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In this paper we review the present status of #fdNN-NNN problem. In particular, we reconsider the
chain-labeled approach recently proposed by us, and identify a class of graphs, previously overlooked, which
prevents the kernel of the correspondiftfl NN-NNN equations from being connected. We propose some
approximate schemes, yielding connected-kernel equations. A generalization of the residue method allows us
to relate the transition amplitudes for the coupleNNN-NNN system to the chain-labeled formalism. The
quasiparticle approach is extended to the present situation, where emission/absorption of particles is allowed.
The open problems for theNNN-NNN system in light of the present and of previous approaches are finally
discussed[S0556-28137)03008-3

PACS numbeis): 21.45+v, 11.80.Jy, 13.75.Gx, and 25.8Gk

[. INTRODUCTION can be restored with two iterations of the kernel if the cou-
pling between therNNN andNNN sectors is switched off
In two previous paper$l,2] we have outlined an ap- in the 2+2 partitions, whereas it is treated exactly in the
proach to therNNN-NNN problem, which can be regarded 7NN subsystems. As a matter of fact, connectedness is guar-
as the natural extension of the Grassberger-SandB&  anteed also when production/absorption processes are al-
n-body method3,4] to situations in which the number of lowed in 2+ 2 partitions, provided that the exact subsystem
particles is no longer conserved. As is well known, the GSamplitudes are projected in the sat&N NN sector.
formalism represents a basic achievement in modern The second problem we analyze in detail is the problem
n-body scattering theory. It casts in a physically transparentvith the identification of certain physical transition ampli-
form the connected-kernel YakubovskiY) schemel[5], tudes which refer to the nucleon-deuteron channel. The am-
which enjoys the distinctive feature of being completely freebiguities in the definition of these amplitudes are originated
from nonphysical solutions. Indeed, not only does it guaranby the delicate interplay between the-2 and 3+ 1 parti-
tee that the Fredholm alternative holds, so that nonphysicalons, and are closely related with the connectedness prob-
solutions do not contaminate the physical one in the scattetem. Indeed, with the same approximation scheme we restore
ing region, but it also satisfies a constrained Fredholm alterthe connectedness in our equations and solve these amplitude
native[6]; the nontrivial solutions of the associated homoge-ambiguities.
neous equations are in one-to-one correspondence with the The extension of the GS approach to thi NN system is
bound states of the total system. Most of the connectedbriefly illustrated in Sec. Il. Starting from the transition am-
kerneln-body equations proposed in the literature satisfy theplitudes for 4—4 processes, one first extracts operators re-
former condition, but fail in guaranteeing the latter. ferring to three-cluster three-cluster transitions, which sat-
The extension of the GS formalism considers scatteringsfy dynamical equations formally identical to the Afnan-
and pion production/absorption processes on equal footinglankleider (AB) equations for therNN-NN system[14—
thus providing a coupled treatment of all the relevant pro-16]. By resorting to the powerful GS matrix technique, the
cesses in the same dynamically consistent framework. Thivo-cluster partitions are introduced into the theory, and one
7r production introduces radical changes in the structure ofets at the end dynamical equations quite similar in structure
the dynamical equations and gives rise to challenges anib the GS four-body equations. The presence of emission/
problems which were not possible in standarbody theo-  absorption processes, however, implies some noticeable dif-
ries. ferences, when these equations are analyzed in detail. The
On a fundamental level, there is the problem with nucleorchain-of-partition labeling, characterizing the YGS approach,
renormalization, which is unavoidable in theories where thés now more complex, since one has to regard nucleon pairs
Fock space is truncated to states with at most one pion. Thigoth as three-cluster partitions in thReNNN sector, and as
problem is well acknowledged in the literature-13], and  two-cluster partitions in th&lNN space. As a consequence,
herein is not discussed. one deals with a set of 24 coupled equations, in place of the
The first problem considered in this paper concerns thd8 characterizing the standard YGS scheme.
connectedness of theNNN integral equations, and we ar- In Sec. Il we establish the relation between the employed
rive at the conclusion that, contrary to our previous beliefoperators, labeled by chains of partitions, and the physical
[2], these equations are not connected. In this paper we ideamplitudes connecting the various partitions of the system.
tify a class of graphs, previously overlooked, which preventsAs is well-known in nonrelativistic scattering theory, the
the kernel from being connected. We show that the problenphysical transition amplitudes can be identified by exhibiting
arises when the-81 [ (#NN)N] and 2+2[(NN)(#N)] par-  the momentum-space singular terms of the total Green func-
titions are treated on equal footing, and that connectedneg®n, in correspondence to the bound states of the various
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subsystem$6,17,1§. This procedure, which has its relativ- input for connected-kernel equations yielding the physical
istic counterpart in reduction formulas of quantum field transition operators. As a consequence, the actual transition
theory[19], is often referred to as the residue methi6d 4. amplitudes can be evaluated only solving nested sets of in-
Alternatively, one can work in the language of transitiontegral equations. Finally, these rigorous FY-type approaches
operators. For the standardbody problem, by combining are compared to the effective, coupled-channel formalism of
the residue rule with the GS matrix technique, it has beefRef.[20]. It turns out that this phenomenological method is
shown([2] that the two-cluster two-cluster transition ampli- &t variance with present few-body scattering theory, since it
tudes can be related to the solution of theody YGS equa- assumesad hoc couplings between configurations of the
tions, starting from the transition amplitudes for-m pro- ~ 7NNNandNNN systems, which are excluded in more mi-
cesses. Here, as anticipated in Rdfl, we generalize this Croscopic FY-type formulations.
procedure to therNNN-NNN case, where the coupling be-
tween spaces with different numbers of particles has to be [l. THE DYNAMICAL EQUATIONS
Zaie: gggsfiit?gr?uarx{pﬁﬁgggi:?g?&i%ﬁ')%ﬁ;f;;‘F:;?esrsr'igg ttge_ As in Refs.[1,2], we start from the unclusterized transi-
less and less clusterized partitions, we systematically identi fon operators which are allowed in NN and 7N N.N
the pol . ' . féectors of the theory. L€T o) be the operator associated
poles associated to the bound states or resonances in & the transition from a three-nucleon sthte) to a three-

various two- and three-body subsystems. As the outcome o ) . .
this procedure, we express both the rearrangement and t}q#cleor? St"?‘té)‘o}’ sc3 that the correspondmg transmqn am-
meson absorption/emission transition amplitudes in terms dflitude is given bY X0l T (0j0)| x0)- Similarly, T(y|1) describes
the solution of our chain-labeled equations. Finally, in the® transition from an initialtrNNN state|;) to a final one
same section, we discuss also the ambiguities in the identlX1). The two sectors communicate through the absorption
fication of the physical amplitudes, and the associated rol@nd production operatofB1) and T (o), respectively, the
played by the 3-1 and 2+2 partitions in this problem. associated transition amplitudes beig;|T 1)l x0), and

In Sec. IV we consider the quasiparticle approximation{xo|T(oj1)lx1). The AB transition operators can be intro-
(QPA). In the four-body case, this amounts to a two-stepduced through the relatiorig,2]
procedurd 3,4,6]. One first replaces the two-bodymatrices

with finite-rank operators, thereby rewriting the YGS equa- Too=U, (2.1a
tions as effective Faddeev equations for two elementary par-

ticles and a composite object; as a second step, one approxi- _

mates again the three-body ane 2 subsystem amplitudes Taloy ; taGoUa, (2.1h

by finite-rank operators. One thus obtains multichannel
Lippmann-Schwinger-typé.S) equations in one vector vari-
able, coupling the elastic/rearrangement transition ampli- Tio=2 UsGots, (2.19
tudes. The physical transition amplitudes for breakup pro- g
cesses can be evaluated starting from the solution of the
effective LS equations through simple quadratures. We show Tam= > ta+ > t.GoUaGoty - (2.10
here that the QPA can be extended to the present situation. a a,b
Here also the two-fragmenttwo-fragment transition ampli- .
tudes satisfy LS equations, all the breakup and emissiorti€re,Go represents the freeNNN propagator. As usual in
absorption amplitudes being expressible in terms of them bjew-body scattering theory, indices suchasb, andc de-
quadratures. The QPA approach is particularly attractive bedote generic three-cluster partitions of the four-body system,
cause it shows the theory through diagrams which can bBamely, interacting pairs in presence of two spectator par-
easily interpreted. It is then possible to view the diagramdicles. If necessary, to distinguish betwe¢N and«N pairs,
which are at the origin of the disconnectedness probleme shall denote the latter by or k, so thati represents the
These disconnected graphs are self-energy-type contributiof@ir 7N; with nucleonsN; and N, as spectatorsi(j,k a
to the transition from a£N)(NN) to a N(wNN) configu-  cyclic permutation of 1,2,3). Finally, the operatdgsare the
ration without pions in the intermediate state. If this term isSNN or 7N t matrices. To be consistent with the explicit
disregarded, one gets connected-kernel equations, much asatiowance of therNN vertices, only the nonpolar part has to
the standard four-body problem. Needless to say, the same lp¢ retained in ther-nucleont matricest; in the P,; channel
true if emission/absorption processes are switched off ii14]. For the sake of simplicity, we have omitted the depen-
2+ 2 subsystems, or allowed only in the subsystem amplidence upon the energy varialden the resolvent and tran-
tudes referring to the four-body sector. sition operators. It will be exhibited only when necessary.
Given the present situation, we review in Sec. V the apFor the same reason, the outgoing boundary conditions as-
proaches available in literatuf@5,20. In Ref.[15] one ap- sumed on-shell for the operators are not explicitly indicated.
plies the quasiparticle approximation to the basic AB equaNote that the operators which are obtained through Her-
tions, and removes the disconnected pieces occurring in tH®itean conjugation are associated with ingoing boundary
standard four-body problem first, by resorting to the usuakonditions, so that one hdd{=U,(E—i0)', with E the
GS method. All disconnected terms due to pion emissionfotal energy.
absorption are then treated together, by use of a two- The physical meaning of the operators introduced through
potential formula. Disconnected contributions are formallyEqgs.(2.18—(2.10 can be ascertained by studying the behav-
regarded as an auxiliary problem, whose solution gives thér of the 4—4 amplitudes in momentum space, near the
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poles corresponding to the two-body bound states or resepaces, whereas the off-diagonal blocks contain the operators
nances. As is well known, the dominant parttgfat the connecting the two sectors. Herg, is the free three-nucleon
bound statéor resonanceenergyz=E_ can be writter{ 21] propagator, and) represents the total interaction in the
NNN sector with the one-pion-exchange contributions ex-
1 (al 2.2 plicitly included; F, (Fg) is the sum of the elementary pro-
z—E," " ' duction (absorption vertices external to the pa& [see Eg.
(1) in Ref.[1]], and 8 3p=1— &,p-
As in the standard GS approach, a crucial step in obtain-
|a)=V,| #a). (2.3 ing equations with a FY coupling scheme is represented by a
sum rule, by which the matrix interactioi® is written as
Here, V, represents the two-body interaction in pajrand  the sum of contributionsSﬁ’ referring to the two-cluster par-

ta:|a>

where|a) is the form factor for the correlated pait

|¢a) satisfies the homogeneous equation titions a’ of the total system. This can be accomplished
B through a more refined classification of the two-cluster par-
Go(Ea)Va| $a) =] ba)- (2.4 titions, with respect to the usual four-body theoryalfis the

partition w(NNN), with the pion a mere spectat@ype-II|

For z~E, the production amplitude can then be written, partition), one essentially has the GS fofi8,4]

because of Eq2.1b

(3) (3) I
) ) 1 Var(alb) Uar (al0) Go léabaa,bca’ 0
<X1|T(1\0)(Z)|Xo>:<X1|Va|¢a>—Z_E (#alUalxo)- vO=| (3 3) = 0 ol
a 25 a Var (0lb)  Uar (00)
' (2.103

The residue of the amplitude at this simple pole provides

(apart from the form factof |V, ¢.)) the transition am- With 6, o €qual to one if botha andb are obtained by
plitude ( b4| Uyl xo) referring to three-cluster three-cluster  breaking a cluster im’, and zero otherwise. If, on the other
transitions from theN\NN space to therNNN sector. Simi- hand,a’ contains an interactingNN system plus a specta-
larly, one can establish that] andU,, are absorption and tor nucleon(type-I partitior) or two pairsmN andNN with
reaction operators, respectively, for transitions betweeM© Mutual interactioritype-II partition one has

three-cluster configurations of theNNN-NNN system. 3) 3) =
The dynamical equations for the AB operators have been 5 Var(alb) Var (al0) Go 'Gaplapcar (faa
derived in Ref.[14] for the 7NN system, by resorting to V=] 3 = it V
o - & | var by Var(0jo) (far)o a
Taylor's diagrammatic methof22,23, and have been ex-
tended to therNNN case in Refs[15,16. For theawNNN (2.10pn

case these equations do not have a connected kernel, so that
they may have unphysical solutions in addition to the correcend
(physica) one. In our previous papef4,2] we have shown

. .. 3 3 1<
that Faddeev-Yakubovskiype (FY) equations, and explicit U;r)(a|b) v(ar)(am) Go 'Saplapcar (farla
allowance for two-cluster partitions can be obtained through v¥'= @ L@ = () o |
a nontrivial generalization of the GS approach to the four- a’ (0lb)  ¥ar (0[0) a’’/b

body problen{3,4]. To this end one writes the four-body AB (2.109
equations in the matrix form

respectively. Here, f¢/), and (f;,)b are emission and ab-
sorption vertices internal ta’; they can be written in terms
of the elementary production and absorption vertices for the
ith nucleonf (i) andf(i)", respectively, as follows:

whereGS, V®, andT®® are matrices in the three-cluster-

partition indices defined according to
3 3

(faoa:; Siadiaca (i), (f;>b=i§1 Bindipearf(i).

2.1y

(3) (3)
Gy 'apy Go (alo) GotaGgdap O

3 (3) =
o by Go (olo) 0 go

V(3)b V(3)O G-15.. F The operatorV,, represents the interaction internal to the
V3= E:l) : Egl) : _ 0 Tab 2 2.8 NN paira; in the considered partitioa’, with the one-pion-
Vil Violo) Fp V ' ' exchange tail includefil,2]. We observe thaa; represents

at the same time a two-cluster partition in the three-nucleon
1@ 13 U U _secto_r and a th_ree—cluster partition in the four_-body space. It
. (alb) " (al0) ab  “a is uniquely defined for each I- or ll-typa’. It is worth to
= T Tolo| ™ Ul u (2.9 note that, had we defined? in the same way for type- and
type-1l partitions, we would have counted theN potentials

= H 3 khy
respectively. The notation exhibits the fact that the diagonaVa, twice when summlng/;,) overa’', to get the total “in-
blocks of these matrices refer to theNNN and NNN  teraction” V®,
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The operatorsfi) represent the driving terms of the equa-

tions for the subsystem dynamics. These equations can be
written in the compact Lippmann-Schwinger fofth 2]

(3 _ 34 DA(3)4(3) N /
t =Vy TV Goty (212 N
Wheret(a3,) are matrices in the three-cluster-partition indices, (a)
whose definition depends again upon the type of two-cluster
partitiona’. For a type-l or type-lla’ they are defined ac-
cording to
9 o (O ¢ )
. t,(5,1/)(alb) ti,l/)(alo) (ua’)ab (ua’)a
t ), = 3 3 = T ,
2 =t o taroo)| | (Uade U
N / N /
(2.13a AN 7 N /s

where Ua)ap, (Uar)a, (u;)b andu, are AB-type transi-
tion operators describing scattering and absorption/emission

processes within the subsystems definedaby If, on the
other hand, one has the type-lll partitia'i=7(NNN) one
has the usual Alt-Grassberger-Sandbha&S) operators for
the three-nucleon subsystem, namely,

0
ol-

(Ua’)ab
0

3) 3)
T ab)  Ta'(alo)
(@

a’ (0b)

3= (2.139

3)
2 (00)

The FY-type equations for the fubFNNN system can be
derived from the four-body AB equatior{&.6) by resorting
to the basic ansatz

3)_ (3) (3 ~(3) (3
TO=> 9+ > tY6cPul),

a’ a’'b’

GHY. (214

Requiring thatT(®, as given by(2.14), satisfies Eqs(2.6)
one gets

3 e — < 3 3
US) =62 GP 1+, st YePUl), . (2.15
CI

FIG. 1. (a) Self-energy graphs occurring in type-ll partitions.
The full and dashed lines represent nucleons and pions, respec-
tively, while the full circles represent theNN vertices, and the
blob is the NNt matrix; (b) a disconnected contribution to the third
iteration of the kerneK. The wavy line represents tieN potential
in the three-nucleon space.

related to self-energy insertions in type-ll partitions, by
which a nucleon line is dressed in the presence of an inter-
acting NN pair [see Fig. 1a)]. Because of these contribu-
tions, disconnected graphs appear in any iteratiork,0f
typical disconnected term iK* being exhibited in Fig. (b).
As already observed in Refl5], in a properly mass-
renormalized theory these contributions to &l interac-
tions would never arise, since the spectator nucleon would
have already acquired its physical mass. In this truncated
formalism, however, the FY coupling scheme implies that
2+2 partitions have to be treated on equal footing as the
type-1 ones, and one is forced to introduce the above danger-
ous graphs.

Based on the above considerations, one has to conclude
that the present approach, in spite of its striking similarities

These equations, once explicitly written, couple operator&ith the GS method, which has been so successful in the
labeled by chains of partitions. Different from the standargStandard four-body case, is not able to solve the disconnect-
four-body case, however, now the coupling between spaceidness problem for therNNN-NNN system. A natural
with different numbers of particles is allowed; as a conse-duestion is whether one can extract from Ej19 sensible
quence, one has standard chain indices] (with aca’) approximations, leading to connected-kernel equations. A
in the 7NNN sector, and hybrid-chain indicea’@,) (with first possibility is suggested by the very nature of the @scon—
a,Ca’) to account for the three-nucleon space. The explicif’€Cted terms, namely, one can switch off the coupling be-
form of Egs.(2.19 has been given and discussed elsewherdVeen therNNNandNNN sectors for the type-Il partitions,
[2]. Here, we limit ourselves to observe that they couple thdn€reby allowing only multiple rescattering in the two-body
following operators: operators 1, associated with scat- SUPSystems, much as in standard four-body theory. This im-
tering in theNNN space: operators .. . for collision plies that the subsystem dynamics is described by Egs.

. ] G ) (2.12, (2.103, and(2.13b not only for type-IIl but also for
processes in thiNN sector; production and absorption op- v ne || partitions. Since hybrid chains are now introduced
eratorsUgraprp, and Uy, iy, » reSpectively, which connect

only for type-| partitions, in this approximation Eq&.15
the two spaces to each other. represent a set of 21 coupled equations. Proceeding as in

In two previous papergl,2], we have analyzed the con- Ref.[2], one can verify that their kernel is connected after
nectedness properties of Eq2.15. For all the graphs con- two iterations. This approximation, therefore, gives an em-
sidered therein, we found that their kerri€lis connected bedding of the AB treatment for theNN-NN subsystems,
after three iterations. A closer inspection, however, reveals &to a four-body approach, where the remaining part of the
further class of graphs, whose presence prevents the presgmbblem is handled through a conventional multiple-
formalism from achieving connectedness. These graphs aszattering treatment.
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A less severe truncation of the theory is possible, in which To have a first insight into the physical meaning of these
pion emission and absorption can be allowed in2parti-  equations, it is instructive to write E@3.3) explicitly. For
tions. To see how this can be achieved, we write Eg42  the type-Illl partition, taking Eqs(2.7) and (2.103 into ac-
for the scattering and absorption operators, {5, and count, one gets
(u;,)b, with a’ a type-Il partition ¢ri)(jk),

= — + |Para)=Gota 2/ ?aclq)a’c% (3.9
(Ua)ab=C0 " Oant 2 FacteBo(Ua)ent (far)aGo(Ug )b, “(ca’)

(2.163 namely, the standard Faddeev equations for the wave-
function componentgb . ) of the three-nucleon bound state
in presence of the spectator pion. As is well known, the total
wave function is given by .| ® /).

For the type-l partitions one has from Eg®.7) and
Substituting for (,l;,)b in the former of these equations from (2.10D
the latter, one gets

(u;>b=(f;>b+§ (f1)cGotcGo(Uar)ep- (2168

_ ¥ _ |¢)a’a>:GOta 2 ?ac|q)a’c>+GOtaGO(fa’)aM)a’al)a
(Ua)ab=Co " dant (fa)aGo( o )b+ 2 SacteGolUar)ecs (e

Dyrg )= 1) e Pare) FdoVa | Para). (3.
+(fa’)agog (f;)cGOthO(ua’)cb- (2.17) | aa1> c(g’) Jol a)c| ac> Jdo al| aa1> (3.9

One now assumes again E@.13b for type-Il partitions. In ~ Because of the coupling(kaJ)etween.thNNN andNNN sec-
this approximation, emission/absorption processes contribuf@rs the wave functiod®;,’) acquires an extra component
to all orders in therNNN sector, while their components for |®,/, ). One immediately sees that, if the coupling between

direct pion emission/absorption are set to zero. As a CONS§ne two spaces is switched of{f,).=(f!,).,=0] these
a!

quence, th? i”Fe”Wi”i”Q betweem—_:i and_ 2+ 2 partitions equations reduce themselves to a pair of uncoupled equa-
with zero-pion intermediate states is forbidden, and connect;y s the former having the same form as E8.4), and

edness can be achieved again. describing a deuteronD) as a=NN bound state(plus a
spectator nuclegnthe latter referring to a pair of nucleons
lll. THE TRANSITION AMPLITUDES bound by the two-body potentiak, , in the presence of a

The physical transition amplitudes for the various colli- SPectator nucleon in th&lNN space. In presence of the
sion processes allowed in the considered state spaceNN vertices, the total wave function becomes the superpo-
(Hynn® Honnn) €an be extracted from Eq&.1) and(2.14) sition of the two components, since the deuteron can be
through a suitable generalization of the residue method. T¥iewed both as atNN bound state, and as &N system
exhibit the singularities of the relevant operators in corre-With a pion in flight between the two fermions. The states
spondence to the possible boua resonantstates of the IFSi)(Ea/» are then the form factors for the composite sys-
subsystems, we consider the homogeneous eigenvalue praem in partitiona’.
lem associated with Eq$2.12), namely For a’ belonging to the type-Il class, one gets equations

quite similar to Eq.(3.5. The second term in the equation
T (Ea)) =V (Ea) G (Ea) T (Ea)). (3D for the|d,,, ) component, however, is now missifgpe Eq.
- ) . (2.109]. In analogy to the standard four-body case, this set
For type-I or type-Il partitions|I",;’(E4/)) is @ column vec-  describes an off-shell situation, with a correlaté pair in
tor in the space of the three-cluster partitions of both sectorghe presence of an interactingN system. Since the corre-
Ofg)le model state space. In particular, in 4NN sector,  sponding form factofI',’) can be most clearly interpreted
|T';’) has nonvanishing componerits,,) in those three- in the quasiparticle scheme, we defer its discussion to the
cluster partitions obtained from a sequential breakup of theext section. Here, we limit ourselves to observe that Egs.
two-cluster partitiona’. For the type-IIl partition, the col- (3.1) or (3.3) contain the contributions due to the dangerous
umn vector has nonvanishing componelitg ;) only in the  self-energy graphs leading to the disconnectedness problems
7NNN subspace. For the sake of simplicity, we have asoutlined in the previous section.
sumed that there is a unique eigenvalue for a giagnthe From the formal solution of the dynamical Eq2.12), it
generalization to many eigenvalu&s,, implying only a  follows that in momentum-space representatigt(z) has a
more involved bookkeeping of indices. If the state vectors pole forz~E,,. In operator notation we simply write

B () =GP (Ea) T (Ea)) (3.2 3y
t(3)(z)zM (3.6
are introduced, Eq3.1) becomes & z—Ey '

(3) - (3) (3)
@ (Ea)) =G (Ea )V, (Ea) |95 (Ea)). (3.3 Where<l“fi)| is a row vector, defined as the solution of
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F@(E = F(‘Q:)(E ) G(S)(E ,)v(ei)(E ). In conclusion, the two-clustes two-cluster transition am-
(Tar(Bs I=( a e G0 (B arte plitudes7,, have been obtained as the residue at the double
Equation(3.6) can be given an interpretation quite similar POl on-shell(i.e., at z=E, =E,) of the three-cluster

to the pole approximation for the subsystem amplitudes i three-cluster amplitudes given in E@.9).
standard few-body theoriB]. For type-I and type-Ill parti- The above analysis can be easily modified so as to extract
tions the form factor(T'Y| describes the formation of a (€ transiton amplitude for ther+T—N+N+N pro-

. o cess. Using Ege.3.6) and (3.3 in Eq. (2.14), and extract-
bound(or resonantthree-body subsystem in partitiari; the . . X .
factor (z—E,)~ ! describes the propagation of this sub- "9 the residue corresponding to the pole zstEy, [b

— ' T .
system in the presence of the spectator particle, whereas e (NNN)], one gets from(x|Up|#p) the following ex-

. . . . ression for the transition amplitu :
form factor|T'Y) is associated with the virtual decay of the P PltUAR NN 7T
composite object. For type-Il partitions, on the other hand,
one has thévirtual) formation, propagation, and subsequentZyyn_ T
decay of two correlated pairs with no mutual interaction.

Differently from the usual four-body problem, however, here _ Huf ) .Gt .Gl s | P

the coupling between thBINN and wNNN sectors intro- arg'“) % ; (X0l (Ua)aGotaGolaranrsl Poro)
duces an extra component for the form factors for type-1 and

type-Il partitions. As already remarked, this extra component (v luagaur O 31
is present because the absorption and emission of the pion {xoluargo a'alb'b| e (313

implies that the deuteron has to be regarded as a superposi-
tion of pureNN configurations and three-bodyNN com- . )
ponents(type-l partition3, and the nucleon is allowed to Where the sum ovea’ is restricted to type-l and type-lI

emit and absorb the pion in presence of a correlatbdpair ~ Partitions only, and we have implicitly assumed-a’.
(type-Il partitions. Thus, in close analogy to what is done in ordinary scattering

theory, by picking up the appropriate singular part of the
three-cluster-three-cluster transition operators, we have
fragmenttwo-fragment processes can be extracted fro dentified the_ contr_|but|on corr_espon_dlng, in configuration

space, to an incoming wave with a pion and a bound three-

Eqg. (2.14, by looking for the singular components of the :
3) L P nucleon system, plus a scattered wave with three free nucle-
operatorT**’. To be definite, we suppose that the initial con- ; , :
ons in the asymptotic region.

figuration is represented by a pion impinging on a three- We also report the expressions for the partial- and total-

nucleon system, so that the corresponding two-cluster partj- e ; :
tionisb’=m(NNN). We look for the transition amplitude to Eg?]agzg g::SVI\}:‘ﬁg amplitudes. With a self-explanatory nota

the final configuration where nucleohg andN, are bound
in the deuteron, and the third nucleol; is free
[a’=N;(7N;Ny)]1[24]. Using Eq.(3.6) in Eq. (2.14 we can TonpenT= 2 2 % (bal(Uar)acGotcGoUarchrn| Porb)
exhibit the corresponding singular part 5% as follows: a’ c(ca’)

Once the singular behavior of the subamplitudié)shas
been exhibited, the physical transition amplitudes for two

+ 2 2 (bal(Ua)aBoUl s b Porb),
T =|1) Tty (T|+TRNP - (3.7) aranny B Ay
(Z_Ea/)(Z_Ebr) (312
Here, T®WMNP) is the nonsingular part of T,  where(¢,| is the three-cluster asymptotic state with a deu-

a’=N;(mN;Ny), b’ =m(NNN), the form factordI'?) and  teron plus spectators nucleon and pjsee Eq(2.4)], and
<F$)I satisfy the equations

ToNNNe 7= 2 2 2 Eb: (x1/taGo(Uar)ac
a’ )

a c¢(ca’

|Fa’a>: 2 ?actceolra’&"’(fa’)ago|ra’a1>v

c(ca’) ><GOthOUa’cb’b|q)b’b>

t + 11taGo(ugr

|Fa’al>: (2 ) (far)cGOthO|Fa’c>+Valgo|ra’al>- a’(Ee:III) za: Eb: <Xl| a O( a )ago
c(ca’ '
(38) XU;’alb’b|q)b'b>' (313
and
o Here, obviouslyb’=7(NNN), anda in Eq. (3.12 identi-

<Fb’b|: 2 <Fb’C|GOtC 5Cb1 (39) fies the part|t|0nTTN|(NJNk)

c(Cb’) For the processm+T—N+D, the identification of

Tarn, @s given by Eq(3.10, with the required transition

amplitudeZyp._ .t deserves some more comment. In the first
31 4(3) 1 a(3) place, it is worth noting that, since only states with at most
Tart =(P, Uiy [ Pyr). (3.10 one pion are explicitly taken into account, the triton and the

respectively, andy, is defined according to
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deuteron are treated in a different way in the respective charenes. As a consequence, E8.10 yields now the correct
nels. The former is described as a three-nucleon systemnansition amplitude without ambiguities. Thus, the same
bound by statidN N forces because of the presence of the reatruncation which leads to a connected-kernel scheme, allows
pion [see Eqs(3.4) or (3.9)], the latter as a superposition of one to unambiguously identify the physical transition ampli-
NN and 7NN configurationdsee Eqs(3.5) or (3.8)]. tudes for two-clustertwo-cluster processes.

It may be instructive to write Eq3.10 explicitly. Recall-
ing that |<I>Eff)> has no hybrid-chain component far' of IV. THE QUASIPARTICLE SCHEME
type-lll, one gets

The quasiparticle approximatiq®PA) has played a ma-
jor role in the development of conventional few-body scat-
T :2 (®404]U IByp) tering theory[3,6]. This approach relies on the property that
ND—aT™ < A Fa’al=a’ab’bl™b’'b both the two-bodyt matrices and the subsystem amplitudes
can be approximated to an arbitrary degree of accuracy by a
+ sum of separable terms. A first application of the QPA to the
+; @a'al'Ua’alb’b'(bb’b)' (3.14 two-bodyt operators allows one to rewrite the original four-
body YGS equations as Faddeev-type equations for two el-
ementary particles and a composite object. A second appli-
The first term in this expression has the same form as theation of the QPA to the subsystem amplitudes reduces the
corresponding transition amplitude in the standard GS fordynamical equations to a set of effective Lippmann-
mulation of the four-body problerf#,25], the channel states Schwinger equations coupling the two-clustewo-cluster
and the transition operators satisfying now equations allowtransition amplitudes. These equations, after partial-wave
ing for the coupling between th&INN and the #fNNN  projection, involve one integration variable only. The
spaces. The latter term explicitly takes into account the possreakup amplitudes can be then obtained from the22am-
sible transition between the two spaces, when the pion iplitudes by quadrature. The QPA allows for a better insight
absorbed. into the physical content of Yakubov$kype formalisms, at

It is worthwhile to observe that22 self-energy graphs the same time alleviating the difficulties implied by the so-
imply nontrivial difficulties also for the transition ampli- lution of the four-body scattering problem by brute force.
tudes. Indeed, in the present framework one has to distin- Here, we show that the QPA can be naturally extended to
guish betweerN(7NN) and (wN)(NN) partitions. As we the present situation, where emission/absorption processes
shall see in the next section, this is consistent with a quasire allowed. We shall assume a separétaak one form for
particle scheme, where the physical transition amplitudes arthe two-bodyt operators as well as for the subsystem ampli-
evaluated in terms of two- and three-body quasiparticlestudes, the extension to the genetfihite-rank case being
From the point of view of a full, renormalized field theory of straightforward. Thus, we write
interacting pions and nucleons, however, type-l and type-I| ty(z)=|a)rP(z)(al, 4.1)
partitions have to concur to describe the same physical situ-
ation, a dressed nucleon with its physical mass, which as-,
ymptotically propagates in presence of a deuteron, bound byfth 1)=Val ¢a>(3‘5)md 75(2)~ 1(z—Ea) for z=E,. The
the exchange of pions between the constituent nucleons. TeFtual form of 72 depends on the particular separable-
meet these physical requirements the interactions should &pansion method employed. However, all the reasonable

constrained so as to guarantee that the subsystem operat§pgansion methods must reproduce the bound-state pole be-
3) d havior of Eq. (2.2 [26]. Then, the dynamical equations

(

t.> have a pole at the same eneffgy: for both type-l an . .

a

type-Il partiions. Form+T—N+D scattering Eq.(3.10 (2.12 for the subsystem amplitudes can be rewritten as

would be then replaced by

(3)_ (3 B (3)y(3)
Tooa= 3 @06, 615 X =20+ 20X, 42
a’(elll)

where (apart from antisymmetrization one has 3) 53 ®) ) ) ,
a'=N;(7N;N,) and a’'=(7N;)(N;Ny). That such a de- whereD Za , ar_1an, are again matrices in the_thrge-.
scription cannot emerge in a natural way from the presenq;luster—partmon indices, having a block structure quite simi-
theory is a consequence of the truncation to states with dar to G, VS) andt(;). Thus, one has

most one pion, which lies at the heart of these type of ap-

proaches. This difficulty, which is somewhat hidden in the

7mNN-NN case(ap_art from the renormalization problgm _ D(s)(a‘b) D(3>(a|0) T<as>5ab 0

shows up here owing to the more complex boundary condi- D@ =|(3 @ _ (4.33
tions. If the coupling between theNNN andNNN sectors D0y D00 0 g | '

is switched off for type-II partitions, on the other hand, this

ambiguity is removed; Eq¥3.3) reduce to the usual AGS

equationg3.4) for two pairs of correlated particles, and one

can distinguish between the physical, spectator nucleon isimilarly, for type-I partitionsZ(3 andX? are defined ac-
type-l partitions, and the correlatedN pair in the type-Il  cording to



696 G. CATTAPAN AN
3) 3)
" Zy (ap)  Zar (alo)
Z.7=|5(03) (3)
a1 Zy o) Zar (0]0)
(a|Go|b) Sapbapcar (8lGo(far)a
= t .
(f2)pGo|b) Va, ; (4.3D
3)
o XS @ X a0
X, = 3)
" = XS oy Xy 0j0)
<a|GO(ua’)abG0|b> <a|GO(Ua’)a
=1 (ul,)pGolb) Uy (4.39

For a’ of type-1l one has similar definitions, with the ele-
mentZ (0|0) missing, whereas, for the type-Ill partition
Tr(NNN) only the upper left blocks survive, thereby repro-
ducing the definition of standard four-body theory.

The meaning of the present notation is worth some com
ment. As in the four-body GS approach,(ia|Gg|b) an in-

tegration has been performed over the relative momenta of

the correlated pairs described by the form facttat and
|b), so that this quantity is still an operator with respect to

the remaining spectator momenta. In momentum-space rep-

resentation and for type-1 and type-lll partitioﬁég,)(a‘b) de-
scribes the virtual decay of the correlated phirand the
formation of a correlated pain, with the intermediate ex-
change of a particle between the two fragments. Thése

terms play therefore the role of intercluster interactions,

(a)

(b)

FIG. 2. Graphical representation ofa|Gy(fa). for ()
a’ :(WNJNk)Nla: (’7TN]), and (b) a'= (ka)(N,NJ)a: (NINJ)
The double full line describes theN{N) quasiparticle, while the
dashed and full double line is associated with the correlated)(
pair. The half circles represent the two-body form factors.
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originated from the exchange of a particle. For type-Il parti-
tions one has the virtual decay bfand the subsequent for-
mation ofa, with intermediate four-body propagation.

Let us now consideta|Gy(far),. In this case we inte-
grate over the relative momentum of pairin the #NNN
sector only; such a quantity describes a transition from the
NNN space to therNNN space, with the formation of a
correlated paira, describing either a bound deuteron or a
resonant wN system. A graphical interpretation of
(a|Gq(far)a is given in Fig. 2. Similar considerations apply
to (a|Gy(uys), and (u;,)bGO|b) (bca’). In summary, we
are consistently applying the GS recipe in the four-body sec-
tor, theNNN space remaining untouched, so as to get opera-
tors in two vector variables in both sectors.

From Egs.(2.15 the set of equations

Y3 =8 D®" 1+E BareXIDOVE) (4.4
can be derived, where
(3) (3)
- : Ya 'ab’b Ya’ab’bl
3) _
Y rh! — (3) (3)
a’b Ya’alb’b a'a;b’b,
<a|GOUa’ab’bGO|b> (alGoUarabrn,
- a a, b’b |b> Ua’alb’bl (45)

To introduce separable approximations for the subsystem
amplitudes we observe that the homogeneous equatods
become, when the two-bodymatrices are approximated by
Eq. (4.1,

| B (Ea)) =D (EL) 25 (Ea)| B (En)), (4.6
with |€I')S)(Ea,)> a column vector, whose components are
related to the components bI)(s)(E 1)) by the remarkable

factorization relation

|q)a’a>:G0|a>|zf)a’a>v|q)a’al>5|asa/al>- 4.7
Needless to say, thdNN components of these vectors are
missing for the type-Ill partition. The form factofF?} are
now replaced by the vectofE',)=Z{P|®)) satisfying the
analog of Egs(3.1)

IT®(E.))=ZP(E.)DPEN T (EL)). (4.8

The physical meaning of the “form factors[fff)) is the

following. For a’'=a7(NNN), |'l:a,a> describes the virtual
decay of the three-nucleon bound state into the correlated
pair a plus a nucleon, in presence of the spectator pion. For
the type-lll partition, therefore, the three components
|'1:a,a> retain the same meaning as in the standard four-body
problem [3], and satisfy the homogeneous Faddeev-type
equations
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__O=

S S v

Pex D= e
=

FIG. 3. The coupled equatiorig.10 for type-I partitions. The
trapeziums represent the form factdis, ») and|T . ) for the FIG. 4. Graphical representation of the coupleg(Se)quat(érﬁ)
virtual dissociation of the correlatedNN subsystem into a particle Of type-Il partitions. In this case the form factofb,’) (empty
and a correlated pair, or into two nucleons, respectively. In the lasircles describe the virtual decay of a correlated pair in presence of
graph, the presence of the one-pion-exchange tail ilNtepoten-  the off-shell propagation of the other pair, or of a virtual
tial V, is shown. Only topologically different graphs are exhibited. (mN)—N transition. The boxes enclose the terms which disappear

when the coupling between theNNN and NNN spaces is
switched off in type-Il partitions.

—O—
—O= | D=0

Taoa= > 5adalGole) 7 Tare). (4.9
el c(ca’) (@] Gol )7 Faver Consistently with the discussion of the residue method

s given in Sec. lll, we finally assume fO(S) the separable
For type-I| partitions, the form factonrf;,)) acquire an extra  representation
component'fa,a ) in the three-nucleon sector. Again this is
! . X(3)=|1~“(3)) (2><'1:(3>| (4.11)
due to the presence of theNN vertex functions; whereas a’ ar /Tar \arh :

|fa,a> represent the virtual decay of the deuteron as a . 2)

7NN bound state into a correlated N) or (wN) pair plus a Wlt(f;) Tar =1(z—Eq) Eg) ZNE(a?:), ?gd(at)he row vector
free particle,ﬁ:a,al) describes the decay of the deuteron into{L'a’ | €igensolution of I/’ =(T5/[D™Z". _

a pair of nucleons, through internal absorption of the pion. Ins.ertlng Eq..(4.11) into Eqik§?.4)(é)and evaluating the
The four components Oﬂ{% are coupled by Eqsi4.9), resulting equations betwee(I',’|[D™®) on the left and

ok _
which explicitly written give DT on the right one gets

T Yy - T /:?/ ’ f(?:) D(3> f(?:)
[Tara)= 2 5ac<a|Go|C>T(cs)|Fa/C> a’b an(lor| ITy")

c(ca’)

+ <a| GO(fa’)a90|Fa’al>i

c

+3 52 (TIDATEY DT, (412
CI

where use has been made of the relation between the form

|fa,al)= > (f;,)cGo|c>réa)|fa,c)+Valgo|fa,al>. factors|TY) and the “channel states|®'?), and we have
c(ca’) 4.10 now definedZ,,, according to
— /&3 v &3
These equations are graphically illustrated in Fig. 3. Finally, Ty =(Py, |Ya’b’|q)b’ )- (4.13

the f(_)rm—factor _componendﬂ“a/a) correspondmg to pre-_ll That Eq. (4.13 actually gives (on-shel) the 2-cluster
partitions describe in theNNN sector off-shell situations in o ; . .
which a deuteron or a correlatetN pair decays in presence —>27cluster transition amphtuqes In the_ separable approxi-
of another correlated pair. The “absorption’ componentrnatlon can be easily ascertained starting from &310,

- . i . and by using the factorization proper4.7) and Eq.(4.5).
IT'ara,), ON the other hand, is associated with a deuteromvych as in the standard four-body problem, we have been

which decays, while aitN) quasiparticle undergoes &oif- able to obtain one-vector-variable integral equations cou-
shel) (7N)— N transition. These form factors and their cou- pling all the 2-2 transition amplitudes one has for a given
pling through Eqs(4.8) are graphically depicted in Fig. 4. initial configuration. By means of an obvious matrix notation
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in the two-cluster-partition indices E¢4.12 can be rewrit- F—— —
ten as an effective multichannel LS equation: — -

X2 = 7(2) 4 72)p(2)x(2) (4.14 (a)
where I + — —
2 _ —
X =Tar, (4.153 (b)
22 =5.,/(T¥DA TP, (4.15b = | -
D2}, =72 8. (4.150 (c) —— |
As is typical of the quasiparticle approach, the operator —] T -~ = +'"_ ‘
T;z,) plays the role of an effective propagator; for type-I par- === : "-:
titions it describes a deuterdmnegarded as a coupledN- d [ -~~~

7NN system in presence of a spectator nucleon; for type-ll
partitions it is associated to a deuter@s a boundNN sys-

tem) propagating in presence ofzeN correlated pair; for the = S ===
type-IIl partition it simply describes th8&INN bound state {e)
and the noninteracting pion in the two-cluster intermediate
state. The driving terng‘:{), represent exchange ‘“poten- -
tials” associated with the simplest reaction mechanisms = === -
through which one can pass from the initial configuration
b’ to the final onea’. Owing to the 7NN vertices, they (f)
contain further contributions with respect to standard four-
body theory. This can be immediately seen by writing thema

11
1
1
1
+
1
1
l

FIG. 5. The driving termigz,)b, for the quasiparticle Eq$4.14),
s given by Eq(4.15h. The driving terms obtainable from those

explicitly as given here by interchanging the initial and final states are not given.
The dashed box encloses the contribution which has to be disre-

2) _ = 3) T - i -li -

Z(a/)b’: Sarty E (Fa'c|Tf; )lrb'c> ggr_ded to get conr_lectet_:i kernel equatlons._Tr_]e full-line l_)oxe_s ex

c(ca' b’ hibit the terms which disappear when emission/absorption is ig-

nored in 2+2 partitions.

+(T' , .

T al|g0|rb bl>]' (410 expression(4.15h for the driving terms. Due to the employ-
ment of the QPA, all the disconnected terms in the present
where it is assumed that the latter term on the right-hand sidfsrmalism appear now lumped together in a unique contribu-
is missing if eithera’ or b’ is the type-IIl partition. In par- tion, describing transitions from a type-Il to a type-l parti-
ticular, in standard four-body theory the driving tezrﬁ)b, is  tion, having anNN pair in common. Clearly, if this term is
missing when botla’ andb’ are of type Il, since in such a disregarded, one has the minimal truncation able to give
case no three-cluster partitiancan be simultaneously con- connected-kernel equations for the-2 transition ampli-
tained in botha’ andb’ (with a’#b’). Here, this driving tudes. If, on the other hand, one switches off completely the
term survives, due to the presence of the latter term in Egeoupling between therNNN and NNN sectors in type-Ii
(4.16). Some typical driving terms are graphically illustrated partitions, Eqs(4.8) for the 2+ 2 quasiparticle form factors
in Fig. 5. reduce to the usual AGS homogeneous equati@h9).

Let us focus our attention on Fig(d. It describes one These are graphically depicted in Fig. 4, where the boxes
of the lowest-order contributions to the transition €nclose the terms which are absent in this approximation.
(N) + (NN)— N+ (NN), and consists of two graphs, cor- The effective LS equationg4.14 remain formally un-
responding to the former and the latter term on the right othanged, but now in 22 intermediate states one has the
Eq. (4.16), respectively. The graph associated with interme-propagation of a¢N) “cluster,” with no (7N)—N transi-
diate three-nucleon propagation is clearly disconnected. Thigon. Correspondingly, in the driving terms the contributions
is at variance with standard four-body theory, where all theenclosed in boxes in Fig. 5 vanish; in particular, the 2
driving terms are connected after the repeated application @fraph is now absent, much as in standard four-body theory.
the QPA, and reflects the presence of the disconnected terms Finally, let us briefly describe how the above consider-
in the kernel of the exact equatiof2.15 we have already ations have to be modified, # absorption/emission is taken
pointed out in Sec. Il. One can easily convince oneself thatnto account in the scattering amplitudes for2 sub-
the disconnected contributions due to the graph of Fid) 5 systems, as described by E@8.17). The quasiparticle rep-
survive after any number of iterations of the effective LSresentation for these equations still has an LS-type structure
equations(4.14). The above disconnected graph can be ex-
hibited as self-energy insertions in type-Il partitions by sub-
stituting Eq.(4.8) (or an iteration of the same equatjanto Xy =23+ 23 DX, (4.17)
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= 2
TaNNN—7T= 2 <X§.|a>7213)<¢a|ra’a>7';’)7;’b’-
a'a

(4.20

V. CONCLUSIONS AND COMPARISON
/ ANy WITH PREVIOUS APPROACHES

7/ N In this paper we have revisited the approach to the
/ AN 7wNNN-NNN problem presented in Refsl,2]. This formal-
ism can be regarded as the most natural generalization of the
GS method, to a situation with a variable number of par-
ticles. We have shown that the physical transition amplitudes
can be related to the chain-of-partition labeled operators of
the formalismvia the residue method, and that the quasipar-
ticle technique can be generalized, so as to get multichannel
3) 3) ) N L 3) _ (3) LS equations coupling all the relevant=2 transition ampli-
where D™ and X" can be identified WittD /) =73"0ap  tudes. We have seen, however, that, in spite of its attractive
and XS)(am)=(a|Go(Uar)abGo|b>, respectively, and features, the present approach fails in producing connected-
the Z term Z{¥ contains two terms, the former being kernel equations. This is due to off-shell self-energy graphs,
(alGylb) Sab Sancars  the latter, given by where nucleon dressing occurs in presence of an interacting

t - NN pair. These disconnected graphs contribute to one single
(alGo(far)aGo(fa)nGolb), containing the effects ofr term in the kernel of the effective LS equations for the tran-

emission/absorption in the scattering channel. This contribug;tion amplitudes. If this term is neglected, one is left with

tion is graphically depicted in Fig. 6. , . well-behaved equations, at the price of sacrificing exact uni-
To conclude this section, we give the physical transition, it A more severe truncation consists in switching off the

amplitudes for absorption/emission and breakup processes Uhsorption/emission vertices in+2 partitions, while keep-

terms _of the quasiparticle amplitudﬁyb,. Inserting Eq. ing the effects of pion emission/absorption in théINN
(4.11 into Eq. (3.11) and using Eq(4.13 one has for the g hsystem. At this point, a comparison with the treatment of

FIG. 6. The nonvanishing contribution
(jk|Gof(1)gof (i) Gyl jk) to the operator
(a|GO(fa,)ago(f;,)bGo|b). It describes the virtual decay and sub-
sequent formation of th& N cluster k), while the pion is ab-
sorbed and reemitted by nucledh.

7+ T—NNN process the 7NNN-NNN problem proposed in Ref15] is suitable.
There, one assumes the separable approximétidnfor the

_ h @ two-body t operators from the beginning, and applies the
Tunn-m ; (xolTara)) 7o Tarer, (4.13 quasiparticle method directly to the AB equatici@s6). By

the same procedure which led us to E@s2) one gets

with b’ =7(NNN). This result is what one could reasonably
expect in the framework of an isobar model; the absorption
amplitude with three free outgoing nucleons is given as thg, i, p®) given by Eq.(4.33, and
sum over all possible transitions to two-body intermediate

X3 =73+ 7BpEIXE), (5.0

states, followed by the decay of the composite clusters or (a|Golb) 5., (alGoFa|l [V q
virtual (wN)—N conversion. This is graphically shown in z0=" . E‘ ‘ (5.2
Fig. 7. Similarly, one has for the breakup transition ampli- FuGolb) % p Vv
tudes
X(3)= <a|GOUabGO|b> <a|GOUa (5 3)
| UlGelb) U '

T 2

TaND—7T= 2 <¢a|ra’a>7';f)7a’b’ (a=wND),
a'(2a) (4.19 Here, according to the notation of R¢L5], V, p, andq are

' a square matrix, a row and a column vector, respectively, in

the three-cluster partition indices. Notice that, owing to the

i 2_" _ g j" sum ruleq1,2]

— Fa= 2 (fa)a, Fi= 2 (fl)., (54

a'(el, Il a'(el, Il

one can immediately decomposeand p into terms of a
well-defined clustering nature,

Z} 9= X Ga, P= X Pa- (5.9
a’(el, N a’(el, )

FIG. 7. The Eq.(4.18, expressing ther+ T—N+N+N ab- The integral equationés.1) are transformed into a set of
sorption amplitude in terms of the-22 transition amplitudes in the equivalent Schrdinger equations, coupling theNNN and
quasiparticle approximation. NNN sectors, and the usual GS approach is employed first,

+
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by decomposing/ into terms labeled by two-cluster parti- coupled through driving term&,,, describing standard
tions, so as to remove the disconnected terms one has in tHé5S exchange graphs. The various three-cluster systems are
standard four-body problem. The transition operators for thenoreover coupled because the intercluster interactions are
various channels of theNNN-NNN system are then iden- regarded as effective coupled-channel potentials; for in-
tified, and corresponding sets of integral equations are destance, thewD,3N,A-N3A-N,N; systems are described
rived. The kernel of these equations still contains, throughhrough a four-channel interaction. Assuming a finite-rank
the coupling operatorg andp, all the disconnected contri- form for these potentials, one has effective two-body propa-
butions due to emission/absorption processes. These discogators in the assumed dynamical equations. Since the
nected pieces are identified, in virtue of the decompositiong|ankenbec|er_3uga[27] and Aaron-Amado-Youngd 28]

(5.9, and removed by formal use of the two-potential for- nropagators are used for the two- and three-body subsystems,
mula. As a consequence, the physical transition operators A[Ritarity is satisfied up to the three-body level. Clearly, ow-
given by the solution of rather complicated sets of nesteg g the above features, this formalism cannot be founded
integral equations. This procedure implies also that the trang rigorous, FY-type approaches: in particular, it implies a
sition operators for emission/absorption processes have to l?ffrect coupI'ing between theNiD) 77, configuratior;(i.e., the

defined with reference to incompledN interactions in the N :
NNN space, taking account of the coupling to th&iNN type-Ill partition in thewNNNspacg, and thb}.ID system n
the NNN sector, whereas, according to microscopic four-

sector only to low ordefsee Egs.(4.16h, (4.160 and ] ) .
4.173 in Ryef. [15]]. Only trr[1e exac? emplo;l?ment of the two- body approaches, absorption has to be excluded in the parti-
tion where therr has a passive role in the subsystem dynam-

potential formula can introduce the missing part of i ;
interactions, and provide at the end the physical transitioh®S (12,18, )
amplitudes. In conclusion, to the best of our knowledge, the coupled
Coupled equations formally similar to the LS equations™NNN-NNN problem has not found up to now a fully sat-
(4.14) represent the starting point of the relativistic, coupled-isfactory solution. The GS approach introduced in REf2]
channel approach of Ref20]. There, however, the four- can provide connected-kernel equations only when a class of
body dynamics never come explicitly into play; rather, thedisconnected graphs with self-energy insertions is excluded,
various three-cluster partitions for theNNN-NNN system  thereby violating unitarity. These disconnected contributions
are regarded as different three-body problems, and the cogan be removed through the two-potential formulation of
responding two-cluster partitions as different channels of thé&ef. [15]; the physical transition amplitudes, however, can
same effective, coupled-channel problem. Thus, regardinbe evaluated only through the solution of cumbersome sets
nucleons as distinguishable, one has nine different channetd nested integral equations. The effective, coupled-channel
(NiDj ), (wDji)N;, and @N;)Dj, (i, j, k a cyclic per- method of Ref[20], while allowing actual computations of
mutation of 1, 2, 3 Similarly, one has nine channels for the #NNN-NNN processes, relies on sevead hocassump-
7NA systems, plus six possible channels in N space. tions, and cannot be directly connected to what is suggested
Overall, one has to deal with 24 different channels, which ardy rigorous FY-type analyses.
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