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p- and K-meson Bethe-Salpeter amplitudes
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~Received 18 August 1997!

Independent of assumptions about the form of the quark-quark scattering kernelK, we derive the explicit
relation between the flavor-nonsinglet pseudoscalar-meson Bethe-Salpeter amplitudeGH and the dressed-quark
propagator in the chiral limit. In addition to a term proportional tog5, GH necessarily contains qualitatively and
quantitatively important terms proportional tog5g•P andg5g•kk•P, whereP is the total momentum of the
bound state. The axial-vector vertex contains a bound state pole described byGH , whose residue is the leptonic
decay constant for the bound state. The pseudoscalar vertex also contains such a bound state pole and, in the
chiral limit, the residue of this pole is related to the vacuum quark condensate. The axial-vector Ward-
Takahashi identity relates these pole residues, with the Gell-Mann–Oakes–Renner relation a corollary of this
identity. The dominant ultraviolet asymptotic behavior of the scalar functions in the meson Bethe-Salpeter
amplitude is fully determined by the behavior of the chiral limit quark mass function, and is characteristic of
the QCD renormalization group. The rainbow-ladderAnsatzfor K, with a simple model for the dressed-quark-
quark interaction, is used to illustrate and elucidate these general results. The model preserves the one-loop
renormalization group structure of QCD. The numerical studies also provide a means of exploring procedures
for solving the Bethe-Salpeter equation without a three-dimensional reduction.@S0556-2813~97!04112-5#

PACS number~s!: 14.40.Aq, 24.85.1p, 11.10.St, 12.38.Lg
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I. INTRODUCTION

p andK mesons are the lightest hadrons and hence t
play a significant role in the phenomenology of low-t
intermediate energy nuclear physics as mediators of
long-range part of the hadron-hadron interaction. They
easily produced in electron-nucleon and nucleon-nucl
collisions and therefore provide an ideal means of explor
models of hadronic structure and subnucleonic degree
freedom in nuclei. As mesons, the simple quark-antiqu
valence-quark content of thep andK makes them the sim
plest light-quark systems one can study as strong interac
bound states, and this is a necessary step in developi
detailed understanding of their properties and interaction
terms of the elementary degrees of freedom in QCD.

Mesonic bound states are described by the homogen
Bethe-Salpeter equation~BSE!, which is one of the Dyson-
Schwinger equations@1# ~DSE’s! characterizing QCD. The
homogeneous BSE is an eigenvalue problem whose ei
value isP2, the square of the bound state mass, and wh
eigenvector is the bound state amplitude~fully amputated,
quark-antiquark-meson vertex!. This bound state, or Bethe
Salpeter, amplitude is a crucial element in the calculation
production and scattering processes involving mesons, a
lustrated in Refs.@1–3#. The BSE is familiar in the study o
scattering and binding in two-nucleon systems, and it is of
illustrated, and its features explored, via the problem of t
elementary scalars interacting via the exchange of a diffe
elementary scalar@4#. There have been many applications
the strong interaction meson spectrum, with recent, exten
studies in this general framework being those of Refs.@6–8#,
which also cite related research.

Bethe-Salpeter equation studies can be characterize
their treatment of the quark-antiquark scattering ker
K(q,k;P), a concrete calculation being specified by a tru
560556-2813/97/56~6!/3369~15!/$10.00
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cation of the skeleton expansion forK. This kernel also ap-
pears implicitly in the DSE for the dressed-quark propaga
~the QCD ‘‘gap equation’’! via the dressed-quark-gluon ve
tex Gn

a(q,p). In studies of the spectrum and interactions
the bound states of light quarks, where dynamical ch
symmetry breaking~DCSB! and Goldstone’s theorem ar
particularly important, it is crucial to ensure thatK and Gn

a

are ‘‘mutually consistent,’’ by which we mean that they mu
be such as to guarantee the preservation of the axial-ve
Ward-Takahashi identity@9#. Otherwise, as discussed an
exemplified in Refs.@7,8,10#, a qualitatively correct descrip
tion of the light-quark meson spectrum is not possible; i
‘‘fine-tuning’’ is necessary to properly describe thetheoret-
ical ideal of the chiral limit, and the observational fact th
the pion is so much lighter than the characteristic hadro
scale: mr/2.mN/38Mq , the constituent quark mass, b
mp/2.0.2Mq .

The rainbow-ladder truncation of the quark-DSE a
meson-BSE, without a three-dimensional reduction, is
specification ofGn

a andK that ensures the preservation of th
axial-vector Ward-Takahashi identity. It is fully specified b
anAnsatzfor the dressed-quark-quark interaction and allo
a qualitatively and quantitatively good description of flavo
nonsinglet pseudoscalar, vector, and axial vector mes
without fine-tuning, even in very simple models@11#. As
such it is a phenomenologically efficacious tool in this se
tor.

The fact that it describes the flavor-singlet pseudosc
and scalar mesons poorly is not often mentioned. Howe
this defect is not crucial now that its source has been ide
fied and understood@12,13#. Employing a straightforward
and systematic procedure for extending the rainbow-lad
truncation, a procedure that preserves the axial-vector W
Takahashi identity at every order, allows one to analyze
attractive and repulsive terms order by order beyond lad
3369 © 1997 The American Physical Society
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truncation in the BSE. One finds, for example, that in t
flavor-nonsinglet pseudoscalar channel the repulsive te
are approximately canceled by attractive terms that aris
the same order, which explains why the ladder truncat
provides a good approximation in this channel. This is
the case in the scalar channel where higher-order term
not cancel in a like manner but lead to a net repulsive eff
whose magnitude cannot be estimateda priori but which
entails that the ladder truncation provides a poor approxi
tion. In the flavor-singlet pseudoscalar channel, timel
gluon exchange diagrams arise when one improves upon
ladder truncation and these provide a plausible mechan
for splitting the flavor-singlet and flavor-nonsinglet meso
i.e., for generating a significanth-h8 mass splitting@14#.
These observations illustrate and emphasize that
rainbow-ladder truncation can lead to qualitatively and qu
titatively reliable conclusions if used judiciously.

Our goal herein is to provide a concrete illustration of t
general results of Ref.@9#, i.e., of the importance, feasibility
and essential consequences of preserving the axial-ve
Ward-Takahashi identity in BSE studies of quark-antiqu
bound states, and the extension of these results to SUNf
>3). We employ a renormalizable DSE model of QCD th
preserves the one-loop renormalization characteristics of
dressed-quark and -gluon propagators and the quark-g
vertex. This allows an explicit demonstration of the ren
malization group flow of the vacuum quark condensate,
example, and renormalization point independence of ph
cal observables in this framework. We concentrate on thp
and K mesons since this subsystem has all the comple
necessary for a complete discussion of the features we
to elucidate.

In Sec. II we describe the DSE for the renormaliz
dressed-quark propagator, this propagator being a critica
ement in the construction of the kernel in the BSE for mes
bound states. We discuss this BSE in Sec. III, along with
constraints entailed by preserving the axial-vector Wa
Takahashi identity. In Sec. IV we report a model study of
quark DSE and meson BSE, and a range ofp- andK-meson
observables, illustrating the model-independent results
rived in the preceding sections. We summarize and conc
in Sec. V.

II. QUARK DYSON-SCHWINGER EQUATION

In a Euclidean space formulation, with$gm ,gn%52dmn ,
gm

† 5gm , anda•b5( i 51
4 aibi , the DSE for the renormalized

dressed-quark propagator is

S~p!215Z2~ ig•p1mbm!1Z1E
q

L

g2Dmn~p2q!
la

2
gmS~q!

3Gn
a~q,p!, ~1!

whereDmn(k) is the renormalized dressed-gluon propaga
Gn

a(q;p) is the renormalized dressed-quark-gluon vert
mbm is theL-dependent current-quark bare mass that app
in the Lagrangian, and*q

L8*Ld4q/(2p)4 represents mne
monically a translationally invariant regularization of the
integral, withL the regularization mass scale. The final sta
of any calculation is to remove the regularization by taki
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the limit L→`. The quark-gluon-vertex and quark wav
function renormalization constantsZ1(m2,L2) and
Z2(m2,L2), respectively, depend on the renormalizati
point and the regularization mass scale, as does the m
renormalization constantZm(m2,L2)8Z2(m2,L2)21Z4(m2,
L2). In Eq. ~1!, S, Gm

a , andmbm depend on the quark flavor
although we have not indicated this explicitly. However,
our analysis we assume, and employ, a flavor-indepen
renormalization scheme and hence all the renormaliza
constants are flavor independent.

A. General remarks about renormalization

1. Dressed-quark propagator

The solution of Eq.~1! has the general form

S~p!215 ig•pA~p2,m2!1B~p2,m2!

5
1

Z~p2,m2!
@ ig•p1M ~p2,m2!#, ~2!

renormalized such that, at some large1 spacelikem2,

S~p!21up25m25 ig•p1m~m!, ~3!

wherem(m) is the renormalized quark mass at the scalem.
In the presence of an explicit, chiral-symmetry-breakin
current-quark mass one hasZ4m(m)5Z2mbm, neglecting
O(1/m2) corrections associated with dynamical chiral sy
metry breaking that are intrinsically nonperturbative in o
gin.

Multiplicative renormalizability in QCD entails that

A~p2,m2!

A~p2,m̄2!
5

Z2~m2,L2!

Z2~m̄2,L2!
5A~m̄2,m2!5

1

A~m2,m̄2!
. ~4!

Such relations can be used as constraints on model studi
Eq. ~1!. Explicitly, at one-loop order in perturbation theory

Z2~m2,L2!5Fa~L2!

a~m2!
G2gF /b1

, ~5!

wheregF5 2
3 j andb15Nf /3211/2, withj the gauge param

eter andNf the number of active quark flavors. At this orde

a~Q2!5
p

2 1
2 b1ln@Q2/LQCD

2 #
. ~6!

Clearly, at one loop in Landau gauge (j50), A(p2,m2)[1,
and a deviation from this result in a solution of Eq.~1! is a

1Herein, by ‘‘large’’ we meanm2 very much greater than the
renormalization-group-invariant current-quark mass for thes quark
so as to ensure that, in our model calculations, the renormaliza
constants are flavor independent to better than 1%. It is possib
employ a modified subtraction scheme in which the renormaliza
constants are exactly flavor independent; however, it does not q
titatively affect our results and hence is an unnecessary comp
tion @15#.
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higher-loop effect. Such effects are always present in
self-consistent solution of Eq.~1!.

The ratio M (p2,m2)5B(p2,m2)/A(p2,m2) is indepen-
dent of the renormalization point in perturbation theory; i.
with mÞm̄,

M ~p2,m2!5M ~p2,m̄2!8M ~p2!, ;p2. ~7!

At one-loop order,

m~m!8M ~m2!5
m̂

~ 1
2 ln@m2/LQCD

2 # !gm
, ~8!

where m̂ is a renormalization-point-independent curre
quark mass,gm512/(3322Nf) is the anomalous dimensio
at this order, and

Zm~m2,L2!5Fa~L2!

a~m2!
G gm

. ~9!

In QCD, gm is independent of the gauge parameter to
orders in perturbation theory and the chiral limit is defin
by m̂50. Dynamical chiral symmetry breaking is manife
when, form̂50, one obtainsm(m);O(1/m2)Þ0 in solving
Eq. ~1!, which is impossible at any finite order in perturb
tion theory.2 This is discussed and illustrated in Sec. IV A

2. Dressed-gluon propagator

In a general covariant gauge the renormalized dres
gluon propagator in Eq.~1! has the general form

Dmn~k!5S dmn2
kmkn

k2 D d~k2,m2!

k2
1j

kmkn

k4
, ~10!

where d(k2,m2)51/@11P(k2,m2)#, with P(k2,m2) the
renormalized gluon vacuum polarization. The fact that
longitudinal (j-dependent! part ofDmn(k) is not modified by
interactions is the result of a Slavnov-Taylor identity
QCD: kmDmn(k)5jkn /k2. We note that Landau gauge is
fixed point of the renormalization group; i.e., in Landa
gauge the renormalization-group-invariant gauge param
is zero to all orders in perturbation theory, and hence
employ this gauge in all numerical studies herein.

Multiplicative renormalizability entails that

d~k2,m2!

d~k2,m̄2!
5

Z3~m̄2,L2!

Z3~m2,L2!
5d~m2,m̄2!5

1

d~m̄2,m2!
.

~11!

At one-loop order in perturbation theory,

2The arguments presented herein cannot be applied in a stra
forward fashion to models whose ultraviolet behavior is that
quenched QED4, such as Ref.@16#, where the chiral limit cannot be
defined in this way. The difficulties encountered in such cases
illustrated in Ref.@17#.
e
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e

Z3~m2,L2!5Fa~L2!

a~m2!
G2g1 /b1

, ~12!

whereg15 1
3 Nf2

1
4 (1323j).

3. Dressed-quark-gluon vertex

The renormalized dressed-quark-gluon vertex in Eq.~1! is
of the form

Gn
a~k,p!5

la

2
Gn~k,p!. ~13!

As a fully amputated vertex, it is free of kinematic singula
ties. The general Lorentz structure ofGn(k,p) is straightfor-
ward but lengthy, involving 12 distinct scalar form factor
and here we do not reproduce it fully,

Gn~k,p!5gnF1~k,p,m!1•••, ~14!

but remark that Ref.@15#, pp. 80–83, and Refs.@18,19# pro-
vide an elucidation of its structure, evaluation, and prop
ties.

Renormalizability entails that only the form factorF1,
associated with thegn tensor, is ultraviolet divergent. By
convention and definingf 1(k2,m2)8F1(k,2k,m), Gn(k,p)
is renormalized such that, at some large spacelikem2,

f 1~m2,m2!51. ~15!

Since the renormalization is multiplicative, one has

f 1~k2,m2!

f 1~k2,m̄2!
5

Z1~m2,L2!

Z1~m̄2,L2!
5 f 1~m̄2,m2!5

1

f 1~m2,m̄2!
.

~16!

At one loop in perturbation theory the vertex renormalizati
constant is

Z1~m2,L2!5Fa~L2!

a~m2!
G2gG /b1

, ~17!

wheregG5 1
2 @ 3

4 (31j)1 4
3 j#.

B. Model for the quark DSE

In order to exemplify the results of Ref.@9#, which we
reiterate and generalize in Sec. III A, we must know the fo
of Dmn(k) and Gn(k,p), not only in the ultraviolet where
perturbation theory is applicable, but also in the infrare
where perturbation theory fails and lattice simulations
affected by finite-volume artifacts.Dmn(k) andGn(k,p) sat-
isfy DSE’s. However, studies of these equations in QCD
rudimentary and are presently best used only to sug
qualitatively reliableAnsätze for these Schwinger functions
That is why all quantitative studies of the quark DSE to d
have employed model forms ofDmn(k) andGn(k,p).

1. Abelian approximation

To introduce one commonly used pair ofAnsätze, we use
Eqs.~5!, ~12!, and~17! and observe that
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2gF

b1
1

g1

b1
2

2gG

b1
51. ~18!

Hence, on the kinematic domain for whichQ28(p2q)2

;p2;q2 is large and spacelike, the renormalized dress
ladder kernel in the Bethe-Salpeter equation for the~fully
amputated! Bethe-Salpeter amplitude behaves as follows:

g2~m2!Dmn~p2q!

3@Gm
a ~p1 ,q1!S~q1!#3@S~q2!Gn

a~q2 ,p2!#

54pa~Q2!Dmn
free~p2q!Fla

2
gmSfree~q1!G

3FSfree~q2!
la

2
gnG , ~19!

where P is the total quark-antiquark momentum,p18p
1hPP, and p28p2(12hP)P @see Eq.~25!#. This obser-
vation, and the intimate relation between the kernel of
pseudoscalar BSE and the integrand in Eq.~1! @12#, provides
a means of understanding the origin of an often usedAnsatz
for Dmn(k), i.e., in Landau gauge, making the replaceme

g2Dmn~k!→4pa~k2!Dmn
free~k! ~20!

in Eq. ~1!, and using the ‘‘rainbow approximation’’

Gn~q,p!5gn . ~21!

TheAnsatzexpressed in Eq.~20! is often described as th
‘‘Abelian approximation’’ because the left- and right-han
sides areequal in QED. In QCD, equality between the tw
sides of Eq.~20! cannot be obtained easily by a selecti
resummation of diagrams. As reviewed in Ref.@1#, Eqs.
~5.1!–~5.8!, it can only be achieved by enforcing equali
between the renormalization constants for the ghost-gl
vertex and ghost wave function:Z̃15 Z̃3.

A mutually consistent constraint, which follows fromZ̃1

5 Z̃3 at a formal level, is to enforce the Abelian Ward ide
tity Z15Z2. At one loop this corresponds to neglecting t
contribution of the three-gluon vertex toGn , in which case

gG→ 2
3 j5gF . This additional constraint provides the bas

for extensions of Eq.~21!, i.e., usingAnsätzefor Gn that are
consistent with the vector Ward-Takahashi identity in QE
@20#, such as Refs.@21–23#.

The combination of Abelian and rainbow approximatio
~with Z1515Z2) yields a mass functionM (p2), with the
‘‘correct’’ one-loop anomalous dimension, i.e.,gm in Eq. ~8!
in the case of explicit chiral symmetry breaking or (
2gm) in its absence@24#. However, other often usedAnsätze
for Gn @18,25# yield different and incorrect anomalous d
mensions forM (p2) @26#. This illustrates and emphasize
that the anomalous dimension of the solution of Eq.~1! is
sensitive to the details of the asymptotic behavior of
Ansätze for the elements in the integrand. One role of t
multiplicative renormalization constantZ1 is to compensate
for this.
d-

e

n

e

2. Model for g2Dµn„p2q…Gn„q,p…

Herein we employ a model for the kernel of Eq.~1! based
on the Abelian approximation:

Z1E
q

L

g2Dmn~p2q!
la

2
gmS~q!Gn

a~q,p!

→E
q

L

G„~p2q!2
…Dmn

free~p2q!
la

2
gmS~q!

la

2
gn ,

~22!

with the specification of the model complete once a form
chosen for the ‘‘effective coupling’’G(k2).

One consideration underlying thisAnsatzis that we wish
to study subtractive renormalization in a DSE model of QC
and it is not possible to determineZ1 without analyzing the
DSE for the dressed-quark-gluon vertex, a problem we p
pone. Instead we explored variousAnsätze for Gn and found
that, withG(k2)54pa(k2) for largek2, there was always a
least oneAnsatzfor Z1 that led to the correct anomalou
dimension forM (p2). This interplay between the the reno
malization constant and the integral is manifest in QCD a
Eq. ~22! is a simple means of implementing it.

In choosing a form forG(k2) we noted that the behavio
of a(k2) in the ultraviolet, i.e., fork2.1 –2 GeV2, is well
described by perturbation theory. Constraints on the form
G(k2) in the infrared come from the DSE satisfied by t
dressed-gluon propagatorDmn(k). As summarized succinctly
in Refs.@13,27#, qualitatively reliable studies of this equatio
indicate that the dressed-quark-quark interaction is sign
cantly enhanced in the infrared such that on this domain
well represented by an integrable singularity@28#. Combin-
ing these observations with Eqs.~18!–~20!, which illustrate
the necessary interplay between the anomalous dimens
of each term in the integrand of Eq.~1!, motivates theAnsatz

G~k2!

k2
58p4Dd4~k!1

4p2

v6
Dk2e2k2/v2

14p
gmp

1
2 ln@t1~11k2/LQCD

2 !2#
F~k2!, ~23!

with F(k2)5$12exp(2k2/@4mt
2#)%/k2 andt5e221. ~We use

Nf54 and LQCD
Nf54

50.234 GeV in our numerical studies!
This is a simple modification of the form used in Ref.@16#,
one which preserves the one-loop renormalization group
havior of QCD in the quark DSE.

The qualitative features of Eq.~23! are clear. The first
term is an integrable infrared singularity@29# and the second
is a finite-width approximation tod4(k), normalized such
that it has the same*d4k as the first term. In this way we
split the infrared singularity into the sum of a zero-width a
a finite-width piece. The last term in Eq.~23! is proportional
to a(k2)/k2 at large spacelikek2 and has no singularity on
the real-k2 axis.

There are ostensibly three parameters in Eq.~23!: D, v,
andmt (D52gmmt

2 in Ref. @16#!. However, in our numeri-
cal studies, using a renormalization pointm519 GeV, which
is large enough to be in the perturbative domain, we fix
v50.3 GeV@51/(0.66 fm)# and mt50.5 GeV@51/(0.39
fm)#, and only variedD and the renormalizedu/d- and
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s-current-quark masses in order to obtain a good descrip
of low-energyp- andK-meson properties. As shown below
this is achieved with

D50.781 GeV2, mu/d~m!53.74 MeV,

ms~m!582.5 MeV. ~24!

~We do not consider isospin-breaking effects herein.! We
chose the quoted values ofv andmt primarily so as to en-
sure thatG(k2)'4pa(k2) for k2.2 GeV2, as illustrated in
Fig. 1. This is sufficient for our present illustrative study, ju
as the form in Ref.@16# was sufficient therein. However
increasing sophistication and/or an exploration of a broa
range of observables is likely to require a more careful tre
ment of this or other parametric forms.

Evolved according to Eq.~8!, postponing until Sec. IV A
the discussion of whether this formula is appropriate,
‘‘best fit’’ mass values in Eq.~24! correspond tomu/d

1 GeV

56.4 MeV andms
1 GeV5140 MeV. The ‘‘best fit’’ values are

sensitive to the behavior ofG(k2) for k2;1 –2 GeV2, which
can be illustrated by their dependence onv: Increasing
v→1.5v, while maintaining a good fit top- andK-meson
observables, requires a;10% reduction in the value of thes
masses. With minor modifications of our parametrization
can satisfy our phenomenological constraints using curr
quark masses that are a factor of;1.5–2, smaller, as can
vassed in Ref.@30#. We would have to apply tighter con
straints in our phenomenological application to make
statement about the current-quark masses of light quarks
is more accurate than this. These considerations do not a
the ratio of our fitted current-quark mass value
ms(m)/mu/d(m)522.0, which is consistent with Refs.@6,11#
and the discussion of Ref.@30#.

III. PION AND KAON BETHE-SALPETER EQUATIONS

The renormalized, homogeneous, pseudoscalar Be
Salpeter equation is

FIG. 1. A comparison ofG(k2)/k2 in Eq. ~23! obtained using the
best fit parameters of Eq.~24! ~solid line!, with 4pa(k2)/k2 in
Eq. ~6! ~dashed line!. The obvious infrared enhancement is quali
tively and semiquantitatively in agreement with that inferred in
gluon DSE studies of Ref.@28#.
n

t

er
t-

e

e
t-

a
at
ct

,

e-

@GH~k;P!# tu5E
q

L

@xH~q;P!#srKtu
rs~q,k;P!, ~25!

whereH5p or K specifies the flavor-matrix structure of th
amplitude; xH(q;P)8S(q1)GH(q;P)S(q2), with S(q)
5diag„Su(q),Sd(q),Ss(q)…; q15q1hPP, q25q2(1
2hP)P, with P the total momentum of the bound state; a
r , . . . ,u represent color-, Dirac- and flavor-matrix indices

In Eq. ~25!, Ktu
rs(q,k;P) is the renormalized, fully-

amputated quark-antiquark scattering kernel, which also
pears implicitly in Eq.~1! because it is the kernel in th
inhomogeneous integral equation satisfied byGn(q;p).
Ktu

rs(q,k;P) is a four-point Schwinger function obtained a
the sum of a countable infinity of skeleton diagrams. It
two-particle irreducible, with respect to the quark-antiqua
pair of lines and does not contain quark-antiquark to sin
gauge-boson annihilation diagrams, such as would desc
the leptonic decay of a pseudoscalar meson.3 The complexity
of Ktu

rs(q,k;P) is one reason why quantitative studies of t
quark DSE currently employAnsätze for Dmn(k) and
Gn(k,p). As illustrated by Ref.@9#, however, the complexity
of Ktu

rs(q,k;P) does not prevent one from analyzing aspe
of QCD in a model-independent manner and proving gen
results that provide useful constraints on model studies
QCD.

Equation~25! is an eigenvalue problem. Solutions exi
only for particular, separated values ofP2, and the eigenvec-
tor associated with each eigenvalue, the Bethe-Salpeter
plitude ~BSA! GH(k;P), is the one-particle-irreducible, fully
amputated quark-meson vertex. In the flavor-octet chan
the solutions with the lowest eigenvalues are thep and K
mesons.4 The solution of Eq.~25! has the general form@32#

GH~k;P!5THg5@ iEH~k;P!1g•PFH~k;P!

1g•kk•PGH~k;P!1smnkmPnHH~k;P!#,

~26!

where for bound states of constituents with equal curre
quark masses the scalar functionsE, F, G, andH are even
under k•P→2k•P and, for example,TK1

5 1
2 (l41 il5),

with $l j , j 51, . . . ,8% the SU~3!-flavor Gell-Mann matrices.
The requirement that the bound state contribution to the fu
amputated quark-antiquark scattering amplitude,M5K
1K(SS)K1 . . . , have unit residue leads to the canonic
normalization condition for the BSA:

2Pm5E
q

L H trF ḠH~q;2P!
]S~q1!

]Pm
GH~q;P!S~q2!G

1trF ḠH~q;2P!S~q1!GH~q;P!
]S~q2!

]Pm
G J

3A connection between the fully amputated quark-antiquark s
tering amplitude;M5K1K(SS)K1 . . . , and theWilson loop is
discussed in Ref.@31#.

4We do not consider theh meson because of its mixing with th
h8, which cannot be described in ladder approximation@11,12#, the
truncation of the BSE employed in Sec III B.
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1E
q

LE
k

L

@ x̄ H~q;2P!#sr

]Ktu
rs~q,k;P!

]Pm
@xH~k;P!#ut ,

~27!

whereḠH(k,2P) t5C21GH(2k,2P)C, with C5g2g4, the
charge conjugation matrix, andXt denoting the matrix trans
pose ofX.

In Eq. ~25!, EH(k;P)Þ0 acts as a ‘‘source’’ in the equa
tions for FH(k;P), GH(k;P), andHH(k;P) so that, in gen-
eral, these subleading Dirac components ofGH(k;P) are
nonzero.

A. Chiral symmetry

In studies of flavor-octet pseudoscalar mesons a good
derstanding of chiral symmetry, and its explicit and dynam
cal breaking, is crucial. These features are expressed in
renormalized axial-vector Ward-Takahashi identity~AV
WTI!

2 iPmG5m
H ~k;P!5S21~k1!g5

TH

2
1g5

TH

2
S21~k2!

2M ~m!G5
H~k;P!2G5

H~k;P!M ~m! ,

~28!

whereM (m)5diag„mu(m),md(m),ms(m)…; the renormalized
axial-vector vertex is given by

@G5m
H ~k;P!# tu5Z2Fg5gm

TH

2 G
tu

1E
q

L

@x5m
H ~q;P!#srKtu

rs~q,k;P!, ~29!

with x5m
H (q;P)8S(q1)G5m

H (q;P)S(q2); and the renormal-
ized pseudoscalar vertex by

@G5
H~k;P!# tu5Z4Fg5

TH

2 G
tu

1E
q

L

@x5
H~q;P!#srKtu

rs~q,k;P!,

~30!

with x5
H(q;P)8S(q1)G5

H(q;P)S(q2). Multiplicative renor-
malizability ensures that no new renormalization consta
appear in Eqs.~29! and ~30! @9,33#.

Any study whose goal is a unified understanding of
properties of flavor-octet pseudoscalar mesons and o
hadronic bound states must ensure the preservation o
AV WTI, which correlates the axial-vector vertex, pseud
scalar vertex, bound state amplitudes, and quark propaga

1. Chiral limit

Equation ~28! is valid for all values of the
renormalization-group-invariant current-quark masses,
particular for the chiral limit when M (m)G5

H(k;P)
5diag(0,0,0)5G5

H(k;P)M (m) . In this case the AV WTI is

2 iPmG5m
H ~k;P!5S21~k1!g5

TH

2
1g5

TH

2
S21~k2!.

~31!
n-
-
he

ts

e
er
he
-
rs.

in

As a straightforward generalization of Ref.@9#, it follows
from Eqs.~2! and~31! that in the chiral limit the axial-vector
vertex has the form

G5m
H ~k;P!5

TH

2
g5@gmFR~k;P!1g•kkmGR~k;P!

2smnknHR~k;P!#1G̃5m
H ~k;P!

1 f H

Pm

P2
GH~k;P!, ~32!

where FR , GR , HR , and G̃5m
H are regular asP2→0,

PmG̃5m
H (k;P);O(P2), GH(k;P) is the pseudoscalar BSA in

Eq. ~26!, and the residue of the pseudoscalar pole in
axial-vector vertex isf H , the leptonic decay constant:

f HPm5Z2E
q

L
1
2 tr@~TH! tg5gmS~q1!GH~q;P!S~q2!#,

~33!

with the trace over color, Dirac, and flavor indices. In ad
tion the chiral limit AV WTI entails

f HEH~k;0!5B~k2!, ~34!

FR~k;0!12 f HFH~k;0!5A~k2!, ~35!

GR~k;0!12 f HGH~k;0!52A8~k2!, ~36!

HR~k;0!12 f HHH~k;0!50, ~37!

whereA(k2) and B(k2) are the solutions of Eq.~1! in the
chiral limit.

As remarked above, in perturbation theory,B(k2)[0 in
the chiral limit. The appearance of aB(k2)-nonzero solution
of Eq. ~1! in the chiral limit signals DCSB: One hasdynami-
cally generateda momentum-dependent quark mass term
the absence of a seed mass. Equations~32! and ~34!–~37!
show that when chiral symmetry is dynamically broken:~1!
the homogeneous, flavor-nonsinglet, pseudoscalar BSE h
massless,P250, solution; ~2! the BSA for the massles
bound state has a term proportional tog5 alone, with the
momentum dependence ofEH(k;0) completely determined
by that of the scalar part of the quark self energy, in addit
to terms proportional to other pseudoscalar Dirac structu
FH , GH , andHH , that are nonzero in general; and~3! the
axial-vector vertexG5m

H (k;P) is dominated by the pseudo
scalar bound state pole forP2.0. The converse is also true

The relationship, in the chiral limit, between the norma
ization of the pseudoscalar BSA andf H has often been dis
cussed, for example, Refs.@16,34#. Consider that if one
chooses to normalizeGH such thatEH(0;0)5B(0), and de-
fines the BSA so normalized asGH

NH(k;P), then the right-

hand side of Eq.~27!, evaluated withGH→GH
NH(k;P), is

equal to 2PmNH
2 , whereNH is a dimensioned constant. Us

ing Eqs.~34!–~37! it is clear that, in the chiral limit,

NH5 f H . ~38!
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However, in model studies to date, this result is not obtai
unlessone assumesA(k2)[1. It follows that any kernel
which leads, via~1!, to A(k2)[1 must also yieldFH[0
[GH[HH , if it preserves the AV WTI. In realistic mode
studies, whereA(k2)Ó1, the difference between the value
of NH and f H is an artifact of neglectingFH , GH , andHH in
Eq. ~26! @1#.

2. Explicit chiral symmetry breaking

Again as a straightforward generalization of Ref.@9#, in
the presence of explicit chiral symmetry breaking the A
WTI, Eq. ~28!, entails that both the axial-vector and th
pseudoscalar vertices have a pseudoscalar pole, i.e.,

G5m
H ~k;P!5

TH

2
g5@gmFR

H~k;P!1g•kkmGR
H~k;P!

2smnknHR
H~k;P!#1G̃5m

H ~k;P!

1 f H

Pm

P21mH
2

GH~k;P!, ~39!

and

G5
H~k;P!5

TH

2
g5@ iER

H~k;P!1g•PFR
H~k;P!

1g•kk•PGR
H~k;P!1smnkmPnHR

H~k;P!#

1r H

1

P21mH
2

GH~k;P!, ~40!

with ER
H , FR

H , FR
H , GR

H , GR
H , HR

H , HR
H , and G̃5m

H regular as

P2→2mH
2 ; PmG̃5m

H (k;P);O(P2); and

f HmH
2 5r HMH , MH8trflavor@M ~m!$T

H,~TH! t%#,
~41!

where f H is given by Eq.~33!, with massive quark propaga
tors in this case, and the residue of the pole in the pseu
scalar vertex is

ir H5Z4E
q

L
1
2 tr@~TH! tg5S~q1!GH~q;P!S~q2!#. ~42!

The factorZ4 on the right-hand side depends on the gau
parameter, the regularization mass scale, and the renor
ization point. This dependence is exactly that required
ensure that~1! r H is finite in the limit L→`; ~2! r H is
gauge-parameter independent, and~3! the renormalization
point dependence ofr H is just such as to ensure that th
right-hand side of Eq.~41! is renormalization pointindepen-
dent. This is obvious at one-loop order, especially in Land
gauge whereZ2[1 and henceZ45Zm .

In the chiral limit, using Eqs.~26! and~34!–~37!, Eq.~42!
yields
d

o-

e
al-
o

u

r H
0 52

1

f H
0 ^ q̄q&m

0 ,

2^ q̄q&m
0 8Z4~m2,L2!NcE

q

L

trDirac@Sm̂50~q!#,

~43!

where the superscript ‘‘0’’ denotes that the quantity is eva
ated in the chiral limit and̂ q̄q&m

0 , as defined here, is th
chiral limit vacuum quark condensate, which is renormaliza-
tion point dependent but independent of the gauge param
and the regularization mass scale. Equation~40! is the state-
ment thatthe chiral limit residue of the bound state pole

the flavor-nonsinglet pseudoscalar vertex is(2^ q̄q&m
0 )/ f H

0 .
From Eqs.~41! and ~43! one obtains immediately

f p
2 mp

2 52@mu~m!1md~m!#^ q̄q&m
0 1O~m̂q

2!, ~44!

f K1
2 mK1

2
52@mu~m!1ms~m!#^ q̄q&m

0 1O~m̂q
2!, ~45!

which exemplify what is commonly known as the Ge
Mann–Oakes–Renner relation.

We emphasize that the primary result, Eq.~41!, of which
Eqs.~44! and~45! are corollaries, is validindependentof the
magnitude ofm̂q . We can rewrite it in the form

f H
2 mH

2 52^ q̄q&m
HMH , ~46!

where we have introduced thenotation

2^ q̄q&m
H8 f Hr H ~47!

in order to highlight the fact that, for nonzero current-qua
masses, Eq.~41! does notinvolve a difference of vacuum
massive-quark condensates, a phenomenological assum
often employed.5

B. Model BSE

In order to exemplify the results of Ref.@9#, which we
have reiterated and generalized in Sec. III A, we must h
an explicit form for the kernelKtu

rs(q,k;P) in Eq. ~25!. The
form must be such as to preserve the AV WTI, Eq.~28!,
which requires a truncation of the skeleton expansion
Ktu

rs(q,k;P) that is consistent with Eq.~22!; our Ansatzfor
the kernel of Eq.~1!. The ‘‘ladder truncation’’ fulfills this
requirement@12,13#:

Ktu
rs~q,k;P!52G„~k2q!2

…Dmn
free~k2q!S gm

la

2 D
tr
S gn

la

2 D
su

,

~48!

in which case Eq.~25! becomes

5In QCD, the integral definingr H diverges logarithmically, like
the trace of the chiral limit quark propagator~vacuum quark con-
densate!, which is the reason why the right-hand side of Eq.~41! is
independent of the renormalization point. This is unlike the trace

the m̂Þ0 quark propagator, which diverges quadratically.
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GH~k;P!1E
q

L

G„~k2q!2
…Dmn

free~k2q!
la

2
gmS~q1!GH~q;P!

3S~q2!
la

2
gn50, ~49!

and the normalization condition, Eq.~27!, simplifies because
the last term vanishes whenKtu

rs(q,k;P) is independent of
Pm .

IV. NUMERICAL RESULTS

A. Solution of the quark DSE

Using Eqs.~1! and ~22! our model quark DSE is

S~p,m!215Z2ig•p1Z4m~m!1S8~p,L!, ~50!

with the regularized quark self-energy

S8~p,L!8E
q

L

G„~p2q!2
…Dmn

free~p2q!
la

2
gmS~q!

la

2
gn ,

~51!

whereG(k2) is given in Eq.~23!. Equation~50! is a pair of
coupled integral equations for the functionsA(p2,m2) and
B(p2,m2) defined in Eq.~2!.

In the case of explicit chiral symmetry breakingm̂Þ0, the
renormalization boundary condition of Eq.~3! is straightfor-
ward to implement. Writing

S8~p,L!8 ig•p„A8~p2,L2!21…1B8~p2,L2!, ~52!

Eq. ~3! entails

Z2~m2,L2!522A8~m2,L2!

and

m~m!5Z2~m2,L2!mbm~L2!1B8~m2,L2! ~53!

and hence

A~p2,m2!511A8~p2,L2!2A8~m2,L2!, ~54!

B~p2,m2!5m~m!1B8~p2,L2!2B8~m2,L2!. ~55!

From Sec. II A 1, having fixed the solutions at a sing
renormalization pointm, their form at another pointm̄ is
given by

S21~p,m̄ !5 ig•pA~p2,m̄2!1B~p2,m̄2!

5
Z2~m̄2,L2!

Z2~m2,L2!
S21~p,m!. ~56!

@Recall thatM (p2) is independent of the renormalizatio
point.# This feature is manifest in our solutions. It mea
that, in evolving the renormalization point tom̄, the ‘‘1’’ in
Eq. ~54! is replaced byZ2(m̄2,L2)/Z2(m̄2,L2), and the
‘‘ m(m)’’ in Eq. ~55! by m(m̄); i.e., the ‘‘seeds’’ in the inte-
gral equation evolve according to the QCD renormalizat
group.

As also remarked in Sec. II A 1, the chiral limit in QCD

unambiguously defined bym̂50. In this case there is no
perturbative contribution to the scalar piece of the quark s
energy,B(p2,m2), and, in fact, there is no scalar, massli
divergence in the perturbative calculation of the self-ener
It follows that Z2(m2,L2)mbm(L2)50, ;L and, from Eqs.
~53! and~55!, that there is no subtraction in the equation f
B(p2,m2); i.e., Eq.~55! becomes

B~p2,m2!5B8~p2,L2!, ~57!

with limL→`B8(p2,L2),`.6 In terms of the renormalized
current-quark mass the existence of DCSB means that, in
chiral limit, M (m2);O(1/m2), up to lnm2 corrections.

In Fig. 2 we present the renormalized dressed-quark m
function M (p2) obtained by solving Eq.~50! using the pa-
rameters in Eq.~24! and in the chiral limit.~Recall thatm
519 GeV, which is large enough to be in the perturbat
domain.!

It is clear from this figure that the light-quark mass fun
tion is characterized by a significant infrared enhancemen
direct result of that in the effective coupling,G(k2). Intro-
ducing the Euclidean constituent-quark massME as the so-
lution of p25M2(p2), the ratioM f

E/mf(m), where f labels
the quark flavor andmf(m) is given in Eq.~24!, is a single,

6This is a model-independent statement; i.e., it is true in any st
that preserves at least the one-loop renormalization group beha
of QCD.

FIG. 2. The renormalized dressed-quark mass functionM (p2)
obtained by solving Eq.~50! using the parameters in Eq.~24!: u/d
quark ~solid line!, s quark ~long-dashed line!, and chiral limit
~dashed line!. The renormalization point ism519 GeV. The inter-
section of the lineM2(p)5p2 ~dotted line! with each curve defines
the Euclidean constituent-quark massME.
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indicative, and quantitative measure of the nonperturba
effects of gluon dressing on the quark propagator. We fi

ME ME

mf~m!

chiral limit 0.55 GeV `

u/d 0.56 150

s 0.70 8.5

~58!

which clearly indicates the magnitude of this effect for lig
quarks. The ratioME/mf(m) takes a value ofO(1) for heavy
quarks@37# because the current-quark mass is much lar
than the mass scale characterizing the infrared enhance
in the effective coupling,LQCD. This means that in the
spacelike region the momentum dependence of the he
quark mass function is dominated by perturbative effects7

In typical quark model calculations@36# the ‘‘constituent-
quark’’ masses areMu/d50.33 GeV andMs50.55 GeV.
These are within a factor of 2 of the values in Eq.~58! and
are in the ratioMu/d /Ms50.60. From Eq.~58! we find
Mu/d

E /Ms
E50.80. The comparison of numerous DSE stud

makes it clear that this correspondence betweenM f andM f
E

is robust. It provides a qualitative understanding of the
ture of the ‘‘constituent-quark’’ mass; i.e., it is a quantitati
measure of the nonperturbative modification of quark pro
gation characteristics by gluon dressing. Its magnitude
signal of the enhancement of the quark-quark interaction
the infrared.

The qualitative difference between the behavior ofM (p2)
in the chiral limit and in the presence of explicit chiral sym
metry breaking is manifest in Fig. 2. In the presence of
plicit chiral symmetry breaking Eq.~8! describes the form o
M (p2) for p2.O(1 GeV2). In the chiral limit, however, the
ultraviolet behavior is given by

M ~p2! 5
large p2

2p2gm

3

~2^ q̄q&0!

p2~ 1
2 ln@p2/LQCD

2 # !12gm
, ~59!

where ^ q̄q&0 is the renormalization-point-independe
vacuum quark condensate.8 Analyzing our chiral limit solu-
tion we find

2^ q̄q&05~0.227 GeV!3. ~60!

This is a reliable means of determining^ q̄q&0 because cor-
rections to Eq.~59! are suppressed by powers ofLQCD

2 /m2.
Equation ~43! defines the renormalization-poin

dependent vacuum quark condensate

7Quark confinement entails that there is no ‘‘pole mass’’@35#,
which would be the solution ofp21M2(p2)50. Hence, this defi-
nition of ME is arbitrary; a factor of 2 is certainly unimportant wit
respect to the qualitative features that this quantity characteriz

8The momentum dependence of this result is characteristic of
QCD renormalization group at one loop@38# and demonstrates tha
the truncation we employ preserves this feature.
e

r
ent

y-

s

-

-
a

in

-

2^ q̄q&m
0Um519 GeV5̇S lim

L→`

Z4~m,L!Nc

3E
q

L

trDirac@Sm̂50~q!# DU
m519 GeV

5~0.275 GeV!3. ~61!

We have established explicitly thatm(m)^ q̄q&m
0 5 const, in-

dependent ofm with the value depending on the quark flavo
and hence

m~m!^ q̄q&m
0 8m̂^ q̄q&0, ~62!

which unambiguously defines the renormalization-poi
independent current-quark masses. From this and Eqs.~24!,
~60!, and ~61! we extract the values of these masses app
priate to our model:

m̂u/d56.60 MeV, m̂s5147 MeV. ~63!

Using Eq. ~8! these values yieldmu/d(m)53.2 MeV and
ms(m)572 MeV, which are within;10% of our actual val-
ues in Eq.~24!. This indicates that higher-loop corrections
the one-loop formulas, which are present in the solution
the integral equation as made evident byA(p2,m2)Ó1, pro-
vide contributions of,10% atp25m2. These contributions
decrease with increasingp2.9

From the renormalization-point-invariant product in E
~62! we obtain

2^ q̄q&m
0 um51 GeV8~ ln@1/LQCD# !gm^ q̄q&05~0.241 GeV!3.

~64!

This result can be compared directly with the value of t
quark condensate employed in contemporary phenome
logical studies@39#: (0.23660.008 GeV)3. We note that in-
creasingv→1.5v in G(k2) increases the calculated value
Eq. ~64! by ;10%. Obtaining broad agreement with the co
temporary phenomenological value of^ q̄q&m51 GeV

0 was a
means we employed to constrain the value of this parame
However, we made no attempt to fine-tunev or thereby our
calculated value of̂ q̄q&m51 GeV

0 .
In conjunction with Eq.~64! we definemf

1 GeV via Eq. ~8!
using Eq.~63!:

mu/d
1 GeV55.5 MeV, ms

1 GeV5130 MeV. ~65!

These values differ slightly from those discussed in S
II B 2 for the reasons described above. It is now clear, fr
Eq. ~62!, that lower values of the current-quark masses,
canvassed in Ref.@30#, are admissible in our phenomeno
logical study only via an increase in̂q̄q&m51 GeV

0 .
After this discussion of the vacuum quark condensate

now straightforward to determine the accuracy of Eqs.~44!
and ~45!. Using experimental values on the left-hand sid
we find

.
e 9Our model for the kernel of the quark DSE is not constructed
preserve the two-loop, perturbative behavior of QCD. Hence a
rect comparison at this level is not meaningful.
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TABLE I. Calculated values of the properties of light pseudoscalar mesons composed of a qua
antiquark of equal mass. The mass (mp

expt50.1385) and decay constant (f p
expt50.0924) are in GeV, andRH

is dimensionless. With the exception of the calculations that retain only the zeroth Chebyshev m
labeled by ‘‘U0 only,’’ the results are independent of the momentum partitioning parameterhP .

All amplitudes p Chiral limit s s̄
mp f p RH m0 f 0 RH ms s̄ f s s̄ RH

Method ~A! 0.1385 0.0924 1.01 0.0 0.0898 1.00 0.685 0.129 1.0
U0 only 0.136 0.0999 0.95 0.0 0.0972 0.94 0.675 0.137 0.9
U0 andU1 0.1385 0.0925 1.00 0.0 0.0898 1.00 0.685 0.129 1.0

E only

Method ~A! 0.105 0.0667 1.82 0.0 0.0649 1.81 0.512 0.092 1.6
U0 only 0.105 0.0667 1.82 0.0 0.0649 1.81 0.513 0.092 1.6

E, F

Method ~A! 0.136 0.0992 0.95 0.0 0.0965 0.95 0.677 0.137 0.9
U0 only 0.136 0.0992 0.95 0.0 0.0965 0.95 0.678 0.138 0.9

E, F, Ĝ

Method ~A! 0.140 0.0917 1.01 0.0 0.0891 1.00 0.688 0.128 1.0
U0 only 0.136 0.0992 0.95 0.0 0.0965 0.95 0.678 0.138 0.9
U0 andU1 0.140 0.0917 1.01 0.0 0.0891 1.00 0.689 0.128 1.0
-

th
lv
a

-

o

-

-

SE
gu-

e
lly

E

he

en-
an

con-
s

~0.092430.1385!25~0.113 GeV!4

@cf. ~0.111 GeV!45230.005530.243#, ~66!

~0.11330.495!25~0.237 GeV!4

@cf. ~0.206 GeV!45~0.005510.13!30.243#, ~67!

which indicates thatO(m̂2) corrections begin to become im
portant at current-quark masses near that of thes quark. We
emphasize that we did not use these equations in fitting
current-quark masses but, as described in Sec. IV B, so
the model BSE, Eq.~49!, using the dressed-quark propag
tors obtained as a solution of Eq.~50!. In this procedure,
changes in̂ q̄q&0 effected by modifying the model param
eters are compensated for by changes inm̂u/d andm̂s . There-
fore the comparisons in Eqs.~66! and ~67!, which involve a
product of these quantities, remain meaningful and the c
clusion remains valid.10

B. Solution of the BSE

To solve Eq.~49! we modify it by introducing an eigen
valuel(P2),

GH~k;P!1l~P2!E
q

L

G„~k2q!2
…Dmn

free~k2q!
la

2
gmS~q1!

3GH~q;P!S~q2!
la

2
gn50, ~68!

10Using our calculated values off p , mp , f K , andmK , Tables I
and II, the only change is in Eq.~67!, where 0.237→0.233.
e
ed
-

n-

which yields an equation that has a solution;P2, character-
ized by the value ofl(P2). The original problem is solved
when thatP2 is found for whichl(P2)51, which will occur
at P2,0 in our metric.

For P252P2,0, solving Eq.~68! requires the dressed
quark propagatorS(q1) on the parabola, 4hP

2P2Re(q1
2 )

5Im(q1
2 )224(hP

2P2)2, in the complex-q1
2 plane, and

S(q2) on the parabola, 4(12hP)2P2Re(q2
2 )5Im(q2

2 )2

24@(12hP)2P2#2, in the complex-q2
2 plane. For complex

arguments in the dressed-quark propagator the quark D
requires the effective coupling at complex values of its ar
ment. Equation~68!, however, still only requiresG(k2) on
the realk2.0 axis. The specification ofG(k2) is the primary
element in the definition of the model and ourAnsatz is
motivated by studies that are restricted to realk2.0. In em-
ploying this Ansatzat complex values of its arguments w
are exploring an unconstrained domain. Solving numerica
for S(p) in the complex-p2 plane is straightforward. How-
ever, complex-conjugate branch points in the~confining! so-
lution introduce numerical complications in solving the BS
for bound states containing a single heavy constituent.11

The general form of the solution of the BSE, Eq.~49!, is
given in Eq.~26! where the scalar functions depend on t
variablesk2 andk•P, and are labeled by the eigenvalueP2.
From this it is clear that the integrand in Eq.~68! depends on

11This branch-point pair is present because of the infrared
hancement in our Ansatz for the effective coupling but may be
artifact of the rainbow approximation, Eq.~21!. Reference@22#
demonstrates that dressing the vertex, consistent with the
straints of Refs.@20#, can significantly affect the analytic propertie
of S(p) while maintaining the essence of quark confinement@35#,
i.e., thatS(p) not have a Lehmann representation.
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TABLE II. Calculated properties of theK meson for various values of the momentum partitioni
parameterhP ; ‘‘ 2 ’’ means that no bound state solution exists in this case. The mass (mK

expt50.496) and
decay constant (f K

expt50.113) are in GeV, andRK is dimensionless.

All amplitudes hP50.50 hP50.25 hP50.00
mK f K RK mK f K RK mK f K RK

Method ~A! 0.497 0.109 1.01 0.497 0.109 1.01 0.497 0.109 1.0
U0 only 0.469 0.117 0.96 0.482 0.117 0.95 0.475 0.113 1.0
U0 andU1 0.500 0.111 1.00 0.497 0.109 1.01 0.498 0.110 1.0
U0, U1, andU2 0.497 0.109 1.01 0.497 0.109 1.01 0.496 0.109 1.0

E only

Method ~A! 0.430 0.079 1.55 0.430 0.079 1.55 0.429 0.076 1.5
U0 only 0.380 0.077 1.54 0.401 0.076 1.51 0.415 0.073 1.5
U0 andU1 0.439 0.089 1.52 0.430 0.078 1.55 0.431 0.076 1.5
U0, U1, andU2 0.430 0.078 1.55 0.430 0.078 1.55 0.427 0.076 1.5

E, F

Method ~A! 0.587 0.17 0.79 0.557 0.14 0.86 0.533 0.11 0.9
U0 only 0.505 0.12 0.82 0.518 0.11 0.86 0.512 0.11 0.9
U0 andU1 - - - 0.556 0.14 0.86 0.537 0.12 0.94
U0, U1, andU2 0.583 0.16 0.79 0.557 0.14 0.86 0.532 0.12 0.9

E, F, Ĝ

Method ~A! 0.500 0.108 1.01 0.500 0.108 1.01 0.500 0.108 1.0
U0 only 0.471 0.116 0.96 0.484 0.116 0.95 0.477 0.112 1.0
U0 andU1 0.504 0.110 1.00 0.500 0.108 1.01 0.502 0.109 1.0
U0, U1, andU2 0.500 0.108 1.01 0.500 0.108 1.01 0.499 0.108 1.0
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the scalarsk2, k•q, q2, q•P, and P2, which takes a fixed
value at the solution; i.e., at each value ofP2 the kernel is a
function of four independent variables. Solving Eq.~68! can
therefore require large-scale computing resources, espec
since there are four independent scalar functions in the g
eral form of the solution.

We employed two different techniques in solving E
~68!. In our primary procedure~A!, we treated the scala
functions directly as dependent on two independent varia
E(k2,k•P;P2), etc., which requires straightforward, multid
mensional integration at every iteration. Storing the multi
mensional kernel requires a large amount of compu
memory but the iteration proceeds quickly.

As an adjunct, and because we wish to elucidate qua
tive and quantitative effects related to thek•P dependence o
the scalar functions in the BSA, we employed a Chebys
decomposition procedure~B!. To implement this we write

E~k2,k•P;P2!' (
i 50

Nmax
iE~k2;P2!Ui~cosb!, ~69!

with similar expansions forF, Ĝ8k•PG, and H, wherek
•P8cosbAk2P2 and $Ui(x); i 50, . . . ,̀ % are Chebyshev
polynomials of the second kind orthonormalized accord
to

2

pE21

1

dxA12x2Ui~x!U j~x!5d i j . ~70!
lly
n-

.

es

-
r

a-

v

g

Substituting this expansion into Eq.~68! allows all but one of
the integrals to be evaluated before beginning the iterat
One then solves for the Chebyshev momentsiE(k2;P2).
This procedure requires a large amount of time to set up
kernel but does not require large amounts of compu
memory.12

In order to fit the parameterD in G(k2) and the current-
quark massmu/d(m) we ~1! chose values for these param
eters;~2! solved the quark DSE forSu/d(p); ~3! usedG(k2)
and the calculated form ofSu/d(p) to solve the pion BSE for
the mass and BSA,Gp(k;P), using procedure~A!; and 4!
used the calculated forms ofSu/d(p) andGp(k;P) to calcu-
late f p from Eq. ~33!. We repeated this procedure until sa
isfactory values ofmp and f p were obtained. Having thus
fixed D we repeated the steps for theK meson, varying
ms(m) only, in order to obtain the best possible values ofmK
and f K . This led to the parameter values quoted in Eq.~24!
and the results listed in row one of Tables I and II. This do
not represent an exhaustive search of the available param
space but is sufficient for our purposes.

C. Discussion of the BSE solution

From Tables I and II, and Eqs.~24!, ~46!, ~47!, and~64!,
it is straightforward to calculate

12Equation~69! is only an identity in the limitNmax→` but, in the
present example, an accurate representation of the solution is
tained with Nmax51 or 2, which is consistent with the observa
tions of Ref.@5#.
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2^ q̄q&m51 GeV
p 2^ q̄q&m51 GeV

K 2^ q̄q&m51 GeV
s s̄

~0.245 GeV!3 ~0.284 GeV!3 ~0.317 GeV!3
~71!

showing that, for light pseudoscalars, the ‘‘in-meson cond
sate’’ that we have defined increases with increasing bo
state mass, as does the leptonic decay constantf H .13

In Tables I and II we list values of the dimensionless ra

RH82
^ q̄q&m

HMH

f H
2 mH

2
. ~72!

A value ofRH51 means that Eq.~41! is satisfied and henc
so is the AV WTI.14 Looking at the tabulated values ofRH it
is clear that the scalar functionH is not quantitatively im-
portant, with the AV WTI being satisfied numerically wit
the retention ofE, F, andG in the pseudoscalar meson BSA
The values ofRH , and the other tabulated quantities, hig
light the importance ofF andĜ: F is the most important of
these functions butĜ nevertheless provides a significa
contribution, particularly for bound states of unequal-ma
constituents. We note that a poor value off H is tied to a poor
value ofRH , which emphasizes the importance of prese
ing the AV WTI and hence Eq.~38!. We have checked ex
plicitly that our complete solutions satisfy Eq.~38!.

The tables illustrate the rapid convergence of the Che
shev decomposition procedure~B!, with accurate solutions

13(2^ q̄q&m
H)/ f H is the residue of the bound state pole in the ps

doscalar vertex, just asf H is the residue of the bound state pole

the axial-vector vertex. As expected, ^ q̄q&m51 GeV
p '

^ q̄q&m
0 um51 GeV.

14It illustrates that the pseudoscalar-meson pole in the axial-ve
vertex is related to the pseudoscalar-meson pole in the pseudos
vertex in the manner we have elucidated. A finite value in the ch
limit emphasizes thatmH

2 }MH asMH→0.

FIG. 3. The zeroth Chebyshev moment ofEH(k;P): chiral limit
~dotted line!, p meson~solid line!, K meson~long-dashed line!, and

fictitious, s s̄ bound state~dashed line!. hP5
1
2 in each case. For

ease of comparison the BSA’s are all rescaled so that0EH(k250)
51.
-
d

s

-

y-

being obtained with the zeroth and first moments for bou
states of equal-mass constituents.15 The same is true for
bound states of unequal-mass constituentsprovidedall Dirac
amplitudes are retained in the solution.

One observes that when thek•P dependence of the scala
functions in the meson Bethe-Salpeter amplitude is includ
physical observables areindependentof the momentum par-
titioning parameterhP . These calculations elucidate th
manner in which this necessary requirement in covari
bound state studies is realized: The bound state ampli
depends onhP in just that fashion which ensures physic
quantities do not. All the scalar functions in the BSA must
included to ensure this.

The tables also illustrate clearly the effect of the curre
quark mass via a comparison of the chiral limit pion with t
physical pion, the kaon, and a fictitious, pseudoscalar,s s̄
bound state. One observes thatf H is weakly sensitive to
increasing the current-quark mass; for example, we ob
f 0/ f p50.97, which is consistent with expectations based
effective chiral Lagrangians. However,mH

2 rises quickly, be-
fore becoming sensitive to effects nonlinear in the curre
quark mass.16

-

or
alar
l

15We note that for equal-mass constituentsĜ5k•PG is an odd

function of k•P and hence0Ĝ[0. Therefore it first contributes a
O(U1).

16We note that our calculated value ofms s̄ is within 3% of that
obtained for this fictitious bound state in Ref.@6#. However, the
results in Ref.@6# depend onhP , which is an artifact of the solution
procedure adopted therein. In that study a derivative-expansion
extrapolation procedure was employed in order to avoid a di
solution for the quark propagator functionsA(p2) and B(p2) at
complex values of their arguments. In addition, in most instan
only the zeroth Chebyshev moment was retained in the Cheby
expansion of the scalar functions in the Bethe-Salpeterwave func-
tion: xH(q;P)8S(q1)GH(q;P)S(q2).

FIG. 4. The zeroth Chebyshev moment ofFH(k;P): chiral limit
~dotted line!, p meson~solid line!, K meson~long-dashed line!, and

fictitious, s s̄ bound state~dashed line!. hP5
1
2 in each case. For

ease of comparison the BSA’s are all rescaled so that0EH(k250)
51.
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We present the scalar functions in the BSA obtained
solutions of Eq.~49! in Figs. 3–7, focusing on the zerot
Chebyshev moment of each function, which is obtained

0EH~k2!8
2

pE0

p

db sin2bU0~cosb!EH~k2,k•P;P2!,

~73!

and similarly forF, G (Ĝ for theK meson!, andH. Figure 3
illustrates that the momentum-space width of0EH(k2) in-
creases as the current-quark mass of the bound state con
ents increases; Fig. 4, that0FH(k250) decreases with in
creasing current-quark mass but that0FH(k2) is still larger at
k2.0.5 GeV2 for bound states of higher mass; Fig. 5, th

FIG. 5. The zeroth Chebyshev moment ofGH(k;P): chiral limit

~dotted line!, p meson ~solid line!, fictitious, s s̄ bound state

~dashed line!, and of ĜH(k;P) (GeV21) for the K meson~long-
dashed line!. hP5

1
2 in each case. For ease of comparison the BS

are all rescaled so that0EH(k250)51.

FIG. 6. The zeroth Chebyshev moment ofHH(k;P): chiral limit
~dotted line!, p meson~solid line!, K meson~long-dashed line!, and

fictitious, s s̄ bound state~dashed line!. hP5
1
2 in each case. For

ease of comparison the BSA’s are all rescaled so that0EH(k250)
51.
s

a

itu-

t

0GH(k2) @ 0ĜK(k2)# behaves similarly; and Fig. 6, that th
same is true forHH(k;P) and that it is uniformly small in
magnitude thereby explaining its quantitative insignifican
Where comparison is possible, these observations a
qualitatively with Refs.@6,11#.

In Fig. 7 we illustrate the large-k2 behavior of the scalar
functions in the pseudoscalar BSA. The momentum dep
dence of0EH(k2) at largek2 is identical to that of the chiral-
limit quark mass functionM (p2) in Eq. ~59! @40#, and char-
acterizes the form of the quark-quark interaction in t
ultraviolet. Figure 7 elucidates that this is also true
0FH(k2), k2 0GH(k2) @k2 0ĜK(k2) for the K meson#, and
k2 0HH(k2). Each of these functions reaches its ultravio
limit by k2.10 GeV2, which is very much less than th
renormalization point,m25361 GeV2.

In order to verify Eqs.~34!–~37! it is necessary to con
sider the inhomogeneous axial-vector vertex equation,
~29!, in our truncation of the DSE’s, which is

G5m
H ~k;P!5Z2g5gm

TH

2
2E

q

L

G„~k2q!2
…Dmn

free~k2q!
la

2
gm

3S~q1!G5m
H ~q;P!S~q2!

la

2
gn . ~74!

From the homogeneous BSE one already has the equa
satisfied byEH(k;0), FH(k;0), GH(k;0), andHH(k;0). To
proceed, one substitutes Eq.~32! for G5m

H (k;P) in Eq. ~74!.

s

FIG. 7. The asymptotic behavior of the zeroth Chebyshev m
ments of the functions in thep-meson BSA:f p

0 Ep(k2) ~GeV, solid
line!, f p

0 Fp(k2) ~dimensionless, long-dashed line!, k2f p
0 Gp(k2) ~di-

mensionless, dashed line!, andk2f p
0 Hp(k2) ~GeV, dot-dashed line!.

The momentum dependence is identical to that of the chiral-li
quark mass functionM (p2), Eq. ~59! ~GeV, circles!. For other
pseudoscalar mesons the momentum dependence of these fun
is qualitatively the same, although the normalizing magnitude
fers.
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3382 56PIETER MARIS AND CRAIG D. ROBERTS
Using the coupled equations forEH(k;0), etc., one can iden
tify and eliminate each of the pole terms associated w
pseudoscalar bound state.~It is the fact that the homoge
neous BSE is linear in the BSA that allows this.! This yields
a system of coupled equations forFR(k;0), GR(k;0), and
HR(k;0), which can be solved without complication.@The
factor of Z2 automatically ensures thatFR(k25m2;P50)
51.# We illustrate the realization of the first two identitie
Eqs. ~34! and ~35!, in Fig. 8. The remaining two identities
Eqs.~36! and ~37!, are realized in a similar fashion.

V. SUMMARY AND CONCLUSION

With renormalization considered explicitly, we have stu
ied the Dyson-Schwinger equation for the dressed-qu
propagatorS(p); the homogeneous, pseudoscalar me
Bethe-Salpeter equation, which provides the meson’s Be
Salpeter amplitudeG(k;P), with P the total momentum of
the bound state; and the inhomogeneous BSE’s for the f
amputated axial-vector and pseudoscalar verticesG5m(k;P)
and G5(k;P), respectively. Independent of assumptio
about the form of the quark-quark scattering kern
K(q,k;P), we have elucidated the manner in which t
axial-vector Ward-Takahashi identity correlates the
Schwinger functions and provides important and pheno
enologically useful constraints.

We demonstrated that the axial-vector vertex contain
pseudoscalar, bound state pole contribution whose resid
the meson’s leptonic decay constant, Eq.~33!. The pseudo-
scalar vertex also contains such a pole term but in this c
the residue is related to an ‘‘in-meson’’ quark condensa
Eq. ~42!, which is equal to the vacuum quark condensate

FIG. 8. An illustration of the realisation in our model of th
identities Eqs.~34! and~35!, which are a necessary consequence
preserving the axial-vector Ward-Takahashi identity. We p
f 0EH(k;0) ~GeV, solid line!, FR(k;0) ~dimensionless, dashed line!,
f 0FH(k;0) ~dimensionless, dotted line!, and FR(k;0)
12 f HFH(k;0) ~long-dashed line!. In each curve the plotted point
represent the right-hand side of these equations as obtained i
solution of the chiral-limit quark DSE:B(k2) ~GeV, circles! and
A(k2) ~dimensionless, diamonds!.
h
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the chiral limit, Eq.~43!. The AV WTI necessarily entails an
identity between these residues, Eq.~41!, which is valid in-
dependentof the current-quark mass of the bound state c
stituents. The expression commonly known as the G
Mann–Oakes–Renner relation is a corollary of this ident
The AV WTI also places constraints on the form of the pse
doscalar meson Bethe-Salpeter amplitude, which necess
involves quantitatively important terms proportional tog5g
•P and g•kk•P that have hitherto been neglected in ph
nomenological studies of spectra, and production and s
tering processes in QCD. In the chiral limit these constrai
take a very simple form: Eqs.~34!–~37!.

In Sec. IV B 1 we illustrated these identities and co
straints in numerical studies using a rainbow-ladder trun
tion for K(q,k;P) motivated by the Abelian approximation
Secs. II B and III B, and defined by anAnsatz for the
dressed-quark-quark interaction, Fig. 1. The model thus
fined preserves the one-loop renormalization-group beha
of QCD, as is clear in our numerical solutions. This aspec
our study facilitated an elucidation of the dominant, ultrav
let ~large-k2) behavior of the scalar functions in the pseud
scalar meson BSA, Fig. 7. Employing these results in a c
culation of the electromagnetic pion form factor yield
Q2Fp(Q2)5 const, up to lnQ2 corrections, a direct conse
quence of the model-independent result0FH(k2)
;k2 0ĜK(k2);1/@k2(lnk/LQCD)12gm# @41#. The pseudo-
scalar amplitudeEp(k;P) does not contribute to the
asymptotic form ofFp(Q2).17

In the course of these numerical studies we explored
feasibility of two methods for solving the homogeneo
Bethe-Salpeter equation with dressed-quark propagators
termined numerically, and without a three-dimensional
duction: ~A! treating the problem directly as a multidimen
sional integral equation, or~B! employing a Chebyshev
expansion of the scalar functions in the BSA in order
obtain a system of one-dimensional integral equations.
favored~A! because it provides a simpler numerical proc
dure, the program runs quickly, and computer memory us
was not a consideration. Nevertheless, we observed tha
Chebyshev expansion converged quickly, with at most t
moments being necessary to reproduce the solution obta
using~A!, Sec. IV B 1. Importantly, we saw that retaining th
k•P dependence of the scalar functions in the meson BS
all that is necessary to ensure that physical observables
independent of the momentum partitioning parameter t
appears in the definition of the relative momentum, which
arbitrary in covariant studies.

We have demonstrated that the Goldstone-boson chara

17We note that the calculation of the elastic pion form factor
volves two pion Bethe-Salpeter amplitudes, which is qualitativ
different to the electroproduction studies of Ref.@3#, which involve
only one meson Bethe-Salpeter amplitude. We therefore expect
the conclusions of Ref.@3# will not be qualitatively sensitive to the
omission of all vector meson Dirac amplitudes other thangm since,
in that calculation, the Bethe-Salpeter amplitude acts only to res
the support of the integrand and the asymptotic behavior of
cross sections is determined by the behavior of the quark prop
tor.
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56 3383p- AND K-MESON BETHE-SALPETER AMPLITUDES
of flavor-nonsinglet, pseudoscalar mesons is no impedim
to their description as bound states in QCD. It is only imp
tant that, in developing the bound state equations, the a
vector Ward-Takahashi identity be preserved explicitly. T
identity necessarily entails relations between then-point
Schwinger functions~propagators and vertices! relevant to
the bound state equation, relations which provide for
manifestation of Goldstone’s theorem. In taking account
this, one can in principle construct a single kernel for t
Bethe-Salpeter equation that will provide a uniformly go
qualitative and quantitative description of the properties
all mesons.
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