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Friction coefficient for deep-inelastic heavy-ion collisions

G. G. Adamian,1,2 R. V. Jolos,1 A. K. Nasirov,1,2 and A. I. Muminov2
1Joint Institute for Nuclear Research, Dubna, 141980 Russia
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Based on the microscopic model, the friction coefficient for the relative motion of nuclei in deep-inelastic
heavy-ion collisions is calculated. An advantage of the suggested method is that it allows one to consider the
relative motion of nuclei and the intrinsic motion self-consistently. The radial dependence of the friction
coefficient is studied and the results are compared with those found by other methods. It was demonstrated that
the kinetic energy dissipation in deep-inelastic heavy-ion collisions is a gradual process which takes up a
significant part of a reaction time. A decrease of the radial friction coefficient with a heating of nuclei is shown.
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I. INTRODUCTION

Nuclear friction is an important ingredient of theoretic
approaches to a variety of nuclear physics phenomena,
as dynamic thresholds for compound nucleus format
@1–5#, enhancement of neutron emission prior to fiss
@6,7#, width of mass and charge distributions in dee
inelastic heavy-ion reactions@8#, and the width of giant reso
nances@9#. There are many experimental results on de
inelastic heavy-ion collisions~DIC’s! and fusion-fission
reactions which need the introduction of the nuclear frict
concept for their interpretation. This stresses the importa
of understanding the nature of nuclear friction.

The present paper is devoted to calculations of the frict
coefficient for DIC’s. Its appearance is stimulated not on
by the possibility to perform more exact calculations th
earlier, but also by the new experimental results which
quire a more detailed microscopic theory for their interp
tation than was necessary before.

Different theoretical approaches to this problem a
known. The majority of them are based on the assump
that the dissipative mechanism is of a one-body nature@10–
12#. These models differ in the structure of the intrinsic e
citations that are taken into account. The friction is aris
from scattering of the nucleon in one nucleus with the m
ing one-body potential of the other nucleus. The applicat
of the independent-particle model to calculate entrance ch
nel dynamics was discussed in linear response the
@13,14#. In frame of validity of the presented method th
calculated total kinetic energy loss was poor. The main c
lective modes which were responsible for dissipation of re
tive energy and the problems of relation between cutoff ti
and relaxation times were explored as well. The same o
body mechanism of dissipation was used in@15# for the mi-
croscopic calculations of the friction coefficient for radi
and deforming motions adopting the linear response the
discussed above. The main difference was in the use of
two-center shell model. It was found that this model gav
physically plausible value for the friction coefficient as
whole. The dependence of the friction coefficients on
cutoff time, on the deformation and mass asymmetry
nuclear system were presented. A free parameterG, as the
560556-2813/97/56~1!/373~8!/$10.00
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smearing width, was introduced to take into account the
fect of finite collision time and finite decay time of particle
hole excitations. The last was taken into account by th
authors adopting the cutoff procedure obtained from@16# to
reevaluate the friction coefficients for deep-inelastic co
sions microscopically in the framework of the linear r
sponse theory@17#. The results were sensitive to temperatu
of nuclei.

Some of the models do not include nucleon exchange
consider only particle-hole excitations with both the partic
and the hole belonging to the same nucleus@18# or vice versa
@10#. The models also differ in the approximations they u
for including the finite decay time of one-particle–one-ho
~1p-1h! excitations in more complicated configurations~2p-
2h, and so on!. Many approaches@12,14,19,20# implicitly
use the statistical assumption of rapid equilibration of
noncollective intrinsic degrees of freedom and therefore
not applicable to the description of the initial phase of t
reactions where the main part of kinetic energy dissipat
takes place.

The contribution of the actual 1p-1h state or more co
plicated ones to the dissipation process depends on the o
pation numbers of the single-particle states and their ev
tion during the reaction. However, in the calculations of t
nuclear friction coefficient performed up to now, the statis
cal assumption on the excitation energy distribution is re
ized in the usual way, meaning the introduction of tempe
ture and correspondingly, of the Fermi occupation numb
at the very beginning of the reaction. In principle, tempe
ture introduced in this way is a time-dependent quant
However, in practice, a change of temperature and evolu
of the relevant collective variables, i.e., relative distance a
deformation in @17# and elongation in@21#, are not self-
consistently considered. A dependence on temperatur
studied when the collective variables under discussion
fixed or vice versa. It is clear that the self-consistent cal
lations are impossible in the frame of these models beca
they do not consider an intrinsic excitation explicitly. So t
temperature must be considered as a measure of respon
a system to an effect of external forces.

Thus, the time dependence of the single-particle occu
tion numbers was not taken into account. Only in the a
373 © 1997 The American Physical Society
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374 56ADAMIAN, JOLOS, NASIROV, AND MUMINOV
proach based on the dissipative diabatic dynamics~DDD!
@22,23# was the evolution of the single-particle occupati
numbers taken into account, but under the assumption
diabaticity. There are some doubts, however, about the
lidity of the DDD concept. It is also known from the calcu
lations of inelastic processes in nucleus-nucleus collisi
that appreciable energy dissipation takes place even be
the first crossing of the single-particle levels near the Fe
surface@24#.

We should also mention the approach suggested in@25#,
where relative and intrinsic motion were consistently trea
in a time-dependent theory of heavy-ion collisions. The
thors presumed neither weak coupling between the rela
motion and the intrinsic excitations nor the canonical dis
bution function for the density operator of intrinsic motio
However, the analytical expressions for the friction ten
and other characteristics of the energy transport obtaine
@25# were not applied to calculate them.

Thus, it is the aim of the present paper to take into
count the time evolution of the single-particle occupati
numbers during the reaction by numerical solution of
master equation for them and, based on this result, to
form calculations for the friction coefficient. Since the occ
pation numbers found in this way correspond to the curr
kinetic energy losses, this means that the relative and in
sic motions are considered self-consistently. Our mo
makes it possible to take into account explicitly the influen
of the nuclear shell structure on the collision process. Mo
over, we improved the single-particle approximation by
phenomenological allowance for the residual interact
which is treated in the so-calledt approximation. The radia
friction coefficient is calculated as a function of the mass a
charge of the reaction participants.

The general formalism is given in Sec. II. The results
the calculations are presented in Sec. III. A summary is gi
in Sec. IV.

II. BASIC FORMALISM

It is convenient to start with the total Hamiltonian of
dinuclear system written in the form

Ĥ5Ĥ rel~R;P!1Ĥ in~j!1dV̂~R,j!, ~1!

where the Hamiltonian of a relative motion,

Ĥ rel~R;P!5
P̂2

2m
1V̂~R̂!, ~2!

consists of the kinetic energy operator and the nucle
nucleus interaction potentialV̂(R̂). Here, R̂ is the relative
distance between the centers of mass of the fragments,P̂ is
the conjugate momentum, andm is the reduced mass of th
system;j is a set of relevant intrinsic variables. The last tw
terms in Eq.~1! describe the internal motion of nuclei an
the coupling between the relative and internal motions~for
details, see@26,27#!. It is clear that the coupling term leads
a dissipation of the kinetic energy into the energy of inter
nucleon motion.
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Neglecting at the moment the residual nucleon-nucle
interaction, whose effect will be included later, we take
sum of the last two terms~1! as a single-particle Hamiltonian
of a dinuclear system

Ĥ in~j!1dV̂~R,j!5Ĥ„R~ t !,j…1hresidual,

Ĥ@R~ t !#5(
i51

A S 2\2

2m
D i1V̂P@r i2R~ t !#1V̂T~r i ! D , ~3!

wherem is the nucleon mass andA5AP1AT is the total
number of nucleons in the system.

Then, in the second quantization representation,
HamiltonianĤ„R(t),j… can be written as

Ĥ@R~ t !,j#5(
P

«PaP
1aP1(

T
«TaT

1aT

1(
i ,i 8

Vii 8„R~ t !…ai
1ai 8, ~4!

where

(
i ,i 8

Vii 8@R~ t !#ai
1ai 85 (

P,P8
LPP8

~T!
@R~ t !#aP

1aP8

1 (
T,T8

LTT8
~P!

@R~ t !#aT
1aT8

1(
T,P

gPT@R~ t !#~aP
1aT1H.c.!.

~5!

Here P[(nP , j P ,l P ,mP) and T[(nT , j T ,l T ,mT) are the
sets of quantum numbers characterizing the single-par
state in an isolated projectile and the target nuclei, resp
tively. The single-particle basis is constructed from t
asymptotic wave vectors of the single-particle states of
noninteracting nuclei—the projectile ionuP& and the target
nucleusuT& in the form

uP̃&5uP&2
1

2(T uT&^TuP&, ~6a!

u T̃&5uT&2
1

2(P uP&^PuT&. ~6b!

For this basis set, the orthogonality condition is satisfied
to terms linear in̂ PuT&. Then

LPP8
~T!

@R~ t !#5^PuVT~r !uP8&, ~7a!

LTT8
~P!

@R~ t !#5^TuVP@r2R~ t !#uT8&, ~7b!

gPT@R~ t !#5
1

2
^PuVP@r2R~ t !#1VT~r !uT&. ~7c!

The nondiagonal matrix elementsLPP8
(T) (LTT8

(P) ) generate the
particle-hole transitions in the projectile~target! nucleus. The
matrix elementsgPT are responsible for the nucleon e
change between reaction partners. These matrix elem
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56 375FRICTION COEFFICIENT FOR DEEP-INELASTIC . . .
were calculated using the approach proposed in@28,29#. In
Eq. ~4!, «P(T) are the single-particle energies of nonperturb
states in the projectile~target! nucleus. The coupling be
tween the intrinsic nuclear degrees of freedom and the
lective variableR is introduced by theR dependence of the
sum of the single-particle potentials in Eq.~3!. Since the
trajectory calculation shows that the relative distanceR(t)
between the centers of the interacting nuclei could not
less than the sum of their radii, the tail of the partner sing
particle potentials can be considered as a perturbation
turbing the asymptotic single-particle wave functions a
their energies.

It is convenient to include the diagonal matrix elements
Vii 8@R(t)# in H in , introducing the renormalized
R(t)-dependent single-particle energies

«̃ P@R~ t !#5«P1^PuVT~r !uP&, ~8a!

«̃ T@R~ t !#5«T1^TuVP@r2R~ t !#uT&. ~8b!

When the nuclear forces begin to act between the co
ing nuclei, the velocity of their relative motion can be co
sidered as a small quantity compared to the Fermi veloc
Then the speed of the nucleons is mainly associated
their intrinsic motion. Since the relative~collective! motion
is rather slow compared to the intrinsic one, the perturba
of the intrinsic motion produced by changing the coupling
the relative motion (R) can be assumed to be small durin
some small time intervalDt of an arbitrarily chosen timet
@14#. The small parameter in our considerationDt thus char-
acterizes the time interval during which theR-dependent
mean field of the combined dinuclear system changes
little that we can neglect the effect of this changing on
intrinsic motion. At the same time, the characteristic tim
Dt cannot be taken smaller than the relaxation time of
mean field. The situation described above is suitable for
plying the linear response theory to a description of dissi
tive heavy-ion collisions@14#. For this reason, we start from
the expression for the friction coefficient of the radial moti
obtained in that approach@14#,

gRR@R~ t !#5(
ik

U]Vik~R!

]R U2Bik
~1!~ t !, ~9!

Bik
~n!~ t !5

2

\Et2Dt

t

dt8
~ t82t !n

n!
expS t82t

t ik
D

3sin$ṽki@R~ t8!#~ t2t8!%@ ñk~ t8!2 ñ i~ t8!#,

~10!

wheret i j5t itk /(t i1tk); t i is the parameter describing th
damping of the single-particle motion. The expression
t i is derived in the theory of quantum liquids@30,31# ~see the
Appendix!; \ṽ i j5 «̃ i(R)2 «̃ j (R̄) is the energy of the single
particle transition in one of the nuclei as well as between
interacting nuclei. The important ingredients of this formu
are the occupation numbers of the single-particle sta
ñ i(t). Since the excitation energy of the interacting nuc
changes significantly during the course of the collision, it
necessary to take into account the time dependence o
d
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occupation numbers. The importance of this point was
ready stressed in@14#. At the same time, new experiment
data indicate that the assumption of the fast statistical eq
bration of the excitation energy during the collision time, i.
an introduction of a time-dependent temperature and Fe
occupation numbers is not adequate for the physical pict
As already mentioned in the Introduction, the calculations
gRR performed up to now have been done under the assu
tion that the occupation numbers can be taken as the F
occupation numbers

nj5$11exp@~Ej2l!/Q#%21,

whereQ is the temperature corresponding to the total ex
tation energy of a dinuclear system. To find the tim
dependent occupation numbersnj (t), we developed in
@26,27,32# a method which is described briefly below fo
completeness of the presentation.

Since explicit allowance for the residual interaction r
quires extensive calculations, it is customary to take the tw
particle collision integral into account in linearized form (t
approximation!. Then, the equation for the single-partic
density matrixñ takes the form@26,27,32#

i\
] n̂̃~ t !

]t
5$Ĥ@R~ t !#, n̂̃~ t !%2

i\

t
$ n̂̃~ t !2 n̂̃eq@R~ t !#%,

~11!

whereñeq@R(t)# is a local quasiequilibrium distribution, i.e
a Fermi distribution with the temperatureT(t) corresponding
to the excitation energy at the internuclear distanceR(t).
Substituting our Hamiltonian~4! into Eq. ~11!, we have

i\
] ñ i~ t !

]t
5(

k
$Vik@R~ t !# ñki~ t !2Vki@R~ t !# ñ ik~ t !%

2
i\

t i
@ ñ i~ t !2 ñ i

eq~ t !#, ~12!

where ñ i is a diagonal matrix element of the density matr
The approximate equation for nondiagonal matrix eleme
takes the form

i\
] ñ ik~ t !

]t
5\F ṽ ik„R~ t !…2

2i

t ik
G ñ ik~ t !

1Vki@R~ t !#@ ñk~ t !2 ñ i~ t !#, ~13!

where we have used the notationsṽ ik5@ «̃ i2 «̃ k#/\.
Assuming incoherence in the phases of the nondiago

matrix elements, we use the following approximation to si
plify Eq. ~13!:

(
k8

Vk8 i@R~ t !#nk8k~ t !2(
i 8

Vki8@R~ t !#nii 8~ t !

'Vki@R̄~ t !#@nk~ t !2ni~ t !#.

As formulated above, we shall consider the solution of E
~12! and ~13! for a small time intervalDt of an arbitrarily
chosen timet. Then the solution of Eq.~13! can be written as
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376 56ADAMIAN, JOLOS, NASIROV, AND MUMINOV
ñ ik~ t̄ !5
1

i\Et t̄ dt8Vik@R~ t8!#

3expH i E
t8

t̄
dt9F ṽki@R~ t9!#1

i

t ik
G J

3@ ñk~ t8!2 ñ i~ t8!#, ~14!

wheret< t̄<t1Dt. Substituting this result into Eq.~12! and
transforming this equation to an integral, we obtain

ñ i~ t̄ !5expS t2 t̄

t i
D

3H ñ i~ t !1
1

t i
E
t

t̄
dt8 ñ i

eq@R~ t8!#expS t82t

t i
D ~15!

1(
k
E
t

t̄
dt8E

t

t8
dt9V ik~ t8,t9!expS t92 t̄

t ik
D @ ñk~ t9!

2 ñ i~ t9!#J , ~16!

where

V ik~ t,t8!5
2

\2ReHVik@R~ t !#Vki@R~ t8!#

3expF i E
t8

t

dt9ṽki@R~ t9!#G J .
The formal solution of Eq.~15! is

ñ i~ t̄ !5 ñ i
eq@R~ t̄ !#F12expS 2Dt

t i
D G1ni~ t̄ !expS 2Dt

t i
D ,
~17!

where

ni~ t̄ !5 ñ i~ t !1(
k
E
t

t̄
dt8V ik~ t8,t8!

3
sin$ṽki@R~ t8!#~ t82t !%

ṽki@R~ t8!#
@ ñk~ t8!2 ñ i~ t8!#.

~18!

In fact, Eqs.~17! and ~18! present an integral equation fo
ñ i(t).

III. RESULTS AND DISCUSSION

In this section, we present the results of the calculati
of the radial friction coefficient and the kinetic energy loss
as functions of the internucleus distance for trajectories c
responding to DIC. The initial projectile energy, atom
masses, and charges of the colliding nuclei are the in
information used in the calculations. The single-particle p
tentials of the colliding nuclei are taken in the Woods-Sax
form with the parametersr 051.18 fm anda50.54 fm. The
characteristic time parameterDt introduced above is taken t
s
s
r-

al
-
n

be equal to~0.8–1.0!310222 s.
The relative motion equations for the internuclear d

tanceR(t) and the conjugate momentumP(t),

Ṙ5“P~H rel1^tuV̂intut&!, ~19!

Ṗ52“R~H rel1^tuV̂intut&!, ~20!

where ^tu•••ut& means averaging over the intrinsic state
the momentt and the single-particle occupation numbe
ñ i(t), Eqs.~17! and~18! have been solved numerically. Th
transforms the differential equations into finite differen
equations with the time stepDt, and the initial conditions
R(0)520 fm andñ i(0)51 or 0 for occupied and unoccupie
states of the noninteracting nuclei, respectively. Matrix e
mentsLPP8

(T) , LTT8
(P) , andgPT are calculated using the proce

dure developed in@26,27#.
The description of the relative motion depends on

nucleus-nucleus interaction potential, which is determined
a double folding of the effective nuclear and Coulomb int
actions of the nucleons with the nuclear densities of the
teracting nuclei. Because of nucleon exchange and part
hole excitations, the nuclear densities of the colliding nuc
evolve during the reaction and the nucleus-nucleus poten
correspondingly changes. This effect is included in our c
culations.

As an example of the calculations, we present the ra
friction coefficient for the64Zn~440 MeV! 1 196Pt collision
in Fig. 1 as a function ofR for the approach phase of th
reaction~solid curve!. The results of the classical model ca
culations of Gross and Kalinowski@33# ~dashed curves with
stars! are shown for comparison, together with the results
the calculations based on the microscopic model develo
in @17#, which are obtained with a constant temperatu
~dashed curves without stars!. The last curves correspond t
different temperatures, which increase from 0.5 MeV~bot-

FIG. 1. The radial friction coefficient calculated according to t
present model for the approach phase of deep-inelastic64Zn~440
MeV! 1 196Pt collision as a function ofR ~solid curve!. Presented
for comparison are results of the classical model calculations
Gross and Kalinowski@33# ~dashed curve with stars!; the results of
the microscopic model developed in@17# obtained with a fixed tem-
perature of the nucleiQ ~long-dashed curve,Q52.0 MeV; dashed
curve,Q51.0 MeV; dotted curve –Q50.5 MeV!.
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56 377FRICTION COEFFICIENT FOR DEEP-INELASTIC . . .
tom curve! to 2 MeV ~upper curve! in Fig. 1. It can be seen
that the difference between our results and the results of@33#
increases with the increase in the overlapping of the collid
nuclei. Comparing our results with the results of@17#, we can
see that our radial friction coefficient increasingly coincid
asR decreases. This is caused by the fact that our ma
elements of the nucleon intrinsic transitions are larger t
ones in@17# at small values ofR. Notice, in particular, the
qualitative difference in the calculation methods. In the we
known classical case presented in@33#, the shell structure of
the interacting nuclei is not taken into account. In@17#, the
shell structure was included into consideration, althoug
was assumed that the intrinsic states do not change over
and the single-particle occupation numbers are character
by a fixed temperature. In contrast to@17#, our method al-
lows us to include the time dependence of single-part
occupation numbers in the consideration and avoid the a
aging procedure which makes it impossible to perform c
sistent calculations of the evolution of the collective and
trinsic variables.

To demonstrate the importance of the shell effects,
perform the calculations for two reactions in which nea
the same number of nucleons are included. In Figs. 2 an
the radial friction coefficientgRR is given as a function of

FIG. 2. The radial friction coefficientsgRRas a function ofR for
both the exit~solid curve! and approach~dashed curve! stages of
the 64Zn~440 MeV! 1196Pt reaction.

FIG. 3. The same as in Fig. 2 but for the56Fe~480 MeV! 1
208Pb reaction.
g

s
ix
n

-

it
e

ed

e
r-
-
-

e

3,

R for both the approach~solid curve! and exit~dashed curve!
stages of the64Zn~440 MeV! 1 196Pt and56Fe~480 MeV! 1
208Pb reactions. It can be seen thatgRR takes a smaller value
for the exit stage in comparison with that of the approa
one. This result demonstrates the decrease in the radial
tion coefficient with heating of the nuclei. Such behavior
in contrast to that obtained in@17# in the coherent term ap
proximation~dashed lines in Fig. 1!. The effect of the shell
structure and heating of nuclei can be seen in compar
Figs. 2 and 3. It is interesting that for the second56Fe~480
MeV! 1 208Pb reaction, the difference between values
gRR for the exit and approach stages is larger. This effec
explained by the difference in the single-particle lev
scheme of the nuclei participating in the reaction, namely,
a difference in the energy gap between the occupied
unoccupied levels, which is larger in208Pb than in196Pt, and
in 56Fe than in64Zn. With the temperature increase, the e
ergy gap between the occupied and unoccupied sin
particle states is smoothed out. As a result, the excita
energy per particle transition becomes smaller. It decrea
the friction coefficient compared to those at lower tempe
ture. However, the temperature increase should be com
rable with the energy gap to produce the effect.

To illustrate the dynamics of the relative motion, we de
onstrate in Figs. 4 and 5 the dependence of the total kin
energy losses on the current time of the collisi
@R(t50)520 fm#. The calculations are done in the fram
work of our model~solid curve! and based on the classic
model of @33# realized with the codeTRAJEC @34# for the
64Zn~440 MeV! 1 196Pt and 56Fe~480 MeV! 1 208Pb reac-
tions, respectively. The solid and dashed arrows indicate
moments corresponding to the turning points of the trajec
ries in our model and in the classical model calculatio
respectively. It can be seen that, in contrast to the res
of the classical model@33# calculations, where the majority
of kinetic energy is dissipated at the very beginning
the reaction during a short time interval of the order
0.4310221 s, in our model, this process takes a significan
larger time. According to the classical model, the absenc

FIG. 4. Dependence of the total kinetic energy losses calcula
by our method~solid curve! and on the basis of the classical mod
@32# realized with the codeTRAJEC @33# for the 64Zn~440 MeV! 1
196Pt reaction. The solid and dashed arrows indicate the mom
corresponding to the turning point of the trajectory in the pres
and the classical model calculations, respectively.
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378 56ADAMIAN, JOLOS, NASIROV, AND MUMINOV
correlations between the nucleon exchange and the tota
netic energy losses leads to intensive energy dissipation
the small nucleon exchange simultaneously. An applica
of this classic model to calculate the charge variancesZ

2 was
unsuccessful@8#. The friction coefficient obtained in@33#
significantly exceeds our friction coefficient where the int
acting nuclei strongly overlapped. The shortness of the c
acteristic time for the kinetic energy dissipation is explain
by the large values of the friction coefficient used in t
classical phenomenological model~Fig. 1!.

In contrast to the results of the classical model calcu
tions, which support the idea of fast kinetic energy losses
thermalization of the excitation energy at the beginning
the reaction, our calculations support the idea of a grad
kinetic energy dissipation. This conclusion is in line with t
results of analysis of mechanism of very heavy-ion collisio
@35#. Kinetic energy of the relative motion is found to b
dissipated as nucleons are exchanged, indicating that
time scales of both processes are similar.

The effect of the redistribution of the particles over t
single-particle states is considered to be a response o
nuclei to the relative motion. That appears as friction and
the dynamic change of the nucleus-nucleus potential. In
6, we show correction to the nucleus-nucleus interaction
tential generated by the rearrangement of the nuclear de
ties during the approach phase of the reaction for the c
sion of 64Ni~320 MeV! 1 208Pb. An expression for this
correction is obtained early as an effect of multinucle
transfer@36,27# and particle-hole excitations@27# on the rela-
tive motion due to the coupling term~5!. It can be seen tha
the correction increases in absolute value with a decreas
the internucleus distanceR. This dynamic effect can be im
portant when calculating massive nuclei collisions wh
Z1•Z2 is large and the pocket in the nucleus-nucleus pot
tial is too shallow to provide for the capture of nuclei in th
entrance channel. The nucleus-nucleus interaction poten
found by the sudden approximation~dotted line! and those
calculated with the dynamic correction~dashed line!, which
is discussed just above, are shown in Fig. 7. The availa
energy of a relative motion, which is equal to the differen
between the initial kinetic energyEc.m. and the total kinetic
energy loss~TKEL!, is also presented~solid line! as a func-

FIG. 5. The same as in Fig. 4 but for the56Fe~480 MeV! 1
208Pb reaction.
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tion of the relative distanceR. It can be seen that the correc
tion to the sudden approximation, produced by a dynam
rearrangement of the particle distributions in the interact
nuclei, is comparable to the depth of the pocket in t
nucleus-nucleus potential, particularly in the case of mass
nuclear systems. Thus, taking this effect into account, we
determine the dynamic critical value of the orbital angu
momentum, which is usually used together with the width
the angular momentum distribution as input information
study a behavior of the compound nucleus formed in a c
lision. It is well known that the mean value and width of th
compound nucleus angular momentum distribution is a c
cial parameter for statistical models.

IV. SUMMARY

In conclusion, we have calculated the friction coefficie
for DIC, based on the microscopic model of the structure
the colliding nuclei, and thereby avoid the assumption o

FIG. 6. Correction to the nucleus-nucleus interaction poten
generated by a rearrangement of the nuclear densities during
approach phase of the reaction for the collision of64Ni~320 MeV!
1 208Pb.

FIG. 7. The nucleus-nucleus interaction potentialV(R) obtained
in the sudden approximation~dotted line! and with the dynamic
correction~dashed line! presented in Fig. 6. An available energy
the relative motion (Ec.m.2TKEL) is given as a function of the
relative distanceR ~solid line! for the 64Ni~320 MeV! 1 208Pb
reaction.
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fast statistical equilibrium of the dissipated kinetic energ
Our results demonstrate the importance of considering
friction coefficient as an exact dynamic function of th
single-particle occupation numbers. The decrease in the
dial friction coefficient with the heating of the nuclei ha
been shown. Such behavior is in contrast to that obtaine
@15#. We have demonstrated that the kinetic energy diss
tion in DIC is a gradual process which takes up a signific
amount of a reaction time.
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APPENDIX

The value of t i is calculated using the results of th
theory of quantum liquids@30,31#

1

t i
~a! 5

A2p

32\«FK
~a!F ~ f K2g!21

1

2
~ f K1g!2G

3@~pQK!21~ «̃ i2lK
~a!!2#F11expS lK

~a!2 «̃ i

QK
D G21

,

~A1!
an
r,

L.
, C

ry

J.

H

.
e

a-

in
a-
t

ed

where

QK~ t !53.46A EK* ~ t !

^AK~ t !&

is the effective temperature determined by the amount
intrinsic excitation energy EK*5EK*

(Z)1EK*
(N) ;

^AK(t)&5^ZK(t)&1^NK(t)&, lK
(a)(t) , andEK*

(a)(t) are the
mass number, chemical potential, and intrinsic excitation
ergies for the proton (a5Z) and neutron (a5N) sub-
systems of the nucleusK(K5P,T), respectively~for details,
see@26#!. Furthermore, the finite size of nuclei and the ava
able difference between the numbers of neutrons and pro
need to use the following expressions for the Fermi energ
@31#:

«FK
~Z!5«FF12

2

3
~112 f 8!

^NK&2^ZK&

^AK& G ,
«FK

~N!5«FF11
2

3
~112 f 8!

^NK&2^ZK&

^AK& G , ~A2!

whereeF537 MeV,

f K5 f in2
2

^AK&1/3
~ f in2 f ex!,

f K8 5 f in8 2
2

^AK&1/3
~ f in8 2 f ex8 !, ~A3!

and f in50.09, f in8 50.42, f ex522.59, f ex8 50.54, g50.7 are
the constants of the effective nucleon-nucleon interaction
. A
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