1, s1•s2t1•t2 , ~5.2!

which have the same value on~0,1! or ~1,0!, i.e., they have
the same value on the entire6 representation of SU(4)W .
Thus at leading order inNc , the central potential respect
Wigner SU(4)W symmetry is the two nucleons are in an ev
partial wave. Violation of Wigner SU(4)W from the central
potential in the even partial waves in anO(1/Nc

2) effect. The
operators Eq.~5.2! have different values on the~0,0! and
~1,1! representations, and so break SU~4!W symmetry when
acting on the10 representation of SU~4!W . Thus the central
potential breaks Wigner SU~4!W symmetry at leading orde
in the odd partial waves. The tensor forceV

T
also violates

Wigner SU~4!W symmetry at leading order, in all partia
waves.

Nevertheless, there is reason to expect to see Wigner s
metry in light nuclei. The nucleons inside a nucleus have l
momentum, so the dominant interaction iss-wave scattering,
with higher partial waves being kinematically suppress
Furthermore, the tensor mean field is small in nuclei. The
fore all of the leading order violations of SU~4!W may be
expected to be small.

So why is SU~4!W not evident in heavy nuclei? At sub
leading order~a relative 1/Nc

2), the potentialsVs
0, V0

1, VT
0,

andVLS
0,1 all break the Wigner symmetry. The mean fields

all but the spin-orbit force are small in nuclei. However, t
importance of the spin-orbit force grows likeA1/3, propor-
tional to the number of particles in the maximum angu
momentum shell. Therefore, for largeA, the spin-orbit force
is expected to overcome the 1/Nc

2 suppression and destro
the approximate Wigner supermultiplet symmetry. It may
interesting to pursue this further, to determine at what val
of A one might expect SU~4!W symmetry to fail.

VI. SUMMARY AND CONCLUSIONS

The 1/Nc expansion has been shown elsewhere to b
useful tool in analyzing the properties of baryons;2 the analy-
sis presented here and in Ref.@7# shows that it also provides
a useful tool for understanding qualitative features of
nuclear force. In particular, we have computed the relat
strengths of the various components of theNN interaction in
the 1/Nc expansion~Table I! and argued that the predicte
patterns are reproduced in phenomenological models of
NN force~Fig. 3!. We also extended the argument of Ref.@7#
that the approximate Wigner supermultiplet symmetry o
served in light nuclei~see@7# for examples and references! is

2See for example@16,17#.
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82 56DAVID B. KAPLAN AND ANEESH V. MANOHAR
in fact understandable in terms of the 1/Nc expansion. We
are aware of no other explanations for this peculiar SU~4!W
symmetry.

Aside from obtaining directly from QCD a qualitative ex
planation for the spin, isospin, and tensor structure of
NN potential, it is hoped that the 1/Nc expansion could serve
as a guide toward better understanding the interaction
baryons with strangeness, where the experimental dat
much poorer. To this end we have included the three fla
analysis in the Appendix. Our hope is that this could pro
useful for understanding hypernuclei, as well as matter
extreme conditions where strangeness may play a signifi
role, such as in heavy ion collisions, or dense matter w
kaon condensation@18# or hyperons.
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APPENDIX: THREE FLAVORS

The quark operator basis for three flavors is denoted

Ŝi5Q†
s i

2
Q, T̂A5Q†TAQ, ĜiA5Q†

s i

2
TAQ,

~A1!

whereQ5(u,d,s) andQ† are the creation and annihilatio
operators for the three light quark flavors,i51,2,3 andA
51,...,8. Ta are the standard SU~3! matrices in the funda-
mental representation, normalized so that trTATB5dAB/2.
These one-quark operators act on a baryon state which i
completely symmetric tensor product~in spin ^ flavor! of
Nc quarks.

It is convenient to break the operator basis~A1! for the
SU~6! generators by separatingQ5(u,d,s) into q5(u,d)
and s. Under this decompositionSi , T̂A, and Ĝia break up
into linear combinations of

Ŝi5q†
s i

2
q, Î a5q†

ta

2
q, Ĝia5q†

s ita

4
q,

Ŝs
i 5s†

s i

2
s, N̂s5s†s, Ŷia5s†

s i

2
qa, K̂a5s†qa,

~A2!

and Ŷia† and K̂a† which are the Hermitian conjugates o
Yia andKa. For baryons withNc quarks, and strangeness
order one,Ĝia is of order Nc, Ŷ

ia and K̂a are of order
ANc, andŜud

i , Î a, Ŝs
i , andN̂s are of order one@3#. Note that

Ŷia and K̂a are strangeness changing operators.
The ~properly normalized! SU~6! generatorsA2ĜiA,

T̂A/A2, andŜi /A3 are collectively denoted byL̂M. The op-
erator basis for two and three flavors are summarized
e

of
is
r
e
n
nt
h

-
K.
-
.
-

the

in

Table II. An expansion using the operator basis~A2! gives us
the predictions of the 1/Nc expansion for three flavors, with
out assuming SU~3! symmetry. One can also impose SU~3!
symmetry, which places additional restrictions on the fin
result. The results for two flavors are obtained by using o
the operatorsSi , I a, andGia.

The results of the paper can be generalized to the cas
three light flavors. The analysis is more complicated beca
one also has to include operatorsN̂s , Ŝs

i , Ŷia, and t̂a that
involve the s quark. We will simply give the final results
here.

The 1/Nc DL50 interaction is

A1
j50

Nc

5(
r50

Nc

c1 ,r S L̂1•L̂2

Nc
2 D r

1 (
r50

Nc21

c2,re
N̂s11N̂s2

Nc
S L̂1•L̂2

Nc
2 D r . ~A3!

The Nc term violates SU~3! symmetry, so its coefficient is
proportional to SU~3! breaking in the baryon sector, which
parameterized bye, a dimensionless number of order 0.3.
is clear from Eq.~A3! that theNs term violates SU~6! sym-
metry but respects SU~4! symmetry, so that SU~6! violation
is of ordere/Nc , but SU~4! violation is of order 1/Nc

2.
TheDL51 interaction for three flavors is

Aj51

Nc
2 5 (

r50

Nc21

d1,r
i S Ŝ1i 1Ŝ2i

Nc
D S L̂1•L̂2

Nc
D r

1 (
r50

Nc22

d2,r
i S Ĝ2iAT̂1A1Ĝ1iAT̂2a

Nc
2 D S L̂1•L̂2

Nc
2 D r

1 (
r50

Nc23

d3,r
i S Ĝ1iAĜ2jAŜ1j 1Ĝ2iAĜ1jAŜ2j

Nc
3 D S L̂1•L̂2

Nc
2 D r

1 (
r50

Nc21

d4,r
i eS Ŝ1si 1Ŝ2s

i

Nc
D S L̂1•L̂2

Nc
2 D r

1 (
r50

Nc23

d5,r
i eS Ĝ1iAĜ2jAŜ1sj 1Ĝ2iAĜ1jAŜ2sj

Nc
3 D S L̂1•L̂2

Nc
2 D r ,

~A4!

TABLE II. Summary of the operator basis for two and thre
flavors. The row 3→2 gives the operators for the case of thr
flavors classified according to their strangeness and isospin q
tum numbers.

No. of flavors Spin Flavor Spin-flavor All

2 Ŝi Î a Ĝia l̂m

3 Ŝi T̂A ĜiA L̂M

DS50 Ŝi Î a,N̂s Ĝia,Ŝs
i

3→2 DS51 K̂a Ŷia

DS521 K̂a
† Ŷa

i†
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which is the three-flavor generalization of Eq.~3.9!. Time
reversal and parity invariance requires the coefficients in
~3.9! to be of the form

pin3pout,

times an arbitrary function ofq2, k2, and (q•k)2. As for the
case of two flavors, the coefficients in Eq.~A4! are of order
1/Nc , so that theDL51 amplitude is of order 1/Nc

2 relative
to the central potential.
D

. J
q.
TheDL52 amplitude is

A0
j52

Nc

5 (
r50

Nc22

br
i j
Ĝ1iAĜ2jA

Nc
2 S L̂1•L̂2

Nc
2 D r , ~A5!

where the coefficientf r
i j is a symmetric traceless tensor th

depends onpin andpout. This is the three-flavor generaliza
tion of Eq. ~3.11!.
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