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Global hydrodynamics with continuous freeze-out

Ulrich Mayer and Ulrich Heinz
Institut für Theoretische Physik, Universita¨t Regensburg, D-93040 Regensburg, Germany

~Received 3 February 1997!

We present an extension of global hydrodynamics@E. Schnedermann and U. Heinz, Phys. Rev. C47, 1738
~1993!# to smooth transverse density and temperature profiles and to particle freeze-out along a continuous
freeze-out hypersurface. With this model we reanalyze the single-particle spectra from S1S collisions at
200A GeV and discuss the allowed range of initial conditions and equations of state.@S0556-2813~97!02407-2#

PACS number~s!: 25.75.2q, 24.10.Jv, 24.10.Nz
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I. INTRODUCTION

The experimental program to search for the quark-glu
plasma presently consists of a collection of nucleus-nuc
collision experiments at beam energies of 15 to 200 G
nucleon. Complete data sets with light projectiles (16O,
32S! have been available for several years, while experime
with larger projectiles (197Au, 207Pb! have started only re
cently and are not yet fully analyzed. Even in the small s
tems some particular nuclear effects have been observe~in
particular a striking enhancement of strangeness product!,
and the situation is expected to further improve with t
larger collision systems.

In Monte-Carlo event generators one tries to descr
nucleus-nucleus collisions as a superposition of nucle
nucleon collisions@1#, and these models have been partia
successful in describing the measured particle spectra an
two-particle correlation functions. In many cases, howev
agreement with data was obtained only after adjusting v
ous cross sections and allowing for cascading and resca
ing between the produced particles. In some cases~e.g., for
the production of strange antibaryons! new mechanisms eve
had to be invented. All this points to the need for collecti
nuclear effects in understanding the nuclear collision d
Moreover, the observed deposition of a large fraction of
projectile energy into a small collision region and the me
sured high multiplicity densities raise doubts about the ap
cability of independent collisions models to describe
data.

We therefore prefer to use a complementary, less mic
scopic picture which characterizes the dynamical situatio
terms of a small number of collective variables. The therm
dynamic variables are related to each other by an equatio
state, while their space-time evolution is governed by
equations of relativistic hydrodynamics. This approach, fi
developed in the context of cosmic ray induced hadro
collisions @2,3#, has proven quite successful at the low
BEVALAC energies@4,5#. During the last two decades it ha
also been applied to highly relativistic nuclear collisio
@6–8#. For high-energy collisions~e.g., S1S at 200A GeV! a
simple one-fluid hydrodynamical description can be me
ingful only after thermalization has been reached, i.e., a
fm/c after the first hard collisions.

The coupled differential equations of relativistic hydrod
namics express locally the laws of conservation of ene
and momentum, baryon number, strangeness, and ent
560556-2813/97/56~1!/439~14!/$10.00
n
s
/

ts

-

n

e
n-

the
r,
i-
er-

a.
e
-
i-
e

o-
in
-
of
e
t
c
r

-
w

y
py.

What is finally documented in the measured particle spe
is the result of the action of these conservation laws over
lifetime of the collision fireball. To a large extent their prop
erties are thus a result of the global conservation of th
quantities. Therefore the important and experimentally r
evant features of the collision can be understood on a glo
level by extracting global conservation laws from the loc
ones by integrating them with the help of suitably para
etrized thermal and flow profiles under the assumption
azimuthal symmetry. By taking the derivative with respect
proper time of the conserved integrals, we derive a system
coupled ordinary differential equations in the paramete
which is much easier to solve than the original system
still contains the essential physics elements.

A drawback of our model is that violent local phenomen
such as the development of shock fronts, cannot be ea
described, due to the difficulty of writing down suitable p
rametrized profiles. Such discontinuities could possibly
pear during a phase transition, if the densities are h
enough to justify the idealization of a shock front, where t
mean free paths of the particles have to be much smaller
the size of the system.

II. GLOBAL HYDRODYNAMICS

The original version of global hydrodynamics@9# em-
ployed, for simplicity, box profiles for the density distribu
tions and instantaneous freeze-out of the whole collis
zone. This idealization is not suitable for the calculation
two-particle correlation functions which have been recen
measured and which we would like to compare to this mod
We therefore here extend the model to more realistic c
tinuous density distributions and freeze-out surfaces.

In a hydrodynamical description of a ultrarelativist
heavy-ion collision one assumes that some time after the
hard collisions the baryonic matter is in local thermal eq
librium. From this initial state the dynamical evolution
described by the equations of relativistic hydrodynamics,

]mT
mn50 , ~1!

whereTmn is the energy-momentum tensor. These four eq
tions have to be solved together with the conservation la
for the baryon number and strangeness currents:
439 © 1997 The American Physical Society
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]m j b
m50, ~2!

]m j s
m50. ~3!

Strangeness is conserved because the time scale of nu
collisions ~several fm/c) is too short for weak reactions t
take place.

To get from the local conservation laws to global ones
integrate these equations over a four-dimensional, azim
ally symmetric space-time volume„Eq. ~11! in @9#…. We start
with new longitudinal coordinatest̃ ,z, which we will fix
later, to make the calculations as easy as possible. As in@9#
we convert these equations with the help of Gauss’ law i
a surface integral with seven surfaces pieces„Eq. ~12! in
@9#…. Inserting these parametrizations, changing to cylin
coordinates, and doing thef integration we end up with six
equations altogether„Eqs. ~14! in @9#… which, up to this
point, are valid for all hydrodynamic evolutions with az
muthal symmetry.

Our first approximation is to neglect dissipative effec
such as viscosity and heat conduction. Then the ene
momentum tensor can be written in the ideal fluid decom
sition @10#:
lear

e
h-

o

r

y-
-

Tmn5~e1P!umun2Pgmn, ~4!

with the fluid four-velocityum, where uf50 due to azi-
muthal symmetry.e is the energy density andP the pressure.
Since we use an orthonormal basis the metric tensorgmn is
given byg0051,grr5gff5gzz521; all other components
vanish.

Similarly we use for the conserved currents the ideal fl
decompositions

j b,s
m 5rb,su

m. ~5!

In Eqs. ~14! of @9# we have contributions from the pressu
from outside the integration volume. By identifying the bo
dersRf( t̃ ,z) and Z̃( t̃ ) of this volume with the freeze-ou
hypersurface and assuming that the frozen-out particles
free and will not interact with the thermalized matter insid
we can, however, setP( t̃ ,Rf ,z)5P( t̃ ,r ,Z̃)50.

One then sees that one of the six equations, the one
sulting from ]mT

mf50, vanishes identically by symmetry
By taking the limit t̃ f→ t̃ 0, the other five equations can b
transformed into a system of integro-differential equation
d

d t̃
E
0

Z̃
dzE

0

Rf
rdr F ]z

]z
wu0u02

]t

]z
wuzu02

]z

]z
PG5E

0

Z̃
dzRfF ]~Rf ,z!

]~ t̃ ,z!
eu0u02

]~ t,z!

]~ t̃ ,z!
euru01

]~ t,Rf !

]~ t̃ ,z!
euzu0G

1E
0

Rf
rdr F S ]z

] t̃
1

]z

]z

dZ̃

d t̃
D eu0u02S ]t

] t̃
1

]t

]z

dZ̃

d t̃
D euzu0G , ~6!

d

d t̃
E
0

Z̃
dzE

0

Rf
rdr F ]z

]z
wu0ur2

]t

]z
wuzur G5E

0

Z̃
dzRfF ]~Rf ,z!

]~ t̃ ,z!
eu0ur2

]~ t,z!

]~ t̃ ,z!
eurur1

]~ t,Rf !

]~ t̃ ,z!
euzur G1E

0

Z̃
dzE

0

R

dr
]~ t,z!

]~ t̃ ,z!
P

1E
0

Rf
rdr F S ]z

] t̃
1

]z

]z

dZ̃

d t̃
D eu0ur2S ]t

] t̃
1

]t

]z

dZ̃

d t̃
D euzur G , ~7!

d

d t̃
E
0

Z̃
dzE

0

Rf
rdr F ]z

]z
wu0uz2

]t

]z
wuzuz2

]t

]z
PG5E

0

Z̃
dzF ]~Rf ,z!

]~ t̃ ,z!
eu0uz2

]~ t,z!

]~ t̃ ,z!
euruz1

]~ t,Rf !

]~ t̃ ,z!
euzuzG1E

0

Rf
rdr

]t

] t̃
P

1E
0

Rf
rdr F S ]z

] t̃
1

]z

]z

dZ̃

d t̃
D eu0uz2S ]t

] t̃
1

]t

]z

dZ̃

d t̃
D euzuzG . ~8!

d

d t̃
E
0

Z̃
dzE

0

Rf
rdrrb,sF ]z

]z
u02

]t

]z
uzG5E

0

Z̃
dzRfrb,sF ]~Rf ,z!

]~ t̃ ,z!
u02

]~ t,z!

]~ t̃ ,z!
ur1

]~ t,Rf !

]~ t̃ ,z!
uzG

1E
0

Rf
rdrrb,sF S ]z

] t̃
1

]z

]z

dZ̃

d t̃
D u02S ]t

] t̃
1

]t

]z

dZ̃

d t̃
D uzG . ~9!
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Please note that Eqs.~9! are actually two equations, one fo
the baryon current and one for strangeness. The above e
tions describe the global conservation of energy, moment
baryon-number, and strangeness. But they are not yet e
to solve than the initial equations~1!–~3!. So our next step
will be to make the integrals in Eqs.~6!–~9! solvable. Before
doing so, however, we briefly discuss another necessary
gredient, the equation of state which we can use to elimin
two of these five equations.

III. THE EQUATION OF STATE

We will consider here two equations of state~EOS’s!. The
first one ~EOS1! describes a gas of hadrons with nucleo
mesons, and resonances. The second~EOS2! includes at a
critical temperatureTc5150 MeV a first-order phase trans
tion to a gas of free quarks and gluons@11#, as indicated by
lattice gauge data@12#. Below the critical temperature th
system is also described by the hadron gas EOS.

In the EOS we will implement two assumptions. First, w
will assume that the fireball is strangeness neutral~as re-
quired by strangeness conservation on nuclear time sc!
not only globally, but also locally, i.e.,rs(x,t)50. This as-
sumption solves Eq.~3! trivially.

Secondly, one can analytically show that ideal hydrod
namics conserves the specific entropys/rb in each fluid cell
during the expansion@10#. We will assume here that initially
the specific entropy is constant over the whole fireb
s/rb5S/A5const. Then, as a consequence, the specific
tropy is constant in space and time throughout the expans

When we implement these conditions into the EOS,
energy density, pressure, baryon density, and chemical
tentials become functions of one single parameter, the t
perature. In Fig. 1 we show our two equations of state for
case of vanishing net baryon density.

After these manipulations, Eq.~2! for baryon number con-
servation is effectively contained in the three equations~1!
for energy momentum conservation. As the three remain
equations to be solved we can take Eqs.~6!–~8!, and use Eq.
~9! for the baryon density to control our approximatio
which we will introduce in the next section. These appro
mations in general lead to entropy creation in spite of
entropy conserving nature of the original equations@9#. By
controlling entropy creation in this way we make sure th
our approximations on the global level couple the longitu
nal and the transverse flow in a way which is consistent w
the local hydrodynamic equations.

IV. THE LONGITUDINAL COORDINATES

Further progress depends crucially on a suitable cho
for the longitudinal and temporal coordinatesz and t̃ . We
will divide the reaction zone along the longitudinal directio
into discs and assume that in all these discs the transv
dynamical behavior is the same. Under such conditions
gitudinal comoving coordinates are the suitables variables
the rest frame of each disc the fluid should have only a tra
verse component of the collective flow velocity. The loc
velocity of a fluid element in the center of mass system
then be calculated by two Lorentz transformations: First
boost with the transverse velocityb r to the longitudinal rest
ua-
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frame of the disc, then we boost with the longitudinal velo
ity bz to the center of mass system of the colliding nucle

u5S gz 0 0 bzgz

0 1 0 0

0 0 1 0

bzgz 0 0 gz

D S g r b rg r 0 0

b rg r g r 0 0

0 0 1 0

0 0 0 1

D S 100
0

D
5S g rgz

b rg r

0

g rbzgz

D , ~10!

where we have introducedgz5(12bz
2)21/2 and g r5(1

2b r
2)21/2.
The relevant time in each disc is the longitudinal prop

time. By using longitudinal proper time and longitudinal c
moving coordinates as variables we can hope to incorpo
some aspects of the longitudinal dynamics into the coo
nate system, making the resulting equations easier to so
We define the functionst andz by

t~ t̃ ,z!5t~ t̃ 0 ,z!1E
t̃ 0

t̃
gz~ t̃ 8,z!d t̃ 8, ~11!

FIG. 1. The equation of state for a pure hadron gas~EOS1,
dotted line! and a hadron gas with phase transition~EOS2, solid
line!, both at zero baryon density. The crosses show the lattice
@12#.
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442 56ULRICH MAYER AND ULRICH HEINZ
z~ t̃ ,z!5z~ t̃ 0 ,z!1E
t̃ 0

t̃
gzbz~ t̃ 8,z!d t̃ 8, ~12!

with up to now unspecified initial coordinatest05t( t̃ 0 ,z)
and z05z( t̃ 0 ,z). Because we expect much smaller tran
verse velocities (b r,0,5c) it is not necessary to include th
transverse dynamics into the definition of the proper ti
coordinate.

V. THE MODEL

Up to now the equations are~except for the usual approxi
mations made also in local hydrodynamics! exact. The cru-
cial simplification, which turns these integro-differenti
equations into a set of easily solvable first-order ordin
differential equations, is achieved by replacing the exact p
files for the longitudinal and transverse velocities and for
baryon~or energy! density by simple parametrizations. As
result we obtain a set of ordinary differential equations
proper time for the profile parameters. As in any variatio
approach, the quality of the approximation relies on a s
able and realistic parametrization of these profiles.

For the transverse baryon density profile we adopt
following parametrization:

rb5rb~ t̃ ,r !5r0
b~ t̃ !e2r2/a2~ t̃ !. ~13!

For small nuclei such as32S such a Gaussian in the tran
verse direction gives a good parametrization for the pro
tion of realistic spherical nuclear density distributions@13#
onto the transverse plane. The widtha( t̃ 0) acts as a time-
dependent parameter for the tranverse density profile.
will show how to get the initial values forr0 and t̃ later.

In the longitudinal direction we assume for simplicity
box profile. As long as we restrict the comparison of o
results with experimental data to the midrapidity zone, t
simplification is inconsequential. For the target and projec
fragmentation zones better parametrizations may be requ
but there our simple model has problems anyway for ot
reasons~see below!.

For the transverse velocity profile we adopt a self-sim
form @14#,

b r~ t̃ ,r !5bs~ t̃ !S ra0D
n

, ~14!

where we fixn52 from a comparison with the solution
from local hydrodynamics@8,9#.

In the Bjorken picture of a high-energy collision@7# one
assumes that the particles collide at space time p
z5t50. After this collision the secondary particles appe
after a proper formation timet0 and equilibrate after prope
time t which sets the initial conditions for the further hydr
dynamic evolution. The corresponding hyperbola is para
etrized by

z5tsinhz,

t5tcoshz. ~15!
-
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The fluid elements on this hyperbola at comoving coordin
z are taken to move with longitudinal velocit
bz5z/t5tanhz, corresponding to free propagation~without
acceleration! from the originz5t50.

In our model we will allow for acceleration of the fluid
elements in the longitudinal direction. We parametrize t
acceleration by a functiona( t̃ ) via the ansatz

bz~ t̃ ,z!5tanh@a~ t̃ !z#. ~16!

The initial coordinates are parametrized by

t5 t̃ 0coshz,

z5 t̃ 0sinhz. ~17!

For reasons of continuity one hasa( t̃ 0)51. Although at
first sight this parametrization seems to exclude Landau-t
initial conditions with full stopping of the two colliding nu
clei @3#, this particular case can nevertheless be simulated
taking t̃ 0→` and Z̃→0. In this limit the maximal initial
fluid rapidity becomesbz( Z̃, t̃ 0)50, while the initial longi-
tudinal extension of the fireballZ( t̃ 0)5 t̃ 0sinhZ̃ can take
any value.

Requiring the rms radius of the transverse baryon dis
bution, parametrized by the width parametera( t̃ ), to move
transversally in line with the transverse fluid velocity yiel
an additional equation:

d

d t̃
a~ t̃ !5bsS a~ t̃ !

a0
D n. ~18!

We can now calculate the time derivatives on the le
hand sides of Eqs.~7!–~9! in terms of the time-dependen
parametersa,bs ,r0 ,a. In doing so we must also account fo
the t̃ dependence of the integration limitsRf ,Z̃ and of the
coordinate system. After some rearrangements we can w
the resulting set of equations in the simple form

S La1 Lbs1
Lr01 La1

La2 Lbs2
Lr02 La2

La3 Lbs3
Lr03 La3

0 0 0 1

D S ȧ

ḃs

ṙ0

ȧ

D
5S R111R121R131R16

R211R221R231R251R26

R311R321R331R341R36

bs•S aa0D
n D , ~19!

where the explicit expressions for the short handsRi j and
Ll j are listed in the Appendix. These equations can now
solved numerically with a conventional differential equati
solver.
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VI. FREEZE-OUT

The end point of any hydrodynamical description of th
malized hadronic matter is the freeze-out of the partic
This is a local effect that happens when, due to the dilut
of the expanding matter, particle collisions become too inf
quent to maintain local thermal equilibrium. Freeze-out
often implemented through a fixed freeze-out tempera
Tf @8# or a critical particle density@5#. Both these criteria
ignore, however, dynamical effects originating in the exp
sion of the fireball which dominate the freeze-out process
geometrically large systems~e.g., the early universe!.

We describe the freeze-out by comparing two time sca
@15#, the scattering time scale which describes the powe
maintain thermal equilibrium and the expansion time sc
which stands for expansion effects working against therm
ization. We assume that a fluid cell can stay in local therm
equilibrium as long astsca,ltexp, with an unknown coeffi-
cient of proportionalityl of order unity. We will usually set
l51, but we can also test other possibilities.

The scattering time scale is the time between two co
sions of a particle of speciesi :

1

tsca,i
5(

j
r j^s i jv i j &, ~20!

where the sum goes over all particle speciesj with which the
particle i can scatter and which, at the given time, are s
thermalized. This time scale is particle specific.s i j is the
total cross section for the scattering of two particlesi and
j , r j is the particle density, andv i j is the relative velocity of
the scattering particles.

The expansion time scale describes the decrease o
particle density due to the expansion of the system:

1

texp
5]mu

m. ~21!

In our representation of the four-velocityu this time scale
can be written as

1

texp
5

]~g rgz!

]t
1

]~g rb r !

]r
1

g rb r

r
1

]~g rgzbz!

]z
. ~22!

The transformation from the global coordinates (t,z) to the
comoving ones (t̃ ,z) is performed with the inverse of th
transformation matrixS in @9#:

S ] t

]z
D 5S ]t/] t̃ ]z/] t̃

]t/]z ]z/]z
D 21S ]/] t̃

]/]z
D

5
1

detSS ]z/]z 2gzbz

2]t/]z gz
D S ]/] t̃

]/]z
D . ~23!

Inserting the time derivatives of the coordinates~11!, ~12!
and the velocity profiles~14!, ~16! we finally obtain
-
s.
n
-
s
re

-
n

s
to
e
l-
l

-

l

he

1

texp
5

g r
3b r

2

bs

dbs

d t̃
1~g r

2n11!
g rb r

r

1
g r

detSFa1S ]z

]z
sinh~az!2

]t

]z
cosh~az! Dda

d t̃
zG .

~24!

With the conditiontsca5texp we can calculate after eac
time stepD t̃ the freeze-out radiusRf( t̃ ,z) and the deriva-
tives]Rf /] t̃ and]Rf /] t̃ which we need as an input for th
matrix elements of the equation system~18!.

In a hydrodynamical model one assumes that after free
out, i.e., outside the freeze-out hypersurfaceS f determined
by the criteriumtsca5texp, the particles suffer no furthe
interactions, and that the momentum distributions get fro
in and are given by the local thermal distribution function
the local rest frame of the fluid cells on the freeze-out s
face. The particle spectra for all directly emitted particles
then calculated according to the Cooper-Frye formula@16#

1

E

d3n

dp3
5E

S f

dsm~x!pm f ~x,p!, ~25!

with the local thermal distribution function

f ~x,p!5
1

exp$@p•u~x!2nbmb~x!2nsms~x!#/T~x!%61
.

~26!

Hereu(x) is the local four-velocity of the fluid cell on the
freeze-out surface,nb,s is the baryon and strangeness numb
of the particle species under consideration, andT(x),
mb(x), and ms(x) are the local temperature and chemic
potentials on this surface. For comparison with data one
to add all particles arising from the decay of unstable re
nances after freeze-out.

VII. INITIAL CONDITIONS

To calculate the hydrodynamical expansion of a fireb
we need initial conditions for our system of differential equ
tions, i.e., values fora( t̃ 0), b r( t̃ 0), r0( t̃ 0), a( t̃ 0), Z̃, the
time-parametert̃ 0, and the specific entropy as a parameter
the EOS.

Most of these initial conditions cannot be directly calc
lated since this would require a~quantum! kinetic treatment
of the initial stages of the collision, including the formatio
and equilibration of secondary particles. On the contra
since hydrodynamics is an idealized and therefore limi
framework which certainly cannot describe all stages of
collision, it must be treated as a phenomenological theo
One of its aims should be to substitute complicated mic
scopic kinetic simulations by treating the initial conditions
adjustable parameters. The relevant question that can
asked in such an approach is whether there exist sets of
tial conditions which lead to a hydrodynamic evolutio
whose final state is compatible with the measured single
ticle spectra and two-particle correlations, how large the
rameter space for these ‘‘allowed’’ initial conditions is, an
how it depends on the equation of state.

Not all of the initial values can be chosen freely. W



d

su
il

e
e

ia
e
ri
o
l

h

ta
ry
lly

s
n
tr
y
he
th
im

id
r-
to
r
ll
tio
ll

om
we
f
y-
ere

-
nd
ral
-
ct
the

ther
n-
n
dge
e
ic

for
i-
ut
ions

out
i-

os
uc

-
itial

444 56ULRICH MAYER AND ULRICH HEINZ
already mentioned that continuity requiresa( t̃ 0)50. It is
also natural to assume that at the beginning of the hydro
namic expansion there is no transverse flowbs( t̃ 0)50, i.e.,
that all transverse flow is generated by the thermal pres
which requires a certain to degree of thermalization to bu
up.

In the same spirit, the initial transverse width of th
baryon densitya( t̃ 0) should be given by the width of th
transversely projected charge densityrc(r ) of the incoming
cold 32S nuclei@13#. We obtain it from a fit according to

E rc~r ,f,z!dz'Ne2r2/a2~ t̃ 0!. ~27!

This yields the valuea( t̃ 0)53.075 fm.
To obtain constraints among the remaining four init

parameters we use experimental information on the total
ergy and baryon number content of the fireball. The cylind
cal symmetry of our model restricts us to a discussion
central collisions only, for which in the S1S system the tota
energy in the c.m.s. was measured asE5550 MeV and the
number of participating baryons asnb555 @17#.

This last number requires some further discussion. T
measured proton rapidity distribution@17# shows a clear dip
at central rapidity and two peaks near the projectile and
get fragmentation zones. Thus, not all 55 participating ba
ons are efficiently stopped near midrapidity. The partia
stopped baryons which suffer a rapidity lossDy&1 cannot
be considered together with the midrapidity protons a
single hydrodynamic fluid with constant specific entropy a
vanishing strangeness density. We should therefore sub
these ‘‘spectator’’ protons and their energy for a hydrod
namic description of the central collision zone. From t
analysis of the pion rapidity distribution in a model wi
instantaneous freeze-out we know that we need a max
flow rapidity hmax51.7 to describe the data@18#. This de-
fines the central collision zone. Calculating the proton rap
ity distribution with the same maximal flow rapidity and no
malizing it to the top of the measured error bars in the pro
data at central rapidity~Fig. 2! provides us with an uppe
limit for the baryon number content of the central fireba
The excess of the data over this curve in the fragmenta
zones is considered as being due to spectators and wi

FIG. 2. The experimental net proton rapidity spectrum@17# to-
gether with a calculated proton spectrum from a system wh
maximal longitudinal fluid rapidity has been adjusted to reprod
the width of the experimental pion rapidity distribution.
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subtracted, together with the energy carried by them, fr
the baryon number and total energy of the fireball. Thus
arrive at a total baryon numbernb538 and an energy o
E5420 MeV for the fireball. For consistency the hydrod
namic simulation with the improved model discussed h
must now reproduce the solid line in Fig. 2.

Now we are in a position to fix the remaining initial con
ditions. For a given value of the specific entropy, we fi
iteratively a set of parameters, namely, the initial cent
baryon density, the initial maximal longitudinal fluid rapid
ity, and the initial length of the fireball, which has the corre
baryon number and total energy and correctly reproduces
rapidity distribution of the protons.

Figure 3 shows that this procedure leaves us with a ra
narrow interval for the allowed values of the specific e
tropy. On the lower edge of this interval the initial baryo
density becomes unreasonably large, while at the upper e
the initial fluid rapidity already exhausts the width of th
pion rapidity distribution, leaving no room for hydrodynam
evolution.

VIII. THE DYNAMICAL EVOLUTION

We can now solve the system of differential equations
these sets of allowed initial conditions. The overall dynam
cal evolution of the fireball is rather similar in all cases, b
some specific features distinguish between the two equat
of state.

We begin with a discussion of the freeze-out radiusRf . It
is, from the very beginning, determined by the freeze-
condition and varies therefore with different initial cond
tions. Note that in the case of EOS2~with a phase transition!
the freeze-out condition is already satisfied aboveTc . Since

e
e

FIG. 3. The initial longitudinal fluid rapidities~a! and the initial
central baryon densities~b! for systems with different specific en
tropiesS/A. Crosses: EOS1; boxes: EOS2. Each of these in
conditions leads to the same final proton rapidity distribution.
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56 445GLOBAL HYDRODYNAMICS WITH CONTINUOUS FREEZE-OUT
freeze-out can only occur in the hadron gas phase this m
that it happens as soon as the matter hadronizes, i.e.,
constant temperature ofTf5Tc . In this case the freeze-ou
hypersurface is therefore the same for all particles.

Our initial conditions are such that att̃ 5 t̃ 0 the trans-
verse freeze-out radius is independent of the longitudinal
ordinatez. It is interesting to see that this remains appro
mately true, on the level of a few percent, throughout
dynamical evolution:

Rf~ t̃ ,z!'Rf~ t̃ ,0! for all t̃ . ~28!

Although the fireball develops transverse flow, there is
transverse expansion of the system~Fig. 4!:

]

] t̃
Rf~ t̃ ,z!,0. ~29!

The collective outward motion of the matter due to the d
veloping transverse flow cannot manifest itself in a larg
transverse radius of the system since it is overcompens
by a faster inward motion of the freeze-out surface. The s
tem thus has its largest transverse extension right after
initial thermalization process is completed.

FIG. 4. ~a! The freeze-out hypersurface for EOS1 for differe
initial conditions corresponding to different specific entropies. T
five curves from the solid to the dotted line correspond toS/A 5
38, 40, 42, 44, and 46.~b! The same for EOS2. The upper set
curves denote the freeze-out surface, the lower set of curves s
the surface at which the QGP begins to hadronize. The four cu
from the solid to the dotted line correspond toS/A 5 40, 42, 44,
and 46—the same line symbols will be used in the figures belo
ns
t a

o-
-
e

o

-
r
ed
s-
he

The longitudinal length of the fireball grows very rapid
during the whole expansion~Fig. 5!. It is given kinematically
in terms of the initial length and the longitudinal fluid velo
ity by

Z~ t̃ !5 t̃ 0sinh~ Z̃!1E
t̃ 0

t̃
sinh@a~ t̃ 8! Z̃#d t̃ 8. ~30!

It is not affected by the freeze-out condition since for t
fluid cells at r50 and z56 Z̃ the conditions for therma
equilibrium are always fullfilled up to the completion o
transverse freeze-out. Note that at the end of the evolu
the thermalized matter, when viewed at fixed time in t
center of mass system, consists of two separated firebal

For different equations of state~differentS/A) we adjust
our initial conditions in such a way that the rapidity distr
butions of the frozen-out particles, integrated over the wh
freeze-out surface, remain fixed~Table I!. As shown in Fig. 6
this implies that equations of state with smaller specific
tropyS/A ~larger initial baryon densities! lead to initial con-
ditions with smaller initial, but larger final longitudinal flow
such that averaged over the whole expansion the max
fluid rapidity is roughly independent of the EOS.

For EOS1 the transverse fluid velocity along the free
out surface, shown in Fig. 7~a!, is nearly independent of the
initial conditions corresponding to differentS/A. For the ex-
pansion with EOS2 we see significant differences. The m
reason for this is that here freeze-out is delayed until after
fireball hadronizes, and for differentS/A the system spend

e

ow
es

.

FIG. 5. The longitudinal extension of the fireball in the center

mass frame as a function of proper timet̃ , for EOS1~a! and EOS2
~b!.
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TABLE I. Some parameters at the beginning and the end of the hydrodynamic evolution, for dif

initial conditions and equations of state.t̃ f2 t̃ 0 is the time of evolution until completion of freeze-out,r0 the
central baryon density,h is the maximal longitudinal fluid rapidity,Z is the longitudinal extension in the
center-of-mass frame,Rf is the freeze-out radius, andb r the maximal transverse fluid velocity at freeze-o
during the expansion.

EOS 1 EOS 2
S/A538 S/A546 S/A540 S/A546

initial final initial final initial final initial final

r0 ~fm23) 4.47 0.05 0.30 0.04 4.95 0.03 0.52 0.03
h 0.75 1.98 1.58 1.90 0.65 1.98 1.60 1.87
Z ~fm! 0.20 9.56 3.80 13.75 0.18 14.58 2.01 17.19
Rf ~fm! 5.25 0 4.39 0 6.76 0 5.05 0

t̃ f2 t̃ 0 ~fm/c! 3.48 3.47 5.08 5.47

b r /c 0.38 0.36 0.45 0.26
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of ius
different amounts of time in the QGP phase whose la
pressure gradients generate transverse flow. In the m
phase the pressure gradients vanish; this causes the fla
gions of nearly constant transverse flow velocity in Fig. 7~b!.

For EOS2 the freeze-out temperatureTf5Tc is constant,
as mentioned above. For an expanding hadron gas~EOS1!
the freeze-out temperature at the end of the evolut
Tf'160 MeV, is nearly independent ofS/A ~Fig. 8!. For
smallerS/A ~larger initial baryon densities! early freeze-out
occurs at higher temperatures (Tf.200 MeV!, because the
expansion time scale, which enters the freeze-out criteri
is short due to the high initial pressure and large longitudi
pressure gradients. As time increases, the longitudinal ex

FIG. 6. The maximal longitudinal fluid rapidity as a function

proper time t̃ for different specific entropies.~a! EOS1,~b! EOS2.
e
ed
re-

n,

,
l
n-

sion ratedecreases, and the freeze-out temperature drops
til the transverse expansion again reduces the expansion
scale and causes the final decoupling@18#. For smallerS/A
the expansion time scale is more or less time-independ
the decreasing longitudinal expansion rate being comp
sated by an increasing transverse expansion rate@18#. This is
reflected by a rather time-independent freeze-out tempera
~dotted line in Fig. 8!.

It is interesting to see with which transverse velociti
most of the particles are emitted. To this end one weighs
radial velocities along the freeze-out surface shown in Fig
with the number of particles emitted at each pointt̃. The
resulting transverse velocity distributions are shown in F

FIG. 7. The transverse fluid velocity at the freeze-out rad
b r(Rf) for EOS1~a! and EOS2~b!.
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56 447GLOBAL HYDRODYNAMICS WITH CONTINUOUS FREEZE-OUT
9. For EOS1 the velocity distribution is sharply peaked at
largest occurring transverse velocity, independent of the
tial conditions, respectively,S/A. Such a velocity distribu-
tion will give rise to single particle spectra similar to th
‘‘blast wave’’ ~exploding shell! picture in Ref. @19#. For
heavier particle species this is known to result in a p
nounced ‘‘shoulder-arm’’ shape of the transverse mass s
tra @19#. This is in contrast to the simple model in Ref.@20#
where the spectra were integrated over a linear or quad
transverse velocity profile withconstantweight which tends
to fill up the low-pT part of the spectra and thus straight

FIG. 8. The freeze-out temperatureTf(Rf) for different initial
conditions for a pure hadron gas~EOS1!.

FIG. 9. The transverse velocity distribution of the fluid cells
freeze-out weighted by the number of emitted pions from th
cells, for different equations of state and initial conditions. T
panels: EOS1. Lower four panels: EOS2.
e
i-

-
c-

tic
out the ‘‘shoulder.’’ Such a difference should be observa
with high-quality data on single-particle spectra.

For EOS2 the transverse velocity distribution develop
second peak at smaller transverse velocities, which for lo
S/A values ~larger initial baryon densities! becomes even
more prominent than the primary peak at the largest veloc
This interesting feature is due to the large number of p
ticles emitted while the hadronization phase transition ta
place; during this time the freeze-out velocity is roughly co
stant@Fig. 7~b!#. Apparently it was not noticed before, but
should be visible in high-quality transverse momentum sp
tra.

IX. TEST OF ENTROPY CONSERVATION

Up to now we have solved the equations of global hyd
dynamics without explicit entropy conservation. Since w
have replaced the exact profiles from a local hydrodyna
evolution by simple parametrizations, entropy conservat
is no longer automatically guaranteed. We can test to w
extent our global hydrodynamic treatment violates entro
conservation by calculating the entropy production from o
solutions according to the procedure described in Ref.@9#.
The result is shown in Fig. 10. We see that, independen
the initial conditions and the equation of state, the entro
production stays below 10%. This can be considered a
quality test for the choice of our parametrized profiles.

X. PROTON SPECTRA

As described in Sec. VII we have used the proton rapid
spectra

dnp
dy

52pE
mp

`

mTdmTSEd3npdp3 D ~31!

t
e

FIG. 10. The total entropy of the expanding system~thermalized
fireball plus already frozen-out matter! as a function of time for
EOS1~long dashed line! and EOS2~short dashed line!. Differences
between different initial conditionsS/A are comparable to the
thickness of the lines.
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448 56ULRICH MAYER AND ULRICH HEINZ
to fix the initial conditions. That we indeed reproduce t
desired proton rapidity distributions with the chosen init
conditions is shown in Figs. 11~a! and 12~a!. A priori it is,
however, not at all obvious that in this way we also get
correct transverse mass spectra for the protons. To repro
both the rapidity and transverse mass spectra simultaneo
requires that the hydrodynamic evolution couples the lon
tudinal and transverse expansion in a well-defined w
Since both types of expansion are driven by pressure gr
ents and the local pressure acts isotropically, this puts c
straints on the equation of state, i.e., on the functional dep
dence e(P). ~Pressure drives expansion, while ener
density, through inertia, acts against it.!

In Figs. 11~b! and 12~b! we compare the calculated tran
verse mass spectra

dnp
mTdmT

52pE
2`

`

dySEd3npdp3 D ~32!

with the data. Differences between the different equation
state and initial conditions are clearly visible. They refle
the different temperatures and transverse velocity distr
tions at freeze-out.

For EOS1 the calculated spectra are always too flat@Fig.
11~b!#. The inverse slope of the transverse mass spectra
be interpreted as a ‘‘blueshifted’’ effective temperature@18#

Teff5TfA11^b r&
12^b r&

, ~33!

FIG. 11. The proton rapidity distributions~a! and transverse
mass spectra~b! for EOS1, for differentS/A, together with the
experimental data@17#.
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which reflects the effect of the transverse flow on the lo
Boltzmann spectra. With initial conditions adjusted to rep
duce the rapidity spectra, the hydrodynamic evolution gen
ates too much transverse flow, causing either early freeze
at too high temperatures or too large flow velocities. T
implies that EOS1 is too stiff, i.e., it produces too mu
pressure at given energy density.

Figure 12~b! shows that EOS2 is generically softer. Sin
in this case freeze-out always occurs atTf5Tc , the different
slopes reflect the different transverse flow patterns at
point of hadronization for different initial conditionsS/A.
Large initial baryon densities~smallerS/A values! again re-
sult in spectra which are too flat, whereas for largerS/A the
spectra become steep enough to match the data.

XI. CONCLUSIONS

We have extended the model of global hydrodynamics
heavy-ion collisions to the case of realistic~although still
azimuthally symmetric! transverse density and temperatu
profiles with continuous~rather than instantaneous! freeze-
out. Very important points for any hydrodynamical mod
are the initial conditions, because they cannot yet be ca
lated from first principles. We fix them from experiment
data on the total energy and baryon number of the cen
fireball and by using some of the measured rapidity spec
We showed that with these boundary conditions one
strongly restrict the allowed space of initial state paramet
All other spectra~i.e., most of the available data! are then
predictions of the model.

FIG. 12. The proton rapidity distributions~a! and transverse
mass spectra~b! for EOS2, for differentS/A, together with the
experimental data@17#.
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56 449GLOBAL HYDRODYNAMICS WITH CONTINUOUS FREEZE-OUT
A comparison with the global hydrodynamic analys
with box profiles presented in Refs.@9,18# shows that our
more realistic treatment here allows us to establish m
stronger limits on the allowed range of initial conditions a
equations of state. The results presented here clearly f
the softer EOS2 and larger values forS/A.

A test of the initial parameters identified in the prese
work with momentum spectra for other hadronic species
h

or

t
d

with two-particles correlations has been successfully p
formed @21#; a publication of these results is in preparatio

ACKNOWLEDGMENTS

This work was supported in part by BMBF, DFG, an
GSI. U.M. gratefully acknowledges support from the Fr
State of Bavaria.
APPENDIX: GLOBAL HYDRODYNAMICS INTEGRALS

Here follow the shorthands for the differential equations~19! for our model:

La15E
0

Z̃~ t̃ !
dzE

0

Rf ~ t̃ ,z!
rdr F2~]z/]z!~ t̃ ,z!w@r~ t̃ ,r !#zcosh@a~ t̃ !z#sinh@a~ t̃ !z#

12bs
2~ t̃ !~r /a0!

2n

2
]t/]z~ t̃ ,z!w@r~ t̃ ,r !#z$cosh2@a~ t̃ !z#1sinh2@a~ t̃ !z#%

12bs
2~ t̃ !~r /a0!

2n G , ~A1!

La25E
0

Z̃~ t̃ !
dzE

0

Rf ~ t̃ ,z!
rdr F ]z/]z~ t̃ ,z!w@r~ t̃ ,r !#bs~ t̃ !~r /a0!

nzsinh@a~ t̃ !z#

12bs
2~ t̃ !~r /a0!

2n

2
]t/]z~ t̃ ,z!w@r~ t̃ ,r !#bs~ t̃ !~r /a0!

nzcosh@a~ t̃ !z#

12bs
2~ t̃ !~r /a0!

2n G , ~A2!

La35E
0

Z̃~ t̃ !
dzE

0

Rf ~ t̃ ,z!
rdr F ]z/]z~ t̃ ,z!w@r~ t̃ ,r !#z$cosh2@a~ t̃ !z#1sinh2@a~ t̃ !z#%

12bs
2~ t̃ !~r /a0!

2n

2
2]t/]z~ t̃ ,z!w@r~ t̃ ,r !#zcosh@a~ t̃ !z#sinh@a~ t̃ !z#

12bs
2~ t̃ !~r /a0!

2n G . ~A3!

In these equations we also have to setr( t̃ ,r )5r0( t̃ )exp@2r2/a2( t̃ )#:

Lbs1
5E

0

Z̃~ t̃ !
dzE

0

Rf ~ t̃ ,z!
rdr F2

2~]z/]z!~ t̃ ,z!w@r~ t̃ ,r !#bs~ t̃ !~r /a0!
2ncosh2@a~ t̃ !z#

@12bs
2~ t̃ !~r /a0!

2n#2

1
2~]t/]z!~ t̃ ,z!w@r~ t̃ ,r !#bs~ t̃ !~r /a0!

2ncosh@a~ t̃ !z#sinh@a~ t̃ !z#

@12bs
2~ t̃ !~r /a0!

2n#2
G , ~A4!

Lbs2
5E

0

Z̃~ t̃ !
dzE

0

Rf ~ t̃ ,z!
rdr

w@r~ t̃ ,r !#~r /a0!
n$~]z/]z!~ t̃ ,z!cosh@a~ t̃ !z#2]t/]z~ t̃ ,z!sinh@a~ t̃ !z#%

12bs
2~ t̃ !~r /a0!

2n

3S 11
2bs

2~ t̃ !~r /a0!
2n

12bs
2~ t̃ !~r /a0!

2nD , ~A5!

Lbs3
5E

0

Z̃~ t̃ !
dzE

0

Rf ~ t̃ ,z!
rdr F2~]t/]z!~ t̃ ,z!w@r~ t̃ ,r !#bs~ t̃ !~r /a0!

2nsinh2@a~ t̃ !z#

@12bs
2~ t̃ !~r /a0!

2n#2

2
2~]t/]z!~ t̃ ,z!w@r~ t̃ ,r !#bs~ t̃ !~r /a0!

2ncosh@a~ t̃ !z#sinh@a~ t̃ !z#

@12bs
2~ t̃ !~r /a0!

2n#2
G . ~A6!
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Lr01
5E

0

Z̃~ t̃ !
dzE

0

Rf ~ t̃ ,z!
rdr F ]z/]z~ t̃ ,z!]w/]ruS/A@r~ t̃ ,r !#exp@2r 2/a2~ t̃ !#cosh2@a~ t̃ !z#

12bs
2~ t̃ !~r /a0!

2n

2
]t/]z~ t̃ ,z!]w/]ruS/A@r~ t̃ ,r !#exp@2r 2/a2~ t̃ !#cosh@a~ t̃ !z#sinh@a~ t̃ !z#

12bs
2~ t̃ !~r /a0!

2n
2

]z

]z
~ t̃ ,z!

]P

]rU
S/A

3@r~ t̃ ,r !#exp@2r 2/a2~ t̃ !#, ~A7!

Lr02
5E

0

Z̃~ t̃ !
dzE

0

Rf ~ t̃ ,z!
rdr

]w/]ruS/A@r~ t̃ ,r !#exp@2r 2/a2~ t̃ !#bs~ t̃ !~r /a0!
n

12bs
2~ t̃ !~r /a0!

2n F ]z

]z
~ t̃ ,z!cosh@a~ t̃ !z#

2
]t

]z
~ t̃ ,z!sinh@a~ t̃ !z#G , ~A8!

Lr03
5E

0

Z̃~ t̃ !
dzE

0

Rf ~ t̃ ,z!
rdr

]w/]ruS/A@r~ t̃ ,r !#exp@2r 2/a2~ t̃ !#

12bs
2~ t̃ !~r /a0!

2n F ]z

]z
~ t̃ ,z!cosh[a~ t̃ !z)sinh@a~ t̃ !z#

2
]t

]z
~ t̃ ,z!sinh2@a~ t̃ !z#G2

]t

]z
~ t̃ ,z!

]P

]r U
S/A

@r~ t̃ ,r !#exp@2r 2/a2~ t̃ !#, ~A9!

La15E
0

Z̃~ t̃ !
dzE

0

Rf ~ t̃ ,z!
rdr

w/]ruS/A@r~ t̃ ,r !#r~ t̃ ,r !@2r 2/a3~ t̃ !#

12bs
2~ t̃ !~r /a0!

2n F ]z

]z
~ t̃ ,z!cosh2@a~ t̃ !z#

2
]t

]z
~ t̃ ,z!cosh@a~ t̃ !z#sinh@a~ t̃ !z#G2

]z

]z
~ t̃ ,z!

]P

]rU
S/A

@r~ t̃ ,r !#r~ t̃ ,r !
2r 2

a3~ t̃ !
, ~A10!

La25E
0

Z̃~ t̃ !
dzE

0

Rf ~ t̃ ,z!
rdr

]w/]ruS/A@r~ t̃ ,r !#r~ t̃ ,r !@2r 2/a3~ t̃ !#bs~ t̃ !~r /a0!
n

12bs
2~ t̃ !S ra0D

2n

3F ]z

]z
~ t̃ ,z!cosh@a~ t̃ !z#2

]t

]z
~ t̃ ,z!sinh@a~ t̃ !z#G , ~A11!

La35E
0

Z̃~ t̃ !
dzE

0

Rf ~ t̃ ,z!
rdr

]w/]ruS/A@r~ t̃ ,r !#r~ t̃ ,r !@2r 2/a3~ t̃ !#

12bs
2~ t̃ !~r /a0!

2n F ]z

]z
~ t̃ ,z!cosh@a~ t̃ !z#sinh@a~ t̃ !z#

2
]t

]z
~ t̃ ,z!sinh2@a~ t̃ !z#G2

]t

]zU ~ t̃ ,z!
]P

]r S/A@r~ t̃ ,r !#r~ t̃ ,r !
2r 2

a3~ t̃ !
, ~A12!

R115E
0

Z̃~ t̃ !
dzE

0

Rf ~ t̃ ,z!
rdr Fa~ t̃ !w@r~ t̃ ,r !#cosh3@a~ t̃ !z#

12bs
2~ t̃ !~r /a0!

2n
2

a~ t̃ !w@r~ t̃ ,r !#cosh@a~ t̃ !z#sinh2@a~ t̃ !z#

12bs
2~ t̃ !~r /a0!

2n

2a~ t̃ !P@r~ t̃ ,r !#cosh@a~ t̃ !z#G , ~A13!

R215E
0

Z̃~ t̃ !
dzE

0

Rf ~ t̃ ,z!
rdr Fa~ t̃ !w@r~ t̃ ,r !#bs~ t̃ !~r /a0!

ncosh2@a~ t̃ !z#

12bs
2~ t̃ !~r /a0!

2n
2

a~ t̃ !w@r~ t̃ ,r !#bs~ t̃ !~r /a0!
nsinh2@a~ t̃ !z#

12bs
2~ t̃ !~r /a0!

2n G ,
~A14!

R315E
0

Z̃~ t̃ !
dzE

0

Rf ~ t̃ ,z!
rdr Fa~ t̃ !w@r~ t̃ ,r !#cosh2@a~ t̃ !z#sinh@a~ t̃ !z#

12bs
2~ t̃ !~r /a0!

2n
2

a~ t̃ !w@r~ t̃ ,r !#cosh@a~ t̃ !z#sinh3@a~ t̃ !z#

12bs
2~ t̃ !~r /a0!

2n

2a~ t̃ !P@r~ t̃ ,r !#sinh@a~ t̃ !z#G , ~A15!
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R125E
0

Z̃~ t̃ !
dz

]Rf

] t̃
~ t̃ ,z!Rf~ t̃ ,z!F ]z/]z~ t̃ ,z!e@r~ t̃ ,Rf !#cosh

2@a~ t̃ !z#

12bs
2~ t̃ !~Rf /a0!

2n

2
]t/]z~ t̃ ,z!e@r~ t̃ ,Rf !#cosh@a~ t̃ !z#sinh@a~ t̃ !z#

12bs
2~ t̃ !~R/a0!

2n G , ~A16!

R225E
0

Z̃~ t̃ !
dz

]Rf

] t̃
~ t̃ ,z!R~ t̃ ,z!F ]z/]z~ t̃ ,z!e@r~ t̃ ,Rf !#bs~ t̃ !~R/a0!

ncosh@a~ t̃ !z#

12bs
2~ t̃ !~R/a0!

2n

2
]t/]z~ t̃ ,z!e@r~ t̃ ,Rf !#bs~ t̃ !~Rf /a0!

nsinh@a~ t̃ !z#

12bs
2~ t̃ !~Rf /a0!

2n G , ~A17!

R325E
0

Z̃~ t̃ !
dz

]Rf

] t̃
~ t̃ ,z!Rf~ t̃ ,z!F ]z/]z~ t̃ ,z!e@r~ t̃ ,Rf !#cosh@a~ t̃ !z#sinh@a~ t̃ !z#

12bs
2~ t̃ !~Rf /a0!

2n

2
]t/]z~ t̃ ,z!e@r~ t̃ ,Rf !#sinh

2@a~ t̃ !z#

12bs
2~ t̃ !~Rf /a0!

2n G , ~A18!

R135E
0

Z̃~ t̃ !
dzRf~ t̃ ,z!e@r~ t̃ ,Rf !#F $]Rf /] t̃ ~ t̃ ,z!~]z/]z!~ t̃ ,z!2]Rf /]z~ t̃ ,z!sinh@a~ t̃ !z#%cosh2@a~ t̃ !z#

12bs
2~ t̃ !~Rf /a0!

2n

2
$cosh@a~ t̃ !z#]z/]z~ t̃ ,z!2]t/]z~ t̃ ,z!sinh@a~ t̃ !z#%cosh@a~ t̃ !z#bs~ t̃ !~Rf /a0!

n

12bs
2~ t̃ !~Rf /a0!

2n

1
$cosh@a~ t̃ !z#]Rf /]z~ t̃ ,z!2]Rf /] t̃ ~ t̃ ,z!] t̃ /]z~ t̃ ,z!%cosh@a~ t̃ !z#sinh@a~ t̃ !z#

12bs
2~ t̃ !~Rf /a0!

2n G , ~A19!

R235E
0

Z̃~ t̃ !
dzRf~ t̃ ,z!e@r~ t̃ ,Rf !#F $]Rf /] t̃ ~ t̃ ,z!]z/]z~ t̃ ,z!2]Rf /]z~ t̃ ,z!sinh@a~ t̃ !z#%bs~ t̃ !~Rf /a0!

ncosh@a~ t̃ !z#

12bs
2~ t̃ !~Rf /a0!

2n

2
$cosh@a~ t̃ !z#]z/]z~ t̃ ,z!2]t/]z~ t̃ ,z!sinh@a~ t̃ !z#%bs

2~ t̃ !~Rf /a0!
2n

12bs
2~ t̃ !~Rf /a0!

2n

1
$cosh@a~ t̃ !z#]Rf /]z~ t̃ ,z!2]Rf /] t̃ ~ t̃ ,z!] t̃ /]z~ t̃ ,z!bs~ t̃ !~Rf /a0!%

nsinh@a~ t̃ !z#

12bs
2~ t̃ !~Rf /a0!

2n G , ~A20!

R335E
0

Z̃~ t̃ !
dzRf~ t̃ ,z!e@r~ t̃ ,Rf !#F $]Rf /] t̃ ~ t̃ ,z!]z/]z~ t̃ ,z!2]Rf /]z~ t̃ ,z!sinh@a~ t̃ !z#%cosh@a~ t̃ !z#sinh@a~ t̃ !z#

12bs
2~ t̃ !~Rf /a0!

2n

2
$cosh@a~ t̃ !z#]z/]z~ t̃ ,z!2]t/]z~ t̃ ,z!sinh@a~ t̃ !z#%sinh@a~ t̃ !z#bs~ t̃ !~Rf /a0!

n

12bs
2~ t̃ !~Rf /a0!

2n

1
$cosh@a~ t̃ !z#]Rf /]z~ t̃ ,z!2]Rf /] t̃ ~ t̃ ,z!] t̃ /]z~ t̃ ,z!%sinh2@a~ t̃ !z#

12bs
2~ t̃ !~Rf /a0!

2n G , ~A21!

R345E
0

Rf ~ t̃ ,0!
rdrP@r~ t̃ ,r !# ~A22!

R255E
0

Z̃~ t̃ !
dzE

0

Rf ~ t̃ ,z!
drS cosh@a~ t̃ !z#

]z

]z
~ t̃ ,z!2sinh@a~ t̃ !z#

]t

]z
~ t̃ ,z! DP@r~ t̃ ,r !#, ~A23!
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R165E
0

Rf ~ t̃ ,Z̃!
rdr F $sinh@a~ t̃ ! Z̃#1]z/]z~ t̃ ,Z̃!dZ̃/d t̃ ~ t̃ !%e@r~ t̃ ,r !#cosh2@a~ t̃ ! Z̃#

12bs
2~ t̃ !~r /a0!

2n

2
$cosh@a~ t̃ ! Z̃#1]t/]z~ t̃ ,Z̃!dZ̃/d t̃ ~ t̃ !%e@r~ t̃ ,r !#cosh@a~ t̃ ! Z̃#sinh@a~ t̃ ! Z̃#

12bs
2~ t̃ !~r /a0!

2n G , ~A24!

R265E
0

Rf ~ t̃ ,Z̃!
rdr F $sinh@a~ t̃ ! Z̃#1]z/]z~ t̃ ,Z̃!dZ̃/d t̃ ~ t̃ !%e@r~ t̃ ,r !#bs~ t̃ !~r /a0!

ncosh@a~ t̃ ! Z̃#

12bs
2~ t̃ !~r /a0!

2n

2
$cosh@a~ t̃ ! Z̃#1]t/]z~ t̃ ,Z̃!dZ̃/d t̃ ~ t̃ !%e@r~ t̃ ,r !#bs~ t̃ !~r /a0!

nsinh@a~ t̃ ! Z̃#

12bs
2~ t̃ !~r /a0!

2n
, ~A25!

R365E
0

Rf ~ t̃ ,Z̃!
rdr F $sinh@a~ t̃ ! Z̃#1]z/]z~ t̃ ,Z̃!dZ̃/d t̃ ~ t̃ !%e@r~ t̃ ,r !#cosh@a~ t̃ ! Z̃#sinh@a~ t̃ ! Z̃#

12bs
2~ t̃ !~r /a0!

2n

2
$cosh@a~ t̃ ! Z̃#1]t/]z~ t̃ ,Z̃!dZ̃/d t̃ ~ t̃ !%e@r~ t̃ ,r !#sinh2@a~ t̃ ! Z̃#

12bs
2~ t̃ !~r /a0!

2n G . ~A26!
ys

n

rt
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