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Optical nucleon-deuteron potential
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Nucleon-deuteron scattering is cast into the form of an optical potential formalism. Two forms of an optical
potential are given. The resulting integral equations for the optical potentials are approximated by the first two
leading terms. Our numerical results demonstrate that even at intermediate energies these approximations are
insufficient to cover all of the angular range. Rescattering terms of higher order in the nucleon-nucleon
(NN) t matrix are needed. If one focuses on forward scattering, low-order approximationshriNthienatrix
can be sulfficient, depending on energy, and observedE56-281®7)00608-(

PACS numbd(s): 21.45+v, 24.10.Ht, 25.10ts

I. INTRODUCTION lar NN interactionV, P is the sum of a cyclic and an anti-
cyclic permutation of three nucleons, a@g the free three-

In recent years it has become possible to numericallyhucleon propagator. We work in the isospin formalism and
solve the three nucleon Faddeev equations with high precireat the nucleons as identical. The operators in(Ecare to
sion using any realistic nucleon-nucleoi) force and be applied onto the initial channel state
even adding three-nucleon forcgls-4]. Therefore this sys-

tem appears to be a promising candidate to rigorously study |¢g]0)z|<pd)|ﬁ0) (2
properties of optical potentials which describe the effective
interaction between the nucleon and the deuteron. built from the deuteron wave functidey) and the momen-

Optical potentials have a long traditigf—9]. However, tum eigenstate of relative motiotﬁo) of the incoming
their theoretical derivation from the underlying-particle nucleon with respect to the deuteron.

Hamiltonian poses a serious problem and actual realizations One can decompog&, in Eq. (1) into two parts. In the

have been carrigd through at intermediate energigs in thﬁrst one the two nucleons propagate as a deuteron and in the
spectator expansion scherfie-9] and at lower energies in second they are in two-body scattering states:
the framework of dispersion relatiof&0]. At intermediate

energies the resulting expressions have the typidal”*
form, wheret is a NN t matrix andp the single particle tGo=V
density matrix of the target. That form is the leading term in
an expansion in th&IN t matrix. Whether this truncation is
justified from a theoretical point of view is difficult to assess
because of the underlying many-body problem. In a few- 1
nucleon system, however, one may hope to get quantitative Gy=|eq) 3 5 — (¢4, 4
insight into the way the optical potential builds up by rescat- E—(3/4m)q"~Eqtie
tering processes of increasing order. This has been formu-
lated recently in the context of the Faddeev-Yakubowsky G.= d5|qoa>(+> 1 (+)<QDQ
scheme for very light nucldill]. In the present article we ¢ Pl E—(3/4m)g°— (1im)p*+ie P
restrict ourselves to the deuteron target and carry out numeri- 6)
cal studies. . R

In Sec. Il we present the formalism for casting nucleon-We use standard Jacobi momemptaand q [13] to describe
deuteron (-d) scattering into the form of an optical poten- the motions in the two-nucleon subsystem and for the third
tial scattering problem. Our numerical study is shown in Secparticle in relation to the subsystem. Furthéy is the free

E—Ho—vrie ' outVCe ®

[ll. We conclude in Sec. IV. 3N Hamiltonian andv the NN potential. The nucleon mass
is denoted bym.
Il. THE n-d OPTICAL POTENTIAL With these definitions and using the fact that

PG, 1|¢>ao)= PV|#g,) one can transform Ed1) to
We start from the operatdd for elasticn-d scattering
which obeys the Alt-Grassberger-Sandh@sGS) equa- U=V+VGyU, (6)
tions[12,13
with
U=PG, '+ PtGyU. 1)
V=PV+PVG. (7)
Heret is the off-shell nucleon-nucleon matrix generated
through the Lippmann-Schwinger equation from the particuProjecting Eq.(6) onto the channel stat¢gg) one gets
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TABLE I. The total cross sectiond,) and the integrated elas-
tic scattering angular distributions{;) obtained from the solution

of the Faddeev equatiofexac) and in two approximations to the and the optical potentiab is expressed with the help df,

T =t.GoPV+1.GyP T, (11

effectiven-d interaction ¢ 3,V 3+ b). by
E.(MeV Oof(Mb oe(mb
Iab( ) tot( ) el( ) V= PV+ PTC ) (12)
exact 0.989E+03 0.839£+03
It is easy to determiné.. Using Egs.(3) and(10) one gets
10 ya 0.724F +03 0.724E+03
tGy=VG=VGy+VG.=VGy+1t.Gy, (13
yatypb 0.109%E + 04 0.952£+03
which leads to
exact 0.120B+03 0.516& + 02
t.=t—VGyGy '=V(1-GoV) *-VG4G, L. (19
65 ya 0.215& + 02 0.215€ + 02
Finally applying (1-GyV) from the right one ends up with
yatgypb 0.133E+03 0.605€ + 02
te=V-V +1:.GpV. 15
exact 0.259E + 02 0.512€+01 c |ea)(gal +1:Co 19
The difference betweet, andt, as reflected in different
140 Ve 0.204E+01 0.204E+01 leading terms of their Lippmann-Schwinger equations, exists
only in the “deuteron channel(the 3S,—3D; partial wave
yatypb 0.292£&+02 0.536&+01 statg. In addition, in this channdl. is not singular, whereas
t has a single pole at the deuteron binding energy.
exact 0.1088+ 02 0.123E+01 Equations(8), (11), (12), and(15) offer a new scheme of
solving the nucleon-deuteron scattering problem by first de-
200 ya 0.613E+00 0.613€+00 termining the optical potential and solving an effective single
particle equation. Now we decompose ES§) into partial
yagyb 0.118€E +02 0.127%+01 waves and use our standard momentum space basis states
[13]
exact 0.5756+01 0.699& + 00
: 1 1
300 va 0.149€ + 00 0.149€ + 00 Ipqa>5‘p(|8)1 q<7\§)l (jhHIM (tE)T>’ (16)
yayyb 0.559F +01 0.784E+00 with (I1s)j,t the angular momenta and isospin qguantum num-

(&|<<Pd|U|<Pd>|a)'>

1 - -~
XE_Ed_(3/4rn)qr/2+|8<q |<‘Pd|U|(Pd>|q )

~GilteaMeald+ [ dF (G edVeala)

®

bers in the two-nucleon subsystem,3jl,3 the correspond-
ing quantum numbers for the spectator nucleon, and,
and 7= (—1)'"* the total angular momentum, isospin, and
parity of the three nucleon system. Then

(@ [{edlUlea)la)

:2 2 2 UiTw,M(q,-q)

J,7T )\’1|’ )\,|

This is an effective single-particle equation for the scattering

of the nucleon from the deuteron. The interaction is the op-

tical potential(q,q’) defined by

For a numerical realization it is convenient to introduce the

V(0,9 =(al{ed Viea)|d’).

operatord,. and T, defined as

©)

X 2 (Img 1w/ [Img+ YN ' —m' g1
’u/

XYy - (@) 2 (1Ml Img+ p2)
y72

XAp=m3 Ml )Yy (@D Omytprmge e (A7)

where
VGCEtCG01
Uy (@ a)= wd”szd (P’
VG V=T.. (10) vira(a@’ha) '=§(;2|’§),2 o PP PPer(p’)
Applying VG, from the left to Eq.(7) one gets X(p'q’ aglU|pgag)e(p). (19
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FIG. 1. Then-d elastic scattering cross section at different laboratory energies of the incoming neutron. The solid line results from the

solution of the Faddeev equation. The dashed and dotted lines resuftamd) 2+ ) © approximations for the effective nucleon-deuteron
potential, respectively.

The two deuteron wave function components @fg), and  The corresponding steps can be carried throughf@efin-
aq are the three-nucleon quantum numbers with a deuteroimg
in the two-body subsystem:

Uizr,)\l(q,,Q)E(4m/3)U\>]\1’T|’v)\'(q,’Q),

1 1\1
tea} =1 (1202 SZl)j:l’(*i)”(‘)z)z]' 19 V(@ =(4mv T, (@, (@0
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FIG. 2. The same as in Fig. 1 but for the deuteron tensor analyzing pbyyer

AU

dq/rq
0
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B q e
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In contrast to the described formalism our standard way to
solve then-d scattering problem is to use a Faddeev equation

for the T operator defined by



658 J. KUROSet al. 56
1.2 ‘ : 1.2 : :
E=10 MeV E=65 MeV
08 :uuu“cu*"“‘ *,
Z
e |
. \
0.4 | . AN .
H exact ., E - exact T
- —— a)+b) . - —— a)+b)
reerta ""*‘ncgsxala\nﬂtnuﬂn rrrrra
0.045 60 120 80 09¢ 60 120 180
Ocm [deg] Ocm [deg]
1.2 ‘ : 12 : :
E=140 MeV E=200 MeV

120

180
Ocm [deg]

1.2 ‘ :
E=300 MeV

0'0 r .*'*x‘c*"‘ -
exact
-—- a§+b) 1
ciren
—0.45 60 120 180
O.m. [deg]
FIG
T=tGyU. (23
From Eq.(1) one gets the integral equation
T=tP+tPG,T, (24)
which we solve, andJ is determined via
U=PGy'+PT (25

180

. 3. The same as in Fig. 1 but for the nucleon to nucleon polarization transfer coeﬂﬁgYént

by quadrature.

We refer to[1-3] for the description of the method to
solve numerically Eq(24). We use the observables for elas-
tic n-d scattering obtained from Eq&4) and(25) as stan-
dards to which we compare the results obtained by different
approximations to the optical potential formalism.

The kernels in Eqs(11) and (24) are very similar, only
t is replaced byt.. This suggests that the numerical tech-
nique used to solve E@24) could be applied directly to Eq.



56 OPTICAL NUCLEON-DEUTERON POTENTIAL 659

0.4 T T 1.0 T T
E=10 MeV E=65 MeV
Ftera,, exact exact J
", ——— a)tb) - - - a)+b)

- x4 og

.
5, - 1
s

0.2 /_:' oo
i
5
5 ]
(@)
0.0 ]
N
N 1
\ !
r \ / g F |
A
Ny
—02; 60 120 80 959 60 120 180
Ccm [deg] Bcm. [deg]
0.8 T T 0.8 i i
E=140 MeV E=200 MeV
-um exact | L exact

- — - a)+b)
U,

-0.85 ) 20 180 ~94¢ 60 120 180
Ocm. [deg] em. [deg]
0.8 : :
E=300 MeV
F exact g
——— a)tb)
..... :
0.4 ™, -
b
&
\ e
0.0 .
~ v
—0.44 60 120 180
Ocm. [deg]

FIG. 4. The same as in Fig. 1 but for the spin correlation coeffidiznt

(11). Unfortunately the leading teriaGoPV in Eq.(11) has  stricted ourselves to the lowest order terms for the optical
logarithmic singularities, when expressed in the basipotential[see Eqs(12) and(11)]:

|pga). As a consequence the action of the kernel in @&d)

on that driving term is very 'hard. to (_evaluat'et, sn@@m that Y =V 3a1) b= PV+ Pt.GPV. 26)
kernel also produces logarithmic singularities. Their conflu-

ence is a quite hard technical challenge, which we did not
want to tackle. In contrast in Eq24) the driving term is not  The tWO terms partial wave projected into the deuteron chan-

singular and there are “only” the logarithmic singularities of nel ye N M,(q q') are given in the Appendix.
the propagatoG,, which we can handle. Therefore we re- It should be pointed out that the calculation of the second
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FIG. 5. The convergence properties of the leading tevrto the transition operator {see Eq(29)] summed up to various orders of the
continuous part. of the two-nucleort matrix. Elastic scattering cross section presented by stars, rombs, crosses, circles, squares, and
triangles corresponds %/ in first, second, third, fourth, fifth, and sixth order ti.

term Y ;)/I/ .,(9,9") is as hard a numerical problem as the Potential forn-d scattering. According to this experience this
exact solution of the Faddeev equations for Theperator ~ €xcludes it as a practical method for solving tiel scatter-
[EqQ. (24)]. One meets here the same pattern of moving siniN9 problem. It remains to be seen whether at least the low
gularities. Going to the next terms fof would require to ~ Order terms are useful. , .
deal with even more complicated patterns of singularities N the following we will restrict ourselves to the approxi-
making their numerical treatment even more difficult. Al mation ofV given in Eq.(26) and study its quality at dif-
this shows how difficult it is to exactly determine the optical férent 3\ energies. The second term is of first ordet drand
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FIG. 6. The same as in Fig. 5 but for the tensor analyzing pdwgr

is qualitatively related to the standard expression for intethe BonnB [14] potential. We restricted that force to the two
mediate energy optical potential expressions, which are alsstrongest components acting in thg, and 3S,— 3D, states.

of first order int. Our aim is to investigate, whether that Therefore this is on|y a model study, but we do not expect a
truncation is sufficient in the-d case.

We determined the approximations® andV 2+V P to
the opticaln-d potential using as the underlyifgN force

Ill. RESULTS

qualitative change in keeping algpwave NN forces and
higher ones. With this dynamical input we solved the Fad-
deev equation for th& operator at five nucleon lab energies
EN,=10, 65, 140, 200, and 300 MeV generating “exact”
elastic scattering observables. They form the reference val-
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FIG. 7. The same as in Fig. 5 but for the nucleon to nucleon spin transfer coeﬂ@ént

ues by which we can judge the quality reached by our apthat for the)’ 2 approximation the total cross section and the
proximations. integrated elastic scattering cross section coincide. It reflects
In Table | we show the total cross sections evaluatedhe fact that in this approximation the effective interaction is
through the optical theorem together with the total elastiaeal, which forbids the breakup processes. Théatpotential
scattering cross sections. At all energies there are clear digrises from antisymmetrization and thus dominantly governs
crepancies between the exact results and those obtained time angular distribution at backward angles. This is apparent
V2 andV 2+ VP approximations. Increasing the incoming from Fig. 1.
nucleon energy does not diminish this disagreement suffi- In Fig. 1 the angular distribution for elastic scattering is
ciently well, e.g., to a few percent. It is interesting to noteshown. At all energies the exchange te¥h? gives a char-
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FIG. 8. The same as in Fig. 5 but for the spin correlation coeffidiznt

acteristic angular distribution, which is peaked at backwardhe spin transfer coefficient are close to the exact results.
angles and which is quite different from the exact results These results clearly show that the?+)V ® approxima-
except for the highest energy. Adding tHé term brings the  tion does not include sufficiently well all the details of the
cross sections in the direction of the exact values. Howevegffective nucleon-deuteron interaction, if one wants to de-
even at 300 MeV a clear discrepancy, especially in the forscribe the observables at all angles. Higher order terms in
ward and backward angles is left. te [Egs.(11),(12)] would have to be added in order to get a
In Figs. 2—4 somen-d polarization observables are better description for the optical potential. These rescattering
shown. They 2+ V P approximation disagrees with the exact processes of second ordertinor even higher are, however,
results at all angles, except at forward ones whejgand  very difficult to evaluate. If, on the other hand, one focuses
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FIG. 9. The convergence properties of thal elastic scattering differential cross section with respect to the order of the two-nucleon
t matrixt. The solid line is a fully converged exact result. Different symbols: stars, rombs, crosses, circles, squares, and triangles, are results
obtained when the Neumann series for Th@perator[Eq. (24)] is truncated at first, second, third, fourth, fifth, and sixth order oftthe
matrix, respectively.

only on the forward angles, e.g., smaller than 50°, there ar&hen defining
spin observables which are described reasonably well by that
V 3+ P approximation. This is also true to a smaller extent W= PG(§1+ PVGW (28
for the differential cross section.
Now there is a different form to express the optical po-one gets
tential, which can be used to evaluate higher order terms in a
simple manner for the on-shell matrix elements. We can put U=W+WGeVGyU. (29)

Eqg. (1) into the form
This equation does not have the standard form where the

. driving term acts also as the potential in the integral kernel.
U=PG, +PVGU+PVGU. (27)  But projected onto channel states it leads to a single particle
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FIG. 10. The same as in Fig. 9 but for the deuteron tensor analyzing poyyer

equation for the elastia-d scattering amplitude similar to
Eq. (8). The connection ofV to V is simply

W=PG, '+ Pt.,P+Pt.GoPt.P+---. (31)
That series can be evaluated through an integral equation

WGV=V defining

(30)
andU from Eq. (29 provides the same on-shell matrix ele-
ments asJ from Eq. (8) since GoV g = g, That )V op-
erator is directly expressed as a multiple scattering series in _

t. as easily follows from Eq(28): where T, obeys

W=PG,+PT,, (32
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FIG. 11. The same as in Fig. 9 but for the nucleon to nucleon spin transfer coeff'@)"ent

T=t.P+t.GoPT,.

(33

ation of theW operator in the kernel of Eq29) again the

same remarks apply as for in Sec. Il. ThatWy evaluated
The advantage of the form E(R9) is now that at least the through Eqs(32) and(33) will suffer from logarithmic sin-
on-shell matrix elements ofY can be evaluated to arbitrary gularities already in the driving term and the iteration of that
order int.. Clearly if that multiple scattering series requires object causes very tough numerical obstacles.
higher order terms, then due to E@O) also the previous Thus we restricted ourselves to the Born approximation
form of the optical potential will require them. For the evalu- for Eq. (29) and evaluated the multiple scattering series for
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FIG. 12. The same as in Fig. 9 but for the spin correlation coefficgpt

T. via Eq. (33) applied only to the on-shell channel state. cated, even at high energies, for spin observables with ex-
This generated via Eq32) elastic scattering amplitudes in ception of the forward angular region. Therefore, if one fo-
various orders irt;. The resulting elastic scattering observ Cuses again only on forward angles, convergence is found
ables partially summed up to certain orderg rare shown and low orders are sufficient.

in Figs. 5-8. It is clearly seen that there is no convergence We have to conclude that the opticaid potential for

with respect td. at our lowest energy of 10 MeV. At higher the energies considered cannot be truncated at the first
energies the cross sections series starts to converge and treler term int; if one wants to describe observables at
third order is sufficient. However, no convergence is indi-all angles. At small c.m. angles, however, low order trunca-
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tions are quite acceptable. This is the angular region, whiclmucleon-deuteron interaction, usually called an optical poten-
is mostly studied in nucleon-nucleus scattering for heaviertial. The resulting integral equation for this interaction con-
targets, since the cross section drops quickly by severahins all the hard tasks of theN3problem with its compli-
orders of magnitude from 0° to about 60°. And for thatcated pattern of singularities. Thus, in spite of the simplicity
restricted angular region the lowest order truncation appeaigf the n-d system, the determination of that effective inter-
to be successful for heavier systefi§—17. Our results can  action is a hard numerical task. In a model study we re-
therefore be considered to support that. _ stricted theNN force to the'S, and 3S,—3D; channels.
_Inview of our results an interesting question arises: oW, rther we restricted ourselves to the exchange term and the
important are the rescattering effects of orders higher than ferm linear in the continuum part of the two-nuclebma-

n ﬂ':te r?:cj)e_cl)_n—?huileci)rﬂ r\?vatrrlx forr detlﬁsur% r}ﬁurron—dtetutr?r:on trix. Such an approximation is, however, not sufficient even
scattering 10 that a € rega € mulliple scatlering €y 5q high energies as 300 MeV to describe the observables at
ries in the fullNN t operatornt for the operatot) of elastic

scattering. That series is defined through H84) and (25) all angles. F_urther, our study of the convergence properties

and reads of the transition operator for the-d elastic scattering opera-
tor U reveals that the restriction to the first leading terms in

U:p(351+ PtP+PtPGytP+ - - -. (34) the two-nucleont matrix is not sufficient. However if one

focuses on forward angles only, lower orders in NN t

The predictions summed up to different ordertifor some  matrix turn into a reasonable approximation, depending on

scattering observables are compared to the exact results {Re energy and observables. This latter point supports the

Figs. 9-12. At the lowest energy of 10 MeV there is noyalidity of first order optical potential studies at higher ener-

convergence in that series in thematrix for any of the  gjes for forward angles, where they are successfully applied.
elastic scattering observables. That strong divergence is

caused by the)™=3" contribution, which is the quantum

number of the Bl bound state and whose existence is respon-

sible for that divergence. At higher energies the contribution

of J7=1" diminishes and a tendency for convergence ap- ACKNOWLEDGMENTS
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V. NCLUSION . L .
CONCLUSIONS Performing the projection oPV onto the|pga) basis

Starting from the AGS equations we developed an equivastates and using the corresponding matrix elements for the
lent formulation of the Bl scattering introducing an effective permutation operatoP [13] one gets

<|oqa|PVI|o’q’a’>=IEJO dp"p"XpaalP|p"q’ @ }p"l o tV|p'l,)

oot d(p—m) 8(p"— ) , , )
= f dp’p 2f dX—7—> G (qq X)(p "I fVIp" 1 o)
I——Jo -1 p p"'e
1 S8(p—mq) (Tl Ip’l )
T J X G A ) (AD
o v 2

where the quantum numbersadri are the same as im with the exception of 7 in case of coupled two-nucleon states. In this
casel =1 ,+5.
This leads to
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Viar(@a)=x fo dp'p'? | dppPe (P)(paalPVIp'a'a)er,,(P")
() (mal & VIp' o)
22 f dp’ p’zZ f dx—|—GM Qo' (P, (A2)
a o' ’7T2
with
m=a'%+ g2 +qq'x,
m= o+ £ q'2+qq'x. (A3)
In a similar way one gets
b 1 PO GV _
Vm,wl'(qrq,)zlzz Z J'ldxf dp'p’ f daq _l_Gaa( ax)
1 (mlZ|t(E— (3/4m)QP)|IZ7))
Xf XX — = Gz (qa’x)
B a0y Ty
1 (mal | VIp'lar)
X N2 120 NAlv! : - 1= @) r(p,)u (A4)
E-1/m(q°+q'“+qq'x’)+ie Ty e “
with
m=~a'?+ £92+3q9'x,
m=\a2+ £q’2+qq'x. (A5)
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