PHYSICAL REVIEW C VOLUME 56, NUMBER 1 JULY 1997

Global hydrodynamics with continuous freeze-out
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We present an extension of global hydrodynanjiiesSchnedermann and U. Heinz, Phys. Revi7C1738
(1993] to smooth transverse density and temperature profiles and to particle freeze-out along a continuous
freeze-out hypersurface. With this model we reanalyze the single-particle spectra fr@c@lisions at
200A GeV and discuss the allowed range of initial conditions and equations of [S8&56-28137)02407-3

PACS numbegps): 25.75—q, 24.10.Jv, 24.10.Nz

[. INTRODUCTION What is finally documented in the measured particle spectra
is the result of the action of these conservation laws over the
The experimental program to search for the quark-gluordifetime of the collision fireball. To a large extent their prop-
plasma presently consists of a collection of nucleus-nucleusrties are thus a result of the global conservation of these
collision experiments at beam energies of 15 to 200 Gevguantities. Therefore the important and experimentally rel-
nucleon. Complete data sets with light projectile§Q;  evant features of the collision can be understood on a global
325) have been available for several years, while experiment$Vvel by extracting global conservation laws from the local
with larger projectiles ¥’Au, 2°Pb) have started only re- ©ones by integrating them with the help of suitably param-
cently and are not yet fully analyzed. Even in the small sys€trized thermal and flow profiles under the assumption of
tems some particular nuclear effects have been obséinved azimuthal symmetry. By taking the derivative with respect to
particular a striking enhancement of strangeness prodygtionProper time of the conserved integrals, we derive a system of
and the situation is expected to further improve with thecoupled ordinary differential equations in the parameters,
larger collision systems. which is much easier to solve than the original system but

In Monte-Carlo event generators one tries to describétill contains the essential physics elements.
nucleus-nucleus collisions as a superposition of nucleon- A drawback of our model is that violent local phenomena,
nucleon collisiong1], and these models have been partiallysuch as the development of shock fronts, cannot be easily
successful in describing the measured particle spectra and t&@scribed, due to the difficulty of writing down suitable pa-
two-particle correlation functions. In many cases, howeverfametrized profiles. Such discontinuities could possibly ap-
agreement with data was obtained only after adjusting varipear during a phase transition, if the densities are high
ous cross sections and allowing for cascading and rescattegnhough to justify the idealization of a shock front, where the
ing between the produced particles. In some césags, for ~mean free paths of the particles have to be much smaller than
the production of strange antibarydomew mechanisms even the size of the system.
had to be invented. All this points to the need for collective
nuclear effects in understanding the nuclear collision data.

Moreover, the observed deposition of a large fraction of the Il. GLOBAL HYDRODYNAMICS
projectile energy into a small collision region and the mea-

) A o . - The original version of global hydrodynami¢9] em-
sured high multiplicity densities raise doubts about the app“'ployed, for simplicity, box profiles for the density distribu-

cability of independent collisions models to describe thetions and instantaneous freeze-out of the whole collision

data. . __zone. This idealization is not suitable for the calculation of
We therefore prefer to use a complementary, less micro,

A ; ; : == 7 two-particle correlation functions which have been recently
scopic picture which characterizes the dynamical situation iMeasured and which we would like to compare to this model
terms of a small number of collective variables. The thermoy, therefore here extend the model to more realistic con.-
dynamic yariablgs are rele}ted to each other by an equation ®huous density distributions and freeze-out surfaces.
state, while their space-time evolution is governed by the

. ST . . ; In a hydrodynamical description of a ultrarelativistic
equations O.f relativistic hydrodynamms. Th's approach, flr?’tneavy-ion collision one assumes that some time after the first
developed in the context of cosmic ray induced hadroni

llisi 23 h . ful he | hard collisions the baryonic matter is in local thermal equi-
collisions [2,3], has proven quite successful at the lower .\, “From this initial state the dynamical evolution is

BEVALAC energies[4,5]..During the Ifas_t two decades i.t has described by the equations of relativistic hydrodynamics,
also been applied to highly relativistic nuclear collisions

[6—8]. For high-energy collisionte.g., StS at 20\ GeV) a
simple one-fluid hydrodynamical description can be mean- 9,TH=0, (1)
ingful only after thermalization has been reached, i.e., a few
fm/c after the first hard collisions.

The coupled differential equations of relativistic hydrody- whereT#” is the energy-momentum tensor. These four equa-
namics express locally the laws of conservation of energyions have to be solved together with the conservation laws
and momentum, baryon number, strangeness, and entroghpar the baryon number and strangeness currents:
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d,5=0, 2 TH'=(e+P)uru’—Pg*”, (4)
d,j4=0. 3 with the fluid four-velocity u#, whereu?=0 due to azi-

muthal symmetrye is the energy density arfél the pressure.
Strangeness is conserved because the time scale of nuclesince we use an orthonormal basis the metric tegédris
collisions (several fm¢) is too short for weak reactions to given by g®=1g"=g#?=g?’=—1; all other components
take place. vanish.

To get from the local conservation laws to global ones we  Similarly we use for the conserved currents the ideal fluid
integrate these equations over a four-dimensional, azimutidecompositions
ally symmetric space-time volum(&g. (11) in [9]). We start
with new longitudinal coordinate’s?,g, which we will fix
later, to make the calculations as easy as possible. A8]in

we convert these equations with the help of Gauss’ law intq,, Egs. (14) of [9] we have contributions from the pressure

a surface integral with seven surfaces pie¢€q. (12) in  fom outside the integration volume. By identifying the bor-
[9]). Inserting these parametrizations, changing to cylinder

coordinates, and doing thg integration we end up with six gers Rf(tf'g) anddZ( t) Of. thisthvcilttjrr]nefwith the tfreezt_e-lout
equations altogethe(Eqgs. (14) in [9]) which, up to this ypersurtace and assuming that the frozen-out particies are

point, are valid for all hydrodynamic evolutions with azi- free and will not interac'it with the thgrm’awlized matter inside,
muthal symmetry. we can, however, S@( t ,Rf ,g) = P( t ,r ,Z) = 0

Our first approximation is to neglect dissipative effects One then sees that one of the six equations, the one re-
such as viscosity and heat conduction. Then the energyaulting from 3, T#?=0, vanishes identically by symmetry.
momentum tensor can be written in the ideal fluid decompoBy taking the limit t ;— t o, the other five equations can be
sition [10]: transformed into a system of integro-differential equations:

j'kL)L,s: pb,su'u- 5

d [z R 0z ot 0z 7 d(R¢,z a(t,z J(t,R
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Please note that Eq&) are actually two equations, one for
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the baryon current and one for strangeness. The above equa- 4001
tions describe the global conservation of energy, momentum, T
baryon-number, and strangeness. But they are not yet easier MeV] 300 ]
to solve than the initial equatior(@)—(3). So our next step I
will be to make the integrals in Eq&)—(9) solvable. Before 000k 1
doing so, however, we briefly discuss another necessary in-
gredient, the equation of state which we can use to eliminate
two of these five equations. 100 ]

Ill. THE EQUATION OF STATE L L L L

© 00 107 102 10° 10% 109
We will consider here two equations of stéaOS’s. The (a) £ [MeV fm™]

first one (EOSJ describes a gas of hadrons with nucleons,
mesons, and resonances. The secd@S? includes at a 10° T T T T
critical temperaturd .= 150 MeV a first-order phase transi- P 1ot | |

tion to a gas of free quarks and gludidl], as indicated by
lattice gauge dat&12]. Below the critical temperature the
system is also described by the hadron gas EOS.

-3
[MeV fm 7] 1 03

In the EOS we will implement two assumptions. First, we 102 + .
will assume that the fireball is strangeness neutaal re- 1
quired by strangeness conservation on nuclear time 3cales 10° 1 T
not only globally, but also locally, i.eps(x,t)=0. This as- 0
. .. 10 - -
sumption solves Eq3) trivially.
Secondly, one can analytically show that ideal hydrody- 1071 5 . s . L .
namics conserves the specific entragy,, in each fluid cell 10 10" 10 10° 107, 10

during the expansiofil0]. We will assume here that initially
the specific entropy is constant over the whole fireball,

(b)

e [MeV fm?)

s/p,=S/A=const. Then, as a consequence, the specific en- FIG. 1. The equation of state for a pure hadron ¢a®S1,
tropy is constant in space and time throughout the expansio§°ttéd liné and a hadron gas with phase transiti@0S2, solid
When we implement these conditions into the EOS thime), both at zero baryon density. The crosses show the lattice data

energy density, pressure, baryon density, and chemical p 12].

tentials become functions of one single parameter, the tem-

perature. In Fig. 1 we show our two equations of state for thdérame of the disc, then we boost with the longitudinal veloc-

case of vanishing net baryon density.
After these manipulations, ER) for baryon number con-
servation is effectively contained in the three equatitl)s

ity B, to the center of mass system of the colliding nuclei:

for energy momentum conservation. As the three remaining v 00 B, voo Bove 00 /1
equations to be solved we can take E§$—(8), and use Eq. 6 10 O Beve v 0 0]]0
(9) for the baryon density to control our approximations 0O 0 1 O 0 o 1 ollo
which we will introduce in the next section. These approxi-
mations in general lead to entropy creation in spite of the Bzy2 0 0 v 0 0 0 110
entropy conserving nature of the original equati¢dp By YeYs
controlling entropy creation in this way we make sure that
our approximations on the global level couple the longitudi- Br¥r (10)
nal and the transverse flow in a way which is consistent with 0 '
the local hydrodynamic equations. v By

r~z7rz

IV. THE LONGITUDINAL COORDINATES

Further progress depends crucially on a suitable choice- ,8,2)‘1’2.

for the longitudinal and temporal coordinatésand t. We

where we have introduced,=(1—82) Y2 and y,=(1

The relevant time in each disc is the longitudinal proper

will divide the reaction zone along the longitudinal direction time. By using longitudinal proper time and longitudinal co-

into discs and assume that in all these discs the transvergeoving coordinates as variables we can hope to incorporate
dynamical behavior is the same. Under such conditions lonsome aspects of the longitudinal dynamics into the coordi-
gitudinal comoving coordinates are the suitables variables. IRate system, making the resulting equations easier to solve.
the rest frame of each disc the fluid should have only a transWe define the functions andz by

verse component of the collective flow velocity. The local
velocity of a fluid element in the center of mass system can
then be calculated by two Lorentz transformations: First we
boost with the transverse veloci§; to the longitudinal rest

t(“t’,z)=t<“t'o,§)+ff y(T,0)d 1,

to

(11)
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- - T ~, ~, The fluid elements on this hyperbola at comoving coordinate

z(t,0)=2z(to,0)+ f.{ YaBt',0)d t’, (120 ¢ are taken to move with longitudinal velocity

0 B,=z/t=tank, corresponding to free propagatigwithout
) S ) — acceleratiopfrom the originz=t=0.

with up to now unspecified initial coordinateg=t(tq,¢) In our model we will allow for acceleration of the fluid
and zp=2(t,,{). Because we expect much smaller trans-elements in the longitudinal direction. We parametrize this
verse velocities §;<0,5c) it is not necessary to include the gcceleration by a function(T) via the ansatz
transverse dynamics into the definition of the proper time
coordinate.

BA1,0)=tanf a(1)¢]. (16)

V. THE MODEL The initial coordinates are parametrized by

Up to now the equations afexcept for the usual approxi-
mations made also in local hydrodynamiexact. The cru- tzTocosrf,
cial simplification, which turns these integro-differential
equations into a set of easily solvable first-order ordinary _
differential equations, is achieved by replacing the exact pro- z= tosinkg. (17
files for the longitudinal and transverse velocities and for the
baryon(or energy density by simple parametrizations. As a For reasons of continuity one hagt,)=1. Although at
result we obtain a set of ordinary differential equations infirst sight this parametrization seems to exclude Landau-type
proper time for the profile parameters. As in any variationalinitial conditions with full stopping of the two colliding nu-
approach, the quality of the approximation relies on a suitclei [3], this particular case can nevertheless be simulated by
able and realistic parametrization of these profiles. taking To—c andZ—0. In this limit the maximal initial

For the transverse baryon density profile we adopt th

following parametrization: Fluid rapidity becomeg,(Z, t ;) =0, while the initial longi-

tudinal extension of the firebaf(t )=t ,sinhZ can take

any value.
Requiring the rms radius of the transverse baryon distri-

bution, parametrized by the width paramestt ), to move

For small nuclei such a$’S such a Gaussian in the trans- transversally in line with the transverse fluid velocity yields
verse direction gives a good parametrization for the projec- y yy

tion of realistic spherical nuclear density distributigriss] an additional equation:

pP=p°(T,r)=p5(T)e "2V, (13)

onto the transverse plane. The widifit ;) acts as a time- ~\n

dependent parameter for the tranverse density profile. We d af)=p (a(t)) (18
2 —= s .

will show how to get the initial values fasy and t later. dt ao

In the longitudinal direction we assume for simplicity a
box profile. As long as we restrict the comparison of our We can now calculate the time derivatives on the left-
results with experimental data to the midrapidity zone, thishand sides of Eqs(7)—(9) in terms of the time-dependent
simplification is inconsequential. For the target and projectileparametersy, 8¢, pg,a. In doing so we must also account for
fragmentation zones better parametrizations may be requireghe T dependence of the integration limig ,Z and of the
but there our simple model has problems anyway for otheggordinate system. After some rearrangements we can write

reasongsee below. _ , . the resulting set of equations in the simple form
For the transverse velocity profile we adopt a self-similar

form [14], .
[ ] Lal Lﬁsl LPol Lal a
~ ~[r\" L L (

BTN =80 | . 14 baz mh2 tez La || B

0 La3 L.Bs3 LP03 La3 Po

where we fixn=2 from a comparison with the solutions 0 0 0 1 a

from local hydrodynamic§8,9].
In the Bjorken picture of a high-energy collisi¢i] one Ri1t Rizt RistRye

assumes that the particles collide at space time point Ro1+ Root Rozt Rost Rog

z=t=0. After this collision the secondary particles appear

. . - =| R31+R3+R33t+R3+R
after a proper formation time, and equilibrate after proper 37 et es ) sal (19
time 7 which sets the initial conditions for the further hydro- Be- a
dynamic evolution. The corresponding hyperbola is param- s \ag

etrized by

' where the explicit expressions for the short hafis and
z=rsinhf, L,; are listed in the Appendix. These equations can now be
solved numerically with a conventional differential equation
t=rcosh’. (15  solver.
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VI. FREEZE-OUT 32
1 _ Y Br dBs YrBr

— s 2 AL
The end point of any hydrodynamical description of ther- Texp  Bs dt v+l r
malized hadronic matter is the freeze-out of the particles.

This is a local effect that happens when, due to the dilution Y 9z ot da

of the expanding matter, particle collisions become too infre- * JeE a+(a—§smﬂaé)—a—§005ﬁa§)>ﬁ§ :
guent to maintain local thermal equilibrium. Freeze-out is

often implemented through a fixed freeze-out temperature (24

T¢ [8] or a critical particle density5]. Both these criteria  wjth the condition .= Texp We can calculate after each
ignore, however, dynamical effects originating in the expan-

sion of the fireball which dominate the freeze-out process jiime stepA t the freeze-out radiuB((t,¢) and the deriva-

geometrically large systeng.g., the early universe tives_aRf/at anddR;/at whiqh we need as an input for the
We describe the freeze-out by comparing two time scale§alrix elements of the equation syst¢irg).

[15], the scattering time scale which describes the power to M @ hydrodynamical model one assumes that after freeze-

maintain thermal equilibrium and the expansion time scal@®Ut i-€., outside the freeze-out hypersurfacedetermined

which stands for expansion effects working against thermalPy the criterium 7e.;= 7, the particles suffer no further

ization. We assume that a fluid cell can stay in local thermajteéractions, and that the momentum distributions get frozen

equilibrium as 10Ng aSc4< \ ey, With an unknown coeffi- in and are given by the local thermal distribution function in

cient of proportionalityx of order unity. We will usually set the local rest frame of the fluid cells on the freeze-out sur-

A=1, but we can also test other possibilities. face. The particle spectra for all directly emitted particles are
The scattering time scale is the time between two colli-then calculated according to the Cooper-Frye forniai
sions of a particle of speciés 1 d®n _J dor. (0P, p) 25
Edp3_ >y O-p,( p ( P,
1 with the local thermal distribution function
. -=2 pi{aijviy), (20
sca) ]
1
N FO4P) = G Ip U0 — Mg () — Mgt T (0} 1
where the sum goes over all particle spegiegth which the br"b sTs - (26)

particlei can scatter and which, at the given time, are still

thermalized. This time scale is particle specifig; is the  Hereu(x) is the local four-velocity of the fluid cell on the
total cross section for the scattering of two particleand  freeze-out surfacey, ¢ is the baryon and strangeness number
J, pj is the particle density, angi; is the relative velocity of  of the particle species under consideration, afk),

the scattering particles. _ up(X), and ug(x) are the local temperature and chemical
The expansion time scale describes the decrease of thgytentials on this surface. For comparison with data one has
particle density due to the expansion of the system: to add all particles arising from the decay of unstable reso-
nances after freeze-out.
1
?sz%u”- (21) VII. INITIAL CONDITIONS

To calculate the hydrodynamical expansion of a fireball
In our representation of the four-velocity this time scale We need initial conditions for our system of differential equa-

can be written as tions, i.e., values for(t o), B;(To), po(to), a(to), Z, the
time-paramete'fo, and the specific entropy as a parameter in
1 ovv) 0B viBr (¥ v2By) the EOS.
- I I Y (22) Most of these initial conditions cannot be directly calcu-
Texp ot ar r 0z

lated since this would require (@@uantum kinetic treatment
of the initial stages of the collision, including the formation
The transformation from the global coordinatész) to the  and equilibration of secondary particles. On the contrary,
comoving ones {,¢) is performed with the inverse of the since hydrodynamics is an idealized and therefore limited
transformation matrixs in [9]: framework which certainly cannot describe all stages of the
collision, it must be treated as a phenomenological theory.
_ —_ 1 _ One of its aims should be to substitute complicated micro-
de) [atlat 9zt alat scopic kinetic simulations by treating the initial conditions as
a, atlar  azlal ala¢ adjustable parameters. The relevant question that can be
asked in such an approach is whether there exist sets of ini-
tial conditions which lead to a hydrodynamic evolution
) . (23 whose final state is compatible with the measured single par-
ticle spectra and two-particle correlations, how large the pa-
rameter space for these “allowed” initial conditions is, and
Inserting the time derivatives of the coordinatdd), (12 how it depends on the equation of state.
and the velocity profile$14), (16) we finally obtain Not all of the initial values can be chosen freely. We

_ 1 0zlal  —y,B, alat
~detS\ —at/a¢ Yz alal
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FIG. 2. The experimental net proton rapidity spectril#] to- o ] SRR AR
gether with a calculated proton spectrum from a system whose 5F 3
maximal longitudinal fluid rapidity has been adjusted to reproduce [fm'3] 3 ]
the width of the experimental pion rapidity distribution. 4
3 - -
already mentioned that continuity requiregt )=0. It is ot 3
also natural to assume that at the beginning of the hydrody-
namic expansion there is no transverse fleyWt ) =0, i.e., !
that all transverse flow is generated by the thermal pressure O
which requires a certain to degree of thermalization to build b) 36 38 40 4§/A44 46 48
up

In the same spirit, the initial transverse width of the g 3 The initial longitudinal fluid rapiditieés) and the initial
baryon densitya(to) should be given by the width of the central baryon densitieth) for systems with different specific en-
transversely projected charge dengityr) of the incoming tropies S/A. Crosses: EOS1; boxes: EOS2. Each of these initial
cold %2S nuclei[13]. We obtain it from a fit according to  conditions leads to the same final proton rapidity distribution.

o o~ subtracted, together with the energy carried by them, from

f pe(r,¢,z)dz~=Ne /& o), (27 the baryon number and total energy of the fireball. Thus we
arrive at a total baryon number,=38 and an energy of
E=420 MeV for the fireball. For consistency the hydrody-

This yields the valua(t o) =3.075 fm. . ... namic simulation with the improved model discussed here
To obtain constraints among the remaining four initial y,ust now reproduce the solid line in Fig. 2.

parameters we use experimental information on the total en- Now we are in a position to fix the remaining initial con-
ergy and baryon number content Qf the fireball. The cy]indri—ditions_ For a given value of the specific entropy, we find
cal symmetry of our model restricts us to a discussion Ofteratively a set of parameters, namely, the initial central
central collisions only, for which in the-6S system the total aryon density, the initial maximal longitudinal fluid rapid-
energy in the c.m.s. was measuredeas550 MeV and the ity ‘and the initial length of the fireball, which has the correct

number of participating baryons ag=55[17]. _ baryon number and total energy and correctly reproduces the
This last number requires some further discussion. Theapigity distribution of the protons.
measured proton rapidity distributi¢a7] shows a clear dip Figure 3 shows that this procedure leaves us with a rather

at central rapidity and two peaks near the projectile and tarmarrow interval for the allowed values of the specific en-
get fragmentation zones. Thus, not all 55 participating barytropy. On the lower edge of this interval the initial baryon
ons are efficiently stopped near midrapidity. The partiallygensity becomes unreasonably large, while at the upper edge
stopped baryons which suffer a rapidity laSy=<1 cannot  the injtial fluid rapidity already exhausts the width of the

be considered together with the midrapidity protons as ajon rapidity distribution, leaving no room for hydrodynamic
single hydrodynamic fluid with constant specific entropy andeyg|ytion.

vanishing strangeness density. We should therefore subtract

thes_e “spect_at(_)r” protons and their energy for a hydrody- VIIl. THE DYNAMICAL EVOLUTION

namic description of the central collision zone. From the

analysis of the pion rapidity distribution in a model with ~ We can now solve the system of differential equations for
instantaneous freeze-out we know that we need a maximahese sets of allowed initial conditions. The overall dynami-
flow rapidity 7m.=1.7 to describe the dafd8]. This de- cal evolution of the fireball is rather similar in all cases, but
fines the central collision zone. Calculating the proton rapidsome specific features distinguish between the two equations
ity distribution with the same maximal flow rapidity and nor- of state.

malizing it to the top of the measured error bars in the proton We begin with a discussion of the freeze-out rad®ys It
data at central rapidityFig. 2) provides us with an upper is, from the very beginning, determined by the freeze-out
limit for the baryon number content of the central fireball. condition and varies therefore with different initial condi-
The excess of the data over this curve in the fragmentatiotions. Note that in the case of EO8&ith a phase transitign
zones is considered as being due to spectators and will e freeze-out condition is already satisfied ab®ye Since
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FIG. 4. (a) The freeze-out hypersurface for EOSL1 for different  F|G. 5. The longitudinal extension of the fireball in the center of

initial conditions corresponding to different specific entropies. The, . 5ss frame as a function of proper tifhefor EOS1(a) and EOS?2
five curves from the solid to the dotted line correspon&ta =

38, 40, 42, 44, and 48b) The same for EOS2. The upper set of (®).
curves denote the freeze-out surface, the lower set of curves show
the surface at which the QGP begins to hadronize. The four curveau
from the solid to the dotted line correspond3MA = 40, 42, 44,

and 46—the same line symbols will be used in the figures below.

The longitudinal length of the fireball grows very rapidly
ring the whole expansidifrig. 5. It is given kinematically
in terms of the initial length and the longitudinal fluid veloc-
ity by

freeze-out can only occur in the hadron gas phase this means -

that it happens as soon as the matter hadronizes, i.e., at a Z(T)=TosinhZ) + J" sinf{ a(T)Z]dT". (30)
constant temperature df;=T,. In this case the freeze-out T

hypersurface is therefore the same for all particles.

Our initial conditions are such that dat=", the trans- It is not affected by the freeze-out condition since for the
verse freeze-out radius is independent of the longitudinal cofluid cells atr=0 and ¢{=*+Z the conditions for thermal

ordinate(. It is interesting to see that this remains approxi-equilibrium are always fullfilled up to the completion of
mately true, on the level of a few percent, throughout therransverse freeze-out. Note that at the end of the evolution

dynamical evolution: the thermalized matter, when viewed at fixed time in the
center of mass system, consists of two separated fireballs.
Ri(t,0)~Ry(t,00 forall T. (28) For different equations of statelifferent S/A) we adjust

our initial conditions in such a way that the rapidity distri-
Although the fireball develops transverse flow, there is ndoutions of the frozen-out particles, integrated over the whole
transverse expansion of the systéfig. 4): freeze-out surface, remain fixé@able ). As shown in Fig. 6
this implies that equations of state with smaller specific en-
tropy S/A (larger initial baryon densitigdead to initial con-
d ~ . . L ; I
—Ry(T,0)<0. (29) ditions with smaller initial, but larger final longitudinal flow,
t such that averaged over the whole expansion the maximal
fluid rapidity is roughly independent of the EOS.
The collective outward motion of the matter due to the de- For EOSL1 the transverse fluid velocity along the freeze-
veloping transverse flow cannot manifest itself in a largerout surface, shown in Fig.(&), is nearly independent of the
transverse radius of the system since it is overcompensatawitial conditions corresponding to differeS{A. For the ex-
by a faster inward motion of the freeze-out surface. The syspansion with EOS2 we see significant differences. The main
tem thus has its largest transverse extension right after theason for this is that here freeze-out is delayed until after the
initial thermalization process is completed. fireball hadronizes, and for differe® A the system spends
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TABLE |. Some parameters at the beginning and the end of the hydrodynamic evolution, for different
initial conditions and equations of staﬁ'arTo is the time of evolution until completion of freeze-opg, the
central baryon densityy is the maximal longitudinal fluid rapidityZ is the longitudinal extension in the
center-of-mass framd; is the freeze-out radius, argl the maximal transverse fluid velocity at freeze-out
during the expansion.

EOS 1 EOS 2
S/IA=38 S/IA=46 S/IA=40 S/IA=46
initial final initial final initial final initial final
Po (fm~9) 4.47 0.05 0.30 0.04 4.95 0.03 0.52 0.03
7 0.75 1.98 1.58 1.90 0.65 1.98 1.60 1.87
z (fm) 0.20 9.56 3.80 13.75 0.18 14.58 2.01 17.19
R¢ (fm) 5.25 0 4.39 0 6.76 0 5.05 0
Tf_TO (fm/c) 3.48 3.47 5.08 5.47
B.lc 0.38 0.36 0.45 0.26

different amounts of time in the QGP phase whose largeionrate decreases, and the freeze-out temperature drops un-
pressure gradients generate transverse flow. In the mixed the transverse expansion again reduces the expansion time
phase the pressure gradients vanish; this causes the flat seale and causes the final decouplidg]. For smallerS/A
gions of nearly constant transverse flow velocity in Fign)7  the expansion time scale is more or less time-independent,
For EOS2 the freeze-out temperatdrg=T, is constant, the decreasing longitudinal expansion rate being compen-
as mentioned above. For an expanding hadron(§&S1 sated by an increasing transverse expansion t&ile This is
the freeze-out temperature at the end of the evolutionieflected by a rather time-independent freeze-out temperature
T;~160 MeV, is nearly independent &A (Fig. 8. For  (dotted line in Fig. &
smallerS/A (larger initial baryon densitiesearly freeze-out It is interesting to see with which transverse velocities
occurs at higher temperature®; 200 MeV), because the most of the particles are emitted. To this end one weighs the
expansion time scale, which enters the freeze-out criteriuntadial velocities along the freeze-out surface shown in Fig. 7
is short due to the high initial pressure and large longitudinalvith the number of particles emitted at each pdinfThe
pressure gradients. As time increases, the longitudinal expamesulting transverse velocity distributions are shown in Fig.
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FIG. 6. The maximal longitudinal fluid rapidity as a function of  FIG. 7. The transverse fluid velocity at the freeze-out radius
proper timet for different specific entropiega) EOS1,(b) EOS2.  B,(R¢) for EOS1(a) and EOS2b).
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9. For EOSL1 the velocity distribution is sharply peaked at the
largest occurring transverse velocity, independent of the ini- FIG. 10. The total entropy of the expanding syst¢hermalized

tial conditions, respectivelys/A. Such a velocity distribu-

fireball plus already frozen-out matieas a function of time for

tion will give rise to single particle spectra similar to the EOS1(long dashed lineand EOSZshort dashed line Differences

“blast wave” (exploding shell picture in Ref.[19]. For

between different initial conditions§§/A are comparable to the

heavier particle species this is known to result in a pro-hickness of the lines.
nounced “shoulder-arm” shape of the transverse mass spec-

tra[19]. This is in contrast to the simple model in RE20]

out the “shoulder.” Such a difference should be observable

where the spectra were integrated over a linear or quadratiith high-quality data on single-particle spectra.

transverse velocity profile withonstantweight which tends

For EOS2 the transverse velocity distribution develops a

to fill up the lowp; part of the spectra and thus straightensecond peak at smaller transverse velocities, which for lower
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FIG. 9. The transverse velocity distribution of the fluid cells at

HG: S/A=40

HG: S/A=46
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!
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B./c
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S/A values (larger initial baryon densitigsbecomes even
more prominent than the primary peak at the largest velocity.
This interesting feature is due to the large number of par-
ticles emitted while the hadronization phase transition takes
place; during this time the freeze-out velocity is roughly con-
stant[Fig. 7(b)]. Apparently it was not noticed before, but it
should be visible in high-quality transverse momentum spec-
tra.

IX. TEST OF ENTROPY CONSERVATION

Up to now we have solved the equations of global hydro-
dynamics without explicit entropy conservation. Since we
have replaced the exact profiles from a local hydrodynamic
evolution by simple parametrizations, entropy conservation
is no longer automatically guaranteed. We can test to what
extent our global hydrodynamic treatment violates entropy
conservation by calculating the entropy production from our
solutions according to the procedure described in R&#f.
The result is shown in Fig. 10. We see that, independent of
the initial conditions and the equation of state, the entropy
production stays below 10%. This can be considered as a
quality test for the choice of our parametrized profiles.

X. PROTON SPECTRA

As described in Sec. VIl we have used the proton rapidity
spectra

freeze-out weighted by the number of emitted pions from these dn

cells, for different equations of state and initial conditions. Top

panels: EOS1. Lower four panels: EOS2.

P_2 F d Edsn” 31
Ty 2T memr ap (31

m



448 ULRICH MAYER AND ULRICH HEINZ 56

6 T T T T T 6 T T T T T
dn - R E - dn L ' E _:
@ ° R & ° AL
af —~w 4f gt
3t i 1 af R U
e o
2r ! 7 oF ' \ _
1r ] 1F .
O 1 1 1 H 11 0 1 1 1 1 1
0 1 2 3 4 5 6 0 1 2 3 4 5 6
(a) y (a) y
10-4 . S—— ; 10‘4 T T T
dn dn
m,dm, 455t p-p 4 m,dm, 4455 4
2 -2
MeV™] |6 | _l_ i MeV™] |6 J
107+ . 1077 .
108 . . Lo 108 . . 0
0 500 1000 1500 2000 0 500 1000 1500 2000
(b) my-m, [MeV] (b) me-m, [MeV]

FIG. 11. The proton rapidity distribution&) and transverse FIG. 12. The proton rapidity distribution&) and transverse
mass spectrab) for EOS1, for differentS/A, together with the ~mass spectrab) for EOS2, for differentS/A, together with the
experimental dat@l7]. experimental datpl7].

to fix the initial conditions. That we indeed reproduce thewhich reflects the effect of the transverse flow on the local
desired proton rapidity distributions with the chosen initial Boltzmann spectra. With initial conditions adjusted to repro-
conditions is shown in Figs. 14) and 12a). A priori it is, duce the rapidity spectra, the hydrodynamic evolution gener-
however, not at all obvious that in this way we also get theates too much transverse flow, causing either early freeze-out
correct transverse mass spectra for the protons. To reprodu@é t0o high temperatures or too large flow velocities. This
both the rapidity and transverse mass spectra simultaneougfpplies that EOS1 is too stiff, i.e., it produces too much
requires that the hydrodynamic evolution couples the longiPressure at given energy density.
tudinal and transverse expansion in a well-defined way. Figure 12b) shows that EOS2 is generically softer. Since
Since both types of expansion are driven by pressure gradin this case freeze-out always occursTat= T, the different
ents and the local pressure acts isotropically, this puts corflopes reflect the different transverse flow patterns at the
straints on the equation of state, i.e., on the functional deperioint of hadronization for different initial conditionS/A.
dence e(P). (Pressure drives expansion, while energylLarge initial baryon densitiesmallerS/A values again re-
density, through inertia, acts againsj it. sult in spectra which are too flat, whereas for lar§ek the

In Figs. 11b) and 12b) we compare the calculated trans- Spectra become steep enough to match the data.
verse mass spectra

XI. CONCLUSIONS

dn » d®n
o dp =27-rf dy( Ed—gp) (32 We have extended the model of global hydrodynamics for
TdMr ’°° P heavy-ion collisions to the case of realistialthough still
. . . . zimuthally symmetric transverse density and temperature
with the data. Differences between the different equations Ogrofiles wi)t/h é/ontinuous{rather than insttgntanec)uﬁnlaoeze-

f;ate(j_?fnd |r][|t;al condlttlons arz (;Iearly V'S'ble‘l Thtey dr.eIk.el;:tout. Very important points for any hydrodynamical model
€ dirrerent temperatures and transverse velocily diStnbuz e e initial conditions, because they cannot yet be calcu-

tions at freeze-out. ' o . :
. lated from first principles. We fix them from experimental

1 1(';;” 5281 the calclzulateti fhpeftra are always too[IFIm%. data on the total energy and baryon number of the central

) ]. The inverse iope ot e”ransve_rse Mass Spectra Caflapa)| and by using some of the measured rapidity spectra.

be interpreted as a “blueshifted” effective temperat|t8] We showed that with these boundary conditions one can

1T strongly restrict the allowed space of initial state parameters.
T .o=T:\ /ﬂ (33) All other spectra(i.e., most of the available datare then
eff f 1_ ' .« g
(Br) predictions of the model.
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A comparison with the global hydrodynamic analysiswith two-particles correlations has been successfully per-
with box profiles presented in Reff9,18] shows that our formed[21]; a publication of these results is in preparation.
more realistic treatment here allows us to establish much

stronger limits on the allowed range of initial conditions and ACKNOWLEDGMENTS
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APPENDIX: GLOBAL HYDRODYNAMICS INTEGRALS
Here follow the shorthands for the differential equatiéh9) for our model:
L :Fmdgﬁf(?,g) 2(92195) (T, O)W[p(T,r)]¢cosh a( 1) {IsinH a(T){]
o 0 1-B2(T)(r1ag)®

(T, Owip(tn) ]z{cosﬁ[a(t)msmhz[a(t)é]} A1)
1-BA(1)(r/ag)®
L f‘zm oz jr«fﬁ,o ar 9zl 9{(T, W[ p(T,1) 1B T)(r/ag)"¢sinH a(T){]
“ 0 1-Z(1)(r/ag)™"
LT, OwLp(T,1)1B(T)(1/ag)"¢cosh a( t)g]l
(A2)
1—-B2(T)(rlag)?"
_ [Z0y, [ReTO g az/ag(t OWp(T,1)]¢{cosia(T) ]+ sintPla(T) {1}
La3_f dé’f 2n
0 1- ,BS(t)(r/a)
_ 20t194(T,)wip(T,r)1¢costia(T) z]smr[amz]
(A3)
1-BA(1)(r/ag)®
In these equations we also have to g€t ,r)=po(t)exd —rZ/a?(t)]:
(20 (RTo | 2092190 (T, OWp(T,1)]B(T)(r/ag)*"cosi a(T){]
LBSl_fo dgfo rdr [1-B2(T)(rlag)®")?
| 20U (Towlp(T, r)]ﬂs(t>(r/ao)2”cosr[a(t)g]smr{a(tm Ad)
[1-B(T)(r/ag)>"?
e fzm "y frefa,or drw[p(t',r)](r/ao)“{(az/ag)(i§)cosr[a("t')§]—at/&g“(ie“)sinf[a("t‘)g]}
b 0 1-BA D118 ™
2B3(1)(r/ag)™
. ( a 1—55(?)(r/a0)2“)’ "
L fzm "y fRfa,o 2(t/90) (T, OWLp(T,1)1Bs(T)(r/ag) *"sintPla(T) (]
2 do o [1-BAD)(1/3) ™"
203199 (T, 0wip(T, r)]ﬂs(t)(f/ao)Z”COSf[a(t)I]Slnf[a(t)é] A6)

[1-B5(T)(r/ag)*"]?
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i J‘zm i fRfM dr {02/0§(t ,0)owl aplgal p(T,1r)Jexd —r?/a®(t)JcosH (1) (]

0 1-B2(T)(r/ag)™
 t1aZ(X,0)owl dplsialp(T,1) Jexil —r?/a®()Jeosh a(t) {Isin a(1)¢] 9 )ﬁ
1-B4(T)(r1ag)™ 'V SiA
x[p(t,r)]exd —r2/a*(1)], (A7)

_ [F 0 g, (RO 4 &W/aplsm[p t.n)]exd —r?/a*(1)18(t)(r/ag) oz
Lpoz—f dzJ 1= B2(T) (1) |52 (T,0)cosha(){]

——g(’t',z)sinr[amz]}, (A8)

70 . (ReT.0 . owldplgalp(t,r)]exd —r2a®(t)][
Lp03=f dgfof rdr 1= 82T (r]ag) ™ [—(t {)coshle(T)g)sinH a(1)¢]

at - - -
—ﬁ—g(t,é)sml"?[a(t)é]} [p(t,r)]exd —r?/a®(t)], (A9)
S/A

20 (Rt W/aplsm[p(t N]p(t,n[2r?at)][ oz
- — i
Lar f dgf rd 1—B2(1)(rlag)®" L9¢ (T.0cosHa(T)2]

2
——g(t £)cosf[a(t)£]smf[a(t)§]} [p(t Np(t,r) 3(t) (A10)
L fzud meo dro"W/&pls,/A[p(t Np(T, r)[2r2/a;(7)]ﬁs(T)(r/ao)“
1- :Bs(t)(
0Z —_ ot - . _
X ﬁ—g(t{)cosfia(t)ﬂ—a—g(t,é)smf[a(t)é] , (A11)
[z RiT.o . owlap|gal p(T,1)1p(T, r)[2r2/a3(t)][
Las—f déjo rdr 1= (T (r/ag)™ 7 g(t ,)cosh a(1)¢]sind e(t)¢]
2r2
——(t Z)Slnhz[a(t)é“]}——(t £)—S/A[p(t N]p(t,r) ——= 20" (A12)
B Fm fRfd,z) a(OW[p(T,r)]cosHa(1)¢]  a(D)wlp(T,r)]Icosh a(t)Isintl(1){]
Rll_ dg rdr — — —
0 0 1-B2(T)(r/ag)® 1-B2(T)(rlag)™
—a(t) P[p(T,r)]cosr[aﬁ)z]l , (A13)

_ (20, [ReTo, a(t wp(t,)1B4T)(r/ag)"cosla(t)¢]  a(H)wip(T,n]B(T)(r/ag) sink? a( t)z]
R21_f dff

0 1—B2(T)(rlag)?" 1-B2(T)(rlag)?"

(Al4)

fE(Y)dijf(t 0 {a(t)W[P(t f)]COSﬁ[a(t)ﬂSlnf[a(t)(] a(DHW[p(T,r)]cosh a(t)Isint a(){]

Ry= =
Sl 0 1—B2(1)(rlag)®" 1-B5(1)(rlag)®

- a<T>P[p<T,r>]sinr[a(T)§]l, (A15)
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9219¢(1,0) el p(T,Ry)Jcost a(T)¢]
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1-BZ(1)(Rlag)®"

L. elp(T,R)1BL D) (Ri/ag) Slnf[a(t)é]]
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921 9L(T,0) el p(T,Ry)Jcosh a(T) {]sinH a(T){]
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C(ED R
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1-B3(1)(R¢/ag)™"

{aR 19T (T,0)(92190)(1,0) — R 13£(T,{)sinH (1) T}cosF (1) (]
1-B2(1)(Re/ag)™"
~Acostia(t)¢lozla¢(t,0)— at19¢(T, ) sind a(T) {1} cost (1) 1B (R /ap)"
1- B2(1)(Re/ag)®"
{cosr[a(t)g]aRf/ag(t O =R 19t (T,0)at19¢(T,0)}cosHa(t)]sinH a(t) g]
1-BZ(1)(Rilag) ™

Ris= f 'dR(T,0) el p(T.R))]

(A19)

{dR 19T (T,0)0210L(T,0)— dRs 19¢(T, ) sint a(T) {1} Bs(T) (R /ag)"cosh a(T){]
1-B5(1)(Rilag)®"
{eostia()£192/0¢(T,0) — atlag(T,O)sint a(1) 11 B2(T) (Ri /ag) ™"
1-BA(T)(Ry/ag)®"
{cosrﬁa(tmaRfmz(t =R 13T (T,0)at10L(T,0) B T)( Rf/ao>}“smr[a<t>z]
1-B4(1)(Ry/ap)™"

Z(%) ~ _
Ras= fo diRe(t,0) e[ p(t,Ry)]

(A20)
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