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Higher-order nuclear-polarizability corrections in atomic hydrogen
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Nuclear-polarizability corrections that go beyond unretarded-dipole approximation are calculated analyti-
cally for hydrogenic~atomic! S states. These retardation corrections are evaluated numerically for deuterium
and contribute20.68 kHz, for a total polarization correction of 18.58~7! kHz. Our results are in agreement
with one previous numerical calculation, and the retardation corrections completely account for the difference
between two previous calculations. The uncertainty in the deuterium polarizability correction is substantially
reduced. At the level of 0.01 kHz for deuterium, only three primary nuclear observables contribute: the electric
polarizability aE , the paramagnetic susceptibilitybM , and the third Zemach moment^r 3& (2) . Cartesian
multipole decomposition of the virtual Compton amplitude and its concomitant gauge sum rules are used in the
analysis.@S0556-2813~97!04208-8#

PACS number~s!: 21.45.1v, 13.75.Cs, 24.70.1s, 31.30.Gs
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INTRODUCTION

The remarkable experiments presently being performe
Garching@1# and Paris@2# on the spectroscopy of hydroge
isotopes have astonishing precision. The Rydberg curre
has an uncertainty of 9 parts per 1012, while the isotope shift
between deuterium and hydrogen 1S-2S transitions has a
reported uncertainty of 3 parts per 109, and this is expected
to be lowered soon by an order of magnitude@3#.

The isotope-shift measurements afford a unique oppo
nity for nuclear physics. The traditional technique for det
mining nuclear sizes is to scatter relativistic electrons fr
nuclei, determine the charge form factor, and extrapolate
to small momentum transfers, thus determining the me
square charge radius,^r 2&. It is extremely difficult to per-
form the latter measurements with an absolute accurac
1% or less, and this sets limits on the accuracy of the cha
radius. The currently accepted value of the charge radiu
the proton@4#, ^r 2&p

1/250.862(12) fm, corresponds to an u
certainty in^r 2& of nearly 3%, and the recently determine
deuteron radius@5# ^r 2&d

1/252.128(11) fm has an uncertaint
in ^r 2& of 1%. For the 1S-2S d-p isotope shift @1# the
nuclear-size correction contributes approximately25000
kHz ~roughly the same as the QED corrections! out of a total
of 670 GHz. The reported@3# uncertainty of 2 kHz corre-
sponds to a precision of better than 1 part per 1000 in^r 2&.

In addition to static size corrections, the electron polari
the nucleus and produces nuclear-polarizability correctio
In order to use the isotope shift as a precise gauge of nuc
size differences, it is necessary to compute these polariz
ity corrections as accurately as possible, and that is the
of this work.

There have been several calculations of these correct
560556-2813/97/56~2!/619~12!/$10.00
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for deuterium@6–11#. The bulk of the effect ('19 kHz in
toto! is caused by the Coulomb interaction distorting t
nucleus ('17 kHz! with a smaller ('2 kHz! contribution
from the virtual transverse photons. In leading ord
~unretarded-dipole approximation! the electric polarizability
aE dominates the process and accounts for 19.26~6! kHz in
nonrelativistic approximation for the deuteron@11#. This nu-
merical result summarized calculations for a group
‘‘second-generation’’ potentials, which fit the nucleo
nucleon scattering data well enough to be considered a
native phase-shift analyses of that data.

There exists a single calculation@7#, using first-generation
nuclear potentials, that goes beyond the unretarded-di
approximation and includes retardation, higher multipol
the effect of the finite sizes of the nucleons, seagulls,
even meson-exchange currents. Results for this calcula
are smaller by*0.5 kHz than for those using the unretarde
dipole approximation. That calculation was performed
constructing nuclear charge and current~transition! densities
and performing a difficult double integral over the mome
tum and energy transferred across each photon line~see Fig.
1!. Our goal is to reduce that calculation to an analytic ser

FIG. 1. Nuclear polarization corrections with direct~a!, crossed
~b!, and seagull~c! contributions are illustrated. Single lines repr
sent an electron, double lines a nucleus, and shaded double
depict an excited nucleus, with the seagull vertex maintaining ga
invariance.
619 © 1997 The American Physical Society
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620 56J. L. FRIAR AND G. L. PAYNE
in various size-dependent nuclear observables, and keep
those that are expected to contribute at a level of greater
0.01 kHz. The resulting expression is fairly simple and d
pends only on three primary nuclear observables: the ele
polarizability aE , the paramagnetic susceptibilitybM , and
the third Zemach moment@12,13#, ^r 3& (2) , of the charge
distribution. Meson-exchange currents@14# play a small role
that is easily incorporated in the calculation. Our final res
is in excellent agreement with the difficult but comprehe
sive calculation of Ref.@7#. We will produce a final estimate
for the complete polarizability correction of 18.58~7! kHz,
based on second-generation potentials. It will be not be e
to improve this result significantly, because it will be diffi
cult to increase the precision of the nuclear observables
which the result depends.

HIGHER POLARIZABILITIES

The integrals over momentum transfer in the loops t
define the generalized polarizability correction are difficu
rather complicated, and extremely tedious. For all these
sons, we have relegated them to Appendix A. The constra
of gauge invariance are crucial to impose~the results are
infrared divergent otherwise!, but are also tedious to de
velop, although they have been known for decades@15#.
Consequently, a brief presentation of the necessary relat
has been relegated to Appendix B. Only those parts of
calculation that we will treat numerically are given direct
below. To the order that we work, gauge invariance has b
properly implemented.

We first define the electric polarizability@15,16# aE in
terms of the electric-dipole operatorD,

aE5
2a

3 (
NÞ0

u^NuDu0&u2

EN2E0
, ~1!

and the logarithmic mean-excitation energy@11,17# Ē by

ln~ Ē/me! aE5
2a

3 (
NÞ0

u^NuDu0&u2

EN2E0
ln@~EN2E0!/me#.

~2!

Similarly, we define the paramagnetic susceptibility@15,16#
bM in terms of the magnetic~-dipole! moment operatorm,
@see Eq.~B8!#,

bM5
2a

3 (
NÞ0

u^Numu0&u2

EN2E0
, ~3!

together with its mean-excitation energyĒ,

ln~ Ē/me! bM5
2a

3 (
NÞ0

u^Numu0&u2

EN2E0
ln@~EN2E0!/me#.

~4!

A close relative ofaE is

DaE5
2a

3 (
NÞ0

u^NuDu0&u2

~EN2E0!3
, ~5!
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together with its logarithmic mean-excitation energy ana
gously defined. Although we have used~and will write be-
low! Ē for each of thedifferentmean-excitation energies fo
notational simplicity, they are distinct~although similar!
numbers. They will always be grouped with the operat
that define them. In the formulas above,a is the fine-
structure constant,me is the electron mass,uN& is the Nth
nuclear state~theNth eigenstate ofH0) with energyEN , and
N50 labels the ground state.

The inelastic charge density~squared! can be rewritten in
cases where there are no energy factors@18#,

(
NÞ0

^0ur†~x!uN&^Nur~y!u0&

5^0ur†~x!r~y!u0&2r0~x!r0~y!, ~6!

where

r0~x!5^0ur~x!u0&, ~7!

r(x) is the nuclear charge~-density! operator and
*d3x r0(x)5Z, the nuclear charge.

With these definitions, we can rewrite Eq.~A30! in the
form

DEn524a meufn~0!u2H 5aE

4 F ln~2Ē/me!1
19

30G
1

15

16
me

2 DaEF ln~2Ē/me!2
283

300G
2

bM

4 F ln~2Ē/me!2
1

6G1
pa

12E d3xE d3y ux2yu3

3@^0ur†~x!r~y!u0&2r0~x!r0~y!#1DBJ , ~8!

where

DB5
a

5S g1 ln~ Ē z̄ !2
39

20D E d3xE d3y^0uDB~x,y!u0&

~9!

and

DB~x,y!5Bin
i i ~x,y!@x•y2y2#1Bin

i j ~x,y!

3@22yiyj1xiyj1yixj #1•••. ~10!

We have dropped a large variety of small terms inDB ~in-
dicated by the ellipsis and with relative coefficients;1/10!
that arise from the seagull and current terms~converted using
gauge sum rules; see Appendix A!. Gauge sum rules and
approximatingEN2E0 by Ē andz[ux2yu by z̄ ~i.e., con-
stants! were used to obtain Eqs.~9! and ~10!. The small
correctionDB arises from the Coulomb interaction; we wi
also use the alternative expression in Eq.~A31!. Note that
the term;ux2yu3 contributes toall electric multipoles, un-
like the others, which have either electric- or magnet
dipole nature. Only ground-state properties are needed
construct the former term.
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56 621HIGHER-ORDER NUCLEAR-POLARIZABILITY . . .
In order to proceed further, we need to specify our nucl
model. The charge operatorr(x) is given by

r~x!5(
i 51

A

êi~x2xi !, ~11!

where

êi5êp~ i !ep~x2xi !1ên~ i !en~x2xi ! ~12!

counts protons~with êp) and neutrons~with ên) and multi-
plies each species by its intrinsic charge distribution. T
form ~11! is nothing more than the usual folding ofêi(x)
with d3(x2xi). Forming *d3xxr(x)5( i êp( i )xi demon-
strates that finite size does not modify the electric-dip
operator.

The current operator needed to constructm consists of
three distinct parts: the spin-magnetization current, the
bital current, and meson-exchange currents~MEC’s!. We ig-
nore nucleon finite size, which does not contribute to t
order, and find@19#

m5(
i 51

A S m̂~ i ! s~ i !1êp~ i ! L ~ i !

2M
D 1mMEC, ~13!

where the spin-magnetization current is determined by

m̂~ i !5mpêp~ i !1mnên~ i !. ~14!

Note that the isoscalar and isovector nucleon magnetic
ments are very different in size:ms[mp1mn50.8798 . . .
and mv[mp2mn54.7059 . . . . Thelarge value of the iso-
vector nucleon magnetic moment will play a determinat
role. We eschew writing out our model for the two-bod
pion-exchange currents~i.e., MEC!, which is discussed in
Ref. @19#. This model has had its pion-nucleon form fact
adjusted to reproduce the experimental thermaln-p radiative
capture rate@20#. As the contribution ofbM is relatively
small and the MEC a small part of this, the overall ME
contribution is nearly negligible, but has been included
completeness.

Our final ingredient is the Compton seagull operator. T
operator is comprised of several components@21#: impulse
approximation, plus meson-exchange currents@22#, plus
. . . . We expect the meson-exchange currents to be pos
comparable to the impulse approximation, based on sum-
studies @23#. We will work only with the impulse-
approximation component, which has the form

Bi j ~x,y!5(
i 51

A

êi~x2xi ! êi~y2xi !. ~15!

The pion-exchange component of the deuteron’s diamagn
susceptibility @see Eq.~A29! and Refs.@21,22## has been
shown to be tiny.

NUMERICAL CALCULATIONS

Podolsky’s method@24# is very convenient for calculating
aE andbM . Any generalized polarizability of the type dis
r
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played in Eqs.~1! and~3! can be calculated as follows. Equa
tion ~1! is fully equivalent to

aE52a^0uDzuDCz&, ~16!

where

~H02E0! uDCz&5Dzu0& ~17!

is solved subject to finite boundary conditions. One must
careful to exclude the ground state from the sum overN in
Eq. ~3! for bM . This necessitates a projection orthogonal
the ground state on the right-hand side of Eq.~17! @with Dz
replaced bymz in both Eqs.~16! and ~17!#.

For the deuteron, one impulse-approximation calculat
of bM exists@21# with a value of 0.065 fm3. This is domi-
nated by1S0 intermediate states. Indeed, an upper limit f
all triplet intermediate states isbM

t <0.0003 fm3, obtained
@21# by replacing the energy denominator in Eq.~3! by its
smallest possible value (Ed , the deuteron binding energy!,
and then using closure and completing the algebra. Mo
over, the1D2-state contribution is tiny, and the1S0 interme-
diate states dominate completely.

The logarithmic mean-excitation energies are calcula
using a trick@25#. We define a quantity closely related t
aE ,

aE~j!5
2a

3 (
NÞ0

u^NuDu0&u2

j f 1EN2E0
, ~18!

where f is an energy-scaling factor;~3–5!Ed inserted for
convenience. An integral overj produces a logarithm, and
one finds a convenient numerical algorithm forĒ in

aE~0!ln~2Ē/me!5E
0

1 dj

j
@aE~j!2aE~0!1aE~1/j!#

2aE~0!ln~me/2f !, ~19!

whereĒ is independent off , and Eq.~19! is fully equivalent
to Eq. ~2!.

The electric polarizability was calculated and thorough
discussed in Ref.@11#. One found there

aE50.6328~17! fm3,

ln~2Ē/me!52.9620~5!, ~20!

npol
aE519.26~6! kHz5~16.98!1~2.28! kHz,

where the latter is broken down into Coulomb, transver
and total contributions. This calculation did not incorpora
relativistic corrections to the deuteron.

The analogous calculations forbM are listed in Tables I
and II for a variety of first- and second-generation potenti
@26–35#. The results of Table I are for the impulse
approximation magnetic moment~no MEC’s!, while those of
Table II incorporate MEC’s, as well. The latter increases
former by approximately 15%, which is quite typical for is
ovector transitions. We average the various seco
generation results and estimate
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622 56J. L. FRIAR AND G. L. PAYNE
bM50.0777~3! fm3,

ln~2Ē/me!52.498~2!, ~21!

npol
b 520.307~2!~6! kHz.

These uncertainties do not include uncertainties in
MEC’s, which are possibly 1–2 % of the total result~this is
subjective!; the latter is reflected in the second error~6! in
the last Eq. ~21!. This polarization contribution is non
negligible only becausemv54.7; a more ‘‘normal’’ size;1
would reduce the contribution by a factor of;25. Ournpol is
in reasonable agreement with the zero-range result of
@9#.

The very small correctionsDaE can be accurately esti
mated in zero-range approximation~which we used as a too
in Ref. @11#!. We first calculateaE

0(j) using Eq.~18! and
find

aE
0~j!5

amAs
2

12k3

~k21 k̄ 214k k̄ !

~k1 k̄ !4
, ~22!

where the asymptotic~reduced! s-state wave function of the
deuteron has the formAse

2kr . Moreover, k̄ 2[k2(11j f ),
andm is then-p reduced mass. Performing two derivativ
leads to

me
2DaE

05
7aE

0me
2

24Ed
2

50.0098 fm3, ~23!

TABLE I. Impulse-approximation deuteron magnetic suscep
bilities bM , in units of fm3, logarithmic mean-excitation-energ

ratios ln(2Ē/me), and corresponding deuteron 1S-2S polarization-
energy shiftsnpol in kHz. The RSC potential labeled@223# has had
its 1S0 part modified to produce the correctn-p scattering length.

Potential model bM (fm3) ln(2Ē/me) npol (kHz)

Second-generation potentials
Argonne V18 0.0678 2.4724 -0.265
Nijmegen~loc-rel! 0.0677 2.4726 -0.264
Nijmegen~loc-nr! 0.0677 2.4732 -0.264
Nijmegen~nl-rel! 0.0677 2.4726 -0.264
Nijmegen~nl-nr! 0.0676 2.4732 -0.264
Nijmegen~full-rel! 0.0675 2.4728 -0.264
Reid Soft Core~93! 0.0674 2.4744 -0.264

First-generation potentials
Bonn ~CS! 0.0682 2.4738 -0.267
Argonne V14 0.0674 2.4733 -0.263
Reid soft core~68!@-23# 0.0669 2.4748 -0.261
Nijmegen~78! 0.0663 2.4947 -0.261
Super soft core~C! 0.0659 2.4982 -0.260
de Tourreil–Rouben–Sprung 0.0656 2.4969 -0.259
Paris 0.0653 2.5008 -0.258
Reid soft core~68! 0.0647 2.5031 -0.256
e

f.

and is accurate to better than 1/2%. The following integ
@similar to Eq. ~19!# produces the logarithmic mean
excitation energy

ln~2Ē/me!5
1

f 2DaE
0F E0

1 dj

j3 S aE
0~j!2aE

0~0!2jaE
0 8~0!

2
j2

2
aE

0 9~0! D1E
0

1

dj@jaE
0~1/j!2jaE

0~0!

2aE
0 8~0!#G 2 ln~me/2f !

52.648. ~24!

These results produce a total correction fromDaE :

npol
DaE50.106 kHz5~0.060!1~0.046! kHz, ~25!

which has been broken down into Coulomb and transve
parts, respectively.

The remaining large quantity in Eq.~8! is the retardation
correction proportional tor in(x,y). Using Eq.~11!, we ex-
pand that result and find

r†~x!r~y!5(
iÞ j

êi~x2xi !êj~y2xj !1(
i

êp~ i !ep~x2xi !

3ep~y2xi !1ên~ i !en~x2xi !en~y2xi !. ~26!

Note that if the neutron’s charge distribution is set to ze
the first term vanishes for the deuteron~one nucleon must be
a neutron!, and only the second term survives. Shifting thex

- TABLE II. Full deuteron magnetic susceptibilitiesbM , in units

of fm3, logarithmic mean-excitation-energy ratios ln(2Ē/me), and
corresponding deuteron 1S-2S polarization-energy shiftsnpol in
kHz. The RSC potential labeled@-23# has had its1S0 part modified
to produce the correctn-p scattering length.

Potential model bM (fm3) ln(2Ē/me) npol (kHz)

Second-generation potentials
Nijmegen~full-rel! 0.0780 2.5003 -0.308
Nijmegen~nl-rel! 0.0778 2.4981 -0.307
Nijmegen~nl-nr! 0.0777 2.4987 -0.307
Nijmegen~loc-rel! 0.0775 2.4972 -0.306
Nijmegen~loc-nr! 0.0774 2.4978 -0.306
Reid Soft Core~93! 0.0775 2.5005 -0.306
Argonne V18 0.0774 2.4963 -0.305

First-generation potentials
Argonne V14 0.0774 2.4996 -0.306
Reid soft core~68!@-23# 0.0769 2.5002 -0.304
Bonn ~CS! 0.0766 2.4935 -0.302
Nijmegen~78! 0.0751 2.5172 -0.299
de Tourreil–Rouben–Sprung 0.0748 2.5221 -0.298
Super soft core~C! 0.0747 2.5218 -0.298
Paris 0.0743 2.5253 -0.297
Reid soft core~68! 0.0742 2.5295 -0.297
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56 623HIGHER-ORDER NUCLEAR-POLARIZABILITY . . .
and y integrals each byxi in that case produceŝr 3& (2)
p ,

while the r0(x)r0(y) term generateŝr 3& (2)
d and a retarda-

tion correction

pa

12
@2^r 3&~2!

d 1^r 3&~2!
p #[

pa

12
D^r 3&~2! , ~27!

^r n&~2!5E d3r r n r~2!~r !, ~28!

and

r~2!~r !5E d3z r0~ uz2r u!r0~z![r ^ r ~29!

is the convoluted~Zemach@12,13#! density. In Eq.~27!, the
first of the third moments is calculated with respect to
total deuteron~including the finite size of the proton! convo-
luted charge density and the second with the proton’s c
voluted densityrp . In what follows below we will specialize
to the deuteron, and denote byrd the deuteron’s ground-stat
charge density~calledr0 before!.

For completeness, we include the neutron contribution
well. There will be a two-body correlation term@first term in
Eq. ~26!# involving rn^ rp^ r̄ d , wherer̄ d is slightly modi-
fied to account for the vectorr specifying a correlation,
while r /2 determines the charge density,rd . In addition to
this term, the folded proton density in Eq.~27! is replaced by
(rp^ rp1rn^ rn) and the deuteron charge density is defin
by (rp1rn) ^ rd

0 , whererd
0 is determined by the deutero

wave function alone.
We use a simplified model of the neutron and proton fo

factors. The proton form factor is taken to have a dipole fo
with the correct radius@4# ~0.862 fm!. The neutron form
factor is that dipole timesq2, adjusted overall to match th
experimental charge radius of20.338 fm@36#.

TABLE III. Zemach-moment contributionD^r 3& (2) , to the
Coulomb-induced retardation correction in units of fm3, and corre-
sponding deuteron 1S-2S polarization-energy shiftsnpol in kHz.

Potential model D^r 3& (2) (fm3) npol (kHz)

Second-generation potentials
Argonne V18 -37.45 -0.485
Reid soft core~93! -37.44 -0.484
Nijmegen~loc-nr! -37.38 -0.484
Nijmegen~loc-rel! -37.34 -0.483
Nijmegen~nl-rel! -37.36 -0.483
Nijmegen~nl-nr! -37.31 -0.483
Nijmegen~full-rel! -37.20 -0.481

First-generation potentials
Super soft core~C! -38.45 -0.498
Nijmegen~78! -38.27 -0.495
Argonne V14 -38.01 -0.492
de Tourreil-Rouben-Sprung -37.70 -0.488
Paris -37.55 -0.486
Bonn ~CS! -37.44 -0.484
Reid soft core~68! -36.87 -0.477
e

n-

as

d

Calculations of the various moments are performed
first calculating the deuteron density and then generatin
spline fit of it. Then folding is performed and that convolute
density is similarly fit. Moments are calculated ultimate
with respect to the final fitted density.

The results for various models~including the effect of
neutrons! are listed in Table III. The neutrons lower the r
sult by approximately 1%. The second-generation results
this retardation~and higher-multipole! correction can be
summarized by

D^r 3&~2!5237.32~12! fm3 ~30!

and

npol
ret520.483~2! kHz. ~31!

This process is the only one that we will consider whe
higher multipoles, retardedE1, and nucleon finite size con
tribute.

The final task will be to estimate the size ofDB. The
‘‘natural’’ size of terms with numerical coefficients;1 is
DB;a^r 2&d /M , while the coefficient 4mea

2ufn(0)u2 has a
value 0.05 kHz/fm3. Since ^r 2&d /M;0.8 fm3, the natural
size is 0.04 kHz. We useĒ* 10 MeV, z̄* 4 fm to estimate
logarithms and Eqs.~15! and~B12! for the seagull operator
The seagull contribution has a size; 6

48 ~0.04 kHz! ; 0.005
kHz. The higher-order current terms are of similar size,
largely cancel, leaving a very tiny residue. The higher-or
charge terms are dominated by quadrupole excitations
have a nominal size; 4

4 ~0.04 kHz! ; 0.04 kHz, which is
almost as large as theDaE Coulomb term. It can be shown
however, that this size is an artifact, caused by neglec
some recoil terms. We must perform the estimate more c
fully.

If one uses instead the representation in Eq.~A31! for the
z4 charge terms, and evaluates the double commutators,
finds that the kinetic-energy part ofH0 vanishes in the point-
nucleon limit, and otherwise has a rough size;0.006 kHz.
One can also evaluate the potential part of the commut
and find;0.003 kHz. These corrections are not only sma
but the comparable sizes of kinetic and potential terms ar
accordance with expectations.

RESULTS AND CONCLUSIONS

Our final results are tabulated in Table IV, with brea
downs according to their origin. The total for the 1S-2S
transition in deuterium is

TABLE IV. Contributions in kHz to the deuteron-polarizabilit
frequency shift for the 1S-2S transition together with their respec
tive origins, separated into Coulomb and transverse, and elec
dipole, magnetic-dipole, and higher-multipole and retardat
terms.

Origin aE DaE bM D^r 3& (2) DB Total

Coulomb 16.98 0.06 - -0.48 , 0.01 16.56
Transverse 2.28 0.05 -0.31 - , 0.01 2.02

Total 19.26 0.11 -0.31 -0.48 & 0.01 18.58
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624 56J. L. FRIAR AND G. L. PAYNE
npol518.58~7! kHz. ~32!

This is 0.68 kHz less than the leading-order (aE) result, and
is consistent with the differences between the results of R
@7# and @8#. The complete numerical results of Ref.@7# for
four first-generation potentials~Paris @31#, AV14 @33#,
Nijmegen@34#,and Bonn CS@30#! are in agreement with ou
results within 0.02 kHz for Coulomb and transverse pa
which must be regarded as virtually perfect agreement.
note that substantially improving the uncertainty in Eq.~32!
will be difficult, because it would entail substantial improv
ments@11,37# in the nuclear parameterAs .

A wide variety of physical mechanisms contribute to t
final result. UnretardedE1 photons~both longitudinal and
transverse! generate the electric polarizability. The parama
netic susceptibility generates a non-negligible term only
cause the nucleon isovector magnetic moment is nearl
This term is thus;25 times larger than if it were of ‘‘nor-
mal’’ size. A retardation correction contributing to all ele
tric multipoles is moderately important, and is the only o
of our terms to which the nucleon form factors contribu
Finally, higher-order terms, including the seagull contrib
tion, are estimated and shown to be tiny.
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APPENDIX A

We wish to evaluate the contributions of Figs. 1~a!–1~c!
to the energy of thenth hydrogenicS state. Because thi
fs.

,
e

-
-
5.

.
-

s
.
rt-

s

calculation has been set up before@7#, we sketch that part of
the derivation.

The nuclear energy and momentum scales are m
greater than those of an atom. Consequently, such large
menta flow through the photon and electron propagator
Fig. 1 that only the shortest-range part of the electron w
functions ufn(0)u2 contributes to leading order inZa, the
product of the nuclear chargeZ, and the fine-structure con
stanta. Consequently, the momentum in both photon pro
gators is taken to beq ~differences in these momenta lead
higher-order terms inZa). It is important to enforce the
constraints of gauge invariance@15# on the nuclear part of
the interaction~the virtual Compton amplitude!, and this is
most conveniently handled using Coulomb gauge, which i
lates the nuclear charge density from the transverse par
the currents@Figs. 1~a! and 1~b!# and seagull@Fig. 1~c!#. The
calculation requires a relativistic treatment of the electr
~sinceq@me , the electron mass!, but a nonrelativistic~i.e.,
leading-order! treatment of the nucleus suffices. We expa
the nuclear currentJm in powers of 1/M , the nucleon mass
and keep no powers higher than linear. One immediate c
sequence of the latter is the lack of~nuclear! momentum
dependence in the nuclear charge densityr(x) @unlike the
current densityJ(x)# and the nuclear seagull density@15#
Bmn(x,y), which also lacks charge components~i.e., Bmn50
for m50 or n50). Our conventions follow Ref.@38#, and
correspond to natural units (\5c51). We will incorporate
meson-exchange currents where required by gauge inv
ance, although their numerical contribution is ultimate
small ~see main body of paper!. We ignore nuclear recoi
corrections (;1/Mt , the total nucleus mass! in the nuclear
operators, but maintain them in reduced-mass factors in
atomic basis states.

The energy shift of thenth hydrogenicS state due to
nuclear polarization is most conveniently calculated by p
forming the contour integral over the time component
qm(q0) in the loops of Fig. 1, which leads to@7#
DEpol5
22a2me

p
ufn~0!u2E d3qH (

NÞ0
F ~2E1vN!u^Nur~q!u0&u2

Eq4@~E1vN!22me
2#

1S F q2

4me
2G 2E1vN

Eq4@~E1vN!22me
2#

2
~2q1vN!

4me
2q3~q1vN!2D u^NuJ'~q!u0&u2G1

Bin
i i'~q!

8q2me
2 S 1

q
2

1

ED J , ~A1!
r

are

ion
whereq2[q2, E5Aq21me
2, andvN5EN2E0, the energy

of excitation~relative to the ground state! of theNth nuclear
state~which by assumption cannot be the ground state!. In
addition

r~q!5E d3x eiq•xr~x!, ~A2!

J~q!5E d3x eiq•xJ~x!, ~A3!
Bin
i j ~q!5E d3xE d3y eiq•~x2y!Bin

i j ~x,y!, ~A4!

and ‘‘' ’’ signifies contraction with respect tod i j 2q̂i q̂ j @i.e.,
J'

2 [JiJj (d i j 2q̂i q̂ j )#. Gauge invariance of this nuclea
Compton amplitude~discussed in Appendix B! restrictsBi j

to the ‘‘inelastic’’ partBin
i j @see Eq.~B12!#.

Because nuclear momentum, size, and energy scales
given byQ;1/R; 100 MeV,vN;Q2/2M; 5 MeV, while
me; 0.5 MeV, there are two small dimensionless expans
parametersd;vNR;1/20 and b;meR;1/200. Conse-
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quently, we work in configuration space, where expansi
in R are easiest, using techniques introduced in electrom
netically induced heavy-ion reactions@18#. Similar tech-
niques were used in Refs.@6,8#. We introduce the inelastic
transition densities~squared!

r in~x,y!5^0ur†~x!uN&^Nur~y!u0&, ~A5!

Jin
i j ~x,y!5^0uJi†~x!uN&^NuJj~y!u0&, ~A6!

andBin
i j (x,y) has already been used in Eq.~A4!. We are not

interested in hyperfine structure and, consequently, the
average over nuclear ground-state (u0&) azimuthal quantum
numbers is assumed, while the sum over these quan
numbers for the intermediate states (uN&) is implicit in Eq.
~A1!. Consequently,r in andJin

i i are space scalars. The plan
waves in Eqs.~A2!–~A4! can then be extracted, appropria
spherical averages over q̂ performed @e.g.,
eiq•(x2y)→sin(qz)/(qz), wherez[x2y#, and theq integrals
in Eq. ~A1! finally evaluated. This produces the generic
sult

DEpol528a2meufn~0!u2E d3xE d3yF (
NÞ0

@r in~x,y!I N~z!

1Jin
i i ~x,y!JN~z!1Jin

i j ~x,y!zizj J̄ N~z!#

1
1

2
Bin

i i ~x,y!K~z!1
1

2
Bin

i j ~x,y!zizj K̄~z!G , ~A7!

where all of our effort will be devoted to obtaining the p
larization structure functionsI N(z), JN(z), J̄ N(z), K(z),
and K̄(z). We will develop general forms and then perfor
expansions in (vNz) and (mez).

We begin with the charge-charge interaction termI N ,
which is the most complicated to obtain. All other integra
can be obtained from this one:

I N~z!5
1

vNzE0

`dq @~2E1vN!vN# sin~qz!

q3E@~E1vN!22me
2#

5
1

vNzE0

`dq sin~qz!

q3E
F12

q2

~vN1E!22me
2G

[
~ I ~0!~z!2I ~1!~z!!

vNz
. ~A8!

Nominally infrared divergent, that part ofI 0(z) does not
contribute after the integrals overx and y are performed in
Eq. ~A7! ~the nucleus is assumed to be virtually excite!.
Ignoring all of these~ultimately vanishing! terms here and in
subsequent integrals, we find, withb[mez,
s
g-

in

m

-

I ~0!~z!5E
0

`dq sin~qz!

q3E

52
1

me
3E0

b

dxE
0

x

dyE
0

y

db8K0~b8!

52
1

2me
3E0

b

db8~b2b8!2K0~b8!, ~A9!

whereK0(x) is the modified Bessel function of order zer
The functionI (0)(z) can easily be expressed in terms of t
Ki n(z), the (nth! repeated integrals ofK0(x) @see Eqs.
~9.6.25! and ~11.2.8! of Ref. @39##. The remaining integral
I (1) is more challenging and requires several steps. We
fine j5vN1me andj85vN2me , assumingj8.me for the
results reported below~this is easily relaxed!, and write

I ~1!5
1

2me
E

0

`dq

q
sin~qz!F 21

E~E1j!
1

1

E~E1j8!
G

[
Ĩ ~1!~j8;z!2 Ĩ ~1!~j;z!

2me
. ~A10!

Using the field-theory trick@40#

1

E1E2~E11E2!
5

2

pE0

` dl

~l21E1
2!~l21E2

2!
, ~A11!

and Eq.~3.737.3! of Ref. @41# the Fourier transforms can b
evaluated in the form

Ĩ ~1!~j;z!5jE
0

` dl

~l21j2!

~12e2zAl21me
2

!

~l21me
2!

5
p

2me~j1me!
2

j

me~j22me
2!
F E

1

` dx e2bx

xAx221

2E
1

` dx x e2bx

~x21m2!Ax221
G , ~A12!

after using partial fractions andz2l2[b2(x221), and defin-
ing m25j2/me

221(.0). The first of the remaining integral
is Ki 1(b)5p/22*0

bdb8K0(b8) @use x5cosh(t) in Eq.
~11.2.10! of Ref. @39##. The remaining integral@defined to be
Ĩ (b;m) with the minus sign# yields to a further trick; it is
the solution of the differential equation

]2 Ĩ ~b!

]b2
1m2 Ĩ ~b!5K08~b!, ~A13!

subject to the boundary condition,Ĩ (`)→0 exponentially,
for which standard solutions exist:
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Ĩ ~b;m!52
1

mEb

`

db8K08~b8!@cos~mb8!sin~mb!2cos~mb!sin~mb8!#

5
2me

j Fsin~mb!ln~m1Am211!1
p

2
cos~mb!G

1E
0

b

db8K0~b8!@sin~mb!sin~mb8!1cos~mb!cos~mb8!#, ~A14!

after integration by parts and rearrangement. Combining terms from Eq.~A12! and using the last form of Eq.~A9!, we obtain
Ĩ (1)52jI (0)1 Ī (j;b), where

Ī ~j;b!5
j

me~j22me
2!
H 2

pme

2j
@12cos~mb!#1

me

j
sin~mb!lnF j1Aj22me

2

me
G2E

0

b

db8K0~b8!

3Fsin~mb!sin~mb8!1cos~mb!cos~mb8!212m2bb81
m2

2
~b21b82!G J . ~A15!

Finally, a relatively simple result is obtained,

I N~z!5
1

2mevNz
@ Ī ~j;b!2 Ī ~j8;b!#>

2z2

6vN
F11 lnS 2vN

me
D1DL1G1

pz3

24
1

vNz4

40 S g1 ln~vNz!1
DL3

3
2

39

20D1O~z5!,

~A16!

whereg is Euler’s constant and

DLn5
vN

2me
F S j22me

2

vN
2 D n/2

lnS j1Aj22me
2

me
D 2S j822me

2

vN
2 D n/2

lnS j81Aj822me
2

me
D G2F11n lnS 2vN

me
D G

>
me

2

vN
2 FanlnS 2vN

me
D1bnG1

me
4

vN
4 F ā nlnS 2vN

me
D1 b̄ nG1O~me

6/vN
6 !. ~A17!

Useful values are (a151/2,b1525/12), (ā157/8,b̄152449/480), and (a3521/2,b351/12). This completes treatment o
the charge term.

The current and seagull terms require special treatment because of the transverse projection~i.e., the ‘‘' ’’ !. The appropriate
current-current terms have the generic form

E d3q f~q!u^NuJ'~q!u0&u25E d3xE d3y Jin
i j ~x,y!E d3q f~q!S d i j 2

qiqj

q2 D eiq•z

5E d3xE d3yH Jin
i i ~x,y!E d3q eiq•zf ~q!1Jin

i j ~x,y! ¹z
i ¹z

j E d3q e

q2

iq•z

f ~q!J . ~A18!
e-
o

s

The secondq integral ~defined to beJCG) can be seen from
Eq. ~1! to be (1/4me

2)@ I N(z)2 limme→0I N(z)#, while the first

integral ~defined to beJ0) is given by

F2
1

4me
2z

d2

dz2
z@ I N~z!2 lim

me→0
I N~z!#G .

Both forms have an infrared divergence~which will ulti-
mately disappear because of gauge invariance! and we write
me→2l in divergent logarithms, wherel is the equivalent
small-q cutoff in the integrals. It is easy to perform the d
rivatives, take the limits, and perform the subtractions. F
the sake of brevity, we quote only the power-series form
r

J0>
1

4me
2 vN

F ln~2l/me!1DL12
vN

2 z2

6
DL3G1O~z3!,

~A19!

JCG>2
z2

24me
2 vN

F ln~2l/me!1DL12
vN

2 z2DL3

20 G1O~z5!.

~A20!

Performing the derivatives in Eq.~A18!, and matching to Eq.
~A7!, we find
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JN>
1

6me
2 vN

F ln~2l/me!1DL12
vN

2 z2

5
DL3G ~A21!

and

J̄ N>
vNDL3

60me
2

. ~A22!

The seagull integrals are straightforward variants of E
~A9!. We find

K>2
ln~2l/me!

6me
2

1
z2

60
@g1 ln~b/2!277/60#1O~z4!,

~A23!

and

K̄>2 1
120@g1 ln~b/2!231/30#1O~z2!. ~A24!

We have kept terms;R4 with the charge densities, sinc
the term ofO(1) leads to a vanishing result and therefore
.

e

leading order;R2. The currents themselves are of leadi
order R2, and so we have kept terms throughR4 ~i.e., of
relative orderR2), as in the charge-density case.

With hindsight, we can identify the dominant terms in th
expansion, which are thoroughly discussed in the main t
We note the appearance of ln(z) terms and az3 term. If the
Fourier transforms ofr and J could be term by term ex-
panded inq2, these terms would be absent. The integr
diverge at some order, signaling this with ‘‘nonanalytic
terms inz2 @e.g.,z35(z2)3/2]. Such terms play an importan
role in modern effective field theories@42#. In small terms
that we will only estimate,z4 charge terms andz2 seagull
terms, we will replace ln(z) and ln(vN) by average~con-
stant! values ln(z̄ ) and ln(Ē), respectively, in order to ob
tain tractable expressions for estimation.

A tedious application of Cartesian moments~discussed in
Appendix B! after expandingz2 andz4 in powers ofx andy
leads to

DEn528a2meufn~0!u2@A1B1C#, ~A25!

where the charge-charge contribution is
harge
erms are
current
A5 (
NÞ0

u^NuDu0&u2

3vN
F11 ln~2vN /me!1

me
2

2vN
2 @ ln~2vN /me!25/6#G1

p

24E d3xE d3y ux2yu3 r in~x,y!

1 (
NÞ0

vN

10S g1 ln~ Ē z̄ !2
39

20D F u^NuQi j u0&u21
1

2
u^Nur 2u0&u222^0uDuN&•^NuOu0&G , ~A26!

while the current-current contribution is

B5 (
NÞ0

u^NuDu0&u2

12vN
F2vN

2

me
2

ln~2l/me!1 ln~2vN /me!25/61
7me

2

4vN
2 S ln~2vN /me!2

449

420D G2 (
NÞ0

@ ln~2vN /me!21/6#u^Numu0&u2

12vN

1 (
NÞ0

@ ln~2vN /me!21/6#

240 S 4

3
vN^0uOuN&•^NuDu0&2

3

2
vNu^NuQ̄i j u0&u22

20i

3
~^0uNuN&•^NuDu0&2^0uDuN&•^NuNu0&! D ,

~A27!

whereQ̄i j is the traceless~E2! part of Qi j , while the seagull term is

C5E d3xE d3yS 2
Bin

i i ~x,y!

12me
2

ln~2l/me!1
@g1 ln~b/2!24/3#

8 F2@Bin
i i ~x,y!x•y2Bin

i j xiy j #

12 G1
1

240H @g1 ln~b/2!#FBin
i i S 4y2

2
3

2
x•yD1Bin

i j S 22yiyj2
3

2
xiyj1yixj D G2

1

30
@Bin

i i ~154y2254x•y!1Bin
i j ~269xiyj262yiyj131yixj !#J D , ~A28!

where we have separated out a special seagull term~the second term in brackets! that has the multipole character ofM12 and
defines the diamagnetic susceptibility@22#:

xD~x,y!52 1
12 @Bin

i i ~x,y! x•y2Bin
i j ~x,y! xiyj #. ~A29!

We note the small coefficients (;1/240) of the last of the current and seagull terms. Similar terms that arise from the c
are an order of magnitude larger, as we will see through the use of the gauge sum rules of Appendix B. The former t
estimated in the main body of the paper and will prove to be entirely negligible. Consequently, we will ignore those
and seagull terms in what follows. We also note that the potentially large~infrared! factor of ln(me) cancels in these two
higher-order terms, except for the coefficient ofxD .

Relation~B14! shows that the infrared-divergent terms; ln(2l/me) cancel identically. Using the relations~B15!–~B19!,
we can reexpress the last term in~A26! in terms of seagull operators. We finally obtain
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A1B1C5H (
NÞ0

u^NuDu0&u2

3vN
S 11 ln~2vN /me!1

me
2

2vN
2 @ ln~2vN /me!25/6# D 1

p

24E d3xE d3y ux2yu3r in~x,y!

1
1

10Fg1 ln~ Ē z̄ !2
39

20G E d3xE d3y@Bin
i i ~x•y2y2!1Bin

i j ~22yiyj1xiyj1yixj !#J
1H (

NÞ0

u^NuDu0&u2

12vN
F ln~2vN /me!25/61

7me
2

4vN
2 S ln~2vN /me!2

449

420D G
2 (

NÞ0
u
^Numu0&u2

12vN
@ ln~2vN /me!21/6#J 1F1

8E d3xE d3y@g1 ln~b/2!24/3#xD~x,y!G . ~A30!
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It is shown in the main text that only theD, m, andz3 terms
contribute at the 1 part per 1000 level. We have enclo
separately in large brackets the charge-charge, curr
current, and seagull terms. The last of the charge-cha
terms can also be rewritten in a form that allows estimat
of interaction-dependent~potential! terms:

DA5
1

80E d3xE d3y z4S g1 ln~ Ēz!2
39

20D
3^0u @r~x!,@H0 ,r~y!##u0&. ~A31!

APPENDIX B

In this appendix we perform a Cartesian multipole deco
position of the currents and of the virtual nuclear Comp
amplitude@15,16#. This is unconventional, but affords us th
easiest mechanism to impose the constraints of gauge in
ance. The Compton amplitude so decomposed yields ga
sum rules that express the total content of gauge invaria
in the long-wavelength limit@15,16#. These constraints wil
be imposed on the results of Appendix A.

The nuclear current is conserved or

¹•J~x!52 i @H0 ,r~x!#, ~B1!

where H0 is the internal Hamiltonian ~no recoil!, and this
leads to Siegert’s theorem in the long-wavelength limit@16#,

E d3x J~x![2E d3x x ¹•J~x!5 i @H0 ,D#, ~B2!

where

D5E d3x x r~x!, ~B3!

thus removing the explicit effect of interaction curren
~meson-exchange currents! from the electromagnetic
interaction operator in nonrelativistic order@those currents
areimplicitly present inH0 in the last form of Eq.~B2!#. We
can extend this result by expanding Eqs.~A2! and~A3! in a
power series in (qixi), arranging the Cartesian indices of th
x and J according to representations of the permutat
group: symmetric, antisymmetric, and mixed symmetry. J
as Eq.~B2! allows the zeroth moment ofJ(x) to be equated
d
nt-
ge
n

-
n

ri-
ge
ce

n
st

to the ~time derivative of the! first moment of the charge
density, all symmetric moments ofJ are determined by tha
density through current conservation. The other-symme
moments are model dependent and solely dependent on
magnetic-moment density,m(x). One finds@16#

r~q!5E d3x r~x! eiq•x>Z1 iq•D2
1

2
Qi j qiqj1•••,

~B4!

J~q![E d3x J~x! eiq•x

> i FH0 ,D2
q2O

30
2

qq•O

15 G1
q2N

3

2
qq•N

3
2 iq3m2

1

2
@H0 ,Qi j qj #1•••, ~B5!

where

O5E d3x x x2 r~x!, ~B6!

Qi j 5E d3x xi xj r~x!, ~B7!

m5
1

2E d3x @x3J~x!#, ~B8!

N5
1

2E d3x$x3@x3J~x!#%. ~B9!

The first five terms in Eq.~B5! define unretarded-E1 (D)
and retarded-E1 (O and N) interactions, whilem is the
magnetic-dipole operator, andQi j the electric quadrupole
tensor, which generatesE2 ~via the tracelessE2 tensorQ̄i j )
andE0 ~via the trace ofQi j ) operators. Terms inJ propor-
tional to q will vanish in our case because of the use
Coulomb gauge. The large contribution of meson curre
makes it convenient to use this decomposition and elimin
as much model dependence as possible. To the order tha
are working this model dependence resides inm (M1) andN
~retardedE1), and Eq.~B5! completely and uniquely sum
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marizes the constraints of gauge invariance to this or
Moments of the charge and current densities can be obta
by taking derivatives with respect toq.

We can also develop the constraints of gauge invaria
for the Compton amplitude. This is performed in Ref.@15#.
Replacingq in Eq. ~B4! by q2 andq in Eq. ~B5! by q1, the
gauge-invariance constraint is

@Jm~q1!,r~q2!#52
q2

m

Mt
r~q1!r~q2!1q2

kBkm~q1 ,q2!.

~B10!

We choose for convenience to divide the nuclear Comp
amplitude into two separate gauge-invariant parts: elastic
inelastic. The elastic part is the Compton amplitude fo
point particle of massMt and chargeZ multiplied by two
factors of the nuclear ground-state charge form factor. T
requires a seagull operator

Bel
i j ~x,y!5

d i j

M t
r0~x!r0~y! ~B11!

for gauge invariance, while the ‘‘inelastic’’ seagull is the
given by

Bin
i j ~x,y!5Bi j ~x,y!2Bel

i j ~x,y!, ~B12!

wherer0 is the nuclear ground-state charge density, norm
ized to *d3x r0(x)5Z. The inelastic amplitude will be
gauge invariant if the full amplitude is. With this definition
the gauge invariance constraint~B10! becomes

@Jm~q1!,r~q2!#5q2
kBin

km~q1 ,q2!2
q2

k

Mt
@r~q1!r~q2!

2r0~q1!r0~q2!#, ~B13!

where a spin-averaged ground-state expectation value is
plied. Expanding this in powers ofq1 andq2 leads to gauge
sum rules.

The simplest sum rule results from a single derivat
with respect toq2:

@@H0 ,D#,•D#52E d3xE d3y Bin
i i ~x,y!. ~B14!
d
t

se
d
W

r,
r.
ed

e

n
nd
a

is

l-

m-

Oneq2 and twoq1 derivatives produce

@@H0 ,O#,•D#52E d3xE d3y@Bin
i i y212Bin

i j yiy j #,

~B15!

2 i @N,• D#5
1

2E d3xE d3y@Bin
i i y22Bin

i j yiy j #,

~B16!

while oneq1 and twoq2 derivatives generate

@@H0 ,Qi j #,Qi j #522E d3xE d3y@Bin
i i x•y1Bin

i j xiy j #

18
D2

Mt
, ~B17!

@@H0 ,Q̄i j #,Q̄i j #522E d3xE d3yFBin
i i x•y1Bin

i j

3S xiyj2
2

3
yixj D G1

20

3

D2

Mt
, ~B18!

@@H0 ,r 2#,r 2#524E d3xE d3y @Bin
i j yixj #14

D2

Mt
.

~B19!

In accordance with our earlier discussion, recoil terms s
as the last term in Eqs.~B17!–~B19! should be dropped
Other relations are possible, but are not needed.

The gauge sum rules derived above are rigorous in
nonrelativistic limit. They incorporate meson-exchange c
rents in both currents and seagulls. It is expected that s
currents could alter the impulse-approximation seagull b
factor of 2, based on numerical studies@23# of Eq. ~B14!
reexpressed in its usual~Thomas-Reiche-Kuhn orf sum
rule! form

2 (
NÞ0

vNu^NuDu0&u25E d3xE d3y Bin
i i ~x,y!. ~B20!
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