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Nuclear-polarizability corrections that go beyond unretarded-dipole approximation are calculated analyti-
cally for hydrogenic(atomig S states. These retardation corrections are evaluated numerically for deuterium
and contribute—0.68 kHz, for a total polarization correction of 18(38kHz. Our results are in agreement
with one previous numerical calculation, and the retardation corrections completely account for the difference
between two previous calculations. The uncertainty in the deuterium polarizability correction is substantially
reduced. At the level of 0.01 kHz for deuterium, only three primary nuclear observables contribute: the electric
polarizability ag, the paramagnetic susceptibilit§, , and the third Zemach mome|(1t3>(2). Cartesian
multipole decomposition of the virtual Compton amplitude and its concomitant gauge sum rules are used in the
analysis[S0556-28187)04208-9

PACS numbe(s): 21.45:+v, 13.75.Cs, 24.76:s, 31.30.Gs

INTRODUCTION for deuterium[6—11]. The bulk of the effect £19 kHz in
toto) is caused by the Coulomb interaction distorting the
The remarkable experiments presently being performed imucleus &17 kHz) with a smaller &2 kHz) contribution
Garching[1] and Parig2] on the spectroscopy of hydrogen from the virtual transverse photons. In leading order
isotopes have astonishing precision. The Rydberg currentliunretarded-dipole approximatipthe electric polarizability
has an uncertainty of 9 parts per'iwhile the isotope shift «e dominates the process and accounts for 18)28Hz in
between deuterium and hydroger$-2S transitions has a honrelativistic approximation for the deuterfibi]. This nu-
reported uncertainty of 3 parts per®.@nd this is expected Merical result summarized calculations for a group of
to be lowered soon by an order of magnitjaé “second-generation” potentials, which fit the nucleon-
The isotope-shift measurements afford a unique Opportunuc_leon scatteri_ng data well enough to be considered alter-
nity for nuclear physics. The traditional technique for deter-native phase-shift analyses of that data. .
mining nuclear sizes is to scatter relativistic electrons from There exists a single calculati¢], using first-generation
nuclei, determine the charge form factor, and extrapolate thiguclear potentials, that goes beyond the unretarded-dipole
to small momentum transfers, thus determining the mean@Pproximation and includes retardation, higher multipoles,
square charge radiugr?). It is extremely difficult to per- the effect of the finite sizes of the nucleons, s_eagulls, a_nd
form the latter measurements with an absolute accuracy ¢fven meson-exchange currents. Results for this calculation
1% or less, and this sets limits on the accuracy of the charg@re smaller by=0.5 kHz than for those using the unretarded-
radius. The currently accepted value of the charge radius dfipole approximation. That calculation was performed by
the proton[4], <r2>r1>/2: 0.862(12) fm, corresponds to an un- constructing nuclear charge and curréransition) densities
certainty in{r) of nearly 3%, and the recently determined and performing a difficult double integral over thg momen-
deuteron radius] (r2>é’2=2.128(11) fm has an uncertainty tum and energy transferred across egch photon(i;ee_Flg. .
in (r2) of 1%. For the B-2S dp isotope shift[1] the 1). Our goal is to reduce that calculation to an analytic series

nuclear-size correction contributes approximateh5000

kHz (roughly the same as the QED correctipost of a total - - -
of 670 GHz. The reporte@3] uncertainty of 2 kHz corre- q
sponds to a precision of better than 1 part per 1000 fi.
(b) ) ()

In addition to static size corrections, the electron polarizes <
the nucleus and produces nuclear-polarizability corrections. (@)
In order to use the isotope shift as a precise gauge of nuclear fiG. 1. Nuclear polarization corrections with dirdej, crossed
size differences, it is necessary to compute these polarizabilb), and seagul(c) contributions are illustrated. Single lines repre-
ity corrections as accurately as possible, and that is the goaknt an electron, double lines a nucleus, and shaded double lines
of this work. depict an excited nucleus, with the seagull vertex maintaining gauge
There have been several calculations of these correctionsvariance.
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in various size-dependent nuclear observables, and keep oriygether with its logarithmic mean-excitation energy analo-
those that are expected to contribute at a level of greater thagpusly defined. Although we have uséhd will write be-

0.01 kHz. The resulting expression is fairly simple and de4ow) E for each of thedifferentmean-excitation energies for
pends only on three primary nuclear observables: the electrigotational simplicity, they are distinctalthough similay
polarizability ag, the paramagnetic SUSC@Dth”'B’M, and  pnumbers. They will always be grouped with the operators
the third Zemach momerft12,13, (r®) ), of the charge that define them. In the formulas above, is the fine-
distribution. Meson-exchange curreiisl] play a small role  structure constanty, is the electron mass$N) is the Nth
that is easily incorporated in the calculation. Our final resultyyclear statéthe Nth eigenstate ofi,) with energyEy, and

is in excellent agreement with the difficult but comprehen-N=0 |abels the ground state.

sive calculation of Rei[?] We will produce a final estimate The inelastic charge densitgquared can be rewritten in

based on second-generation potentials. It will be not be easy

to improve this result significantly, because it will be diffi- :
cult to increase the precision of the nuclear observables on NZO (0[p"(X)[N){N|p(y)|0)
which the result depends.

=(0]p"(x)p(¥)|0) = po(X) po(y), (6)
HIGHER POLARIZABILITIES
where
The integrals over momentum transfer in the loops that
define the generalized polarizability correction are difficult, po(X)=(0|p(x)|0), (7)

rather complicated, and extremely tedious. For all these rea-
sons, we have relegated them to Appendix A. The constraln'us(x) is the nuclear charge(-density operator and
of gauge invariance are crucial to impoftee results are Jd®x po(x)=Z, the nuclear charge.

infrared divergent otherwige but are also tedious to de-  With these definitions, we can rewrite EGA30) in the
velop, although they have been known for decafies. form

Consequently, a brief presentation of the necessary relations

has been relegated to Appendix B. Only those parts of theAE — 4o myé (O)|2[

calculation that we will treat numerically are given directly elrn
below. To the order that we work, gauge invariance has been

19
In(ZE/me) +

properly implemented. 5 283
We first define the electric polarizabilityl5,16 ag in 16m Aag In(2E/me) 300
terms of the electric-dipole operatbr, ,8
M T
— == In(2E/my) — —f d3xf d3y |x—y[3
__2ax [(NIDIO)® @ ¢ 12
E 3 N+#0 EN_Eo '

X[{0[p"(x)p(¥)|0) = po(X)po(y) ]+ ABY, )

and the logarithmic mean-excitation enefdy,17 E by

oy, where
_ N|D
In(E/m,) aE— NZO - In[(Ex— Eq)/Me]. N 39\ [ o [
@ AB=§ v+In(Ez —%)fd xf d°y(0|AB(x,y)|0)
9
Similarly, we define the paramagnetic susceptibilit$,16]
Bwm in terms of the magnetiedipole) moment operatop, and
[see Eq(B8)], . 5 i
AB(X!y) = Bin(xay)[x' y—-y ]+ Bin(X:Y)
2 . . .
BMZZ_a —|<N|”|O>| , (3) X[=2y'y'+x'y +y'xI ]+ - (10
3870 En—Ep
We have dropped a large variety of small termsAiB (in-
together with its mean-excitation ener@ dicated by the ellipsis and with relative coefficientd/10
that arise from the seagull and current telfieenverted using
_ 2a [(N| ] 0)]? gauge sum rules; see A&)endiX’.AGauge sum rules and
In(E/me) 'BM:?E IN[(En—Eo)/me]. approximatingEy—Eq by E andz=|x—y| by z (i.e., con-

(4) stantg were used to obtain Eq$9) and (10). The small
correctionAB arises from the Coulomb interaction; we will
A close relative ofag is also use the alternative expression in E431). Note that
the term~|x—y|? contributes taall electric multipoles, un-
|(N|D|0)|2 Iil_<e the others, which have either electric— or magnetic-
Z , (5 dipole nature. Only ground-state properties are needed to
3 =0 EN—Eo)3 construct the former term.
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In order to proceed further, we need to specify our nucleaplayed in Egs(1) and(3) can be calculated as follows. Equa-

model. The charge operatp(x) is given by tion (1) is fully equivalent to
A ag=2a(0|D, AV ), (16)
p(X)=E &i(x—x), (11
=1 where
where (Ho—Eo) [AW,)=D,|0) (17)
&= ep(i)ep(X—X) +en(i)en(X—X;) (12)  is solved subject to finite boundary conditions. One must be

R R careful to exclude the ground state from the sum dVen
counts protongwith e;) and neutrongwith e,) and multi-  Eq. (3) for By . This necessitates a projection orthogonal to
plies each species by its intrinsic charge distribution. Thehe ground state on the right-hand side of ELj) [with D,
form (11) is nothing more than the usual folding ef(x)  replaced byu, in both Eqs.(16) and(17)].
with 83(x—x;). Forming fd3XXp(x)=Eiép(i)xi demon- For the deuteron, one impulse-approximation calculation
strates that finite size does not modify the electric-dipole®’ Bm exasts[.21] with a value of 0.065 fri. This is domi-
operator. nated by-S, intermediate states. Indeed, an upper limit for

The current operator needed to constructonsists of &l triplet intermediate states istMsO_.OOO3 fn? obtained
three distinct parts: the spin-magnetization current, the ork21] by replacing the energy denominator in Eg) by its
bital current, and meson-exchange curréM&C'’s). We ig- ~ Smallest possible valueEg, the deuteron binding energy
nore nucleon finite size, which does not contribute to thisahd then using closure and completing the algebra. More-

order, and find19] over, the'D,-state contribution is tiny, and thkS, interme-
diate states dominate completely.
A [ adi) a(i)+eyi) L) The logarithmic mean-excitation energies are calculated
= M P + pvec, (13)  using a trick[25]. We define a quantity closely related to
=1
ag,
where the spin-magnetization current is determined by 20 |(N|D|0)|2
- . . ()= 32 FE —E (18)
M(i):Mpep(i)+Mnen(i)- (14 N0 N 0
Note that the isoscalar and isovector nucleon magnetic moYheref is an energy-scaling factor (3-5E, inserted for
ments are very different in size.=pu,+ u,=0.87B convenience. An integral ovef produces a logarithm, and
s n=0. o -
and p,=pp— pn=4.709 . .. . Thelargpe value of the iso- one finds a convenient numerical algorithm forin

vector nucleon magnetic moment will play a determinative

role. We eschew writing out our model for the two-body

pion-exchange current§.e., MEQ), which is discussed in

Ref. [19]. This model has had its pion-nucleon form factor

adjusted to reproduce the experimental thermal radiative —ag(0)In(me/2f), (19

capture ratg20]. As the contribution ofBy, is relatively _

small and the MEC a small part of this, the overall MEC WhereE is independent of, and Eq.(19) is fully equivalent

contribution is nearly negligible, but has been included forto Eg. (2).

completeness. The electric polarizability was calculated and thoroughly
Our final ingredient is the Compton seagull operator. Thisdiscussed in Ref.11]. One found there

operator is comprised of several compond®s]: impulse

_ 1 dé¢
aE(O)m(ZE/me):L ?[aa(f)—aE(OHaE(l/@]

approximation, plus meson-exchange curref®g], plus ag=0.632817) fm?,
. . We expect the meson-exchange currents to be possibly e
comparable to the impulse approximation, based on sum-rule In(2E/m)=2.962Q5), (20
studies [23]. We will work only with the impulse-
approximation component, which has the form v2E=19.266) kHz=(16.99+(2.29 kHz,

pol—

A
i - - where the latter is broken down into Coulomb, transverse
ij = (X—X) e (V—X o . - - " ’
BY(xy) ;1 &(x=x) €(y=x). (15 and total contributions. This calculation did not incorporate
relativistic corrections to the deuteron.
The pion-exchange component of the deuteron’s diamagnetic The analogous calculations fg, are listed in Tables |
susceptibility [see Eq.(A29) and Refs.[21,22] has been and Il for a variety of first- and second-generation potentials

shown to be tiny. [26-39. The results of Table | are for the impulse-
approximation magnetic momefrio MEC's), while those of
NUMERICAL CALCULATIONS Table Il incorporate MEC's, as well. The latter increases the

former by approximately 15%, which is quite typical for is-
Podolsky’s methodi24] is very convenient for calculating ovector transitions. We average the various second-
ag and By . Any generalized polarizability of the type dis- generation results and estimate
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TABLE I.
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Impulse-approximation deuteron magnetic suscepti- TABLE II. Full deuteron magnetic susceptibilitigg, , in units

bilities By, in units of fm®, logarithmic mean-excitation-energy of fm?, logarithmic mean-excitation-energy ratios /), and
ratios In(2/m,), and corresponding deuteroi$-2S polarization-  corresponding deuteronSi2S polarization-energy shifts g in
energy shiftsv,, in kHz. The RSC potential labeldd-23] has had  kHz. The RSC potential labelde23] has had its'S, part modified
its 1S, part modified to produce the corremtp scattering length.  to produce the correat-p scattering length.

Potential model Bu (fm®) In(2E/m,) vpa (kHZ)  Potential model Bu (fm®) In(2E/m,) ¥pa (kH2)
Second-generation potentials Second-generation potentials
Argonne Vg 0.0678 2.4724 -0.265 Nijmegen (full-rel) 0.0780 2.5003 -0.308
Nijmegen(loc-rel) 0.0677 2.4726 -0.264 Nijmegen(nl-rel) 0.0778 2.4981 -0.307
Nijmegen(loc-nr) 0.0677 2.4732 -0.264 Nijmegen(nl-nr) 0.0777 2.4987 -0.307
Nijmegen(nl-rel) 0.0677 2.4726 -0.264 Nijmegen(loc-rel) 0.0775 2.4972 -0.306
Nijmegen(nl-nr) 0.0676 2.4732 -0.264 Nijmegen(loc-nr) 0.0774 2.4978 -0.306
Nijmegen (full-rel) 0.0675 2.4728 -0.264 Reid Soft Corg93) 0.0775 2.5005 -0.306
Reid Soft Coreg(93) 0.0674 2.4744 -0.264 Argonne Vg 0.0774 2.4963 -0.305
First-generation potentials First-generation potentials
Bonn (C9 0.0682 2.4738 -0.267 Argonne V4, 0.0774 2.4996 -0.306
Argonne Vi, 0.0674 2.4733 -0.263 Reid soft core(68)[-23] 0.0769 2.5002 -0.304
Reid soft core(68)[-23] 0.0669 2.4748 -0.261 Bonn (C9 0.0766 2.4935 -0.302
Nijmegen(78) 0.0663 2.4947 -0.261 Nijmegen(78) 0.0751 25172 -0.299
Super soft coréC) 0.0659 2.4982 -0.260 de Tourreil-Rouben—Sprung  0.0748 2.5221 -0.298
de Tourreil-Rouben—Sprung  0.0656 2.4969 -0.259 Super soft coréC) 0.0747 2.5218 -0.298
Paris 0.0653 2.5008 -0.258 Paris 0.0743 2.5253 -0.297
Reid soft coreg(68) 0.0647 2.5031 -0.256 Reid soft core(68) 0.0742 2.5295 -0.297
By=0.07773) fm?, and is accurate to better than 1/2%. The following integral

[similar to Eg. (19)] produces the logarithmic mean-
excitation energy

In(2E/m,) = 2.4982), (21)
In(2E/mg)= — fl ﬁ( 2(&)—aR(0)—£al' (0)
vh=—0.3072)(6) kHz. ® f2ha2 Jo &8\ F E E
2 1
These uncertainties do not include uncertainties in the —%a‘é"(o) +J dg[gag(llg)—gag(O)
0

MEC's, which are possibly 1-2 % of the total res(ihis is
subjective; the latter is reflected in the second er(6y in

the .Ia.st Eq.(21). This polarization contribution .is non- _ ag’(O)] —In(my2f)

negligible only becausg,=4.7; a more “normal” size~1

would reduce the contribution by a factor-ef25. Ourv, is

in reasonable agreement with the zero-range result of Ref. =2.648. (24)

[9]. .

The very small correctiond ag can be accurately esti- |1ese results produce a total correction frame :

mated in zero-range approximatiérwhich we used as a tool Aag

in Ref. [11]). We first calculatea2(¢) using Eq.(18) and Voo —0-106 kHz=(0.060 +(0.046 kHz, (25

find which has been broken down into Coulomb and transverse
2 .= _ parts, respe(_:tiyely. o . .

ag(§)= auhs (k“+ k“+4k k) 22) The remaining large quantity in E¢B) is the retardation

correction proportional te;,(x,y). Using Eq.(11), we ex-

123 (k+k)* \
pand that result and find

where the asymptoticreduced s-state wave function of the R R .
deuteron has the forme™*". Moreover, k?=k?(1+ &f), PT(X)P(Y)ZEJ ei(X—Xi)ej(y_XjHZ €p(i)ep(x—x;)

and u is the
leads to

n-p reduced mass. Performing two derivatives
Xep(y—x;) +en(i)en(X—x)en(y—x). (26)

7a%m? Note that if the neutron’s charge distribution is set to zero,
£ 2e =0.0098 fn?, (23)  the first term vanishes for the deuter@me nucleon must be
d a neutron, and only the second term survives. Shifting the

2 0_
meAaE_
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TABLE Ill. Zemach-moment contrlbutlom<r3)(2), to the TABLE IV. Contributions in kHz to the deuteron-polarizability
Coulomb-induced retardation correction in units of¥rand corre-  frequency shift for the $-2S transition together with their respec-
sponding deuteron:2S polarization-energy shiftg, in kHz. tive origins, separated into Coulomb and transverse, and electric-

dipole, magnetic-dipole, and higher-multipole and retardation

Potential model A(r3) ) (fm®) Vpol (KHZ) terms.

Second-generation potentials Origin ac  Aag By A(rS)(Z) AB Total
Argonne Vg -37.45 -0.485
Reid soft corg(93) -37.44 -0.484 Coulomb 16.98 0.06 - -0.48 < 0.01 16.56
Nijmegen(loc-nn -37.38 -0.484 Transverse 228 0.05 -0.31 - <001 202
Nijimegen(loc-re) -37.34 -0.483 Total 1926 011 -0.31 -048 =001 1858
Nijmegen(nl-rel) -37.36 -0.483
Nijmegen(nl-nr) -37.31 -0.483
Nijmegen(full-rel) -37.20 -0.481 Calculations of the various moments are performed by

first calculating the deuteron density and then generating a

First-generation potentials spline fit of it. Then folding is performed and that convoluted

Sf%pef soft coreC) -38.45 -0.498 density is similarly fit. Moments are calculated ultimately
Nijmegen(78) -38.27 -0.495 with respect to the final fitted density.
Argonne Vy, -38.01 -0.492 The results for various modekincluding the effect of
de Tourreil-Rouben-Sprung -37.70 -0-488  neutrong are listed in Table IIl. The neutrons lower the re-
Paris -37.55 -0.486 sult by approximately 1%. The second-generation results for
Bonn (CS) -37.44 -0.484 this retardation(and higher-multipolg correction can be
Reid soft corg(68) -36.87 -0.477 summarized by
A(r3)y=-37.3212) fm? (30)
andy integrals each by; in that case produceg® )(2),
while the po(X)po(y) term generatesr®)f,) and a retarda- and
tion correction L%tl_ —0.4832) KHz. (31)
E[—(r3)?2)+<r3>fz)]5EA<r3>(2), (27 This process is the only one that we will consider where
12 12 higher multipoles, retarded1, and nucleon finite size con-
tribute.
™= | @@ en r, 28 The final task will be to estimate the size AfB. The
(M) f Pe)(r) 28) “natural” size of terms with numerical coefficients 1 is

AB~ a(r?)4/M, while the coefficient #.a?| ¢,(0)|? has a
and value 0.05 kHz/fni. Since(r?)4/M~0.8 fn?, the natural
size is 0.04 kHz. We useé= 10 MeV, z= 4 fm to estimate
p<2>(r):j d3z po(|z—r])po(2)=p®p (29 logarithms and Eqg15) and(B12) for the seagull operator.
The seagull contribution has a size3; (0.04 kH2 ~ 0.005
kHz. The higher-order current terms are of similar size, but
largely cancel, leaving a very tiny residue. The higher-order

char rms ar m|n r le excitations an
total deuteror(including the finite size of the protdpronvo- arge terms are dominated by quadrupole excitations and

luted charge density and the second with the proton’s conhave a nominal size-; (0.04 kHy ~ 0.04 kHz, which is
9 y P almost as large as thkeaE Coulomb term. It can be shown,
voluted densityp,, . In what follows below we will specialize

) however, that this size is an artifact, caused by neglecting
to the deuteron, and denote pythe deuteron’s ground-state some recoil terms. We must perform the estimate more care-
charge densitycalled p, before.

fully.
For completeness, we include the neutron contributions as If one uses instead the representation in @@1) for the

well. There will be a two-body correlation ter[_ﬁrst termin 4 charge terms, and evaluates the double commutators, one
Eq. (26)] involving p,®@ pp®@ pg, Wherepq is slightly modi-  fings that the kinetic-energy part bf, vanishes in the point-
fied to account for the vector specifying a correlation, nycleon limit, and otherwise has a rough siz€.006 kHz.
while r/2 determines the charge densipg. In addition to  One can also evaluate the potential part of the commutator
this term, the folded proton density in E@7) is replaced by  gnd find~0.003 kHz. These corrections are not only small,
(pp®ppt pn® pp) and the deuteron charge density is definedyt the comparable sizes of kinetic and potential terms are in

by (pp+pn)®pg, Wherepg is determined by the deuteron accordance with expectations.
wave function alone.

is the convolutedZemach[12,13)) density. In Eq.(27), the
first of the third moments is calculated with respect to the

We use a simplified model of the neutron and proton form RESULTS AND CONCLUSIONS
factors. The proton form factor is taken to have a dipole form
with the correct radiug4] (0.862 fm). The neutron form Our final results are tabulated in Table IV, with break-

factor is that dipole timesg?, adjusted overall to match the downs according to their origin. The total for thes-2S
experimental charge radius f0.338 fm[36]. transition in deuterium is
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Vpo= 18.587) kHz. (32)  calculation has been set up bef¢7d, we sketch that part of
the derivation.
This is 0.68 kHz less than the leading-ordes] result, and The nuclear energy and momentum scales are much

is consistent with the differences between the results of Refgreater than those of an atom. Consequently, such large mo-
[7] and[8]. The complete numerical results of RE7] for ~ menta flow through the photon and electron propagators in
four first-generation potentialgParis [31], AV, [33], Fig. 1 that only the shortest-range part of the electron wave
Nijmegen[34],and Bonn C$30]) are in agreement with our functions|¢,(0)|? contributes to leading order i#a, the
results within 0.02 kHz for Coulomb and transverse partsproduct of the nuclear chargg and the fine-structure con-
which must be regarded as virtually perfect agreement. wétanta. Consequently, the momentum in both photon propa-
note that substantially improving the uncertainty in E2g) gators is taken to bq (dlﬁerenpes_ in these momenta lead to
will be difficult, because it would entail substantial improve- higher-order terms iZa). It is important to enforce the
ments[11,37] in the nuclear parameté; . constraints of gauge invarian¢&5] on the nuclear part of

A wide variety of physical mechanisms contribute to the!€ interactiqn(tr}e ;]’ irtLglil dCO”.‘PtO” arlnpliéudeand thrils IhS
. T most conveniently handled using Coulomb gauge, which iso-
final result. Unretarded1 phc_;tons(b_oth I_qngltudlnal and lates the nuclear charge density from the transverse parts of
transversggenerate the electric polarizability. The paramag-y, currentgFigs. 1a) and ib)] and seagullFig. 1(c)]. The

netic s?ﬁceptlbllhty g_enerattes a non-rtl_egllg|b|e t(tar_m onlylbe- alculation requires a relativistic treatment of the electron
cause theé nucieon ISOVECIor magnelic moment IS Nearly gincagsm,, the electron magsbut a nonrelativistidi.e.,

Th'ls,, term '2thlf[svd2‘?. times Iargg_er thant'fb't ;/_veret of "nolr- leading-order treatment of the nucleus suffices. We expand
mal™ size. A retaraation correction contributing to all €1€c- y,q 1y clear currend” in powers of 1M, the nucleon mass,

tric multipoles is moderately important, and is the only one, g keep no powers higher than linear. One immediate con-
of our terms to which the nucleon form factors contribute.Sequence of the latter is the lack 6fuclea) momentum
Einally, high_er-order terms, including_the seagull Contribu'dependence in the nuclear charge dengity) [unlike the
tion, are estimated and shown to be tiny. current densityJ(x)] and the nuclear seagull densit§5]
B™"(x,y), which also lacks charge componefits., B#*=0
ACKNOWLEDGMENTS for u=0 or v=0). Our conventions follow Ref.38], and
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APPENDIX A The energy shift of thenth hydrogenicS state due to

nuclear polarization is most conveniently calculated by per-
We wish to evaluate the contributions of Figga)t-1(c) forming the contour integral over the time component of
to the energy of thenth hydrogenicS state. Because this g#(qg) in the loops of Fig. 1, which leads {@]

—2a?m (2E+ wn)[(N]|p(9)[0)|? q° 2E+w
AEpol=—e|¢n<0>|2f d3q[ > e Sl— s
™ N#0 Eq[(E+ wn)“—mg] 4mg |Eq(E+ wyn)“—mg]
(29+ wy) Bif(g)(1 1
e [N @[0) 2| + 5 S 2 (A1)
4mgg*(q+ wy) 8g°mg \d
|
whereg?=0¢?, E=\g%+m;, andwy=Ey—E,, the energy y N
of excitation(relative to the ground statef the Nth nuclear B},ﬂ(q)=J ngJ d’y &4 CYB(xy), (A4)
state(which by assumption cannot be the ground stdie
addition o
and “L " signifies contraction with respect t6" —q'q’ [i.e.,
J7=301(8"-q'g’)]. Gauge invariance of this nuclear
_ iq- Compton amplituddédiscussed in Appendix BrestrictsB"
= | d% 9% A2 : : !
p(a) J x €17, (A2) to the “inelastic” partB;) [see Eq(B12)].

Because nuclear momentum, size, and energy scales are
given byQ~1/R~ 100 MeV, wy~Q?%/2M ~ 5 MeV, while
_ | 43y dax me~ 0.5 MeV, there are two small dimensionless expansion
J(@) J d*x €33(0), (A3) parameters 6~ wyR~1/20 and 8~m,R~1/200. Conse-
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guently, we work in configuration space, where expansion

in R are easiest, using techniques introduced in electromag-

netically induced heavy-ion reactiorjd8]. Similar tech-
niques were used in Reff5,8]. We introduce the inelastic
transition densitiegsquared

pin(%,Y)=(0|p" () IN)(N[p(y)|0), (A5)

Ix,y) =(0]3T(x)|N)(N|I (y)|0), (A6)

andB (x,y) has already been used in H&4). We are not
interested in hyperfine structure and, consequently, the sp
average over nuclear ground-stat8)j azimuthal quantum

numbers for the intermediate statdslY) is implicit in Eq.
(Al). Consequentlyp;, andJ;, are space scalars. The plane
waves in Eqs(A2)—(A4) can then be extracted, appropriate
spherical averages  over (ﬁ performed [e.g.,
e'9 ), sin(2/(q2), wherez=x—y], and theq integrals

in Eq. (Al) finally evaluated. This produces the generic re-

sult

> [pn(%Y)In(2)

N#0

AEp0.=—8a2me|¢n(o)|2f dsxf d

+J1

(xY)In(2) +I(x,y) 27 I(2)]

* %Bikx,y)K(z) + %B!%(x,wz‘ziK_(z) . (A

where all of our effort will be devoted to ot@ining the po-
larization structure functiond \(z), In(2), In(2), K(2),

andK(z). We will develop general forms and then perform
expansions in ¢yz) and (Mgz).

We begin with the charge-charge interaction terg
which is the most complicated to obtain. All other integrals
can be obtained from this one:

1 (=dq[(2E+ wy)on] sin(q2)
In(Z)=—

onZ)o  QPE[(E+ oy)?—mE]

jwdqsin(qz)[ q
1_

o B | (wnt+E)2-m?

(19(2)-1M(2))

wNZ

1 2

B wnZ

(A8)

Nominally infrared divergent, that part df(z) does not
contribute after the integrals overandy are performed in
Eq. (A7) (the nucleus is assumed to be virtually excjted
Ignoring all of thesdultimately vanishingterms here and in
subsequent integrals, we find, wig=m,z,
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S dq sin(q2)

——ifﬁd (BB, (A9)
= ), 98-8,

whereKy(x) is the modified Bessel function of order zero.
The functionl (©)(z) can easily be expressed in terms of the
Ki,(z), the (nth) repeated integrals oKy(x) [see Egs.
(9.6.25 and (11.2.8 of Ref. [39]]. The remaining integral
) is more challenging and requires several steps. We de-
fine é&= wy+m, andé’ = wy—mg, assumingg’ >m, for the
Psults reported belovithis is easily relaxed and write

O

2me 0

-1 . 1
E(E+&)  E(E+¢)

T W -T gz

=dq
—Sl Z
q n(q2z)

2me (A10)
Using the field-theory trick40]
1 3 ZJOC dx (AL1)
EiE2(E1+Ep) 7)o (N2+EZ(N2+ED)’

and Eq.(3.737.3 of Ref.[41] the Fourier transforms can be
evaluated in the form

T <1>(§'Z)—§fw o e
o+ (Z2+m)d)
3 T B £ [J“dx e A
S 2m(é+me)  my(e2-md)| J1 xyx3-1
_ f © dxx e’ (A12)
1 (%+ p2)Vxe—1]’

after using partial fractions aref\ 2= 8?(x?>— 1), and defin-
ing u?=¢%/mZ—1(>0). The first of the remaining integrals
is Ki(B)=m/2—[BdB'Ko(B') [use x=coshf) in Eq.
(11.2.10 of Ref.[39]]. The remaining integrdidefined to be
T(B; ) with the minus sighyields to a further trick; it is
the solution of the differential equation

T (B)

aB?

+u?T(B)=Ky(B), (A13)

subject to the boundary conditiom()—0 exponentially,
for which standard solutions exist:
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—_ 1 (=
((Biw)== fﬁ dB'K(B ) cos uB)sin(uB) —cod up)sin( up')]

_Tme Sin( BN (u-+ T+ 1)+ 2cos uf)

B
+ fo dB’'Ko(B")[sin(uB)sin(uB’) +coguB)cog up')], (A14)

after integration_ by parts and rearrangement. Combining terms frorfA#8) and using the last form of EgA9), we obtain
TO=—¢O+ 1 (&p), where

P & _ TMe _ me . EtV¢E } J
1 (&8)= me(§2—m§)[ 2¢ [1—-coqupB)]+ g sin(uB)In dB'Ko(B")
X | sin(uB)sin(uB") +cos wp)cos wp') —1— u2Bp + - (,8 +B’2)H (A15)
Finally, a relatively simple result is obtained,
—7? 2wy 7z wyZt AL, 39) 5
|N(Z)—2me [|(§ﬂ)—|(f i B) _G_wN 1+In 5 +AL, +§+T y+In(wnz) + —— 3 —Z) +0(2°),
(Al6)
wherey is Euler's constant and
oy | [ E-m2\" §+M) g2-m2\" e +J§’27) (2&),\,)
AL,= In - —|(1+niIn
2me wﬁl me wﬁl mg e
mg 2wy ;‘ 2wy 6
=—aln +b, [+ 4 ayln )+b +0(m /wN) (A17)
oy e N Mg

Useful values ared;=1/2b,=—5/12), (a_lz 7/8,b_1= —449/480), and ;= —1/2b3;=1/12). This completes treatment of
the charge term.

The current and seagull terms require special treatment because of the transverse pfogectiom L " ). The appropriate
current-current terms have the generic form

y i 99 a2
| a tlia @lo= | o ¢y dhoey | o f<q>(5l—?)eq

) ‘ , [ d%q €
:J d3xJ d3y[ J};](x,y)J d3q €92 (q)+ I (x,y) V'ZVJZJ qze f(q)]. (A18)
q

The secondj integral (defined to belcg) can be seen from wﬁ,zz
Eq. (1) to be (1/4n2)[I1n(2) —limy, _oln(2)], while the first Jo= IN(2N/mg)+ AL, ——— ALz |+0(Z%),
integral (defined to bel®) is given by 4m; oy ®
(A19)
L [In(2)— lim Iy(2)]
- —Z[Iy(2)— lim Iy(2)]].
amZz d2 " o0 2 w2Z?AL,

_ , o Joo=— In(2M/mg) + AL, — —— |+ O(25).

Both forms have an infrared divergenéehich will ulti- s Wy 20

mately disappear because of gauge invaripaocel we write (A20)
me— 2\ in divergent logarithms, wherk is the equivalent

smallqg cutoff in the integrals. It is easy to perform the de-

rivatives, take the limits, and perform the subtractions. FoPerforming the derivatives in E¢A18), and matching to Eq.
the sake of brevity, we quote only the power-series forms (A7), we find
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w272 leading order~R?. The currents themselves are of leading
In(2\/mg)+ AL, — AL;| (A21) orderR? and so we have kept terms througt (i.e., of
6mM; wy relative orderR?), as in the charge-density case.

With hindsight, we can identify the dominant terms in the
expansion, which are thoroughly discussed in the main text.
We note the appearance of i) (terms and &> term. If the
= ) (A22) Fourier transforms op andJ could be term by term ex-
60m§ panded ing?, these terms would be absent. The integrals

diverge at some order, signaling this with “nonanalytic”
The seagull integrals are straightforward variants of EQigrms inz2 [e.g., z3—(zz)3’2] Such terms play an important

In=

and

(A9). We find role in modern effective field theoriggd?2]. In small terms
In(2)/ 5 that we will only estimatez* charge terms and? seagull
K=— n(—?e)+ é—o['y+|n(ﬁ/2)_77/6o]+o(z4), terms, we will replace Ir{) and In(wy) by average(con-

6mg stan} values In(z) and In(E), respectively, in order to ob-
(A23)  tain tractable expressions for estimation.
A tedious application of Cartesian momefdsscussed in
Appendix B after expanding? andz* in powers ofx andy
leads to

and

K=— o[ y+In(B/2)-31/30+ O(z%).  (A24)

AE,=—8a’m 0)|’[A+B+C], A25
We have kept terms-R* with the charge densities, since " amel $n(O)|1 ] (A25)

the term ofO(1) leads to a vanishing result and therefore thewhere the charge-charge contribution is

2

|<N|D| )2 Mg
1+In(2wy/me) + 2—2[In(2wN/me)—5/6]
wN

A=
NZ0

* 10

while the current-current contribution is

T
bae] @[ 6y oy oty

-+ In(EZ)- o[ |NIQTI0)+ Sl NIFFI0) 2 2(0IDIN) (N0l (n26)

7mZ
I n(2\/mg) +In(2wy /mg) — 5/6+ —(In(ZwN/me)
me 4(oN

< INppjoy 2
N7o 12wy

[In(2wy/me) — 1/6][(N||0)|?
NZ0 12wy

449
420/ |

[IN(2wy/mg) — 1/6]/
N;o 240 13

3 20i
—wN<0|0|N> (N|D|0>——wN|<N|Q”|O>|2——(<0|N|N> (N|D|0)—(O[DIN)-(N|NJ|0}) )
(A27)

whereQ'l is the traceles¢E?2) part of Q'l, while the seagull term is

— —rgi .v—Bixiyi
de de( 'y)m(z)u me) + [7“”(!38/@ 4/3]{ [ .n<x,y)>1<2y Y|

1
240 [y+|n(,8/2)][B”(

3 . .3 1 . . o o
—EX-y)+B!A —2y'y1—§><'yj+y'><’) —@[B!'n(154y2—54><-y)+B!A(—69x'y‘—62y'y’+31y'x1)]]), (A28)

where we have separated out a special seagull tdrensecond term in brackethat has the multipole character k12 and
defines the diamagnetic susceptibili82]:

xo(%Y)=—H[Bh(xy) x-y—Bli(x,y) x'y!]. (A29)

We note the small coefficients<(1/240) of the last of the current and seagull terms. Similar terms that arise from the charge
are an order of magnitude larger, as we will see through the use of the gauge sum rules of Appendix B. The former terms are
estimated in the main body of the paper and will prove to be entirely negligible. Consequently, we will ignore those current
and seagull terms in what follows. We also note that the potentially lénfeared factor of In(m,;) cancels in these two
higher-order terms, except for the coefficientgf .

Relation(B14) shows that the infrared-divergent termsn(2\/m,) cancel identically. Using the relatioriB15)—(B19),
we can reexpress the last term(#26) in terms of seagull operators. We finally obtain
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2

N 2
2 |< | | >| 1+In(2wN/me) Me [In(ZwN/me) 5/6]) fds fdsy |X Y|3P.n(Xy
2w

N+#0

A+B+C= [

1 =39 3 3 ii 2 ij iy i/ iyj
g YHINEZ) = 55| | X [ dY[Bin(X-y=y9) +Bin(—2y'y'+ X'y +y'x))]

[(N|D|0)/? 7m2( 9)
+{éo IN(2wy/Mg) — 5/6+4— In(2wy/me) = 757

12wN oy

N0y

A30
Nzo ' 12wy (A30)

[IN(2wy/mg) — 1/6]] +

1
gf dsxf d3y[y+In(B12)—413]xp(X.Y)|.

It is shown in the main text that only tH2, u, andz®terms  to the (time derivative of thg first moment of the charge
contribute at the 1 part per 1000 level. We have enclosedensity, all symmetric moments dfare determined by that
separately in large brackets the charge-charge, currentlensity through current conservation. The other-symmetry
current, and seagull terms. The last of the charge-chargmoments are model dependent and solely dependent on the
terms can also be rewritten in a form that allows estimatiormagnetic-moment densitys(x). One finds[16]

of interaction-dependerpotentia) terms:
) i
p(q)=f d* p(x) €47=Z+iq-D-5Qd'g’+ -,

f d* f ¢y z 20) (B4
X(0| [p(x),[Ho,p(y)1]|0). (A31)

y+ln(Ez

J(q)zf d3x J(x) e'dx

APPENDIX B ) )
. . . . . g0 qgq-O| g“N
In this appendix we perform a Cartesian multipole decom- =1 { Ho,D— 30 —1—5} + 3
position of the currents and of the virtual nuclear Compton
amplitude[15,16. This is unconventional, but affords us the gq-N 1 o
easiest mechanism to impose the constraints of gauge invari- 3 ~iaXp=5[Ho. Qg1+, (BY)

ance. The Compton amplitude so decomposed yields gauge
sum rules that express the total content of gauge invarianGghere
in the long-wavelength limif15,16. These constraints will

be imposed on the results of Appendix A. 5 5
The nuclear current is conserved or OZJ d=x x x° p(x), (B6)
V-3(x)=—i[Hg,p(X)], (BY)
o o . . Q= f d* X %) p(x), (B7)
whereHy, is the internal Hamiltonian (no recoi), and this

leads to Siegert's theorem in the long-wavelength lirba],

= EJ d3x [xxJ(x)], (B8)

f d3x J(x)s—f d® x V-J(x)=i[Ho,D], (B2 2
where N= %f A3x{xX[xxJI(x)]}. (B9)
=f d3x x p(x), (B3)  The first five terms in Eq(B5) define unretarde@&l (D)

and retarded=1l (O and N) interactions, whileu is the

thus removing the explicit effect of interaction currents magnetic-dipole operator, an@" the electric quadrupole
(meson-exchange curreptsfrom the electromagnetic- tensor, which generatds2 (via the tracelesg?2 tensorQ”)
interaction operator in nonrelativistic ordfthose currents andEO (via the trace ofQ'!) operators. Terms id propor-
areimplicitly present irH, in the last form of Eq(B2)]. We  tional to g will vanish in our case because of the use of
can extend this result by expanding E¢82) and(A3) ina  Coulomb gauge. The large contribution of meson currents
power series indq'x'), arranging the Cartesian indices of the makes it convenient to use this decomposition and eliminate
x and J according to representations of the permutationas much model dependence as possible. To the order that we
group: symmetric, antisymmetric, and mixed symmetry. Jusaire working this model dependence residegifM 1) andN

as Eq.(B2) allows the zeroth moment df(x) to be equated (retardedEl), and Eq.(B5) completely and uniquely sum-
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marizes the constraints of gauge invariance to this ordeiOneq, and twoq, derivatives produce
Moments of the charge and current densities can be obtained
by taking derivatives with respect tp _ 3 3 roii. 2 iy

We can also develop the constraints of gauge invariance [[H0.0].-D]= d*x | d*Y[Biny™+2Biny'y'],
for the Compton amplitude. This is performed in Rf5). (B15)
Replacingq in Eq. (B4) by g, andq in Eg. (B5) by q4, the
gauge-invariance constraint is . 10 . 3 rmil 2 il i

0 —i[N,- D]=5 | d° [ dy[Bj y*—Bpn y'y'],
2
[3™(d1),p(A2) ]=— M_tP(%)P(QZ) + qukm(% 102)- (B16)

(810 while oneq; and twoq, derivatives generate

We choose for convenience to divide the nuclear Compton
amplitude into two separate gauge-invariant parts: elastic and i1 Ai1— _ J' 3 J' 3yIBI x.v+ Bl xivi
inelastic. The elastic part is the Compton amplitude for a [[H0,Q"1.Q"] 2| @ | dY[Bin x-y+Bin Xy']
point particle of masdV; and chargeZ multiplied by two

2
factors of the nuclear ground-state charge form factor. This +8D_, (B17)
requires a seagull operator M
. s
ij _ - — - .
PelXY)= g, PolXpoly) (B [[Ho.Q"1.Q71=—2 [ o | dgy{B:A x-y+ Bl
for gauge invariance, while the “inelastic” seagull is then 2 \1 20D2
given by X x'yJ—§y'xJ +§ R (B19)
t

Bii(x.y) =B (x,y) = BA(xy), (B12)
o D?
wherep, is the nuclear ground-state charge density, normal-  [[Hg,r?],r?]= —4f d3xf dy [Bl y'x1]+4M—.
ized to [d3X po(X)=Z. The inelastic amplitude will be t(Bl9)
gauge invariant if the full amplitude is. With this definition,
the gauge invariance constrait10) becomes

k

In accordance with our earlier discussion, recoil terms such

d, as the last term in Eq4B17)—(B19) should be dropped.
_ +kpk
[3™(a1),p(92)]=A2Biy (A1,02) — M—t[P(Q1)P(Q2) Other relations are possible, but are not needed.
The gauge sum rules derived above are rigorous in the
—po(d1)po(d2)], (B13)  nonrelativistic limit. They incorporate meson-exchange cur-

rents in both currents and seagulls. It is expected that such

where a spin-averaged ground-state expectation value is inyrrents could alter the impulse-approximation seagull by a
plied. Expanding this in powers af, andq, leads to gauge ¢actor of 2, based on numerical studifgs] of Eq. (B14)

sum rule_s. ) . reexpressed in its usudllhomas-Reiche-Kuhn of sum
The simplest sum rule results from a single derlvatlverme) form

with respect tags:

[[HO,D],-D]:—fd?’XJ' d% Bi(xy). (B14) 2%30 wN|<N|D|O>|2:Jd3XJ d® Biy(x.y). (B20)
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