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What can we learn from three-pion interferometry?
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We address the question, what additional information on the source shape and dynamics can be extracted
from three-particle Bose-Einstein correlations. For chaotic sources the true three-particle correlation term is
shown to be sensitive to the momentum dependence of the saddle point of the source and to its asymmetries
around that point. For partially coherent sources the three-pion correlator allows one to measure the degree of
coherence without contamination from resonance decays. We derive the most general Gaussian parametrization
of the two- and three-particle correlator for this case and discuss the space-time interpretation of the corre-
sponding parametersS0556-28187)02007-4

PACS numbgs): 25.75.Gz, 13.85.Hd, 24.16i

. INTRODUCTION saddle pointx (K) of the source, from which most pairs with
momentumK are emitted, moves a§ changes, and to the
Two-particle Bose-Einstein interferometgso known as  asymmetries of the emission function around this saddle
Hanbury-Brown-Twiss intensity interferomejrgs a method point via its third central space-time moments. Unfortu-
for obtaining information on the space-time geometry andhately, this phase turns out to be generically small, and its
dynamics of relativistic heavy ion collisions has recently re-sensitivity to these asymmetries is very weak, making them
ceived intensive theoretical and experimental attention. Deextremely hard to measure.
tailed theoretical investigatior{for a recent review, see Ref. In the absence of such a nontrivial phase, three-particle
[1]) have shown that high-quality two-particle correlation correlations can still be used to test the chaoticity of the
data can reveal not only the geometric extension of thémitting source. To this end we derive the expressions for
particle-emitting source but also its dynamical state at parfwo- and three-particle correlations for chaotic and partially
ticle freeze-out. This information is encoded in the secondoherent sources and establish their respective relationships.
central space-time moments of the “emission function” Our treatment differs from_previous studies of multiparticle
S(x,K), i.e., of the Wigner phase-space density of theBose-El_nstem co_rrelatlons in that we conS|ster_1tIy express_the
source. For chaotic sources, certain linear combinations chorrelanon functions through the source Wigner density,

these moments can be extracted from the two-particle corre?—ven for partially coherent sources. Th|s enables us to relate
. ) o L he shape of the correlators as functions of the various rela-
lation function C,(q,K) by fitting it to a Gaussian in the

relative momentuny of the pair[2—4]. These second space- tive momenta to certain space-time features of the source.
time moments give the size of the regions of homogeneity
[5,3] which effectively contribute to the emission of particle
pairs with a given pair momentuiq; collective dynamics of For a chaotic source, the two-pion correlation function
the source results in a characteristicdependence of these C,(p;,p;) can be expressed §5,13]
homogeneity regiongs,7,4]. ‘

More detailed information on the space-time structure ofC ) Pa(pi,p;j) |fd4xs(x,|<ij)e'qij'x|2
the source may be hidde8] in possible non-Gaussian fea- 2(Pi»p; P.(p1)P1(p;) [d™S(x,p) [d*yS(y,p;)
tures of the correlation functio€,(q,K) even if they are 5
hard to extract; due to the symmetry undgr> —q, how- 14 m )
ever, only even space-time moments of the source are acces- piipjj
sible via two-particle correlations. In this paper we will ex-
tend previous studies of multiparticle correlati¢8s-13]and ~ Here P,(p;,p;) is the two-pion inclusive cross section, and
show that three-pion correlations provide, in principle, addi-P,(p;) is the single-particle inclusive spectrurg(x,p) is
tional information on the space-time characteristics of thethe single-particle Wigner density of the source, i.e., the
source which cannot be obtained from two-particle interferquantum-mechanical analog of its phase-space distribution.
ometry. We show in particular in Sec. Il that for completely The average and relative four-mometta=(p;+ p;)/2 and
chaotic sources the true three-pion correlations are detety;; =p;—p; satisfy the constraing;;-K;;=0 which results
mined by the phase of the two-particle exchange amplitudérom the on-shell nature of the observed momepta The
[13,14] which drops out from the two-particle cross section.two-particle exchange amplitugs; is defined a$13,15
This phase is shown to be sensitive to the rate at which the

II. CHAOTIC SOURCES

pij :p(q” :Kij): \/E,EJ<éT(p|)é(p])>
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From Eq.(2) it follows that p;j=pj; and thusf;;=f;; and fio=Py(Ki)[1—3((qii - X;:) 2 +O(gh)] (10)
¢ij=— ¢;i . Correspondingly;;=0,p;;=f;;, andf;; must e (i) N
be an even function ofj; , while ¢;; is odd ingj; . and

The single-pion spectrum can be written as _
&ij=ij - (X)i; — 5{(ay - Xij)3>ij+o(qi5j), (11
Pl(pl):f d4XS(Xupi):fii ' (3) where

while the true two-pion correlation function is defined by ')Z”. =x—(X)ij=x— X (K;;) (12)

. i is the distance to the “saddle point” of the source, i.e., to the
Ro(i))=Ra(pi,p)) =Ca(pi,p))=1=7=—- (4 point of maximum emission for pions with momentum
o Kjj . According to Eqs(10) and(4), the two-pion correlator
Similarly, the true three-pion correlation function is given by is sensitive to the second cent(aé., saddle-point corrected

[13,16-2] space-time moments of the emission funct&w,K;;) [2,3],
with higher-order corrections from all even central space-
R3(P1.P2,P3) =Cs(P1.P2.P3) ~Ra(1,2 —Rx(2,3) time moments. The phasé, on the other hand, contains
_ _ information on the odd space-time moments. Expanding
R»(3,)—1
2= S(x,Kjj) around the average momentunof the pion trip-
_ ZRe(P12P23P31) let,
EELEES _ P1t P2t P Kot Kpst+Kgy
f1of2afas 3 3
:quf 22f330051 P12t Pzt day). ®)
Kij=K+5(dik+ i), 1#]#k, (14

Since the real partf; of the exchange amplitudes; can be . i
extracted from the two-pion correlator, for chaotic sourcetNd Usingdi,+ 03+ 3 =0, we find from Eqs(6) and (11)
the only additional information contained in the three-pion AX) X,
correlation function resides in the phdds3] b= qufzq;s aKl: e
= h1pt o3t
D= 1ot Pzt a1, (6) { Ax) P )

it is a linear combination of the phases of the three exchange IKVIKN * gKMaKH T gKHIKY
amplitudesp,,p,3, andps; which enter the true three-pion
correlatorR;. This phase is odd under interchange of any
two particles. It can be isolated by normaliziRy with re-
spect to the true two-pion correlat&s:

1
- Zjl[qlfzq;zqgs"” 054055012

1 _~ —_
- qufquz/g(WZ‘F U29™(X . X, X)) +O(q%). (195

Here the average without subscripts

Ra(P1,P2,P3) a
_ =2 _ Jd*xf(x)S(x,K)
N N NP R EX TR (00 =" aisix K)

(16)

In order to understand which space-time features of thejenotes the space-time average with the emission function

source affect the phas® (and thus the normalized true eyaluated at the mean momentusmof the pion triplet, and
three-pion correlation functiong) we expand the exchange

amplitudep;; for small values ofg;;=p;—p; [2,3]. We de- sz—(x)zx—x_(K). 17
fine the average of an arbitrary space-time funcfigr) with
the source distributios(x,K;;) as Equation(15) is the main result of this section. One easily

. checks that has it the correct symmetries under particle ex-
(OO0 _JAXF()S(x,Kij) @® change. It should be noted that, due to the on-shell constraint
4 fd“xS(x,Kij) ' dij - Kjj=0, only three of the four componentg are inde-
pendent. The resulting relation

This average is a function of the pair momentim. Using .
Eq. (2) we thus get (@%)ij=a;- B, with Bj=K;;/(K°);, (18

. 1 ) can be used to eliminate the redundgrtomponents in Eq.

1+i(aij - X)ij — §<(qu “X)%ij (15), thereby mixing spatial and temporal components of the

corresponding coefficients. This is a well-known problem

i 3 4 also for the two-pion correlatofsee, e.g., Ref{1]) which
- g«qu X))y + O(aij) |- ©) prohibits a clean model-independent separation of the spatial
and temporal widths of the source.
Separating real and imaginary parts we find, after a litle Equation(15) features two types of contributions to the
algebra, phase®: The formally leading contribution enters at second

pij = P1(Kjj)
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order in the relative momenig; and is proportional to the the source average on the right-hand side) being taken

rate 9x ,(K)/dK" with which the saddle point of the emis- only over the “core” of. pions from direct emission and from
sion function changes as a function of the pion momentunthe decays of short-lived resonanciis27,28. The two-
K. This term will in general be nonzero even for emissionParticle correlator then becomes

functions with a purely Gaussiandependence. It gives rise 2

to a leadingg® dependence of the normalized true three- Ry(i,j) =N (Kj) Pi(Kij) ex — g q’ R, (Ki)]
particle correlator ;= 2cosb. At order g° the phaseb re- 20 17P1(pi) P1(pj) W
ceives additional contributions from the secdtderivatives (20)

of the saddle point as well as from the third central space- _— : .
i _— and for vanishing relative momentpthe three-particle cor-
time moments(x,x,x,) of the source. The latter are the

. A ) relation function assumes the value

leading contributions from a possible asymmetry of the
emission functiors(x,K) around its saddle point (K); they Ca(p1=p,=p3=K)=1+3N(K)+2\%(K). (21
vanish for purely Gaussian emission functions. We see that ) )
they enter the normalized three-particle correlatoat order ~ Note, however, that expressid) for the normalized true
g° in a mixture with theK dependence of the saddle point. three-pion correlation function is not affected by resonance
This renders their isolation essentially impossible. decay contributions and remains unchanged. This will no

In contrast to the widths of the emission function, which longer be true for partially coherent sources.
affect the two-pion correlator atecondorder in the relative
momentum, the additional structural information which can Ill. PARTIALLY COHERENT SOURCES

(in principle) be extracted from thénormalized three-pion Expressions for tha-particle inclusive spectra from par-

correlator is seen to enter at mostfatirth order ing. Their . . ; .
. o t|§1lly coherent sources have been previously derived, with
measurement is thus very sensitive to an accurate removal Qcceri ) .
) o o iffering methods, in Ref4.13,16—2Q. In the covariant cur-
all leadingg“ dependences by proper normalization to the . .
) X . . rent formalism of Refg23,15 one decomposes the classical
two-particle correlators. To achieve this looks like an ex- . ; : .

o : source current which creates the free pions in the final state
tremely difficult experimental task. We are therefore somes .~ coherent and a chaotic term:
what pessimistic about the short-term prospects of extracting ’
additional structural information about the source from three- IX)=Jeoh(X¥) + Jend X). (22)
pion correlations.

If the phased and the information it contains about the Following the treatment of Ref15] this leads to the follow-
source are inaccessible, what else can three-pion correlatioiigy definition of the single-particle Wigner densityemis-
be used for experimentally? The answer is that one can tesion function”) of the source:
the assumption that the source is chaotic. This has been .
pointed out previously in Ref§17,19 where specific simple _ dy ZiK-y) 1%
parametrizations for the two- and three-particle correlators ~ SOK)= 22m)3°¢ (I* (x+ y/2)I(x = yI2))

(as well as for higher-order correlationsere assumed and

the relationship between the various parameters was studied. =Scon X, K) + Send X, K), (23
We will here derive more general expressions which, in prin-

ciple, permit such a test without making any simplifying as-with

sumptions about the shape of the source. 4

Before proceeding to the discussion of Bose-Einstein cor- Seur(X K):f dy o iK-yg* (X+ YI2) I X— YI2)
relations from partially coherent sources, we would like to ~¢°™" 2(2m)3 co co '
close this section with a few short remarks on the effects (249
from resonance decays. It is well know2?,23 that partial .
coherence in the source leads to incomplete correlations i dy

. ) . = y(J* -
the two-particle sector, in the sense tRa(q,K) at vanish- %Cha(X'K) J 2(27T)§e (Jond X+ Y12)Jond X~ y12)).
ing relative momentung=0 does not approach the ideal (24b)
valueR,(0,K)=2 for chaotic sources. In actual experiments o _
there are, however, other possible reasons for apparently ifhe average on the rhs of the definitig#b) for the chaotic
complete two-particle correlations. Most importantly, pionspart of the emission function is defined as in Réb], and
from the decay of long-lived resonances contribute to thave used
correlator only at very small values of and thus(due to .
limited two-track resolution may escape detection in the (Jehd ¥) Jeor(y)) =0. (25
correlation signal while fully contributing to the single-

particle spectrum, thereby reducing the apparent correlation"€ Wigner density of the full source is thus the sum of a

coherent and a chaotic contribution; no mixed terms occur
‘,Rpcause the chaotic and coherent source currents do not in-
terfere. This allows us to carry over the intuitive and very
successful Wigner function language for fully chaotic
fi; =A"(Kij) P1(Kij)exd — 30405 R,,(Kij)], (19  sources to the case of partially or completely coherent
o sources.
where, up to second order o R*"(K;j) =(x//x{j)i;, with We now write

be implemented by writing instead of EQ.0) for q;; #0
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pij :fd4XaX,Kij)eiQij'X:pﬁha-}—pﬁOhEFijeiq)ij+fijei‘/’ij’ As shown in Ref[13] this yields the two-pion correlation
(26)  function in the form

whereK;; = (p;+p;)/2,0;;=p;—p;, and o 14 R =1 F5+2f;Fijcog dj; — ¢y))
L p)=1+Ry(i,j)=1+ ,
, , 2Pi-Py 2 (Fi +Fi)(fj+Fjp)
Fije'Pii= [d*% Send X, K;j)e'%i ¥, (279 (28)
fij€'%i = [d*X Seo( X, Kij ) €'%i X, (27  while the three-particle correlation is given by

P3(P1,P2,P3)
P1(p1)P1(p2)P1(p3)

Cs(p1,P2,P3)=

=1+Ry(1,2+Ry(2,3+Ry(3,D)+ [F12F23F 31C0g P 1o+ P3P gy)

2
P1(p1)P1(p2)P1(p3)
+f12F 23F 31C0S 1o Pzt Py) + Fiof 23F 31C0( P 1o+ ozt Pag) + F1oF 23f 3100 P 1o+ Dot sy ]
(29

Similar expressions were derived in RgL8]. The two- and three-particle correlations are seen to vanish for completely
coherent sources=; —0Vi,]). In the opposite limit {;;—O0Vi,j) one recovers the results from Sec. Il for completely chaotic
sources.

The representation®6) and (27) permit us to write down fof;; ,f;;, and®;; , ¢;; similar smallg expansions as in Egs.
(10) and (12); the corresponding averages are defined with respect to the chaotic and coherent parts, respectively, of the
Wigner function(23). In the true two-pion correlation functidR,(i,j) of Eq. (28), the first term thus contains information on
the second central space-time momentSgf(x,K;;) while the second term mixes the second momentS.pf x,K;;) and
Scor(X;Kjj) in arather nontrivial way. Since the number of measurable parametBegiif)) is the same as before, this implies
a relative loss of information: the second space-time momeng&,gfand S, can neither be separated nor do they simply
combine to the second central moments of the total so8¢e8&,,+ Scon-

This complication goes hand in hand with a similar one in the three-pion correlator: Defining the true three-pion correlator
as before,

R3(1,2,3=C3(p1,p2,P3) —1-Ra(1,2 —Rx(2,3 — Rx(3,1
2

(it Frd (Tt Foo) (fagt Fag)

+ F12f23F 31C0S P 154 ozt Pay) + F1oF 23f 31C0( P 1o+ P ozt pay) ], (30

[F1oF 23F 31C0 @ 151 D o5+ D 3q) + F1F 537 31C09 ot D o3t P3y)

one sees that, in contrast to E@) for chaotic sources, the gested in Refd[17,19,14 are not sufficient for this purpose
phase factors can no longer be isolated by normaliRRgg because they very strongly prejudice the form of the source.
with a proper combination of two-particle correlatdrs. To pursue this last point a little further, let us define the
This means that, in a smajl-expansionR;(1,2,3) contains (momentum-dependentchaotic fraction of the single-
leading terms of second order gnwhich are independent of Particle spectrum

those occurring in the two-particle correlator. On the one

hand, those terms supplement the incomplete information Fii Jd*XSend X, Pi)

from R, on the second space-time moments of the source; on e(pi)= fi+Fy  JdxSx.py) (31)

the other hand, they render the measurements of source

asymmetries impossible.

The full reconstruction of all thén principle) measurable
information obviously requires a measurementR(i,j)
and R3(1,2,3) as a function of all nine components of
P1.P2,Ps - In view of the technical complexitgboth experi-
mental and theoreticabf such a program this is not likely to Ro(p.p)=e(p)[2=€(p)],
happen soon. It must, however, be mentioned that simple
one- or two-parameter Gaussian parametrizations as sug- Rs(p,p,p)=2 €%(p)[3—2¢(p)]. (32

The coherent fraction is accordingly
fii /(fi; + F;i)=1—€(p;). For vanishing relative momentum
0;;=0(i,j=1,2,3), we then have
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For completely chaotic sources(p) =1, we recover the re-

U. HEINZ AND Q. H. ZHANG

+2€(K;j) (1—e(Kjj))codq;; - s(Kjj))

sults of Sec. Il. For partially coherent sources, the normal-

ized three-pion correlatar; at vanishingq is given by

r (p pp): R3(p!prp) _ e p)[3_26(p)] (33)
SR (Ry(p,p)) [2—e(p)]**
which, in general, deviates from the chaotic limit

r3(p.p,p)=2.

It follows from Egs.(10) and(11) that here

It would thus seem to be a simple matter to check the

limits of R, andR; for vanishing relative momenta and con-
struct the ratig33) in order to see whether or not the source
contains a coherent component. In practice, however, the
g=0 limit cannot be measured directly, but requires an ex-

trapolation of data at finitg to zero relative momenta. It is

RAV(Kij) = (XXM, (359
reY(K) = (XEXE N (35b
S“(Kij):<x“>ﬁha—<x“>ﬁ°h- (350

well known that such an extrapolation can be very sensitiviequation (34) neglects an additional factoer(Kij)/
to the assumed functional behavior of the correlator at smalP(p;) P(p;) which is unity for exponential single-particle
g. As we will now show our results provide a basis for a spectra[3]. Equation(34) differs from the parametrization

reasonable parametrization B andR3 for small g.
To this end we start from Eq&28) and(30) together with
the smallg expansiong10), (11). Noting thatR, must van-

ish for g—, a parametrization which is correct up to sec-

ond order inqg is given by

suggested in Ref{19] by the factor co&y;j-s(K))exd —3
afair .,(Kij)]; the parametrization of Ref19] is thus not
general enough(t essentially assumes that the coherent part
of the source is pointlikéin spaceandtime) and localized at
the saddle point of the chaotic part of the sourdéote that

from Eq. (34) one must still eliminate the redundaicom-
ponent via the on-shell constrai(it8).

Ry(i,j)~€*(Kij)exd — afalR,,.(Kij)] The three-pion correlator can similarly parametrized as

R3(P1,P2,P3) = 2€2(K)exp{ — [ 501+ 5055+ 3 (A5055+ 52059 IR,(K)} €(K)
+(1— e(K))cod a2 S(K))exp{ 055071 R, (K) =1 ., (K) T}
+(1— e(K))codds- s(K))exp{ 3955054 Ruu(K) =T ,,(K))}

+(1— €(K))cos(Gaz+ As) - S(K))exp{ 2 (Aaz+ A28 “( Azt G29) TRuu(K) =1 (K) TH- (36)

This again generalizes the parametrizations given in Refss restricted to the “core” of direct pions and short-lived
[17,19; according to Egs.(10), (11), it is correct up resonance decays, we expect H§4)—(36) to be practically
to the second order inqg if one approximates useful even when resonance decays are included.
Pi(Kij)/Pl(pi)/Pl(pj)~l as well ase(K;j)~e€(K). The
parametrizations of Ref17,19 are recovered in the limit of
a pointlike coherent sourcer,,(K)=0, and assuming
s(K)=0. (The first of these two assumptions is explicitly

IV. CONCLUSIONS

We have studied the question to what extent three-pion
Bose-Einstein correlations can provide independent informa-

stated in Ref [17]) One can easily convince X "
o tion about the space-time structure of the emitting source

oneself that at q,,=0, for example, the term hich b dqf . lai
- S(K))exp g R . (K) — 1 (K) T} enters W ich cannot be extracted from two-pion correlations. For
cod(qy3- S( 2023923 Ruw wv chaotic sources we found that the three-pion correlator de-

Rs(029) with a different weight tharRy(dzq). ThusR3 pro-  pends on the phase of the two-particle exchange amplitude
vides additional information which allows us to separateyhich drops out from the two-particle cross section. This
R,.(K) fromr ,,(K) and thereby the widths of the chaotic phase can be isolated by proper normalization of the true
and coherent parts of the source. three-pion correlator with respect to the two-pion correlator.

In practice, one must also take into account resonancg was shown to be sensitive to the momentum dependence
decays. Since it follows from the discussion at the end of irof the point of highest emissivity in the source and to the
Sec. Il that the long-lived resonances do not affect the interasymmetries of the emission function around that point.
cept(33) of the normalized true three-pion correlator, and itHowever, this sensitivity is weakit enters only at fourth
was shown in Refd.1,27,29 that expressiori35a remains order in the relative momentq;;), and the corresponding
essentially valid if the chaotic part of the emission functionsource properties are hard to measure.
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We then proceeded to study sources which are not conmight be worthwhile to study whether, for certain simple but
pletely chaotic but contain a coherent component. Wenot too unrealistic models for the emission function, it is not
showed that in this case the emission function can be writtepossible to obtain simpler parametrizatiofiesr example by
as a sum of two Wigner densities describing the chaotic anéxploiting certain symmetries of the souyce
coherent components, respectively, and expressed the two- Our results show that in the case of partially coherent
and three-pion correlation functions via these chaotic an@ources the three-pion correlator contains independent infor-
coherent Wigner densities. We showed that a comparison Qhation on the second space-time moments of the source
two- and three-pion correlators allows for a determination ofyhich cannot be extracted from the two-pion correlator. This
the degree of coherence in the source, without contamingnformation is needed to separate the space-time characteris-
tions from resonance decays. To this end one must study thgs (lengths of homogeneity or effective widthsf the cha-
respective correlation functions at vanishing relative mo-otic and coherent parts of the emission function. To extract it
menta of all particles. To facilitate the extraction of this limit jn practice will not be easy, but the theoretical framework by

from experimental data we derived in E§34) and(36) the  \yhich this should be done has been presented here.
most general parametrizations for the two- and three-pion

correlation functions at small relative momenta. These pa-
rametrizations are based on our expressions of the correlation
functions in terms of the Wigner density of the source; they
are exact up to second order in the relative momenta, i.e., for The authors would like to express their gratitude to T.
emission functionsS(x,K) with a Gaussiarx dependence. Csago, H. Heiselberg, A.P. Vischer, and U.A. Wiedemann
After eliminating the redundarmt components, they are seen for stimulating remarks. This work arose from discussions at
to depend on 16 parameters which are all functions of thehe Workshop on Particle Interferometry in High Energy
average momentur of the pion pair, respectively, triplet. Heavy lon Reaction$HBT96) at the ECT* in Trento, Sep-
To determine all these parameter functions, a complete studgmber 16—27, 1996. We would like to thank the ECT* for
of the two- and three-particle spectra as functions of all 6 their hospitality and for providing such a fruitful and stimu-
9 = 15 momentum components is necessfiffie 16th pa- lating atmosphere. Q.H.Z. gratefully acknowledges financial
rameter,e(K), describes the degree of coherence and entersupport by the Alexander von Humboldt Foundation. The
the normalization of the correlation functions at vanishingwork of U.H. was supported in part by BMBF, DFG, and
relative momentd.This is certainly not an easy task, and it GSI.
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