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What can we learn from three-pion interferometry?

U. Heinz and Q. H. Zhang*

Institut für Theoretische Physik, Universita¨t Regensburg, D-93040 Regensburg, Germany
~Received 14 January 1997!

We address the question, what additional information on the source shape and dynamics can be extracted
from three-particle Bose-Einstein correlations. For chaotic sources the true three-particle correlation term is
shown to be sensitive to the momentum dependence of the saddle point of the source and to its asymmetries
around that point. For partially coherent sources the three-pion correlator allows one to measure the degree of
coherence without contamination from resonance decays. We derive the most general Gaussian parametrization
of the two- and three-particle correlator for this case and discuss the space-time interpretation of the corre-
sponding parameters.@S0556-2813~97!02007-4#

PACS number~s!: 25.75.Gz, 13.85.Hd, 24.10.2i
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I. INTRODUCTION

Two-particle Bose-Einstein interferometry~also known as
Hanbury-Brown-Twiss intensity interferometry! as a method
for obtaining information on the space-time geometry a
dynamics of relativistic heavy ion collisions has recently
ceived intensive theoretical and experimental attention.
tailed theoretical investigations~for a recent review, see Re
@1#! have shown that high-quality two-particle correlatio
data can reveal not only the geometric extension of
particle-emitting source but also its dynamical state at p
ticle freeze-out. This information is encoded in the seco
central space-time moments of the ‘‘emission functio
S(x,K), i.e., of the Wigner phase-space density of t
source. For chaotic sources, certain linear combination
these moments can be extracted from the two-particle co
lation functionC2(q,K) by fitting it to a Gaussian in the
relative momentumq of the pair@2–4#. These second space
time moments give the size of the regions of homogen
@5,3# which effectively contribute to the emission of partic
pairs with a given pair momentumK; collective dynamics of
the source results in a characteristicK dependence of thes
homogeneity regions@6,7,4#.

More detailed information on the space-time structure
the source may be hidden@8# in possible non-Gaussian fea
tures of the correlation functionC2(q,K) even if they are
hard to extract; due to the symmetry underq→2q, how-
ever, only even space-time moments of the source are ac
sible via two-particle correlations. In this paper we will e
tend previous studies of multiparticle correlations@9–13# and
show that three-pion correlations provide, in principle, ad
tional information on the space-time characteristics of
source which cannot be obtained from two-particle interf
ometry. We show in particular in Sec. II that for complete
chaotic sources the true three-pion correlations are de
mined by the phase of the two-particle exchange amplit
@13,14# which drops out from the two-particle cross sectio
This phase is shown to be sensitive to the rate at which
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saddle pointx̄ (K) of the source, from which most pairs wit
momentumK are emitted, moves asK changes, and to the
asymmetries of the emission function around this sad
point via its third central space-time moments. Unfortu
nately, this phase turns out to be generically small, and
sensitivity to these asymmetries is very weak, making th
extremely hard to measure.

In the absence of such a nontrivial phase, three-part
correlations can still be used to test the chaoticity of
emitting source. To this end we derive the expressions
two- and three-particle correlations for chaotic and partia
coherent sources and establish their respective relations
Our treatment differs from previous studies of multipartic
Bose-Einstein correlations in that we consistently express
correlation functions through the source Wigner dens
even for partially coherent sources. This enables us to re
the shape of the correlators as functions of the various r
tive momenta to certain space-time features of the sourc

II. CHAOTIC SOURCES

For a chaotic source, the two-pion correlation functi
C2(pi ,pj ) can be expressed as@1,13#

C2~pi ,pj !5
P2~pi ,pj !

P1~pi !P1~pj !
511

u*d4xS~x,Ki j !e
iqi j •xu2

*d4xS~x,pi !*d
4yS~y,pj !

511
ur i j u2

r i ir j j
. ~1!

HereP2(pi ,pj ) is the two-pion inclusive cross section, an
P1(pi) is the single-particle inclusive spectrum.S(x,p) is
the single-particle Wigner density of the source, i.e.,
quantum-mechanical analog of its phase-space distribut
The average and relative four-momentaKi j5(pi1pj )/2 and
qi j5pi2pj satisfy the constraintqi j •Ki j50 which results
from the on-shell nature of the observed momentapi . The
two-particle exchange amplituder i j is defined as@13,15#

r i j5r~qi j ,Ki j !5AEiEj^â
†~pi !â~pj !&

5E d4xS~x,Ki j !e
iqi j •x[ f i j e

if i j . ~2!
l-
426 © 1997 The American Physical Society
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56 427WHAT CAN WE LEARN FROM THREE-PION INTERFEROMETRY?
From Eq. ~2! it follows that r i j5r j i* and thusf i j5 f j i and
f i j52f j i . Correspondingly,f i i50,r i i5 f i i , and f i j must
be an even function ofqi j , while f i j is odd inqi j .

The single-pion spectrum can be written as

P1~pi !5E d4xS~x,pi !5 f i i , ~3!

while the true two-pion correlation function is defined by

R2~ i , j ![R2~pi ,pj !5C2~pi ,pj !215
f i j
2

f i i f j j
. ~4!

Similarly, the true three-pion correlation function is given
@13,16–21#

R3~p1 ,p2 ,p3!5C3~p1 ,p2 ,p3!2R2~1,2!2R2~2,3!

2R2~3,1!21

52
Re~r12r23r31!

f 11f 22f 33

52
f 12f 23f 31
f 11f 22f 33

cos~f121f231f31!. ~5!

Since the real partsf i j of the exchange amplitudesr i j can be
extracted from the two-pion correlator, for chaotic sourc
the only additional information contained in the three-pi
correlation function resides in the phase@13#

F[f121f231f31, ~6!

it is a linear combination of the phases of the three excha
amplitudesr12,r23, andr31 which enter the true three-pio
correlatorR3. This phase is odd under interchange of a
two particles. It can be isolated by normalizingR3 with re-
spect to the true two-pion correlatorR2:

r 3~p1 ,p2 ,p3!5
R3~p1 ,p2 ,p3!

AR2~1,2!R2~2,3!R2~3,1!
52cosF. ~7!

In order to understand which space-time features of
source affect the phaseF ~and thus the normalized tru
three-pion correlation functionr 3) we expand the exchang
amplituder i j for small values ofqi j5pi2pj @2,3#. We de-
fine the average of an arbitrary space-time functionf (x) with
the source distributionS(x,Ki j ) as

^ f ~x!& i j5
*d4x f~x!S~x,Ki j !

*d4xS~x,Ki j !
. ~8!

This average is a function of the pair momentumKi j . Using
Eq. ~2! we thus get

r i j5P1~Ki j !F11 i ^qi j •x& i j2
1

2
^~qi j •x!2& i j

2
i

6
^~qi j •x!3& i j1O~qi j

4 !G . ~9!

Separating real and imaginary parts we find, after a li
algebra,
s

e

y

e

e

f i j5P1~Ki j !@12 1
2 ^~qi j • x̃ i j !

2& i j1O~qi j
4 !# ~10!

and

f i j5qi j •^x& i j2
1
6 ^~qi j • x̃ i j !

3& i j1O~qi j
5 !, ~11!

where

x̃ i j5x2^x& i j5x2 x̄ ~Ki j ! ~12!

is the distance to the ‘‘saddle point’’ of the source, i.e., to t
point of maximum emission for pions with momentu
Ki j . According to Eqs.~10! and~4!, the two-pion correlator
is sensitive to the second central~i.e., saddle-point corrected!
space-time moments of the emission functionS(x,Ki j ) @2,3#,
with higher-order corrections from all even central spa
time moments. The phaseF, on the other hand, contain
information on the odd space-time moments. Expand
S(x,Ki j ) around the average momentumK of the pion trip-
let,

K5
p11p21p3

3
5
K121K231K31

3
, ~13!

Ki j5K1 1
6 ~qik1qjk!, iÞ jÞk, ~14!

and usingq121q231q3150, we find from Eqs.~6! and~11!

F5
1

2
q12

m q23
n F]^xm&

]Kn 2
]^xn&
]Km G2

1

24
@q12

m q12
n q23

l 1q23
m q23

n q12
l #

3F ]2^xm&
]Kn]Kl1

]2^xn&
]Kl]Km1

]2^xl&
]Km]KnG

2
1

2
q12

m q23
n ~q121q23!

l^ x̃m x̃ n x̃l&1O~q4!. ~15!

Here the average without subscripts

^ f ~x!&5
*d4x f~x!S~x,K !

*d4xS~x,K !
~16!

denotes the space-time average with the emission func
evaluated at the mean momentumK of the pion triplet, and

x̃5x2^x&5x2 x̄ ~K !. ~17!

Equation~15! is the main result of this section. One eas
checks that has it the correct symmetries under particle
change. It should be noted that, due to the on-shell constr
qi j •Ki j50, only three of the four componentsqi j

m are inde-
pendent. The resulting relation

~q0! i j5qij•bi j , with bi j5Ki j /~K
0! i j , ~18!

can be used to eliminate the redundantq components in Eq.
~15!, thereby mixing spatial and temporal components of
corresponding coefficients. This is a well-known proble
also for the two-pion correlator~see, e.g., Ref.@1#! which
prohibits a clean model-independent separation of the sp
and temporal widths of the source.

Equation~15! features two types of contributions to th
phaseF: The formally leading contribution enters at seco
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428 56U. HEINZ AND Q. H. ZHANG
order in the relative momentaqi j and is proportional to the
rate ] x̄m(K)/]K

n with which the saddle point of the emis
sion function changes as a function of the pion moment
K. This term will in general be nonzero even for emissi
functions with a purely Gaussianx dependence. It gives rise
to a leadingq4 dependence of the normalized true thre
particle correlatorr 352cosF. At order q3 the phaseF re-
ceives additional contributions from the secondK derivatives
of the saddle point as well as from the third central spa
time momentŝ x̃m x̃ n x̃l& of the source. The latter are th
leading contributions from a possible asymmetry of t
emission functionS(x,K) around its saddle pointx̄ (K); they
vanish for purely Gaussian emission functions. We see
they enter the normalized three-particle correlatorr 3 at order
q5 in a mixture with theK dependence of the saddle poin
This renders their isolation essentially impossible.

In contrast to the widths of the emission function, whic
affect the two-pion correlator atsecondorder in the relative
momentum, the additional structural information which c
~in principle! be extracted from the~normalized! three-pion
correlator is seen to enter at most atfourth order inq. Their
measurement is thus very sensitive to an accurate remov
all leadingq2 dependences by proper normalization to t
two-particle correlators. To achieve this looks like an e
tremely difficult experimental task. We are therefore som
what pessimistic about the short-term prospects of extrac
additional structural information about the source from thre
pion correlations.

If the phaseF and the information it contains about th
source are inaccessible, what else can three-pion correla
be used for experimentally? The answer is that one can
the assumption that the source is chaotic. This has b
pointed out previously in Refs.@17,19# where specific simple
parametrizations for the two- and three-particle correlat
~as well as for higher-order correlations! were assumed and
the relationship between the various parameters was stud
We will here derive more general expressions which, in pr
ciple, permit such a test without making any simplifying a
sumptions about the shape of the source.

Before proceeding to the discussion of Bose-Einstein c
relations from partially coherent sources, we would like
close this section with a few short remarks on the effe
from resonance decays. It is well known@22,23# that partial
coherence in the source leads to incomplete correlation
the two-particle sector, in the sense thatR2(q,K) at vanish-
ing relative momentumq50 does not approach the idea
valueR2(0,K)52 for chaotic sources. In actual experimen
there are, however, other possible reasons for apparently
complete two-particle correlations. Most importantly, pio
from the decay of long-lived resonances contribute to
correlator only at very small values ofq and thus~due to
limited two-track resolution! may escape detection in th
correlation signal while fully contributing to the single
particle spectrum, thereby reducing the apparent correla
strength even for a completely chaotic source@24–27#. In a
Gaussian parametrization of the exchange amplitude this
be implemented by writing instead of Eq.~10! for qi jÞ0

f i j5l1/2~Ki j !P1~Ki j !exp@2 1
2qi j

mqi j
n Rmn~Ki j !#, ~19!

where, up to second order inq,Rmn(Ki j )5^ x̃ i j
m x̃ i j

n & i j , with
-
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the source average on the right-hand side~rhs! being taken
only over the ‘‘core’’ of pions from direct emission and from
the decays of short-lived resonances@1,27,28#. The two-
particle correlator then becomes

R2~ i , j !5l~Ki j !
P1
2~Ki j !

P1~pi !P1~pj !
exp@2qi j

mqi j
n Rmn~Ki j !#,

~20!

and for vanishing relative momentaq the three-particle cor-
relation function assumes the value

C3~p15p25p35K !5113 l~K !12 l3/2~K !. ~21!

Note, however, that expression~7! for the normalized true
three-pion correlation function is not affected by resonan
decay contributions and remains unchanged. This will
longer be true for partially coherent sources.

III. PARTIALLY COHERENT SOURCES

Expressions for then-particle inclusive spectra from par
tially coherent sources have been previously derived, w
differing methods, in Refs.@13,16–20#. In the covariant cur-
rent formalism of Refs.@23,15# one decomposes the classic
source current which creates the free pions in the final s
into a coherent and a chaotic term:

J~x!5Jcoh~x!1Jcha~x!. ~22!

Following the treatment of Ref.@15# this leads to the follow-
ing definition of the single-particle Wigner density~‘‘emis-
sion function’’! of the source:

S~x,K !5E d4y

2~2p!3
e2 iK •y^J* ~x1 y/2!J~x2 y/2!&

5Scoh~x,K !1Scha~x,K !, ~23!

with

Scoh~x,K !5E d4y

2~2p!3
e2 iK •yJcoh* ~x1 y/2!Jcoh~x2 y/2!,

~24a!

Scha~x,K !5E d4y

2~2p!3
e2 iK •y^Jcha* ~x1 y/2!Jcha~x2 y/2!&.

~24b!

The average on the rhs of the definition~24b! for the chaotic
part of the emission function is defined as in Ref.@15#, and
we used

^Jcha* ~x!Jcoh~y!&50. ~25!

The Wigner density of the full source is thus the sum o
coherent and a chaotic contribution; no mixed terms oc
because the chaotic and coherent source currents do no
terfere. This allows us to carry over the intuitive and ve
successful Wigner function language for fully chao
sources to the case of partially or completely coher
sources.

We now write
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r i j5*d4xS~x,Ki j !e
iqi j •x5r i j

cha1r i j
coh[Fi j e

iF i j1 f i j e
if i j ,

~26!

whereKi j5(pi1pj )/2,qi j5pi2pj , and

Fi j e
iF i j5*d4xScha~x,Ki j !e

iqi j •x, ~27a!

f i j e
if i j5*d4xScoh~x,Ki j !e

iqi j •x. ~27b!
f
n
tio
; o
ur

of

p
su
As shown in Ref.@13# this yields the two-pion correlation
function in the form

C2~pi ,pj !511R2~ i , j !511
Fi j
212 f i j Fi jcos~F i j2f i j !

~ f i i1Fii !~ f j j1F j j !
,

~28!

while the three-particle correlation is given by
etely
tic

.
y, of the
n

s
ply

rrelator
C3~p1 ,p2 ,p3!5
P3~p1 ,p2 ,p3!

P1~p1!P1~p2!P1~p3!

511R2~1,2!1R2~2,3!1R2~3,1!1
2

P1~p1!P1~p2!P1~p3!
@F12F23F31cos~F121F231F31!

1 f 12F23F31cos~f121F231F31!1F12f 23F31cos~F121f231F31!1F12F23f 31cos~F121F231f31!#.

~29!

Similar expressions were derived in Ref.@18#. The two- and three-particle correlations are seen to vanish for compl
coherent sources (Fi j→0; i , j ). In the opposite limit (f i j→0; i , j ) one recovers the results from Sec. II for completely chao
sources.

The representations~26! and ~27! permit us to write down forFi j , f i j , andF i j ,f i j similar small-q expansions as in Eqs
~10! and ~11!; the corresponding averages are defined with respect to the chaotic and coherent parts, respectivel
Wigner function~23!. In the true two-pion correlation functionR2( i , j ) of Eq. ~28!, the first term thus contains information o
the second central space-time moments ofScha(x,Ki j ) while the second term mixes the second moments ofScha(x,Ki j ) and
Scoh(x,Ki j ) in a rather nontrivial way. Since the number of measurable parameters inR2( i , j ) is the same as before, this implie
a relative loss of information: the second space-time moments ofScha andScoh can neither be separated nor do they sim
combine to the second central moments of the total sourceS5Scha1Scoh.

This complication goes hand in hand with a similar one in the three-pion correlator: Defining the true three-pion co
as before,

R3~1,2,3!5C3~p1 ,p2 ,p3!212R2~1,2!2R2~2,3!2R2~3,1!

5
2

~ f 111F11!~ f 221F22!~ f 331F33!
@F12F23F31cos~F121F231F31!1 f 12F23F31cos~f121F231F31!

1F12f 23F31cos~F121f231F31!1F12F23f 31cos~F121F231f31!#, ~30!
e
rce.
he

y

one sees that, in contrast to Eq.~7! for chaotic sources, the
phase factors can no longer be isolated by normalizingR3

with a proper combination of two-particle correlatorsR2.
This means that, in a small-q expansion,R3(1,2,3) contains
leading terms of second order inq which are independent o
those occurring in the two-particle correlator. On the o
hand, those terms supplement the incomplete informa
fromR2 on the second space-time moments of the source
the other hand, they render the measurements of so
asymmetries impossible.

The full reconstruction of all the~in principle! measurable
information obviously requires a measurement ofR2( i , j )
and R3(1,2,3) as a function of all nine components
p1 ,p2 ,p3 . In view of the technical complexity~both experi-
mental and theoretical! of such a program this is not likely to
happen soon. It must, however, be mentioned that sim
one- or two-parameter Gaussian parametrizations as
e
n
n
ce

le
g-

gested in Refs.@17,19,14# are not sufficient for this purpos
because they very strongly prejudice the form of the sou

To pursue this last point a little further, let us define t
~momentum-dependent! chaotic fraction of the single-
particle spectrum

e~pi !5
Fii

f i i1Fii
5

*d4xScha~x,pi !

*d4xS~x,pi !
. ~31!

The coherent fraction is accordingl
f i i /( f i i1Fii )512e(pi). For vanishing relative momentum
qi j50(i , j51,2,3), we then have

R2~p,p!5e~p!@22e~p!#,

R3~p,p,p!52 e2~p!@322e~p!#. ~32!
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430 56U. HEINZ AND Q. H. ZHANG
For completely chaotic sources,e(p)51, we recover the re-
sults of Sec. II. For partially coherent sources, the norm
ized three-pion correlatorr 3 at vanishingq is given by

r 3~p,p,p!5
R3~p,p,p!

„R2~p,p!…3/2
52Ae~p!

@322e~p!#

@22e~p!#3/2
, ~33!

which, in general, deviates from the chaotic lim
r 3(p,p,p)52.

It would thus seem to be a simple matter to check
limits of R2 andR3 for vanishing relative momenta and co
struct the ratio~33! in order to see whether or not the sour
contains a coherent component. In practice, however,
q50 limit cannot be measured directly, but requires an
trapolation of data at finiteq to zero relative momenta. It is
well known that such an extrapolation can be very sensi
to the assumed functional behavior of the correlator at sm
q. As we will now show our results provide a basis for
reasonable parametrization ofR2 andR3 for smallq.

To this end we start from Eqs.~28! and~30! together with
the small-q expansions~10!, ~11!. Noting thatR2 must van-
ish for q→`, a parametrization which is correct up to se
ond order inq is given by

R2~ i , j !'e2~Ki j !exp@2qi j
mqi j

n Rmn~Ki j !#
ef

f

ly

te
ic

n
f i
te
i

on
l-

e

e
-

e
ll

-

12e~Ki j !„12e~Ki j !…cos„qi j •s~Ki j !…

3exp$2 1
2qi j

mqi j
n @Rmn~Ki j !1rmn~Ki j !#%. ~34!

It follows from Eqs.~10! and ~11! that here

Rmn~Ki j !5^ x̃ i j
m x̃ i j

n & i j
cha, ~35a!

rmn~Ki j !5^ x̃ i j
m x̃ i j

n & i j
coh, ~35b!

sm~Ki j !5^xm& i j
cha2^xm& i j

coh. ~35c!

Equation ~34! neglects an additional factorP2(Ki j )/
P(pi)P(pj ) which is unity for exponential single-particl
spectra@3#. Equation~34! differs from the parametrization
suggested in Ref.@19# by the factor cos„qi j •s(K)…exp@2

1
2

qi j
mqi j

n rmn(Ki j )]; the parametrization of Ref.@19# is thus not
general enough.„It essentially assumes that the coherent p
of the source is pointlike~in spaceand time! and localized at
the saddle point of the chaotic part of the source.… Note that
from Eq. ~34! one must still eliminate the redundantq com-
ponent via the on-shell constraint~18!.

The three-pion correlator can similarly parametrized a
R3~p1 ,p2 ,p3!52e2~K !exp$2@q12
m q12

n 1q23
m q23

n 1 1
2 ~q12

m q23
n 1q12

m q23
n !#Rmn~K !%@e~K !

1„12e~K !…cos„q12•s~K !…exp$ 1
2q12

m q12
n @Rmn~K !2rmn~K !#%

1„12e~K !…cos„q23•s~K !…exp$ 1
2q23

m q23
n ~Rmn~K !2rmn~K !!%

1„12e~K !…cos„~q121q31!•s~K !…exp$ 1
2 ~q121q23!

m~q121q23!
n@Rmn~K !2rmn~K !#%#. ~36!
d

ion
a-
rce
or
de-
ude
is
rue
or.
nce
he
int.
This again generalizes the parametrizations given in R
@17,19#; according to Eqs.~10!, ~11!, it is correct up
to the second order in q if one approximates
P1
2(Ki j ) /P1(pi)/P1(pj )'1 as well ase(Ki j )'e(K). The

parametrizations of Ref.@17,19# are recovered in the limit o
a pointlike coherent source,rmn(K)50, and assuming
s(K)50. ~The first of these two assumptions is explicit
stated in Ref @17#.! One can easily convince
oneself that at q1250, for example, the term
cos„q23•s(K)…exp$

1
2q23

m q23
n @Rmn(K)2rmn(K)#% enters

R3(q23) with a different weight thanR2(q23). ThusR3 pro-
vides additional information which allows us to separa
Rmn(K) from rmn(K) and thereby the widths of the chaot
and coherent parts of the source.

In practice, one must also take into account resona
decays. Since it follows from the discussion at the end o
Sec. II that the long-lived resonances do not affect the in
cept~33! of the normalized true three-pion correlator, and
was shown in Refs.@1,27,28# that expression~35a! remains
essentially valid if the chaotic part of the emission functi
s.

ce
n
r-
t

is restricted to the ‘‘core’’ of direct pions and short-live
resonance decays, we expect Eqs.~34!–~36! to be practically
useful even when resonance decays are included.

IV. CONCLUSIONS

We have studied the question to what extent three-p
Bose-Einstein correlations can provide independent inform
tion about the space-time structure of the emitting sou
which cannot be extracted from two-pion correlations. F
chaotic sources we found that the three-pion correlator
pends on the phase of the two-particle exchange amplit
which drops out from the two-particle cross section. Th
phase can be isolated by proper normalization of the t
three-pion correlator with respect to the two-pion correlat
It was shown to be sensitive to the momentum depende
of the point of highest emissivity in the source and to t
asymmetries of the emission function around that po
However, this sensitivity is weak~it enters only at fourth
order in the relative momentaqi j ), and the corresponding
source properties are hard to measure.
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56 431WHAT CAN WE LEARN FROM THREE-PION INTERFEROMETRY?
We then proceeded to study sources which are not c
pletely chaotic but contain a coherent component.
showed that in this case the emission function can be wri
as a sum of two Wigner densities describing the chaotic
coherent components, respectively, and expressed the
and three-pion correlation functions via these chaotic
coherent Wigner densities. We showed that a compariso
two- and three-pion correlators allows for a determination
the degree of coherence in the source, without contam
tions from resonance decays. To this end one must study
respective correlation functions at vanishing relative m
menta of all particles. To facilitate the extraction of this lim
from experimental data we derived in Eqs.~34! and~36! the
most general parametrizations for the two- and three-p
correlation functions at small relative momenta. These
rametrizations are based on our expressions of the correla
functions in terms of the Wigner density of the source; th
are exact up to second order in the relative momenta, i.e.
emission functionsS(x,K) with a Gaussianx dependence
After eliminating the redundantq components, they are see
to depend on 16 parameters which are all functions of
average momentumK of the pion pair, respectively, triplet
To determine all these parameter functions, a complete s
of the two- and three-particle spectra as functions of all 61
9 5 15 momentum components is necessary.@The 16th pa-
rameter,e(K), describes the degree of coherence and en
the normalization of the correlation functions at vanishi
relative momenta.# This is certainly not an easy task, and
b-
J.

. C

.

ve

.

-
e
n
d
o-
d
of
f
a-
he
-

n
-
ion
y
or

e

dy

rs

might be worthwhile to study whether, for certain simple b
not too unrealistic models for the emission function, it is n
possible to obtain simpler parametrizations~for example by
exploiting certain symmetries of the source!.

Our results show that in the case of partially coher
sources the three-pion correlator contains independent in
mation on the second space-time moments of the so
which cannot be extracted from the two-pion correlator. T
information is needed to separate the space-time charact
tics ~lengths of homogeneity or effective widths! of the cha-
otic and coherent parts of the emission function. To extrac
in practice will not be easy, but the theoretical framework
which this should be done has been presented here.
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