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pNNN-NNN problem: Connectedness, transition amplitudes,
and quasiparticle approximation

G. Cattapan and L. Canton
Istituto Nazionale di Fisica Nucleare e Dipartimento di Fisica dell’ Universita´ via Marzolo 8, Padova I-35131, Italy

~Received 27 March 1997!

In this paper we review the present status of thepNNN-NNN problem. In particular, we reconsider the
chain-labeled approach recently proposed by us, and identify a class of graphs, previously overlooked, which
prevents the kernel of the correspondingpNNN-NNN equations from being connected. We propose some
approximate schemes, yielding connected-kernel equations. A generalization of the residue method allows us
to relate the transition amplitudes for the coupledpNNN-NNN system to the chain-labeled formalism. The
quasiparticle approach is extended to the present situation, where emission/absorption of particles is allowed.
The open problems for thepNNN-NNN system in light of the present and of previous approaches are finally
discussed.@S0556-2813~97!03008-2#

PACS number~s!: 21.45.1v, 11.80.Jy, 13.75.Gx, and 25.80.2e
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I. INTRODUCTION

In two previous papers@1,2# we have outlined an ap
proach to thepNNN-NNN problem, which can be regarde
as the natural extension of the Grassberger-Sandhas~GS!
n-body method@3,4# to situations in which the number o
particles is no longer conserved. As is well known, the
formalism represents a basic achievement in mod
n-body scattering theory. It casts in a physically transpar
form the connected-kernel Yakubovski� ~Y! scheme@5#,
which enjoys the distinctive feature of being completely fr
from nonphysical solutions. Indeed, not only does it guar
tee that the Fredholm alternative holds, so that nonphys
solutions do not contaminate the physical one in the sca
ing region, but it also satisfies a constrained Fredholm al
native@6#; the nontrivial solutions of the associated homog
neous equations are in one-to-one correspondence with
bound states of the total system. Most of the connec
kerneln-body equations proposed in the literature satisfy
former condition, but fail in guaranteeing the latter.

The extension of the GS formalism considers scatter
and pion production/absorption processes on equal foot
thus providing a coupled treatment of all the relevant p
cesses in the same dynamically consistent framework.
p production introduces radical changes in the structure
the dynamical equations and gives rise to challenges
problems which were not possible in standardn-body theo-
ries.

On a fundamental level, there is the problem with nucle
renormalization, which is unavoidable in theories where
Fock space is truncated to states with at most one pion.
problem is well acknowledged in the literature@7–13#, and
herein is not discussed.

The first problem considered in this paper concerns
connectedness of thepNNN integral equations, and we a
rive at the conclusion that, contrary to our previous be
@2#, these equations are not connected. In this paper we i
tify a class of graphs, previously overlooked, which preve
the kernel from being connected. We show that the prob
arises when the 311 @(pNN)N# and 212 @(NN)(pN)# par-
titions are treated on equal footing, and that connectedn
560556-2813/97/56~2!/689~13!/$10.00
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can be restored with two iterations of the kernel if the co
pling between thepNNN andNNN sectors is switched off
in the 212 partitions, whereas it is treated exactly in th
pNN subsystems. As a matter of fact, connectedness is g
anteed also when production/absorption processes are
lowed in 212 partitions, provided that the exact subsyste
amplitudes are projected in the solepNNN sector.

The second problem we analyze in detail is the probl
with the identification of certain physical transition amp
tudes which refer to the nucleon-deuteron channel. The
biguities in the definition of these amplitudes are origina
by the delicate interplay between the 212 and 311 parti-
tions, and are closely related with the connectedness p
lem. Indeed, with the same approximation scheme we res
the connectedness in our equations and solve these ampl
ambiguities.

The extension of the GS approach to thepNNN system is
briefly illustrated in Sec. II. Starting from the transition am
plitudes for 4→4 processes, one first extracts operators
ferring to three-cluster→three-cluster transitions, which sa
isfy dynamical equations formally identical to the Afna
Blankleider ~AB! equations for thepNN-NN system@14–
16#. By resorting to the powerful GS matrix technique, t
two-cluster partitions are introduced into the theory, and o
gets at the end dynamical equations quite similar in struc
to the GS four-body equations. The presence of emiss
absorption processes, however, implies some noticeable
ferences, when these equations are analyzed in detail.
chain-of-partition labeling, characterizing the YGS approa
is now more complex, since one has to regard nucleon p
both as three-cluster partitions in thepNNN sector, and as
two-cluster partitions in theNNN space. As a consequenc
one deals with a set of 24 coupled equations, in place of
18 characterizing the standard YGS scheme.

In Sec. III we establish the relation between the employ
operators, labeled by chains of partitions, and the phys
amplitudes connecting the various partitions of the syste
As is well-known in nonrelativistic scattering theory, th
physical transition amplitudes can be identified by exhibiti
the momentum-space singular terms of the total Green fu
tion, in correspondence to the bound states of the vari
689 © 1997 The American Physical Society
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690 56G. CATTAPAN AND L. CANTON
subsystems@6,17,18#. This procedure, which has its relativ
istic counterpart in reduction formulas of quantum fie
theory@19#, is often referred to as the residue method@6,14#.
Alternatively, one can work in the language of transiti
operators. For the standardn-body problem, by combining
the residue rule with the GS matrix technique, it has be
shown@2# that the two-cluster→two-cluster transition ampli-
tudes can be related to the solution of then-body YGS equa-
tions, starting from the transition amplitudes for n→n pro-
cesses. Here, as anticipated in Ref.@1#, we generalize this
procedure to thepNNN-NNN case, where the coupling be
tween spaces with different numbers of particles has to
taken into account. Starting from the relations expressing
4→4 transition amplitudes in terms of operators referring
less and less clusterized partitions, we systematically iden
the poles associated to the bound states or resonances
various two- and three-body subsystems. As the outcom
this procedure, we express both the rearrangement and
meson absorption/emission transition amplitudes in term
the solution of our chain-labeled equations. Finally, in t
same section, we discuss also the ambiguities in the ide
fication of the physical amplitudes, and the associated
played by the 311 and 212 partitions in this problem.

In Sec. IV we consider the quasiparticle approximati
~QPA!. In the four-body case, this amounts to a two-s
procedure@3,4,6#. One first replaces the two-bodyt matrices
with finite-rank operators, thereby rewriting the YGS equ
tions as effective Faddeev equations for two elementary
ticles and a composite object; as a second step, one app
mates again the three-body and 212 subsystem amplitude
by finite-rank operators. One thus obtains multichan
Lippmann-Schwinger-type~LS! equations in one vector vari
able, coupling the elastic/rearrangement transition am
tudes. The physical transition amplitudes for breakup p
cesses can be evaluated starting from the solution of
effective LS equations through simple quadratures. We sh
here that the QPA can be extended to the present situa
Here also the two-fragment→two-fragment transition ampli-
tudes satisfy LS equations, all the breakup and emiss
absorption amplitudes being expressible in terms of them
quadratures. The QPA approach is particularly attractive
cause it shows the theory through diagrams which can
easily interpreted. It is then possible to view the diagra
which are at the origin of the disconnectedness probl
These disconnected graphs are self-energy-type contribu
to the transition from a (pN)(NN) to a N(pNN) configu-
ration without pions in the intermediate state. If this term
disregarded, one gets connected-kernel equations, much
the standard four-body problem. Needless to say, the sam
true if emission/absorption processes are switched of
212 subsystems, or allowed only in the subsystem am
tudes referring to the four-body sector.

Given the present situation, we review in Sec. V the
proaches available in literature@15,20#. In Ref. @15# one ap-
plies the quasiparticle approximation to the basic AB eq
tions, and removes the disconnected pieces occurring in
standard four-body problem first, by resorting to the us
GS method. All disconnected terms due to pion emissi
absorption are then treated together, by use of a t
potential formula. Disconnected contributions are forma
regarded as an auxiliary problem, whose solution gives
n
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input for connected-kernel equations yielding the physi
transition operators. As a consequence, the actual trans
amplitudes can be evaluated only solving nested sets o
tegral equations. Finally, these rigorous FY-type approac
are compared to the effective, coupled-channel formalism
Ref. @20#. It turns out that this phenomenological method
at variance with present few-body scattering theory, sinc
assumesad hoc couplings between configurations of th
pNNN andNNN systems, which are excluded in more m
croscopic FY-type formulations.

II. THE DYNAMICAL EQUATIONS

As in Refs.@1,2#, we start from the unclusterized trans
tion operators which are allowed in theNNN and pNNN
sectors of the theory. LetT(0u0) be the operator associate
with the transition from a three-nucleon stateux0& to a three-
nucleon stateux08&, so that the corresponding transition am
plitude is given bŷ x08uT(0u0)ux0&. Similarly, T(1u1) describes
a transition from an initialpNNN stateux1& to a final one
ux18&. The two sectors communicate through the absorpt
and production operatorsT(0u1) andT(1u0) , respectively, the
associated transition amplitudes being^x18uT(1u0)ux0&, and
^x08uT(0u1)ux1&. The AB transition operators can be intro
duced through the relations@1,2#

T~0u0!5U, ~2.1a!

T~1u0!5(
a

taG0Ua , ~2.1b!

T~0u1!5(
b

Ub
†G0tb, ~2.1c!

T~1u1!5(
a

ta1(
a,b

taG0UabG0tb . ~2.1d!

Here,G0 represents the freepNNN propagator. As usual in
few-body scattering theory, indices such asa, b, andc de-
note generic three-cluster partitions of the four-body syste
namely, interacting pairs in presence of two spectator p
ticles. If necessary, to distinguish betweenNN andpN pairs,
we shall denote the latter byi , j or k, so thati represents the
pair pNi with nucleonsNj and Nk as spectators (i , j ,k a
cyclic permutation of 1,2,3). Finally, the operatorsta are the
NN or pN t matrices. To be consistent with the explic
allowance of thepNN vertices, only the nonpolar part has
be retained in thep-nucleont matricest i in the P11 channel
@14#. For the sake of simplicity, we have omitted the depe
dence upon the energy variablez in the resolvent and tran
sition operators. It will be exhibited only when necessa
For the same reason, the outgoing boundary conditions
sumed on-shell for the operators are not explicitly indicat
Note that the operators which are obtained through H
mitean conjugation are associated with ingoing bound
conditions, so that one hasUb

†[Ub(E2 i0)†, with E the
total energy.

The physical meaning of the operators introduced throu
Eqs.~2.1a!–~2.1d! can be ascertained by studying the beha
ior of the 4→4 amplitudes in momentum space, near t
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56 691pNNN-NNN PROBLEM: CONNECTEDNESS, . . .
poles corresponding to the two-body bound states or re
nances. As is well known, the dominant part ofta at the
bound state~or resonance! energyz5Ea can be written@21#

ta.ua&
1

z2Ea
^au, ~2.2!

whereua& is the form factor for the correlated paira,

ua&5Vaufa&. ~2.3!

Here,Va represents the two-body interaction in paira, and
ufa& satisfies the homogeneous equation

G0~Ea!Vaufa&5ufa&. ~2.4!

For z;Ea the production amplitude can then be writte
because of Eq.~2.1b!

^x18uT~1u0!~z!ux0&.^x18uVaufa&
1

z2Ea
^fauUaux0&.

~2.5!

The residue of the amplitude at this simple pole provid
~apart from the form factor̂x18uVaufa&) the transition am-
plitude ^fauUaux0& referring to three-cluster→three-cluster
transitions from theNNN space to thepNNN sector. Simi-
larly, one can establish thatUb

† andUab are absorption and
reaction operators, respectively, for transitions betw
three-cluster configurations of thepNNN-NNN system.

The dynamical equations for the AB operators have b
derived in Ref.@14# for the pNN system, by resorting to
Taylor’s diagrammatic method@22,23#, and have been ex
tended to thepNNN case in Refs.@15,16#. For thepNNN
case these equations do not have a connected kernel, s
they may have unphysical solutions in addition to the corr
~physical! one. In our previous papers@1,2# we have shown
that Faddeev-Yakubovski�-type ~FY! equations, and explici
allowance for two-cluster partitions can be obtained throu
a nontrivial generalization of the GS approach to the fo
body problem@3,4#. To this end one writes the four-body AB
equations in the matrix form

T~3!5V~3!1V~3!G0
~3!T~3!, ~2.6!

whereG0
(3) , V(3), andT(3) are matrices in the three-cluste

partition indices defined according to

G0
~3![UG0

~3!
~aub! G0

~3!
~au0!

G0
~3!

~0ub! G0
~3!

~0u0!U5UG0taG0dab 0

0 g0
U, ~2.7!

V~3![UV~aub!
~3! V~au0!

~3!

V~0ub!
~3! V~0u0!

~3! U5UG0
21 d̄ ab Fa

Fb
† V U , ~2.8!

T~3![UT~aub!
~3! T~au0!

~3!

T~0ub!
~3! T~0u0!

~3! U5UUab Ua

Ub
† U U , ~2.9!

respectively. The notation exhibits the fact that the diago
blocks of these matrices refer to thepNNN and NNN
o-

,

s

n

n

that
t
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spaces, whereas the off-diagonal blocks contain the opera
connecting the two sectors. Here,g0 is the free three-nucleon
propagator, andV represents the total interaction in th
NNN sector with the one-pion-exchange contributions e
plicitly included; Fa (Fb

†) is the sum of the elementary pro
duction ~absorption! vertices external to the paira @see Eq.
~1! in Ref. @1##, and d̄ ab[12dab .

As in the standard GS approach, a crucial step in obta
ing equations with a FY coupling scheme is represented b
sum rule, by which the matrix interactionV(3) is written as
the sum of contributionsva8

(3) referring to the two-cluster par
titions a8 of the total system. This can be accomplish
through a more refined classification of the two-cluster p
titions, with respect to the usual four-body theory. Ifa8 is the
partition p(NNN), with the pion a mere spectator~type-III
partition!, one essentially has the GS form@3,4#

va8
~3![Uva8

~3!
~aub! va8

~3!
~au0!

va8
~3!

~0ub! va8
~3!

~0u0!
U5UG0

21 d̄ abda,b,a8
0

0 0U ,

~2.10a!

with da,b,a8 equal to one if botha and b are obtained by
breaking a cluster ina8, and zero otherwise. If, on the othe
hand,a8 contains an interactingpNN system plus a specta
tor nucleon~type-I partition! or two pairspN andNN with
no mutual interaction~type-II partition! one has

va8
~3![Uva8

~3!
~aub! va8

~3!
~au0!

va8
~3!

~0ub! va8
~3!

~0u0!
U5UG0

21 d̄ abda,b,a8
~ f a8!a

~ f a8
†

!b Va1
U ,

~2.10b!

and

va8
~3![Uva8

~3!
~aub! va8

~3!
~au0!

va8
~3!

~0ub! va8
~3!

~0u0!
U5UG0

21 d̄ abda,b,a8
~ f a8!a

~ f a8
†

!b 0 U ,

~2.10c!

respectively. Here, (f a8)a and (f a8
† )b are emission and ab

sorption vertices internal toa8; they can be written in terms
of the elementary production and absorption vertices for
i th nucleonf ( i ) and f ( i )†, respectively, as follows:

~ f a8!a5(
i 51

3

d̄ iad i ,a,a8 f ~ i !, ~ f a8
†

!b5(
i 51

3

d̄ ibd i ,b,a8 f ~ i !†.

~2.11!

The operatorVa1
represents the interaction internal to th

NN pair a1 in the considered partitiona8, with the one-pion-
exchange tail included@1,2#. We observe thata1 represents
at the same time a two-cluster partition in the three-nucle
sector and a three-cluster partition in the four-body space
is uniquely defined for each I- or II-typea8. It is worth to
note that, had we definedva8

(3) in the same way for type-I and
type-II partitions, we would have counted theNN potentials
Va1

twice when summingva8
(3) over a8, to get the total ‘‘in-

teraction’’ V(3).
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692 56G. CATTAPAN AND L. CANTON
The operatorsva8
(3) represent the driving terms of the equ

tions for the subsystem dynamics. These equations ca
written in the compact Lippmann-Schwinger form@1,2#

ta8
~3!

5va8
~3!

1va8
~3!G0

~3!ta8
~3! , ~2.12!

whereta8
(3) are matrices in the three-cluster-partition indice

whose definition depends again upon the type of two-clu
partition a8. For a type-I or type-IIa8 they are defined ac
cording to

ta8
~3![U ta8

~3!
~aub! ta8

~3!
~au0!

ta8
~3!

~0ub! ta8
~3!

~0u0!
U5U~ua8!ab ~ua8!a

~ua8
†

!b ua8 U ,

~2.13a!

where (ua8)ab , (ua8)a , (ua8
† )b and ua8 are AB-type transi-

tion operators describing scattering and absorption/emis
processes within the subsystems defined bya8. If, on the
other hand, one has the type-III partitiona85p(NNN) one
has the usual Alt-Grassberger-Sandhas~AGS! operators for
the three-nucleon subsystem, namely,

ta8
~3![U ta8

~3!
~aub! ta8

~3!
~au0!

ta8
~3!

~0ub! ta8
~3!

~0u0!
U5U~ua8!ab 0

0 0U . ~2.13b!

The FY-type equations for the fullpNNN system can be
derived from the four-body AB equations~2.6! by resorting
to the basic ansatz

T~3!5(
a8

ta8
~3!

1 (
a8b8

ta8
~3!G0

~3!Ua8b8
~3! G0

~3!tb8
~3! . ~2.14!

Requiring thatT(3), as given by~2.14!, satisfies Eqs.~2.6!
one gets

Ua8b8
~3!

5 d̄ a8b8G0
~3!211(

c8
d̄ a8c8tc8

~3!G0
~3!Uc8b8

~3! . ~2.15!

These equations, once explicitly written, couple operat
labeled by chains of partitions. Different from the standa
four-body case, however, now the coupling between spa
with different numbers of particles is allowed; as a con
quence, one has standard chain indices (a8a) ~with a,a8)
in the pNNN sector, and hybrid-chain indices (a8a1) ~with
a1,a8) to account for the three-nucleon space. The expl
form of Eqs.~2.15! has been given and discussed elsewh
@2#. Here, we limit ourselves to observe that they couple
following operators: operatorsUa8ab8b associated with scat
tering in thepNNN space; operatorsUa8a1b8b1

for collision

processes in theNNN sector; production and absorption o
eratorsUa8ab8b1

and Ua8a1b8b
† , respectively, which connec

the two spaces to each other.
In two previous papers@1,2#, we have analyzed the con

nectedness properties of Eqs.~2.15!. For all the graphs con
sidered therein, we found that their kernelK is connected
after three iterations. A closer inspection, however, revea
further class of graphs, whose presence prevents the pre
formalism from achieving connectedness. These graphs
be
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-
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e

a
ent
re

related to self-energy insertions in type-II partitions,
which a nucleon line is dressed in the presence of an in
acting NN pair @see Fig. 1~a!#. Because of these contribu
tions, disconnected graphs appear in any iteration ofK, a
typical disconnected term inK4 being exhibited in Fig. 1~b!.
As already observed in Ref.@15#, in a properly mass-
renormalized theory these contributions to theNN interac-
tions would never arise, since the spectator nucleon wo
have already acquired its physical mass. In this trunca
formalism, however, the FY coupling scheme implies th
212 partitions have to be treated on equal footing as
type-I ones, and one is forced to introduce the above dan
ous graphs.

Based on the above considerations, one has to conc
that the present approach, in spite of its striking similarit
with the GS method, which has been so successful in
standard four-body case, is not able to solve the disconn
edness problem for thepNNN-NNN system. A natural
question is whether one can extract from Eq.~2.15! sensible
approximations, leading to connected-kernel equations
first possibility is suggested by the very nature of the disc
nected terms, namely, one can switch off the coupling
tween thepNNN andNNN sectors for the type-II partitions
thereby allowing only multiple rescattering in the two-bod
subsystems, much as in standard four-body theory. This
plies that the subsystem dynamics is described by E
~2.12!, ~2.10a!, and~2.13b! not only for type-III but also for
type-II partitions. Since hybrid chains are now introduc
only for type-I partitions, in this approximation Eqs.~2.15!
represent a set of 21 coupled equations. Proceeding a
Ref. @2#, one can verify that their kernel is connected af
two iterations. This approximation, therefore, gives an e
bedding of the AB treatment for thepNN-NN subsystems,
into a four-body approach, where the remaining part of
problem is handled through a conventional multip
scattering treatment.

FIG. 1. ~a! Self-energy graphs occurring in type-II partition
The full and dashed lines represent nucleons and pions, res
tively, while the full circles represent thepNN vertices, and the
blob is the NNt matrix; ~b! a disconnected contribution to the thir
iteration of the kernelK. The wavy line represents theNN potential
in the three-nucleon space.
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56 693pNNN-NNN PROBLEM: CONNECTEDNESS, . . .
A less severe truncation of the theory is possible, in wh
pion emission and absorption can be allowed in 212 parti-
tions. To see how this can be achieved, we write Eqs.~2.12!
for the scattering and absorption operators (ua8)ab and
(ua8

† )b , with a8 a type-II partition (p i )( jk),

~ua8!ab5G0
21 d̄ ab1(

c
d̄ actcG0~ua8!cb1~ f a8!ag0~ua8

†
!b ,

~2.16a!

~ua8
†

!b5~ f a8
†

!b1(
c

~ f a8
†

!cG0tcG0~ua8!cb . ~2.16b!

Substituting for (ua8
† )b in the former of these equations from

the latter, one gets

~ua8!ab5G0
21 d̄ ab1~ f a8!ag0~ f a8

†
!b1(

c
d̄ actcG0~ua8!cb

1~ f a8!ag0(
c

~ f a8
†

!cG0tcG0~ua8!cb . ~2.17!

One now assumes again Eq.~2.13b! for type-II partitions. In
this approximation, emission/absorption processes contri
to all orders in thepNNN sector, while their components fo
direct pion emission/absorption are set to zero. As a con
quence, the intertwining between 311 and 212 partitions
with zero-pion intermediate states is forbidden, and conn
edness can be achieved again.

III. THE TRANSITION AMPLITUDES

The physical transition amplitudes for the various co
sion processes allowed in the considered state sp
(HNNN%HpNNN) can be extracted from Eqs.~2.1! and~2.14!
through a suitable generalization of the residue method.
exhibit the singularities of the relevant operators in cor
spondence to the possible bound~or resonant! states of the
subsystems, we consider the homogeneous eigenvalue
lem associated with Eqs.~2.12!, namely

uGa8
~3!

~Ea8!&5va8
~3!

~Ea8!G0
~3!~Ea8!uGa8

~3!
~Ea8!&. ~3.1!

For type-I or type-II partitions,uGa8
(3)(Ea8)& is a column vec-

tor in the space of the three-cluster partitions of both sec
of the model state space. In particular, in thepNNN sector,
uGa8

(3)& has nonvanishing componentsuGa8a& in those three-
cluster partitions obtained from a sequential breakup of
two-cluster partitiona8. For the type-III partition, the col-
umn vector has nonvanishing componentsuGa8a& only in the
pNNN subspace. For the sake of simplicity, we have
sumed that there is a unique eigenvalue for a givena8, the
generalization to many eigenvaluesEa8r implying only a
more involved bookkeeping of indices. If the state vector

uFa8
~3!

~Ea8!&[G0
~3!~Ea8!uGa8

~3!
~Ea8!& ~3.2!

are introduced, Eq.~3.1! becomes

uFa8
~3!

~Ea8!&5G0
~3!~Ea8!va8

~3!
~Ea8!uFa8

~3!
~Ea8!&. ~3.3!
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To have a first insight into the physical meaning of the
equations, it is instructive to write Eq.~3.3! explicitly. For
the type-III partition, taking Eqs.~2.7! and ~2.10a! into ac-
count, one gets

uFa8a&5G0ta (
c~,a8!

d̄ acuFa8c&, ~3.4!

namely, the standard Faddeev equations for the wa
function componentsuFa8a& of the three-nucleon bound sta
in presence of the spectator pion. As is well known, the to
wave function is given by(auFa8a&.

For the type-I partitions one has from Eqs.~2.7! and
~2.10b!

uFa8a&5G0ta (
c~,a8!

d̄ acuFa8c&1G0taG0~ f a8!auFa8a1
&,

uFa8a1
&5 (

c~,a8!

g0~ f a8
†

!cuFa8c&1g0Va1
uFa8a1

&. ~3.5!

Because of the coupling between thepNNN andNNN sec-
tors the wave functionuFa8

(3)& acquires an extra componen
uFa8a1

&. One immediately sees that, if the coupling betwe

the two spaces is switched off@( f a8)a5( f a8
† )a[0# these

equations reduce themselves to a pair of uncoupled e
tions, the former having the same form as Eq.~3.4!, and
describing a deuteron (D) as apNN bound state~plus a
spectator nucleon!, the latter referring to a pair of nucleon
bound by the two-body potentialVa1

, in the presence of a

spectator nucleon in theNNN space. In presence of th
pNN vertices, the total wave function becomes the super
sition of the two components, since the deuteron can
viewed both as anNN bound state, and as anNN system
with a pion in flight between the two fermions. The stat
uGa8

(3)(Ea8)& are then the form factors for the composite sy
tem in partitiona8.

For a8 belonging to the type-II class, one gets equatio
quite similar to Eq.~3.5!. The second term in the equatio
for theuFa8a1

& component, however, is now missing@see Eq.
~2.10c!#. In analogy to the standard four-body case, this
describes an off-shell situation, with a correlatedNN pair in
the presence of an interactingpN system. Since the corre
sponding form factoruGa8

(3)& can be most clearly interprete
in the quasiparticle scheme, we defer its discussion to
next section. Here, we limit ourselves to observe that E
~3.1! or ~3.3! contain the contributions due to the dangero
self-energy graphs leading to the disconnectedness prob
outlined in the previous section.

From the formal solution of the dynamical Eqs.~2.12!, it
follows that in momentum-space representationta8

(3)(z) has a
pole for z;Ea8. In operator notation we simply write

ta8
~3!

~z!.
uGa8

~3!&^Ga8
~3!u

z2Ea8

, ~3.6!

where^Ga8
(3)u is a row vector, defined as the solution of
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^Ga8
~3!

~Ea8!u5^Ga8
~3!

~Ea8!uG0
~3!~Ea8!va8

~3!
~Ea8!.

Equation~3.6! can be given an interpretation quite simil
to the pole approximation for the subsystem amplitudes
standard few-body theory@3#. For type-I and type-III parti-
tions the form factor^Ga8

(3)u describes the formation of
bound~or resonant! three-body subsystem in partitiona8; the
factor (z2Ea8)

21 describes the propagation of this su
system in the presence of the spectator particle, wherea
form factor uGa8

(3)& is associated with the virtual decay of th
composite object. For type-II partitions, on the other ha
one has the~virtual! formation, propagation, and subseque
decay of two correlated pairs with no mutual interactio
Differently from the usual four-body problem, however, he
the coupling between theNNN and pNNN sectors intro-
duces an extra component for the form factors for type-I a
type-II partitions. As already remarked, this extra compon
is present because the absorption and emission of the
implies that the deuteron has to be regarded as a super
tion of pureNN configurations and three-bodypNN com-
ponents~type-I partitions!, and the nucleon is allowed t
emit and absorb the pion in presence of a correlatedNN pair
~type-II partitions!.

Once the singular behavior of the subamplitudesta8
(3) has

been exhibited, the physical transition amplitudes for tw
fragment→two-fragment processes can be extracted fr
Eq. ~2.14!, by looking for the singular components of th
operatorT(3). To be definite, we suppose that the initial co
figuration is represented by a pion impinging on a thr
nucleon system, so that the corresponding two-cluster p
tion is b85p(NNN). We look for the transition amplitude to
the final configuration where nucleonsNj andNk are bound
in the deuteron, and the third nucleonNi is free
@a85Ni(pNjNk)# @24#. Using Eq.~3.6! in Eq. ~2.14! we can
exhibit the corresponding singular part ofT(3) as follows:

T~3!5uGa8
~3!&

Ta8b8

~z2Ea8!~z2Eb8!
^Gb8

~3!u1T~3!~NP!. ~3.7!

Here, T(3)(NP) is the nonsingular part of T(3),
a85Ni(pNjNk), b85p(NNN), the form factorsuGa8

(3)& and

^Gb8
(3)u satisfy the equations

uGa8a&5 (
c~,a8!

d̄ actcG0uGa8c&1~ f a8!ag0uGa8a1
&,

uGa8a1
&5 (

c~,a8!

~ f a8
†

!cG0tcG0uGa8c&1Va1
g0uGa8a1

&,

~3.8!

and

^Gb8bu5 (
c~,b8!

^Gb8cuG0tc d̄ cb , ~3.9!

respectively, andTa8b8 is defined according to

Ta8b8[^Fa8
~3!uUa8b8

~3! uFb8
~3!&. ~3.10!
n
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In conclusion, the two-cluster→two-cluster transition am-
plitudesTa8b8 have been obtained as the residue at the dou
pole on-shell ~i.e., at z5Ea85Eb8) of the three-cluster
→three-cluster amplitudes given in Eq.~2.9!.

The above analysis can be easily modified so as to ext
the transition amplitude for thep1T→N1N1N pro-
cess. Using Eqs.~3.6! and ~3.3! in Eq. ~2.14!, and extract-
ing the residue corresponding to the pole atz5Eb8 @b8
5p(NNN)#, one gets from̂ x08uUb

†ufb& the following ex-
pression for the transition amplitudeTNNN←pT :

TNNN←pT

5 (
a8~PI,II !

(
b

H(
a

^x08u~ua8
†

!aG0taG0Ua8ab8buFb8b&

1^x08uua8g0Ua8a1b8b
† uFb8b&J , ~3.11!

where the sum overa8 is restricted to type-I and type-I
partitions only, and we have implicitly assumeda,a8.
Thus, in close analogy to what is done in ordinary scatter
theory, by picking up the appropriate singular part of t
three-cluster→three-cluster transition operators, we ha
identified the contribution corresponding, in configurati
space, to an incoming wave with a pion and a bound thr
nucleon system, plus a scattered wave with three free nu
ons in the asymptotic region.

We also report the expressions for the partial- and to
breakup transition amplitudes. With a self-explanatory no
tion one can write,

TpND←pT5(
a8

(
c~,a8!

(
b

^fau~ua8!acG0tcG0Ua8cb8buFb8b&

1 (
a8~PI,II !

(
b

^fau~ua8!ag0Ua8a1b8b
† uFb8b&,

~3.12!

where^fau is the three-cluster asymptotic state with a de
teron plus spectators nucleon and pion@see Eq.~2.4!#, and

TpNNN←pT5(
a8

(
a

(
c~,a8!

(
b

^x18utaG0~ua8!ac

3G0tcG0Ua8cb8buFb8b&

1 (
a8~PI,II !

(
a

(
b

^x18utaG0~ua8!ag0

3Ua8a1b8b
† uFb8b&. ~3.13!

Here, obviously,b85p(NNN), anda in Eq. ~3.12! identi-
fies the partitionpNi(NjNk).

For the processp1T→N1D, the identification of
Ta8b8, as given by Eq.~3.10!, with the required transition
amplitudeTND←pT deserves some more comment. In the fi
place, it is worth noting that, since only states with at m
one pion are explicitly taken into account, the triton and t
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deuteron are treated in a different way in the respective ch
nels. The former is described as a three-nucleon sys
bound by staticNN forces because of the presence of the r
pion @see Eqs.~3.4! or ~3.9!#, the latter as a superposition o
NN andpNN configurations@see Eqs.~3.5! or ~3.8!#.

It may be instructive to write Eq.~3.10! explicitly. Recall-
ing that uFb8

(3)& has no hybrid-chain component forb8 of
type-III, one gets

TND←pT5(
ab

^Fa8auUa8ab8buFb8b&

1(
b

^Fa8a1
uUa8a1b8b

† uFb8b&. ~3.14!

The first term in this expression has the same form as
corresponding transition amplitude in the standard GS
mulation of the four-body problem@4,25#, the channel state
and the transition operators satisfying now equations all
ing for the coupling between theNNN and the pNNN
spaces. The latter term explicitly takes into account the p
sible transition between the two spaces, when the pio
absorbed.

It is worthwhile to observe that 212 self-energy graphs
imply nontrivial difficulties also for the transition ampli
tudes. Indeed, in the present framework one has to dis
guish betweenN(pNN) and (pN)(NN) partitions. As we
shall see in the next section, this is consistent with a qu
particle scheme, where the physical transition amplitudes
evaluated in terms of two- and three-body quasipartic
From the point of view of a full, renormalized field theory o
interacting pions and nucleons, however, type-I and typ
partitions have to concur to describe the same physical s
ation, a dressed nucleon with its physical mass, which
ymptotically propagates in presence of a deuteron, bound
the exchange of pions between the constituent nucleons
meet these physical requirements the interactions shoul
constrained so as to guarantee that the subsystem ope
ta8
(3) have a pole at the same energyEa8 for both type-I and

type-II partitions. Forp1T→N1D scattering Eq.~3.10!
would be then replaced by

TND←pT5 (
a8~PI,II !

^Fa8
~3!uUa8b8

~3! uFb8
~3!&, ~3.15!

where ~apart from antisymmetrization! one has
a85Ni(pNjNk) and a85(pNi)(NjNk). That such a de-
scription cannot emerge in a natural way from the pres
theory is a consequence of the truncation to states wit
most one pion, which lies at the heart of these type of
proaches. This difficulty, which is somewhat hidden in t
pNN-NN case ~apart from the renormalization problem!,
shows up here owing to the more complex boundary con
tions. If the coupling between thepNNN andNNN sectors
is switched off for type-II partitions, on the other hand, th
ambiguity is removed; Eqs.~3.3! reduce to the usual AGS
equations~3.4! for two pairs of correlated particles, and on
can distinguish between the physical, spectator nucleo
type-I partitions, and the correlatedpN pair in the type-II
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ones. As a consequence, Eq.~3.10! yields now the correct
transition amplitude without ambiguities. Thus, the sa
truncation which leads to a connected-kernel scheme, all
one to unambiguously identify the physical transition amp
tudes for two-cluster→two-cluster processes.

IV. THE QUASIPARTICLE SCHEME

The quasiparticle approximation~QPA! has played a ma-
jor role in the development of conventional few-body sc
tering theory@3,6#. This approach relies on the property th
both the two-bodyt matrices and the subsystem amplitud
can be approximated to an arbitrary degree of accuracy b
sum of separable terms. A first application of the QPA to
two-bodyt operators allows one to rewrite the original fou
body YGS equations as Faddeev-type equations for two
ementary particles and a composite object. A second ap
cation of the QPA to the subsystem amplitudes reduces
dynamical equations to a set of effective Lippman
Schwinger equations coupling the two-cluster→two-cluster
transition amplitudes. These equations, after partial-w
projection, involve one integration variable only. Th
breakup amplitudes can be then obtained from the 2→2 am-
plitudes by quadrature. The QPA allows for a better insig
into the physical content of Yakubovski�-type formalisms, at
the same time alleviating the difficulties implied by the s
lution of the four-body scattering problem by brute force.

Here, we show that the QPA can be naturally extended
the present situation, where emission/absorption proce
are allowed. We shall assume a separable~rank one! form for
the two-bodyt operators as well as for the subsystem amp
tudes, the extension to the general~finite-rank! case being
straightforward. Thus, we write

ta~z!5ua&ta
~3!~z!^au, ~4.1!

with ua&5Vaufa& and ta
(3)(z);1/(z2Ea) for z.Ea . The

actual form of ta
(3) depends on the particular separab

expansion method employed. However, all the reasona
expansion methods must reproduce the bound-state pole
havior of Eq. ~2.2! @26#. Then, the dynamical equation
~2.12! for the subsystem amplitudes can be rewritten as

Xa8
~3!

5Za8
~3!

1Za8
~3!D~3!Xa8

~3! , ~4.2!

whereD(3), Za8
(3) , and Xa8

(3) are again matrices in the three
cluster-partition indices, having a block structure quite sim
lar to G0

(3) , va8
(3) and ta8

(3) . Thus, one has

D~3![UD ~3!
~aub! D ~3!

~au0!

D ~3!
~0ub! D ~3!

~0u0!U5Uta
~3!dab 0

0 g0 U . ~4.3a!

Similarly, for type-I partitions,Za8
(3) andXa8

(3) are defined ac-
cording to



-
n
o-

m

a

to
re

e
ns

rti-
-

the

a
f
ly

ec-
ra-

tem

y

re

re

l
ted

For
ts

ody
pe

696 56G. CATTAPAN AND L. CANTON
Za8
~3![UZa8

~3!
~aub! Za8

~3!
~au0!

Za8
~3!

~0ub! Za8
~3!

~0u0!
U

5U ^auG0ub& d̄ abda,b,a8 ^auG0~ f a8!a

~ f a8
†

!bG0ub& Va1
U , ~4.3b!

Xa8
~3![UXa8

~3!
~aub! Xa8

~3!
~au0!

Xa8
~3!

~0ub! Xa8
~3!

~0u0!
U

5U^auG0~ua8!abG0ub& ^auG0~ua8!a

~ua8
†

!bG0ub& ua8 U . ~4.3c!

For a8 of type-II one has similar definitions, with the ele
ment Za8

(3)
(0u0) missing, whereas, for the type-III partitio

p(NNN), only the upper left blocks survive, thereby repr
ducing the definition of standard four-body theory.

The meaning of the present notation is worth some co
ment. As in the four-body GS approach, in^auG0ub& an in-
tegration has been performed over the relative moment
the correlated pairs described by the form factors^au and
ub&, so that this quantity is still an operator with respect
the remaining spectator momenta. In momentum-space
resentation and for type-I and type-III partitionsZa8

(3)
(aub) de-

scribes the virtual decay of the correlated pairb and the
formation of a correlated paira, with the intermediate ex-
change of a particle between the two fragments. ThesZ
terms play therefore the role of intercluster interactio

FIG. 2. Graphical representation of̂auG0( f a8)a for ~a!
a85(pNjNk)Nia5(pNj ), and ~b! a85(pNk)(NiNj )a5(NiNj ).
The double full line describes the (NN) quasiparticle, while the
dashed and full double line is associated with the correlated (pN)
pair. The half circles represent the two-body form factors.
-

of

p-

,

originated from the exchange of a particle. For type-II pa
tions one has the virtual decay ofb and the subsequent for
mation ofa, with intermediate four-body propagation.

Let us now consider̂auG0( f a8)a . In this case we inte-
grate over the relative momentum of paira in the pNNN
sector only; such a quantity describes a transition from
NNN space to thepNNN space, with the formation of a
correlated paira, describing either a bound deuteron or
resonant pN system. A graphical interpretation o
^auG0( f a8)a is given in Fig. 2. Similar considerations app
to ^auG0(ua8)a and (ua8

† )bG0ub& (b,a8). In summary, we
are consistently applying the GS recipe in the four-body s
tor, theNNN space remaining untouched, so as to get ope
tors in two vector variables in both sectors.

From Eqs.~2.15! the set of equations

Ya8b8
~3!

5 d̄ a8b8D
~3!211(

c8
d̄ a8c8Xc8

~3!D~3!Yc8b8
~3! , ~4.4!

can be derived, where

Ya8b8
~3! [U Ya8ab8b

~3! Ya8ab8b1

~3!

Ya8a1b8b
~3! Ya8a1b8b1

~3! U
5U ^auG0Ua8ab8bG0ub& ^auG0Ua8ab8b1

Ua8a1b8b
† G0ub& Ua8a1b8b1

U . ~4.5!

To introduce separable approximations for the subsys
amplitudes we observe that the homogeneous equations~3.3!
become, when the two-bodyt matrices are approximated b
Eq. ~4.1!,

uF̃a8
~3!

~Ea8!&5D~3!~Ea8!Za8
~3!

~Ea8!uF̃a8
~3!

~Ea8!&, ~4.6!

with uF̃a8
(3)(Ea8)& a column vector, whose components a

related to the components ofuFa8
(3)(Ea8)& by the remarkable

factorization relation

uFa8a&5G0ua&uF̃a8a&,uFa8a1
&[uF̃a8a1

&. ~4.7!

Needless to say, theNNN components of these vectors a
missing for the type-III partition. The form factorsuGa8

(3)& are

now replaced by the vectorsuG̃a8
(3)&5Za8

(3)uF̃a8
(3)& satisfying the

analog of Eqs.~3.1!

uG̃a8
~3!

~Ea8!&5Za8
~3!

~Ea8!D
~3!~Ea8!uG̃a8

~3!
~Ea8!&. ~4.8!

The physical meaning of the ‘‘form factors’’uG̃a8
(3)& is the

following. For a85p(NNN), uG̃a8a& describes the virtua
decay of the three-nucleon bound state into the correla
pair a plus a nucleon, in presence of the spectator pion.
the type-III partition, therefore, the three componen
uG̃a8a& retain the same meaning as in the standard four-b
problem @3#, and satisfy the homogeneous Faddeev-ty
equations
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uG̃a8a&5 (
c~,a8!

d̄ ac^auG0uc&tc
~3!uG̃a8c&. ~4.9!

For type-I partitions, the form factorsuG̃a8
(3)& acquire an extra

componentuG̃a8a1
& in the three-nucleon sector. Again this

due to the presence of thepNN vertex functions; wherea

uG̃a8a& represent the virtual decay of the deuteron as
pNN bound state into a correlated (NN) or (pN) pair plus a

free particle,uG̃a8a1
& describes the decay of the deuteron in

a pair of nucleons, through internal absorption of the pi
The four components ofuG̃a8

(3)& are coupled by Eqs.~4.8!,
which explicitly written give

uG̃a8a&5 (
c~,a8!

d̄ ac^auG0uc&tc
~3!uG̃a8c&

1^auG0~ f a8!ag0uG̃a8a1
&,

uG̃a8a1
&5 (

c~,a8!

~ f a8
†

!cG0uc&tc
~3!uG̃a8c&1Va1

g0uG̃a8a1
&.

~4.10!

These equations are graphically illustrated in Fig. 3. Fina

the form-factor componentsuG̃a8a& corresponding to type-II
partitions describe in thepNNN sector off-shell situations in
which a deuteron or a correlatedpN pair decays in presenc
of another correlated pair. The ‘‘absorption’ compone

uG̃a8a1
&, on the other hand, is associated with a deute

which decays, while a (pN) quasiparticle undergoes an~off-
shell! (pN)→N transition. These form factors and their co
pling through Eqs.~4.8! are graphically depicted in Fig. 4.

FIG. 3. The coupled equations~4.10! for type-I partitions. The

trapeziums represent the form factorsuG̃a8a& and uG̃a8a1
& for the

virtual dissociation of the correlatedpNN subsystem into a particle
and a correlated pair, or into two nucleons, respectively. In the
graph, the presence of the one-pion-exchange tail in theNN poten-
tial Va1

is shown. Only topologically different graphs are exhibite
a

.

,

t

n

Consistently with the discussion of the residue meth
given in Sec. III, we finally assume forXa8

(3) the separable
representation

Xa8
~3!

5uG̃a8
~3!&ta8

~2!^G̃a8
~3!u, ~4.11!

with ta8
(2).1/(z2Ea8) for z;Ea8, and the row vector

^G̃a8
(3)u eigensolution of̂ G̃a8

(3)u5^G̃a8
(3)uD(3)Za8

(3) .
Inserting Eq.~4.11! into Eqs. ~4.4!, and evaluating the

resulting equations between̂G̃a8
(3)uD(3) on the left and

D(3)uG̃b8
(3)& on the right one gets

Ta8b85 d̄ a8b8^G̃a8
~3!uD~3!uG̃b8

~3!&

1(
c8

d̄ a8c8^G̃a8
~3!uD~3!uG̃c8

~3!&tc8
~2!Tc8b8, ~4.12!

where use has been made of the relation between the
factorsuG̃a8

(3)& and the ‘‘channel states’’uF̃a8
(3)&, and we have

now definedTa8b8 according to

Ta8b8[^F̃a8
~3!uYa8b8

~3! uF̃b8
~3!&. ~4.13!

That Eq. ~4.13! actually gives ~on-shell! the 2-cluster
→2-cluster transition amplitudes in the separable appro
mation can be easily ascertained starting from Eq.~3.10!,
and by using the factorization property~4.7! and Eq.~4.5!.
Much as in the standard four-body problem, we have b
able to obtain one-vector-variable integral equations c
pling all the 2→2 transition amplitudes one has for a give
initial configuration. By means of an obvious matrix notatio

st

.

FIG. 4. Graphical representation of the coupled equations~4.8!

for type-II partitions. In this case the form factorsuG̃a8
(3)& ~empty

circles! describe the virtual decay of a correlated pair in presenc
the off-shell propagation of the other pair, or of a virtu
(pN)→N transition. The boxes enclose the terms which disapp
when the coupling between thepNNN and NNN spaces is
switched off in type-II partitions.
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698 56G. CATTAPAN AND L. CANTON
in the two-cluster-partition indices Eq.~4.12! can be rewrit-
ten as an effective multichannel LS equation:

X~2!5Z~2!1Z~2!D~2!X~2!, ~4.14!

where

Xa8b8
~2! [Ta8b8, ~4.15a!

Za8b8
~2! [ d̄ a8b8^G̃a8

~3!uD~3!uG̃b8
~3!&, ~4.15b!

Da8b8
~2! [ta8

~2!da8b8. ~4.15c!

As is typical of the quasiparticle approach, the opera
ta8

(2) plays the role of an effective propagator; for type-I pa
titions it describes a deuteron~regarded as a coupledNN-
pNN system! in presence of a spectator nucleon; for type
partitions it is associated to a deuteron~as a boundNN sys-
tem! propagating in presence of apN correlated pair; for the
type-III partition it simply describes theNNN bound state
and the noninteracting pion in the two-cluster intermedi
state. The driving termsZa8b8

(2) represent exchange ‘‘poten
tials’’ associated with the simplest reaction mechanis
through which one can pass from the initial configurati
b8 to the final onea8. Owing to thepNN vertices, they
contain further contributions with respect to standard fo
body theory. This can be immediately seen by writing th
explicitly as

Za8b8
~2!

5 d̄ a8b8H (
c~,a8,b8!

^G̃a8cutc
~3!uG̃b8c&

1^G̃a8a1
ug0uG̃b8b1

&J , ~4.16!

where it is assumed that the latter term on the right-hand
is missing if eithera8 or b8 is the type-III partition. In par-
ticular, in standard four-body theory the driving termZa8b8

(2) is
missing when botha8 andb8 are of type II, since in such a
case no three-cluster partitionc can be simultaneously con
tained in botha8 and b8 ~with a8Þb8). Here, this driving
term survives, due to the presence of the latter term in
~4.16!. Some typical driving terms are graphically illustrate
in Fig. 5.

Let us focus our attention on Fig. 5~d!. It describes one
of the lowest-order contributions to the transitio
(pN)1(NN)→N1(NNp), and consists of two graphs, co
responding to the former and the latter term on the right
Eq. ~4.16!, respectively. The graph associated with interm
diate three-nucleon propagation is clearly disconnected. T
is at variance with standard four-body theory, where all
driving terms are connected after the repeated applicatio
the QPA, and reflects the presence of the disconnected t
in the kernel of the exact equations~2.15! we have already
pointed out in Sec. II. One can easily convince oneself t
the disconnected contributions due to the graph of Fig. 5~d!
survive after any number of iterations of the effective L
equations~4.14!. The above disconnected graph can be
hibited as self-energy insertions in type-II partitions by su
stituting Eq.~4.8! ~or an iteration of the same equation! into
r
-

I

e

s

-

e

q.

f
-
is
e
of
ms

t

-
-

expression~4.15b! for the driving terms. Due to the employ
ment of the QPA, all the disconnected terms in the pres
formalism appear now lumped together in a unique contri
tion, describing transitions from a type-II to a type-I par
tion, having anNN pair in common. Clearly, if this term is
disregarded, one has the minimal truncation able to g
connected-kernel equations for the 2→2 transition ampli-
tudes. If, on the other hand, one switches off completely
coupling between thepNNN and NNN sectors in type-II
partitions, Eqs.~4.8! for the 212 quasiparticle form factors
reduce to the usual AGS homogeneous equations~4.9!.
These are graphically depicted in Fig. 4, where the bo
enclose the terms which are absent in this approximat
The effective LS equations~4.14! remain formally un-
changed, but now in 212 intermediate states one has t
propagation of a (pN) ‘‘cluster,’’ with no (pN)→N transi-
tion. Correspondingly, in the driving terms the contributio
enclosed in boxes in Fig. 5 vanish; in particular, the 2→2
graph is now absent, much as in standard four-body the

Finally, let us briefly describe how the above consid
ations have to be modified, ifp absorption/emission is take
into account in the scattering amplitudes for 212 sub-
systems, as described by Eqs.~2.17!. The quasiparticle rep-
resentation for these equations still has an LS-type struc

Xa8
~3!

5Za8
~3!

1Za8
~3!D~3!Xa8

~3! , ~4.17!

FIG. 5. The driving termsZa8b8
(2) for the quasiparticle Eqs.~4.14!,

as given by Eq.~4.15b!. The driving terms obtainable from thos
given here by interchanging the initial and final states are not giv
The dashed box encloses the contribution which has to be d
garded to get connected-kernel equations. The full-line boxes
hibit the terms which disappear when emission/absorption is
nored in 212 partitions.
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whereD(3) and Xa8
(3) can be identified withD (aub)

(3) 5ta
(3)dab

and Xa8
(3)

(aub)5^auG0(ua8)abG0ub&, respectively, and

the Z term Za8
(3) contains two terms, the former bein

^auG0ub& d̄ ab da,b,a8, the latter, given by
^auG0( f a8)ag0~f a8

† )bG0ub&, containing the effects ofp
emission/absorption in the scattering channel. This contr
tion is graphically depicted in Fig. 6.

To conclude this section, we give the physical transit
amplitudes for absorption/emission and breakup process
terms of the quasiparticle amplitudesTa8b8. Inserting Eq.
~4.11! into Eq. ~3.11! and using Eq.~4.13! one has for the
p1T→NNN process

TNNN←pT5(
a8

^x08uG̃a8a1
&ta8

~2!Ta8b8, ~4.18!

with b85p(NNN). This result is what one could reasonab
expect in the framework of an isobar model; the absorpt
amplitude with three free outgoing nucleons is given as
sum over all possible transitions to two-body intermedi
states, followed by the decay of the composite clusters
virtual (pN)→N conversion. This is graphically shown i
Fig. 7. Similarly, one has for the breakup transition amp
tudes

TpND←pT5 (
a8~.a!

^fauG̃a8a&ta8
~2!Ta8b8 ~a[pND!,

~4.19!

FIG. 6. The nonvanishing contributio
^ jkuG0f ( i )g0f †( i )G0u jk& to the operator
^auG0( f a8)ag0( f a8

† )bG0ub&. It describes the virtual decay and su
sequent formation of theNN cluster (jk), while the pion is ab-
sorbed and reemitted by nucleonNi .

FIG. 7. The Eq.~4.18!, expressing thep1T→N1N1N ab-
sorption amplitude in terms of the 2→2 transition amplitudes in the
quasiparticle approximation.
u-

n
in

n
e
e
or

-

TpNNN←pT5(
a8a

^x18ua&ta
~3!^fauG̃a8a&ta8

~2!Ta8b8.

~4.20!

V. CONCLUSIONS AND COMPARISON
WITH PREVIOUS APPROACHES

In this paper we have revisited the approach to
pNNN-NNN problem presented in Refs.@1,2#. This formal-
ism can be regarded as the most natural generalization o
GS method, to a situation with a variable number of p
ticles. We have shown that the physical transition amplitu
can be related to the chain-of-partition labeled operators
the formalismvia the residue method, and that the quasip
ticle technique can be generalized, so as to get multicha
LS equations coupling all the relevant 2→2 transition ampli-
tudes. We have seen, however, that, in spite of its attrac
features, the present approach fails in producing connec
kernel equations. This is due to off-shell self-energy grap
where nucleon dressing occurs in presence of an interac
NN pair. These disconnected graphs contribute to one sin
term in the kernel of the effective LS equations for the tra
sition amplitudes. If this term is neglected, one is left w
well-behaved equations, at the price of sacrificing exact u
tarity. A more severe truncation consists in switching off t
absorption/emission vertices in 212 partitions, while keep-
ing the effects of pion emission/absorption in thepNNN
subsystem. At this point, a comparison with the treatmen
the pNNN-NNN problem proposed in Ref.@15# is suitable.
There, one assumes the separable approximation~4.1! for the
two-body t operators from the beginning, and applies t
quasiparticle method directly to the AB equations~2.6!. By
the same procedure which led us to Eqs.~4.2! one gets

X~3!5Z~3!1Z~3!D~3!X~3!, ~5.1!

with D(3) given by Eq.~4.3a!, and

Z~3![U^auG0ub& d̄ ab ^auG0Fa

Fb
†G0ub& V U[UV q

p VU, ~5.2!

X~3![U^auG0UabG0ub& ^auG0Ua

Ub
†G0ub& U

U. ~5.3!

Here, according to the notation of Ref.@15#, V, p, andq are
a square matrix, a row and a column vector, respectively
the three-cluster partition indices. Notice that, owing to t
sum rules@1,2#

Fa5 (
a8~PI, II !

~ f a8!a , Fa
†5 (

a8~PI, II !

~ f a8
†

!a , ~5.4!

one can immediately decomposeq and p into terms of a
well-defined clustering nature,

q5 (
a8~PI, II !

qa8, p5 (
a8~PI, II !

pa8. ~5.5!

The integral equations~5.1! are transformed into a set o
equivalent Schro¨dinger equations, coupling thepNNN and
NNN sectors, and the usual GS approach is employed fi



i-
n
th
-
d
g

-
c

on
r-
a

te
a
o

-

tio

ns
d

-
he

co
th
in
n

e

ar

s are
are
in-

d
nk
pa-
the

ems,
w-
ded

a

ur-
arti-
m-

led
t-

s of
ed,
ns
of

an
sets
nel
f

sted

700 56G. CATTAPAN AND L. CANTON
by decomposingV into terms labeled by two-cluster part
tions, so as to remove the disconnected terms one has i
standard four-body problem. The transition operators for
various channels of thepNNN-NNN system are then iden
tified, and corresponding sets of integral equations are
rived. The kernel of these equations still contains, throu
the coupling operatorsq andp, all the disconnected contri
butions due to emission/absorption processes. These dis
nected pieces are identified, in virtue of the decompositi
~5.5!, and removed by formal use of the two-potential fo
mula. As a consequence, the physical transition operators
given by the solution of rather complicated sets of nes
integral equations. This procedure implies also that the tr
sition operators for emission/absorption processes have t
defined with reference to incompleteNN interactions in the
NNN space, taking account of the coupling to thepNNN
sector only to low order@see Eqs.~4.16b!, ~4.16c! and
~4.17a! in Ref. @15##. Only the exact employment of the two
potential formula can introduce the missing part of theNN
interactions, and provide at the end the physical transi
amplitudes.

Coupled equations formally similar to the LS equatio
~4.14! represent the starting point of the relativistic, couple
channel approach of Ref.@20#. There, however, the four
body dynamics never come explicitly into play; rather, t
various three-cluster partitions for thepNNN-NNN system
are regarded as different three-body problems, and the
responding two-cluster partitions as different channels of
same effective, coupled-channel problem. Thus, regard
nucleons as distinguishable, one has nine different chan
(NiD jk)p, (pD jk)Ni , and (pNi)D jk ( i , j , k a cyclic per-
mutation of 1, 2, 3!. Similarly, one has nine channels for th
pND systems, plus six possible channels in theNNN space.
Overall, one has to deal with 24 different channels, which
dy
.

l.
the
e

e-
h

on-
s

re
d
n-
be

n
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r-
e
g

els

e

coupled through driving termsZab , describing standard
AGS exchange graphs. The various three-cluster system
moreover coupled because the intercluster interactions
regarded as effective coupled-channel potentials; for
stance, thepD23-N2D-N3D-N2N3 systems are describe
through a four-channel interaction. Assuming a finite-ra
form for these potentials, one has effective two-body pro
gators in the assumed dynamical equations. Since
Blankenbecler-Sugar@27# and Aaron-Amado-Young@28#
propagators are used for the two- and three-body subsyst
unitarity is satisfied up to the three-body level. Clearly, o
ing to the above features, this formalism cannot be foun
on rigorous, FY-type approaches; in particular, it implies
direct coupling between the (ND)p configuration~i.e., the
type-III partition! in thepNNN space, and theND system in
the NNN sector, whereas, according to microscopic fo
body approaches, absorption has to be excluded in the p
tion where thep has a passive role in the subsystem dyna
ics @1,2,15#.

In conclusion, to the best of our knowledge, the coup
pNNN-NNN problem has not found up to now a fully sa
isfactory solution. The GS approach introduced in Refs.@1,2#
can provide connected-kernel equations only when a clas
disconnected graphs with self-energy insertions is exclud
thereby violating unitarity. These disconnected contributio
can be removed through the two-potential formulation
Ref. @15#; the physical transition amplitudes, however, c
be evaluated only through the solution of cumbersome
of nested integral equations. The effective, coupled-chan
method of Ref.@20#, while allowing actual computations o
pNNN-NNN processes, relies on severalad hoc assump-
tions, and cannot be directly connected to what is sugge
by rigorous FY-type analyses.
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