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Independent of assumptions about the form of the quark-quark scattering Keme derive the explicit
relation between the flavor-nonsinglet pseudoscalar-meson Bethe-Salpeter aniplitaie the dressed-quark
propagator in the chiral limit. In addition to a term proportionaltg I'; necessarily contains qualitatively and
quantitatively important terms proportional 4¢y- P and ysy- kk- P, whereP is the total momentum of the
bound state. The axial-vector vertex contains a bound state pole describgd hose residue is the leptonic
decay constant for the bound state. The pseudoscalar vertex also contains such a bound state pole and, in the
chiral limit, the residue of this pole is related to the vacuum quark condensate. The axial-vector Ward-
Takahashi identity relates these pole residues, with the Gell-Mann—Oakes—Renner relation a corollary of this
identity. The dominant ultraviolet asymptotic behavior of the scalar functions in the meson Bethe-Salpeter
amplitude is fully determined by the behavior of the chiral limit quark mass function, and is characteristic of
the QCD renormalization group. The rainbow-ladé@satzfor K, with a simple model for the dressed-quark-
quark interaction, is used to illustrate and elucidate these general results. The model preserves the one-loop
renormalization group structure of QCD. The numerical studies also provide a means of exploring procedures
for solving the Bethe-Salpeter equation without a three-dimensional reducs0556-28187)04112-5

PACS numbses): 14.40.Aq, 24.85tp, 11.10.St, 12.38.Lg

[. INTRODUCTION cation of the skeleton expansion fir. This kernel also ap-
pears implicitly in the DSE for the dressed-quark propagator
7 andK mesons are the lightest hadrons and hence thegthe QCD “gap equation) via the dressed-quark-gluon ver-
play a significant role in the phenomenology of low-to- tex I'3(q,p). In studies of the spectrum and interactions of
intermediate energy nuclear physics as mediators of théhe bound states of light quarks, where dynamical chiral
long-range part of the hadron-hadron interaction. They argymmetry breakinggDCSB) and Goldstone’s theorem are
easily produced in electron-nucleon and nucleon-nucleoparticularly important, it is crucial to ensure thigtand I'
collisions and therefore provide an ideal means of exploringyre “mutually consistent,” by which we mean that they must
models of hadronic structure and subnucleonic degrees @fe such as to guarantee the preservation of the axial-vector
freedom in nuclei. As mesons, the simple quark-antiquarkyard-Takahashi identity9]. Otherwise, as discussed and
valence-quark content of the andK makes them the sim-  exemplified in Refs[7,8,10, a qualitatively correct descrip-
plest light-quark systems one can study as strong interactiofion of the light-quark meson spectrum is not possible; i.e.,
bound states, and this is a necessary step in developing“@ine-tuning” is necessary to properly describe ttieoret-
detailed understanding of their properties and interactions ifcal ideal of the chiral limit, and the observational fact that
terms of the elementary degrees of freedom in QCD. the pion is so much lighter than the characteristic hadronic
Mesonic bound states are described by the homogeneoggale: m,/2~my/3=M,, the constituent quark mass, but
Bethe-Salpeter equatid8BSE), which is one of the Dyson- m,/2=0.2M,.
Schwinger equationfl] (DSE'’s) characterizing QCD. The  The rainbow-ladder truncation of the quark-DSE and
homogeneous BSE is an eigenvalue problem whose eigemeson-BSE, without a three-dimensional reduction, is a
value isP?, the square of the bound state mass, and whosepecification o2 andK that ensures the preservation of the
eigenvector is the bound state amplitudelly amputated, —axial-vector Ward-Takahashi identity. It is fully specified by
guark-antiquark-meson vertexThis bound state, or Bethe- anAnsatzfor the dressed-quark-quark interaction and allows
Salpeter, amplitude is a crucial element in the calculation o qualitatively and quantitatively good description of flavor-
production and scattering processes involving mesons, as ionsinglet pseudoscalar, vector, and axial vector mesons
lustrated in Refs[1-3]. The BSE is familiar in the study of without fine-tuning, even in very simple moddl$1]. As
scattering and binding in two-nucleon systems, and it is oftersuch it is a phenomenologically efficacious tool in this sec-
illustrated, and its features explored, via the problem of twaor.
elementary scalars interacting via the exchange of a different The fact that it describes the flavor-singlet pseudoscalar
elementary scald#]. There have been many applications toand scalar mesons poorly is not often mentioned. However,
the strong interaction meson spectrum, with recent, extensivihis defect is not crucial now that its source has been identi-
studies in this general framework being those of Rifs.8],  fied and understoodl12,13. Employing a straightforward
which also cite related research. and systematic procedure for extending the rainbow-ladder
Bethe-Salpeter equation studies can be characterized ltiguncation, a procedure that preserves the axial-vector Ward-
their treatment of the quark-antiquark scattering kernelTakahashi identity at every order, allows one to analyze the
K(q,k;P), a concrete calculation being specified by a trun-attractive and repulsive terms order by order beyond ladder
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truncation in the BSE. One finds, for example, that in thethe limit A—c. The quark-gluon-vertex and quark wave
flavor-nonsinglet pseudoscalar channel the repulsive termisinction renormalization constantsZ;(u?,A%) and

are approximately canceled by attractive terms that arise &,(u?,A?), respectively, depend on the renormalization
the same order, which explains why the ladder truncatiorpoint and the regularization mass scale, as does the mass
provides a good approximation in this channel. This is notenormalization constarf,(u? A%)=Z,(u? A%~ 1Z4(u?,

the case in the scalar channel where higher-order terms de?). In Eq. (1), S, Fj‘“ andm,,,, depend on the quark flavor,

not cancel in a like manner but lead to a net repulsive effectalthough we have not indicated this explicitly. However, in
whose magnitude cannot be estimagdriori but which  our analysis we assume, and employ, a flavor-independent

entails that the ladder truncation provides a poor approximarenormalization scheme and hence all the renormalization
tion. In the flavor-singlet pseudoscalar channel, timelikeconstants are flavor independent.

gluon exchange diagrams arise when one improves upon the
ladder truncation and these provide a plausible mechanism
for splitting the flavor-singlet and flavor-nonsinglet mesons,
i.e., for generating a significany-z’ mass splitting[14]. 1. Dressed-quark propagator
These observations illustrate and emphasize that the The solution of Eq(1) has the general form
rainbow-ladder truncation can lead to qualitatively and quan-
titatively reliable conclusions if used judiciously. S(p) t=iy-pA(p? u?) +B(p? u?)

Our goal herein is to provide a concrete illustration of the
general results of Ref9], i.e., of the importance, feasibility, B ) s o
and essential consequences of preserving the axial-vector _W['V'F”M(p 4], @
Ward-Takahashi identity in BSE studies of quark-antiquark ’
bound states, and the extension of these results tNSU( renormalized such that, at some ldrgpacelikeu?,
=3). We employ a renormalizable DSE model of QCD that
preserves the one-loop renormalization characteristics of the S(p) " pe- y2=iy-p+m(p), 3
dressed-quark and -gluon propagators and the quark-gluon
vertex. This allows an explicit demonstration of the renor-wherem(u) is the renormalized quark mass at the sqale
malization group flow of the vacuum quark condensate, foln the presence of an explicit, chiral-symmetry-breaking,
example, and renormalization point independence of physieurrent-quark mass one hasm(u)=2Z,my,, neglecting
cal observables in this framework. We concentrate onithe O(1/u?) corrections associated with dynamical chiral sym-
and K mesons since this subsystem has all the complexitynetry breaking that are intrinsically nonperturbative in ori-
necessary for a complete discussion of the features we wisin.

A. General remarks about renormalization

to elucidate. Multiplicative renormalizability in QCD entails that
In Sec. Il we describe the DSE for the renormalized
dressed-quark propagator, this propagator being a critical el-  A(p?,u?)  Z,(u? A?) — 1
ement in the construction of the kernel in the BSE for meson = =A(p s u)=——5=-. 4

272 T2 A2y o 272"
bound states. We discuss this BSE in Sec. lII, along with the A(P%,u®)  Zy(p"A°) Al u”)

constraints entailed by preserving the axial-vector Wardgch relations can be used as constraints on model studies of
Takahashi identity. In Sec. IV we report a model study of theEq_ (1). Explicitly, at one-loop order in perturbation theory,
guark DSE and meson BSE, and a rangerendK-meson

observables, illustrating the model-independent results de- a(A?) —v /B
rived in the preceding sections. We summarize and conclude Z,(n? A?)= 5 : (5
in Sec. V. a(p®)

whereyg=2¢ andB;=N;/3—11/2, with¢ the gauge param-

Il. QUARK DYSON-SCHWINGER EQUATION eter and\; the number of active quark flavors. At this order,

In a Euclidean space formulation, wifly,,,y,}=26,,,
¥,=7v,, anda-b=3{_,a/b;, the DSE for the renormalized

dressed-quark propagator is

a(Q¥)= (6)

v
—1B1IN[Q¥AZcp]

A A2 i 2 2\
“1_7_ (iv-D+ + J 2 e Clearly, at one loop in Landau gaugé=0), A(p-,u9)=1,
S(p) Zo(ly- Pt Mom) 24 q 9D w(p—a) 2 7uS(@) and a deviation from this result in a solution of Ed) is a

xI'3(q,p), ()

IHerein, by “large” we meanu? very much greater than the
whereD , (k) is the renormalized dressed-gluon propagator senormalization-group-invariant current-quark mass forsfugiark
I'%(q;p) is the renormalized dressed-quark-gluon vertexso as to ensure that, in our model calculations, the renormalization
My, is the A-dependent current-quark bare mass that appeaionstants are flavor independent to better than 1%. It is possible to
in the Lagrangian, an(ﬁ/q\ﬁfAdA'q/(Zﬂ')4 represents mne- employ a modified subtraction scheme in which the renormalization
monically a translationally invariantregularization of the constants are exactly flavor independent; however, it does not quan-
integral, withA the regularization mass scale. The final stagetitatively affect our results and hence is an unnecessary complica-
of any calculation is to remove the regularization by takingtion [15].
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higher-loop effect. Such effects are always present in the

self-consistent solution of Eq1). Zy(pn? A% =| —
The ratio M(p?,u?)=B(p? u?)/A(p? u?) is indepen-

dent of the renormalization point in perturbation theory; i.e.,

, (12

wherey; = iN;— (13— 3¢).

with w# u,
2 2 27D 2 2 3. Dressed-quark-gluon vertex
MPL L= MPL A =MD, VP™ @) The renormalized dressed-quark-gluon vertex inEyis
At one-loop order, of the form
)\a
m [(kp)= 5 T(k,p). (13

®)

m(u) =M (u?)= ,
(3In[ w?/ A Gepl) 7 - o
As a fully amputated vertex, it is free of kinematic singulari-

ties. The general Lorentz structure Iof(k,p) is straightfor-
ward but lengthy, involving 12 distinct scalar form factors,

and here we do not reproduce it fully,

Fv(kip):’val(k!pvﬂ)—i_"'r (14)

9 put remark that Ref.15], pp. 80—83, and Ref$18,19 pro-
vide an elucidation of its structure, evaluation, and proper-

- ties.
In QCD, y is independent of the gauge parameter to all Renormalizability entails that only the form facté;,

orders in perturbation theory and the chiral limit is defined . . . X .
- ) ) o ) associated with they, tensor, is ultraviolet divergent. By
by m=0. Dynamical chiral symmetry breaking is manifest -qyvention and defining, (K2, u2)=F,(k,—k, »), T, (k,p)

when, form=0, one obtainsn(u)~0(1/u?)#0 in solving  is renormalized such that, at some large spaceli
Eq. (1), which is impossible at any finite order in perturba-

where m is a renormalization-point-independent current-
quark massy,,=12/(33-2N;) is the anomalous dimension
at this order, and

Ym

a(A?)
a(u?)

Zm(szAz) =

tion theory? This is discussed and illustrated in Sec. IV A. fi(u?u?)=1. (15)
2. Dressed-gluon propagator Since the renormalization is multiplicative, one has
In a general covariant gauge the renormalized dressed- F(k2u2)  Zy(uA2)
gluon propagator in Eq1) has the general form NS o Aol =f (@i u?)=———.
f1(k%pm?)  Zy(u?A%) fa(p?,m?) 16
k,k, | d(k? u? k,k,
D, ()= | 5, 2t | LD Kk - g | | o
k? k2 k* At one loop in perturbation theory the vertex renormalization
constant is
where d(k?,u?)=1[1+I1(k? x?)], with TI(k? u?) the o
renormalized gluon vacuum polarization. The fact that the 5 o a(A?| T A1
longitudinal ¢-dependentpart of D ,,(K) is not modified by Zy(p" %)= a(u?) ' (17)
interactions is the result of a Slavnov-Taylor identity in ®
QCD: kMDW(k)=§kV/k2. We note that Landau gauge is a 1r3 4
fixed point of the renormalization group; i.e., in Landau whereyr=3[2(3+¢) +35£].
gauge the renormalization-group-invariant gauge parameter
is zero to all orders in perturbation theory, and hence we B. Model for the quark DSE
employ this gauge in all numerical studies herein. In order to exemplify the results of Reffd], which we
Multiplicative renormalizability entails that reiterate and generalize in Sec. lll A, we must know the form
_ of D,,(k) andI',(k,p), not only in the ultraviolet where
d(k®u?)  Zg(p’ A% 1 perturbation theory is applicable, but also in the infrared,
d(k? ?) - Zo(u?,A?) =d(p®p9)= d(? MZ)' where perturbation theory fails and lattice simulations are

(12) affected by finite-volume artifact® ,,(k) andl',(k,p) sat-
isfy DSE’s. However, studies of these equations in QCD are
At one-loop order in perturbation theory, rudimentary and are presently best used only to suggest
qualitatively reliableAnsdze for these Schwinger functions.
That is why all quantitative studies of the quark DSE to date

’The arguments presented herein cannot be applied in a straigtﬁ-ave employed model forms ﬁuv(k) andT",(k,p).

forward fashion to models whose ultraviolet behavior is that of
guenched QEDR, such as Ref.16], where the chiral limit cannot be
defined in this way. The difficulties encountered in such cases are To introduce one commonly used pair Afisdze we use
illustrated in Ref[17]. Egs.(5), (12), and(17) and observe that

1. Abelian approximation
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(18)

Hence, on the kinematic domain for whig@?=(p—q)?

~p?~q? is large and spacelike, the renormalized dressed-

ladder kernel in the Bethe-Salpeter equation for thaly
amputategl Bethe-Salpeter amplitude behaves as follows:
9% (4D, (P~ Q)
X[T5(p+,d+)S(a:)1X[S(q)T5q-,p-)]

)\a
> 7,5q.)

—47a(Q%)D"*(p—q)

)\a

x| S"q- )% m}, (19

where P is the total quark-antiquark momenturp,.=p

+ 7pP, andp_=p—(1— 5p)P [see Eq.(25)]. This obser-
vation, and the intimate relation between the kernel of th
pseudoscalar BSE and the integrand in @¢[12], provides

a means of understanding the origin of an often uArsdatz
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2. Model for @D ,,(p— )T ,(q,p)

Herein we employ a model for the kernel of Ef)) based
on the Abelian approximation:

a

A 2 A a

A 2\ free A® A
- [ ato-a2pito- 05 sy .,
q

(22

with the specification of the model complete once a form is
chosen for the “effective coupling’G(k?).

One consideration underlying thinsatzis that we wish
to study subtractive renormalization in a DSE model of QCD
and it is not possible to determit®® without analyzing the
DSE for the dressed-quark-gluon vertex, a problem we post-
pone. Instead we explored varioAssazefor I",, and found
that, withG(k?) =4ma(k?) for largek?, there was always at
least oneAnsatzfor Z; that led to the correct anomalous
dimension forM (p?). This interplay between the the renor-

€mnalization constant and the integral is manifest in QCD and

Eq. (22) is a simple means of implementing it.
In choosing a form foiG(k?) we noted that the behavior

for D,,(k), i.e., in Landau gauge, making the replacement of 4 (k) in the ultraviolet, i.e., fok?>1-2 Ge\Z, is well

9°D,,,(K)—~4ma(k)D5(K) (20
in Eg. (1), and using the “rainbow approximation”
I',(a,p)=7,. (21)

The Ansatzexpressed in Eq20) is often described as the
“Abelian approximation” because the left- and right-hand
sides areequalin QED. In QCD, equality between the two

sides of Eq.(20) cannot be obtained easily by a selective

resummation of diagrams. As reviewed in Rgf], Egs.
(5.1)—(5.8), it can only be achieved by enforcing equality

between the renormalization constants for the ghost-gluon

vertex and ghost wave functiod;=7Z5.
A mutually consistent constraint, which follows frory

=7, at a formal level, is to enforce the Abelian Ward iden-

described by perturbation theory. Constraints on the form of
G(k?) in the infrared come from the DSE satisfied by the
dressed-gluon propagatbr,, (k). As summarized succinctly

in Refs.[13,27], qualitatively reliable studies of this equation
indicate that the dressed-quark-quark interaction is signifi-
cantly enhanced in the infrared such that on this domain it is
well represented by an integrable singulafipg8]. Combin-

ing these observations with Eq4.8)—(20), which illustrate

the necessary interplay between the anomalous dimensions
of each term in the integrand of E(.), motivates theA\nsatz

g k2 4 2
( - ) 8D sk + " Dk Vo’
w

YmT
4 222 2
sIn[ 7+ (1+ kY AQep) 7]

F(k?), (23

with F(k?) ={1—exp(—k[4m?])}/k?> andr=e?— 1. (We use

tity Z;=2,. At one loop this corresponds to neglecting theN;=4 and Agg4:o_234 GeV in our numerical studigs.

contribution of the three-gluon vertex 10,, in which case

This is a simple modification of the form used in REE6],

yr— 5€&=1ye. This additional constraint provides the basisone which preserves the one-loop renormalization group be-

for extensions of Eq(21), i.e., usingAnsazefor I', that are

havior of QCD in the quark DSE.

consistent with the vector Ward-Takahashi identity in QED The qualitative features of Ed23) are clear. The first

[20], such as Refd21-23.

term is an integrable infrared singular{t®9] and the second

The combination of Abelian and rainbow approximationsis a finite-width approximation tas*(k), normalized such

(with Z;=1=2Z,) yields a mass functio (p?), with the
“correct” one-loop anomalous dimension, i.e., in Eq. (8)
in the case of explicit chiral symmetry breaking or (1
—vy) in its absenc§24]. However, other often usethsdze
for I', [18,25 yield different and incorrect anomalous di-
mensions forM(p?) [26]. This illustrates and emphasizes
that the anomalous dimension of the solution of EL.is

that it has the samgd*k as the first term. In this way we
split the infrared singularity into the sum of a zero-width and
a finite-width piece. The last term in E@3) is proportional
to a(k?)/k? at large spaceliké&? and has no singularity on
the realk? axis.

There are ostensibly three parameters in 2§): D, o,
andm, (D=2y,m? in Ref.[16]). However, in our numeri-

sensitive to the details of the asymptotic behavior of thecal studies, using a renormalization point 19 GeV, which
Ansdze for the elements in the integrand. One role of theis large enough to be in the perturbative domain, we fixed

multiplicative renormalization constai; is to compensate
for this.

0=0.3 Ge=1/(0.66 fm)] and m=0.5 Ge\{{=1/(0.39
fm)], and only variedD and the renormalizedi/d- and
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15.0

A
[Fh(kiP)]w= L [xn(a:P)]sKia(a.kiP), (25

whereH= 7 or K specifies the flavor-matrix structure of the
amplitude; xp(a;P)=5(q.)T'w(a;P)S(q-), with S(q)
=diagS,(a),S4(a).Ss(a));  gr=a+7eP, q-=q—(1

— 77p) P, with P the total momentum of the bound state; and
r,...u represent color-, Dirac- and flavor-matrix indices.

In Eqg. (25, Ki:(q,k;P) is the renormalized, fully-
amputated quark-antiquark scattering kernel, which also ap-
pears implicitly in Eq.(1) because it is the kernel in the
inhomogeneous integral equation satisfied by(q;p).
Kis(g,k;P) is a four-point Schwinger function obtained as
the sum of a countable infinity of skeleton diagrams. It is

0 T T Ty T T T o0 T 30 a0 TEo  two-particle irreducible, with respect to the quark-antiquark
K2 (GeV)? pair of lines and does not contain quark-antiquark to single
gauge-boson annihilation diagrams, such as would describe

FIG. 1. A comparison o§(k?)/k? in Eq. (23) obtained using the  the leptonic decay of a pseudoscalar me¥Bhe complexity
best fit parameters of Eq24) (solid line), with 4mwa(k?)/k? in of K{j(q,k;P) is one reason why quantitative studies of the
Eq. (6) (dashed ling The obvious infrared enhancement is qualita- quark DSE currently employAnsaze for D, (k) and
tively and semiquantitatively in agreement with that inferred in ther (k,p). As illustrated by Ref[9], however theucomplexity
gluon DSE studies of Ref28]. VY fs . ' ' .

of Ki;(q,k; P) does not prevent one from analyzing aspects
s-current-quark masses in order to obtain a good descriptioAf QCD in @ model-independent manner and proving general
of low-energym- andK-meson properties. As shown below, esults that provide useful constraints on model studies of
this is achieved with CD.

100 +

G (GeV?)

50 -

Equation(25) is an eigenvalue problem. Solutions exist

D=0.781GeV, myq4(u)=3.74 MeV, only for particular, separated valuesRf, and the eigenvec-
tor associated with each eigenvalue, the Bethe-Salpeter am-
mg(u)=82.5 MeV. (24  plitude (BSA) I'(k;P), is the one-particle-irreducible, fully

amputated quark-meson vertex. In the flavor-octet channels
the solutions with the lowest eigenvalues are thend K
mesong. The solution of Eq(25) has the general forf82]

(We do not consider isospin-breaking effects hejeilve
chose the quoted values ef andm, primarily so as to en-
sure thatG(k?) ~4ma(k?) for k?>2 GeV?, as illustrated in
Fig. 1. This is sufficient for our present illustrative study, just T (k;P)=T"y[iE,(k;P)+ y- PFy(k;P)

as the form in Ref[16] was sufficient therein. However,

increasing sophistication and/or an exploration of a broader +y-kk-PGy(k;P)+0o,,k,P,Hy(K;P)],
range of observables is likely to require a more careful treat- (26)
ment of this or other parametric forms.

Evolved according to Eq8), postponing until Sec. IV A where for bound states of constituents with equal current-
the discussion of whether this formula is appropriate, theyuark masses the scalar functidisF, G, andH are even
“best fit” mass values in Eq(24) correspond tomyg®  |nderk.P— —k-P and, for exampleT* =1(\4+i\®)

=6.4 MeV andm; °*'=140 MeV. The “best fit” values are  jth {\/,j=1, ...,8 the SU3)-flavor Gell-Mann matrices.
sensitive to the behavior @i(k?) for k*~1-2 GeV?, which  The requirement that the bound state contribution to the fully
can be illustrated by their dependence on Increasing amputated quark-antiquark scattering amplitudd,=K

w—1.50, while maintaining a good fit ter- andK-meson 4+ K(SS)K+ ..., have unit residue leads to the canonical
observables, requires-a10% reduction in the value of these normalization condition for the BSA:

masses. With minor modifications of our parametrization we

can satisfy our phenomenological constraints using current- b JA{ 4S(q4)
= tr
Y23

quark masses that are a factor-efl.5—2, smaller, as can- I'y(g;—P) op FH(Q:P)S(Q—)}
vassed in Ref[30]. We would have to apply tighter con-

straints in our phenomenological application to make a

statement about the current-quark masses of light quarks that +1r

is more accurate than this. These considerations do not affect

the ratio of our fitted current-quark mass values,

y22
m /m =22.0, which is consistent with Refi$,11] _ i
ar?((jﬂ%e a/iggj;sion of Re30]. 5,11 3A connection between the fully amputated quark-antiquark scat-

tering amplitude;M =K+ K(SS)K+ .. ., and theWilson loop is
discussed in Ref31].
“We do not consider the meson because of its mixing with the
The renormalized, homogeneous, pseudoscalar Bethey, which cannot be described in ladder approximafibh, 12, the
Salpeter equation is truncation of the BSE employed in Sec IlI B.

95(q-)

(e = P)S(@:)Th(a:P)—5
y22

Ill. PION AND KAON BETHE-SALPETER EQUATIONS
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A (A IK!S(q,k; P) As a straightforward generalization of R¢B], it follows
+f f Lxu(a;—P)]s P [xu(K;P)1ut from Egs.(2) and(31) that in the chiral limit the axial-vector
a Jk m vertex has the form
(27) 9y
_ H . _ . .

whereT (k, — P)!=C 1T ,(—k, — P)C, with C= y,7,, the I'su(kiP) == ysl vuFr(K;P) + v Kk, Gr(k;P)
charge conjugation matrix, arkf denoting the matrix trans- _
pose ofX. — 0,k Hr(kiP)]+T8,(k;P)

In Eqg. (25), Ey(k;P)#0 acts as a “source” in the equa-
tions for F(k;P), Gu(k;P), andH(k;P) so that, in gen-
eral, these subleading Dirac componentsIgf(k;P) are
nonzero.

Pu .
+fH§FH(k,P), (32

where Fr, Gg, Hg, and T, are regular asP?-0,
_ P, I, (k;P)~O(P?), T'y(k;P) is the pseudoscalar BSA in
In studies of flavor-octet pseudoscalar mesons a good Urkq. (26), and the residue of the pseudoscalar pole in the

derstanding of chiral symmetry, and its explicit and dynami-axjal-vector vertex i€, the leptonic decay constant:
cal breaking, is crucial. These features are expressed in the

renormalized axial-vector Ward-Takahashi identithV A
WTI) fHP,szJq (T Y5 7,8(a:)Tw(a;P)S(q-)],

y TH T (33
—iP,I's,(k; P)=S‘1(k+)y57 + ysyS‘l(k_)

A. Chiral symmetry

with the trace over color, Dirac, and flavor indices. In addi-

— M(M)Fg(k; P)—TH(k; P)M ), tion the chiral limit AV WTI entails
(28) fuEn(k;0)=B(k?), (34)
whereM ,,,=diagm,(u),mg(u),ms()); the renormalized . L2
axial-vect%r vertex is given by Fr(ki0)+2fFy(ki0) =A(kY), (39
H ™ Gr(k;0)+ 2f ;G (k;0)=2A" (k?), (36)
[T'5,(KP) =2 YsYu 5
“‘ Hgr(k;0)+2f4Hy(k;0)=0, (37)
A
H . .
+ fq (x50 P)IsiKia(a.k P), - (29) where A(k?) andB(k?) are the solutions of Eq(1) in the
chiral limit.
with X?ﬂ(q;P)ﬁS(q_'_)Fg"u(q;P)S(q_); and the renormal- As remarked above, in perturbation theoB(k?)=0 in
ized pseudoscalar vertex by the chiral limit. The appearance ofB{k?)-nonzero solution

of Eq. (1) in the chiral limit signals DCSB: One halynami-
A s cally generateca momentum-dependent quark mass term in
+J [xs(a;P)1siKia(a,k;P), the absence of a seed mass. Equati@® and (34)—(37)
tu A (30) show that when chiral symmetry is dynamically brokéeh:
the homogeneous, flavor-nonsinglet, pseudoscalar BSE has a
with xH(q;P)=5(q.)TH(q;P)S(q_). Multiplicative renor- masslessP2=0, solution; (2) the_ BSA for the m_assless
malizability ensures that no new renormalization constantound state has a term proportional 49 alone, with the
appear in Egs(29) and(30) [9,33]. momentum dependence &f,;(k;0) completely detgrmmgq
Any study whose goal is a unified understanding of theby that of the scalar part of the quark self energy, in addition
properties of flavor-octet pseudoscalar mesons and othdp terms proportional to other pseudoscalar Dirac structures,
hadronic bound states must ensure the preservation of tHed. Gu, andHy, that are nonzero in general; af@) the
AV WTI, which correlates the axial-vector vertex, pseudo-axial-vector vertex's, (k;P) is dominated by the pseudo-

scalar vertex, bound state amplitudes, and quark propagatosgalar bound state pole f&*=0. The converse is also true.
The relationship, in the chiral limit, between the normal-

1. Chiral limit ization of the pseudoscalar BSA afig has often been dis-
Equation (28 is valid for all values of the cussed, for example, Ref$16,34. Consider that if one
reno?malizatién-z;roup-invariant current-quark masses, iff1'00€s to normalizE,; such that,,(0,0)=B(0), and de-
particular for the chiral limit when M(M)Fg(k;P) fines the BSA so normalized d3,"(k;P), theNn the right-
=diag(0,0,0)=T'f(k;P)M . In this case the AV WTlis  hand side of Eq(27), evaluated withl'y—I" "(k;P), is
equal to ZDMN2 , whereN,, is a dimensioned constant. Us-
ing Egs.(34)—(37) it is clear that, in the chiral limit,

TH
757

[TH(KP)]w=24

TH TH
—iP, T, (kP) =8 (ki) ys7 + 7558 H(ko).
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However, in model studies to date, this result is not obtained 1
unlessone assume#\(k?)=1. It follows that any kernel rh=——(aa)%,
which leads, via(1), to A(k?)=1 must also yieldF,,=0 fh
=Gu=Hy, if it preserves the AV WTI. In realistic model

_ A
studies, where!\(kz)%l, the diﬁerer)ce between the vglues —<qq>2ﬁz4(M2,A2)NCJ troirad Smeo(d) 1,
of Ny andfy is an artifact of neglecting, Gy, andHy in q
Eq. (26) [1]. (43
2. Explicit chiral symmetry breaking where the superscript “0” denotes that the quantity is evalu-

Again as a straightforward generalization of R], in  @ted in the chiral limit andqq); , as defined here, is the
the presence of explicit chiral symmetry breaking the Av chiral limit vacuum quark condensatehich is renormaliza-
WTI, Eqg. (28), entails that both the axial-vector and the tion point dependent but independent of the gauge parameter

pseudoscalar vertices have a pseudoscalar pole, i.e., and the regularization mass scale. Equatié) is the state-
ment thatthe chiral limit residue of the bound state pole in
T the flavor-nonsinglet pseudoscalar vertex is(qq)°)/fy .
r?ﬂ(k;p)ZT%[ J’MFE(k:P)‘F 7.kkﬂGg(k;P) From Egs.(41) and(43) one obtains immediately

_O.MVkVHg(k;P)]+’fEM(k;p) f727m727:_[mu(ﬂ)+md(M)]<qq>2+O(ﬁ1§)v (44)

P, fMi = —[my(w) + my(w)(aa)y +O(m3), (45)
+ iy L5 Tu(k;P), (39)
P+ my which exemplify what is commonly known as the Gell-
Mann—Oakes—Renner relation.
and We emphasize that the primary result, E4j1), of which
Egs.(44) and(45) are corollaries, is valithdependenbof the
TH magnitude ofﬁ‘lq. We can rewrite it in the form
I5(kiP) = ye[i€R(k;P)+y- PF(K:P) )y —o
famg=—(qa), My, (46)
H/p- H/-
7Kk POR(KGP) 0.k, P HR (K P)] where we have introduced thtation
1 — \H.
HHPer—mE'FH(k,P), (40) —(qa),=fury 47

in order to highlight the fact that, for nonzero current-quark
0 oH  =H H H H AH =H masses, Eq@4l does notinvolve a difference of vacuum
leth & ,ZFR, {EH, Ggr, Gr., HR21 Hg, andT’g, regular as massive-quark condensates, a phenomenological assumption
P——mjy; P,I's,(k;P)~O(P); and often employed.

Fumi=rq My, Mu=trgaol M (T (THY], B. Model BSE

(4D In order to exemplify the results of Ref9], which we
have reiterated and generalized in Sec. Ill A, we must have
wherefy, is given by Eq.(33), with massive quark propaga- an explicit form for the kerneK{;(q,k;P) in Eq. (25). The
tors in this case, and the residue of the pole in the pseudderm must be such as to preserve the AV WTI, ER9),
scalar vertex is which requires a truncation of the skeleton expansion for
Kis(d,k;P) that is consistent with Eq22); our Ansatzfor

A the kernel of Eq.(1). The “ladder truncation” fulfills this
t=Za | BT 95800 Tw(@PIS@ )] 42 requiremen(12.13;
q

A2 A2
rs P)— _ —_m2ypfree — — —
The factorZ, on the right-hand side depends on the gaugeKt“(q’k'P) G((k=a)ID,,, (k q)( Yu7p )u( ) )su’

parameter, the regularization mass scale, and the renormal- (48)
ization point. This dependence is exactly that required to

ensure that(1) ry is finite in the limit A—o; (2) ry is  in which case Eq(25) becomes

gauge-parameter independent, a3l the renormalization

point dependence af is just such as to ensure that the

right-hand side of Eq(41) is renormalization poinindepen- ®In QCD, the integral definingy, diverges logarithmically, like
dent This is obvious at one-loop order, especially in Landathe trace of the chiral limit quark propagattracuum quark con-
gauge wher&,=1 and henc&,=2,,. densatg which is the reason why the right-hand side of Etf) is

In the chiral limit, using Eqs(26) and(34)—(37), Eq.(42) independent of the renormalization point. This is unlike the trace of
yields them#0 quark propagator, which diverges quadratically.
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a

A A
Fa(kiP)+ fq G((k~Q)ID!k—0) 5 7,50 )T (:P)

a

A
XS(qf)?‘yVZO, (49)

and the normalization condition, E7), simplifies because
the last term vanishes whef;;(q,k;P) is independent of

P,

IV. NUMERICAL RESULTS

A. Solution of the quark DSE
Using Egs.(1) and(22) our model quark DSE is

S(p, ) t=Zoiy-p+Zam(p)+3'(p,A),  (50)
with the regularized quark self-energy
)\a A
X(p)= [ G- DLEP -0 7,0 7
(51)

whereG(k?) is given in Eq.(23). Equation(50) is a pair of
coupled integral equations for the functioA$p?,«?) and
B(p?,u?) defined in Eq.(2).

In the case of explicit chiral symmetry breakiﬁg# 0, the
renormalization boundary condition of E() is straightfor-
ward to implement. Writing

2'(p,A)=iy-p(A'(p%,A?)—1)+B'(p%A?), (52

Eq. (3) entails
Zy(u? A%)=2-A"(u?A?)

and

M(u)=Zp(p? A*)Mpr(A%) +B' (2, A%) (53
and hence

A(P?,u?)=1+A"(p? A% —A'(u? A?), (54)

B(p? u?)=m(p)+B'(p?A%)—B'(n?A%). (55
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FIG. 2. The renormalized dressed-quark mass funadtiip?)
obtained by solving Eq(50) using the parameters in E4): u/d
quark (solid line), s quark (long-dashed ling and chiral limit
(dashed ling The renormalization point iz =19 GeV. The inter-
section of the lineM?(p) = p? (dotted ling with each curve defines
the Euclidean constituent-quark mads.

“m(u)” in Eq. (55) by m(w); i.e., the “seeds” in the inte-
gral equation evolve according to the QCD renormalization
group.

As also remarked in Sec. Il A 1, the chiral limit in QCD is
unambiguously defined byn=0. In this case there is no
perturbative contribution to the scalar piece of the quark self-
energy,B(p?, 1?), and, in fact, there is no scalar, masslike
divergence in the perturbative calculation of the self-energy.
It follows that Z,(u?,A2?)mp(A2)=0, YA and, from Egs.
(53) and(55), that there is no subtraction in the equation for
B(p? 1?); i.e., Eq.(55) becomes

B(p? u?)=B'(p?A?), (57)

with lim,_...B’(p? A%)<=.® In terms of the renormalized
current-quark mass the existence of DCSB means that, in the
chiral limit, M (u?)~0O(1/u?), up to Inu? corrections.

In Fig. 2 we present the renormalized dressed-quark mass
function M (p?) obtained by solving Eq(50) using the pa-

From Sec. Il A1, having fixed the solutions at a Smg|erameters in Eq(24) and in the chiral limit.(Recall thatu

renormalization pointw, their form at another poing is
given by
S~ (p,u)=iy-PA(P?,1°) +B(p? 1?)
 Zy(pP A

Zy(u? A% (0

S Hp,u).

[Recall thatM(p?) is independent of the renormalization

=19 GeV, which is large enough to be in the perturbative
domain)

It is clear from this figure that the light-quark mass func-
tion is characterized by a significant infrared enhancement, a
direct result of that in the effective coupling(k?). Intro-
ducing the Euclidean constituent-quark m&4S as the so-
lution of p?=M?2(p?), the ratioMF/m;(u), wheref labels
the quark flavor andn(u) is given in Eq.(24), is a single,

point] This feature is manifest in our solutions. It means 5This is a model-independent statement; i.e., it is true in any study

that, in evolving the renormalization point ﬁo the “1” in
Eq. (54) is replaced byZ,(u2 A2)/Z,(u2,A?), and the

that preserves at least the one-loop renormalization group behavior
of QCD.
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indicative, and quantitative measure of the nonperturbative __

effects of gluon dressing on the quark propagator. We find —<qCI>2 lim Z4(u,A)N¢

A—oe

n=19 GeV—

E ME A
M m;( ) qu trDirac[S%—o(Q)])
chiral limit 0.55 GeV = - , , n=19 GeV
u/d 0.56 150 =(0.275 GeVfS. 61
s 0.70 8.5 We have established explicitly that(@(ﬁ)‘;: const, in-

dependent of. with the value depending on the quark flavor,

which clearly indicates the magnitude of this effect for light 2nd hence
quarks. The ratidE/m¢(u) takes a value o®(1) for heavy ——\0. 2, 7\0
quarks[37] because the current-quark mass is much larger m(,u)<qq>ﬂ—m<qq) ' (62

than the mass scale characterizing the infrared enhancemqm.lich unambiguously defines the renormalization-point-

in the effective couplingAqcp- This means that in the hgependent current-quark masses. From this and @ds.

spacelike region the momentum dependence of the heavygg) and(61) we extract the values of these masses appro-
quark mass function is dominated by perturbative effécts. priate to our model:

In typical quark model calculatior86] the “constituent-
guark” masses arél ,,q=0.33 GeV andM =0.55 GeV. Myq=6.60 MeV, m.=147 MeV. (63
These are within a factor of 2 of the values in E§8) and
are in the ratioM,q/M¢=0.60. From Eq.(58) we find Using Eq.(8) these values yieldn,(x)=3.2 MeV and
ME /ME=0.80. The comparison of numerous DSE studiesMs(«) =72 MeV, which are within~10% of our actual val-
makes it clear that this correspondence bet\/\MandeE ues in Eq(24). This |nd|cate_s that hlgher-loqp corrections to
is robust. It provides a qualitative understanding of the nath€ one-loop formulas, which are present in the solution of

i : : 2 2
ture of the “constituent-quark” mass; i.e., it is a quantitative € integral equation as made evidentAfp®, «“)#1, pro-

. . . 2_ 2 - -
measure of the nonperturbative modification of quark propaYide contributions 0t<10% atp“=u*. These contributions

gation characteristics by gluon dressing. Its magnitude is decrease with |ncreas!r'pgz:9 . _
signal of the enhancement of the quark-quark interaction in_From the renormalization-point-invariant product in Eq.
the infrared. (62) we obtain

The qualitative difference between the behavioMd(fp?) —.0 . —
in the chiral limit and in the presence of explicit chiral sym- —(qa)ulu=16ev=(IN[L/Aqco]) " 40)°=(0.241 GV,
metry breaking is manifest in Fig. 2. In the presence of ex- 64)
plicit chiral symmetry breaking Ed8) describes the form of  This result can be compared directly with the value of the
M(p?) for p>>0(1 GeVA). In the chiral limit, however, the quark condensate employed in contemporary phenomeno-

ultraviolet behavior is given by logical studieq39]: (0.236+0.008 GeV¥. We note that in-
creasingw— 1.50 in G(k?) increases the calculated value in
) large pp 725, (—{(qq)° Eqg. (64) by ~10%. Obtaining broad agreement with the con-

M(p) = —3 (59 temporary phenomenological value 060)5_1 gey Was a

2/1 2142 -y’
P (zIn[p™Aqepl)™ 7 means we employed to constrain the value of this parameter.
However, we made no attempt to fine-tuneor thereby our

where (qq)° is the renormalization-point-independent cajculated value ofqq)?

. . L n=1GeV*
vacuum quark condensdté\nalyzing our chiral limit solu- In conjunction with Eq(64) we definem? %" via Eq. (8)
tion we find using Eq.(63):
_ 1GeV_ 1GevV_
_<qq>0= (0227 Ge\ls (60) mu/de =55 MeV, ms V= 130 MeV. (65)

o These values differ slightly from those discussed in Sec.
This is a reliable means of determiniigq)® because cor- 1l B 2 for the reasons described above. It is now clear, from

rections to Eq(59) are suppressed by powers @gCD/ . Eq. (62), tha_u lower values of the purre_nt-quark masses, as
Equation (43) defines the renormalization-point- canvassed in Ref30], are admissible in our phenomeno-
dependent vacuum quark condensate logical study only via an increase {q q>2:1GeV'

After this discussion of the vacuum quark condensate it is
now straightforward to determine the accuracy of Ed4)

"Quark confinement entails that there is no “pole ma$85], and (45). Using experimental values on the left-hand side,
which would be the solution o2+ M?(p?)=0. Hence, this defi- we find
nition of ME is arbitrary; a factor of 2 is certainly unimportant with
respect to the qualitative features that this quantity characterizes.

8The momentum dependence of this result is characteristic of the °Our model for the kernel of the quark DSE is not constructed to
QCD renormalization group at one lo¢®8] and demonstrates that preserve the two-loop, perturbative behavior of QCD. Hence a di-
the truncation we employ preserves this feature. rect comparison at this level is not meaningful.
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TABLE I. Calculated values of the properties of light pseudoscalar mesons composed of a quark and
antiquark of equal mass. The mass®{"'=0.1385) and decay constarf¢{"'=0.0924) are in GeV, an®
is dimensionless. With the exception of the calculations that retain only the zeroth Chebyshev moment,
labeled by ‘U, only,” the results are independent of the momentum partitioning paramgter

All amplitudes T Chiral limit ss
mg; fr Ry My fo Ry Mss fss Ry

Method (A) 0.1385 0.0924 1.01 0.0 0.0898 1.00 0.685 0.129 1.00

Ug only 0.136 0.0999 0.95 0.0 0.0972 0.94 0.675 0.137 0.95

Uy andU, 0.1385 0.0925 1.00 0.0 0.0898 1.00 0.685 0.129 1.00

E only

Method (A) 0.105 0.0667 1.82 0.0 0.0649 1.81 0.512 0.092 1.68

Ug only 0.105 0.0667 1.82 0.0 0.0649 1.81 0.513 0.092 1.69

E,F

Method (A) 0.136 0.0992 0.95 0.0 0.0965 0.95 0.677 0.137 0.95

Uy only 0.136 0.0992 0.95 0.0 0.0965 0.95 0.678 0.138 0.95

E.F,G

Method (A) 0.140 0.0917 1.01 0.0 0.0891 1.00 0.688 0.128 1.01

Ug only 0.136 0.0992 0.95 0.0 0.0965 0.95 0.678 0.138 0.95

Uy andU, 0.140 0.0917 1.01 0.0 0.0891 1.00 0.689 0.128 1.01
(0.0924x 0.13852%=(0.113 GeV* which yields an equation that has a solutdMR?, character-

ized by the value o (P?). The original problem is solved
[cf. (0.111 GeW*=2x0.0055<0.24], (66)  When thatP? is found for whichx (P?)=1, which will occur
at P?<0 in our metric.

(0.113x 0.4952=(0.237 GeV* For P?2=—P2<0, solving Eq.(68) requires the dressed-
quark propagatoS(q.) on the parabola, #p°P?*Re(q>)
[cf. (0.206 GeWY*=(0.0055+0.13x0.28], (67) =Im(g%)>—4(»3P?)?, in the complexg? plane, and

S(q_) on the parabola, 4(2 7p)?P?Re(g?)=Im(q?)?
which indicates tha®(m?) corrections begin to become im- —4[(1— 7p)2P2]?, in the complexg® plane. For complex
portant at current-quark masses near that ofstqeark. We  arguments in the dressed-quark propagator the quark DSE
emphasize that we did not use these equations in fitting thexquires the effective coupling at complex values of its argu-
current-quark masses but, as described in Sec. IV B, solveghent. Equation68), however, still only requireg(k?) on
the model BSE, Eq(49), using the dressed-quark propaga-the realk®>0 axis. The specification @(k?) is the primary
tors obtained as a solution of E¢G0). In this procedure, element in the definition of the model and o@nsatzis
changes in qq)° effected by modifying the model param- motivated by studies that are restricted to feab 0. In em-

eters are compensated for by changesjjj, andmg. There-  Ploying this Ansatzat complex values of its arguments we
fore the comparisons in Eq&6) and (67), which involve a  are exploring an unconstrained domain. Solving numerically

product of these quantities, remain meaningful and the corfor S(p) in the complexp® plane is straightforward. How-
clusion remains valid® ever, complex-conjugate branch points in thenfining so-

lution introduce numerical complications in solving the BSE
for bound states containing a single heavy constittrent.
The general form of the solution of the BSE, E49), is
To solve Eq.(49) we modify it by introducing an eigen- given in Eq.(26) where the scalar functions depend on the
valuex(P?), variablesk? andk- P, and are labeled by the eigenvalBé.
From this it is clear that the integrand in E§8) depends on

B. Solution of the BSE

A A2
FH(k;P)+>\(P2)f Q((k—q)z)DZie(k—q)7y,LS(q+)
q
\2 This branch-point pair is present because of the infrared en-
XTh(q:P)S(9- )= v,=0, (68) hapcement in our_ Ansatz for th_e eﬁ_‘ectlve coupling but may be an
2 artifact of the rainbow approximation, E421). Reference[22]
demonstrates that dressing the vertex, consistent with the con-
straints of Refs[20], can significantly affect the analytic properties
0Using our calculated values ¢f., m_, fy, andmy, Tables |  of S(p) while maintaining the essence of quark confinen@s,
and I, the only change is in E§67), where 0.237-0.233. i.e., thatS(p) not have a Lehmann representation.
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TABLE II. Calculated properties of th& meson for various values of the momentum partitioning
parameteryp; “ —" means that no bound state solution exists in this case. The nma$8'+0.496) and
decay constantf§®=0.113) are in GeV, an®y is dimensionless.

All amplitudes 7p=0.50 np=0.25 np=0.00

My fx Rk Mg fx Rk Mg fx R
Method (A) 0.497 0.109 1.01 0.497 0.109 1.01 0.497 0.109 1.01
Ug only 0.469 0.117 0.96 0.482 0.117 0.95 0.475 0.113 1.02
Uy andU, 0.500 0.111 1.00 0.497 0.109 1.01 0.498 0.110 1.00
Ug, U4, andU, 0.497 0.109 1.01 0.497 0.109 1.01 0.496 0.109 1.01
E only
Method (A) 0.430 0.079 1.55 0.430 0.079 1.55 0.429 0.076 1.55
Ug only 0.380 0.077 1.54 0.401 0.076 1.51 0.415 0.073 1.55
Uy andU, 0.439 0.089 1.52 0.430 0.078 1.55 0.431 0.076 1.57
Ug, U4, andU, 0.430 0.078 1.55 0.430 0.078 1.55 0.427 0.076 1.55
E, F
Method (A) 0.587 0.17 0.79 0.557 0.14 0.86 0.533 0.11 0.94
Ug only 0.505 0.12 0.82 0.518 0.11 0.86 0.512 0.11 0.96
Uy andU, - - - 0.556 0.14 0.86 0.537 0.12 0.94
Ug, U4, andU, 0.583 0.16 0.79 0.557 0.14 0.86 0.532 0.12 0.93
E,F,G
Method (A) 0.500 0.108 1.01 0.500 0.108 1.01 0.500 0.108 1.01
Uy only 0.471 0.116 0.96 0.484 0.116 0.95 0.477 0.112 1.02
Uy andU, 0.504 0.110 1.00 0.500 0.108 1.01 0.502 0.109 1.00

Ug, Uy, andU, 0.500 0.108 1.01 0.500 0.108 1.01 0.499 0.108 1.01

the scalark?, k-q, g2, q-P, and P2, which takes a fixed Substituting this expansion into E@8) allows all but one of
value at the solution; i.e., at each valueRsfthe kernel is a the integrals to be evaluated before beginning the iteration.
function of four independent variables. Solving E§8) can  One then solves for the Chebyshev mometigk?; P?).
therefore require large-scale computing resources, especialhis procedure requires a large amount of time to set up the
since there are four independent scalar functions in the gefkermel but does not require large amounts of computer
eral form of the solution. memory. _ _

We employed two different techniques in solving Eq. N order to fit the parameted in G(k?) and the current-
(68). In our primary procedurdA), we treated the scalar 9uark massm,q(u) we (1) chose values for these param-
functions directly as dependent on two independent variable&ters;(2) solved the quark DSE fd,4(p); (3) usedg(k?)
E(K?k-P:P2), etc., which requires straightforward, multigi- 2nd the calculated form &,4(p) to solve the pion BSE for
mensional integration at every iteration. Storing the multidi-"e Mass and BSA',(k;P), using proceduréA); and 4
mensional kernel requires a large amount of compu'[e|’Jsed the calculated forms &,4(p) an_dl“w(k,P) to calqu-
memory but the iteration proceeds quickly. ate f . from Eq. (33). We repeated this procedure until sat-

As an adjunct, and because we wish to elucidate qualit isfactory values ofm_ and f . were obtained. Having thus

tive and quantitative effects related to theP dependence of Yixed D' we repeated the steps for tie meson, varying

- . m only, in order to obtain the best possible valuespf
the scalar functions in the BSA, we employed a Che_byshe\érf((j’;)}(_ Tzis led to the parameter valupes quoted in é;i)
decomposition procedur@®). To implement this we write and the results listed in row one of Tables | and Il. This does

not represent an exhaustive search of the available parameter
space but is sufficient for our purposes.

Nmax
E(k2k-P;P?)~ > 'E(k%P?)Uj(cosB), (69
=0 C. Discussion of the BSE solution

with similar expansions foF, G=k-PG, andH, wherek From Tables | and Il, and Eq&24), (46), (47), and (64),

-P=cosBJk?P? and {U,(x);i=0, ...} are Chebyshev it is straightforward to calculate
polynomials of the second kind orthonormalized according

to
2Equation(69) is only an identity in the limitN,— o but, in the

present example, an accurate representation of the solution is ob-

Efl dxyI—x2U;(X)U;(x) = §;; . (70)  tained withNp,,=1 or 2, which is consistent with the observa-
) 1 ! ! tions of Ref.[5].



3380 PIETER MARIS AND CRAIG D. ROBERTS 56

1.0 L B L B B 0.5 LA S A S B A S R A |
3
\\ - L 4
0.8 r \ N 04 r B
b \\\ - .\ T
é \\\\\ I f\\ L
S 06F \\ ] 03 F N 1
‘@ R %) k Y J
s \ o R\
£ A = I ]
204t \ - <02t R .
Né i \ \\ °LL [ \\ )
T \S "N
4 N N\ ] .
N\ N r N
02 r RS - 0.1 N b
NN L SN
\\\\\ \\\\\\
Sl RSl
0.0 T SN B st e e e 0.0 P S s o~ |
0.0 1.0 2.0 3.0 4.0 0.0 1.0 2.0
K (GeV?) K (GeV?)
FIG. 3. The zeroth Chebyshev momentf(k;P): chiral limit FIG. 4. The zeroth Chebyshev momentrgf(k;P): chiral limit

(dotted ling, 7= meson(solid line), K meson(long-dashed ling and (dotted ling,  meson(solid line), K meson(long-dashed ling and
fictitious, s s bound state[dashed ling 7p=1 in each case. For fictitious, s s bound statedashed ling 7p=3 in each case. For
ease of comparison the BSA's are all rescaled so tBa{k?*=0) ease of comparison the BSA'’s are all rescaled so $&at(k?=0)
=1. =1.

(AT —1cev — (AN 1cev —(ADSE 1 cev ) being obtained with the zeroth and first moments for bound
(0.245 GeV®  (0.284 GeV®  (0.317 GeV3 states of equal-mass constituetitsThe same is true for
bound states of unequal-mass constitupntsidedall Dirac

. . win amplitudes are retained in the solution.
showing that, for light pseudoscalars, the “in-meson conden One observes that when theP dependence of the scalar

sate” that we have defined increases with increasing bounfi nctions in the meson Bethe-Salpeter amolitude is included
state mass, as does the leptonic decay con$tanit uh ctio IS € TSO pethe apefeha piitude 1S Included,
In Tables | and Il we list values of the dimensionless ratio”..Y > c& observables amdependenbf t e moment_um par-
titioning parameterynp. These calculations elucidate the
<ﬁ>HMH manner in which. thi_s necessary requirement in covarjant
e R (72 bound state studies is realized: The bound state amplitude
fﬁmﬁ depends onyp in just that fashion which ensures physical
) o quantities do not. All the scalar functions in the BSA must be
A value of Ry=1 means that Eq41) is satisfied and hence jncluded to ensure this.
so is the AV WTI:* Looking at the tabulated values &, it The tables also illustrate clearly the effect of the current-
is clear that the scalar functiad is not quantitatively im-  quark mass via a comparison of the chiral limit pion with the
portant, with the AV WTI 'being satisfied numerically with physical pion, the kaon, and a fictitious pseudoscaﬂg
the retention o€, F, andG in the pseudoscalar meson B.SA' bound state. ’One obse,rves tHat is Wea'kly sensitive té)
The valugs OfRy, and the OEher t.abulated qqant|t|es, hlgh'increasing the current-quark mass; for example, we obtain
light the importance of andG: F is the most important of ~ {0/ _—0.97, which is consistent with expectations based on
these functions buGG nevertheless provides a significant effective chiral Lagrangians. Howeven, rises quickly, be-
contribution, particularly for bound states of unequal-masgore becoming sensitive to effects nonlinear in the current-
constituents. We note that a poor valuef gfis tied to a poor  quark mass®
value of Ry, which emphasizes the importance of preserv-
ing the AV WTI and hence Eq38). We have checked ex-
plicitly that our complete solutions satisfy E(8). e note that for equal-mass constituefts-k- PG is an odd
The tables |IIL_JS_trate the rapid convergence of the _Chebyfunction ofk- P and hencG=0. Therefore it first contributes at
shev decomposition procedu(B), with accurate solutions o(U,).
18We note that our calculated value of, 5 is within 3% of that
5 —h ) _ ) obtained for this fictitious bound state in R¢6]. However, the
(—={qa),)/fy is the residue of the bound state pole in the pseu-egylts in Ref[6] depend onyp, which is an artifact of the solution
doscalar vertex, just afy, is the residue of the bound state pole in procedure adopted therein. In that study a derivative-expansion and
the axial-vector vertex. As expected,(qd);_;ce/~  extrapolation procedure was employed in order to avoid a direct
(qq)2|#:1eev. solution for the quark propagator functiodgp?) and B(p?) at
“tillustrates that the pseudoscalar-meson pole in the axial-vectoromplex values of their arguments. In addition, in most instances
vertex is related to the pseudoscalar-meson pole in the pseudoscatanly the zeroth Chebyshev moment was retained in the Chebyshev
vertex in the manner we have elucidated. A finite value in the chirakexpansion of the scalar functions in the Bethe-Salpetare func-
limit emphasizes thamﬁoc/\/lH as My—0. tion: xu(q;P)=8(q.:)I'w(q;P)S(q-).

Ry=
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FIG. 5. The zeroth Chebyshev momeni@&f(k;P): chiral limit

(dotted ling, 7 meson (solid ling), fictitious, ss bound state FIG. 7. The asymptotic behavior of the zeroth Chebyshev mo-
(dashed ling and of G(k;P) (GeV ') for the K meson(long-  ments of the functions in the-meson BSAT°E (k%) (GeV, solid
dashed ling 7p= 3 in each case. For ease of comparison the BSA'sline), f°F (k%) (dimensionless, long-dashed n&?f°G .. (k?) (di-
are all rescaled so th&E(k*=0)=1. mensionless, dashed lin@andk2f%H _(k?) (GeV, dot-dashed line

The momentum dependence is identical to that of the chiral-limit
We present the scalar functions in the BSA obtained aguark mass functiorM (p?), Eq. (59) (GeV, circles. For other

solutions of Eq.(49) in Figs. 3—7, focusing on the zeroth pseudoscalar mesons the momentum dependence of these functions
Chebyshev moment of each function, which is obtained viais qualitatively the same, although the normalizing magnitude dif-
fers.
OEH(kZ)iEJ dB sirfBUy(cosB8)Ey (k% k- P;P?),
mJo °Gy(k?) [°Gk(k?)] behaves similarly; and Fig. 6, that the

(73 same is true foHy(k;P) and that it is uniformly small in
magnitude thereby explaining its quantitative insignificance.
Where comparison is possible, these observations agree
ﬂju_alitatively with Refs[6,11].

and similarly forF, G (G for theK meson, andH. Figure 3
illustrates that the momentum-space width &, (k%) in-

creases as the current-quark mass of the bound state consti . . 2 .
ents increases; Fig. 4, thdE,,(k2=0) decreases with in- In Fig. 7 we illustrate the largks behavior of the scalar

) o s functions in the pseudoscalar BSA. The momentum depen-
creasing cu\r/gent—quark mass but tHE.h(k ) is stilllarger at dence of°E,(k?) at largek? is identical to that of the chiral-
k“>0.5 GeV for bound states of higher mass; Fig. 5, thatlimit quark mass functio (p?) in Eq. (59) [40], and char-
acterizes the form of the quark-quark interaction in the
ultraviolet. Figure 7 elucidates that this is also true of
OF L, (k?), k% %G (k?) [k? °Gy(k?) for the K mesor, and
k? °H,,(k?). Each of these functions reaches its ultraviolet
limit by k?=10 GeV?, which is very much less than the
renormalization pointu®=361 Ge\2.

In order to verify Eqs(34)—(37) it is necessary to con-
sider the inhomogeneous axial-vector vertex equation, Eg.
(29), in our truncation of the DSE'’s, which is

0.00

-0.01

°H (K’ (GeV?)

a

H TH A 2\ free A

-0.02 T
0.0 1.0 2.0 A8

K (GeV?) XS(Q+)F?,L(Q;P)S(Q—)7 Y- (74)

FIG. 6. The zeroth Chebyshev moment-f(k; P): chiral limit
(dotted ling, 7= meson(solid line), K meson(long-dashed ling and _
fictitious, s s bound state(dashed ling 7p=1 in each case. For From the homogeneous BSE one already has the equations
ease of comparison the BSA's are all rescaled so tBa{k?*=0) satisfied byE(k;0), Fi(k;0), Gy(k;0), andH(k;0). To
=1. proceed, one substitutes E§2) for Fg'ﬂ(k;P) in Eq. (74).
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25 p——— T the chiral limit, Eq.(43). The AV WTI necessarily entails an

[ ] identity between these residues, E41), which is validin-
dependenbf the current-quark mass of the bound state con-
stituents. The expression commonly known as the Gell-
Mann—Oakes—Renner relation is a corollary of this identity.
The AV WTI also places constraints on the form of the pseu-
doscalar meson Bethe-Salpeter amplitude, which necessarily
involves quantitatively important terms proportional ygy

-P and y-kk- P that have hitherto been neglected in phe-
nomenological studies of spectra, and production and scat-
tering processes in QCD. In the chiral limit these constraints
take a very simple form: Eq$34)—(37).

In Sec. IVB1 we illustrated these identities and con-
straints in numerical studies using a rainbow-ladder trunca-
tion for K(q,k;P) motivated by the Abelian approximation,
Secs. IIB and Il B, and defined by aAnsatzfor the
dressed-quark-quark interaction, Fig. 1. The model thus de-
fined preserves the one-loop renormalization-group behavior
) _ o of QCD, as is clear in our humerical solutions. This aspect of
_ FIG. 8. An illustration of the realisation in our model of the ., st,,dy facilitated an elucidation of the dominant, ultravio-
identities Eqs(34) and(35), which are a necessary consequence Oflet (Iargekz) behavior of the scalar functions in the pseudo-

preserving the axial-vector Ward-Takahashi identity. We plot lar meson BSA. Fig. 7. Emploving these results in a cal-

fOE,,(k:0) (GeV, solid ling, Fr(k:0) (dimensionless, dashed lipe  SCaar MESO » 9. 7. Empioying :

fOF,(k;0) (dimensionless, dotted line and Fg(k:0) culation of the electromagnetic pion form factor yields
! ! ’ 2 2y — 2 H ;

+2f,F,(k:0) (long-dashed ling In each curve the plotted points Q“F-(Q7) = const, up to IQ" corrections, a direct conse-

represent the right-hand side of these equations as obtained in tiggience of the model-independent resulfF,(k?)

solution of the chiral-limit quark DSEB(k?) (GeV, circleg and ~ ~k2 OGK(k2)~1/[k2(|nk/AQCD)1—7m] [41]. The pseudo-

A(K?) (dimensionless, diamonyls scalar amplitudeE ,(k;P) does not contribute to the
asymptotic form off _(Q?).’

Using the coupled equations f&g,(k;0), etc., one can iden- In the course of these numerical studies we explored the

tify and eliminate each of the pole terms associated wittfeasibility of two methods for solving the homogeneous
pseudoscalar bound statgt is the fact that the homoge- Bethe-Salpeter equation with dressed-quark propagators, de-
neous BSE is linear in the BSA that allows thiShis yields  termined numerically, and without a three-dimensional re-
a system of coupled equations fBi(k;0), Gg(k;0), and  duction: (A) treating the problem directly as a multidimen-
Hg(k;0), which can be solved without complicatiofiThe  sional integral equation, ofB) employing a Chebyshev
factor of Z, automatically ensures th&r(k?=u?;P=0) expansion of the scalar functions in the BSA in order to
=1.] We illustrate the realization of the first two identities, obtain a system of one-dimensional integral equations. We
Egs. (34) and(35), in Fig. 8. The remaining two identities, favored(A) because it provides a simpler numerical proce-

Egs.(36) and(37), are realized in a similar fashion. dure, the program runs quickly, and computer memory usage
was not a consideration. Nevertheless, we observed that the
V. SUMMARY AND CONCLUSION Chebyshev expansion converged quickly, with at most two

moments being necessary to reproduce the solution obtained
With renormalization considered explicitly, we have stud-using(A), Sec. IV B 1. Importantly, we saw that retaining the
ied the Dyson-Schwinger equation for the dressed-quark-P dependence of the scalar functions in the meson BSA is
propagator S(p); the homogeneous, pseudoscalar mesorall that is necessary to ensure that physical observables are
Bethe-Salpeter equation, which provides the meson’s Bethéadependent of the momentum partitioning parameter that
Salpeter amplitudé’(k;P), with P the total momentum of appears in the definition of the relative momentum, which is
the bound state; and the inhomogeneous BSE's for the fullarbitrary in covariant studies.
amputated axial-vector and pseudoscalar vertitggk; P) We have demonstrated that the Goldstone-boson character
and I's(k;P), respectively. Independent of assumptions
about the form of the quark-quark scattering kernel
K(g,k;P), we have elucidated the manner in which the "we note that the calculation of the elastic pion form factor in-
axial-vector Ward-Takahashi identity correlates thesevolves two pion Bethe-Salpeter amplitudes, which is qualitatively
Schwinger functions and provides important and phenomidifferent to the electroproduction studies of Rgf], which involve
enologically useful constraints. only one meson Bethe-Salpeter amplitude. We therefore expect that
We demonstrated that the axial-vector vertex contains e conclusions of Ref3] will not be qualitatively sensitive to the

pseudoscalar, bound state pole contribution whose residue dgnission of all vector meson Dirac amplitudes other thgrsince,
the meson’s leptonic decay constant, E2B). The pseudo- in that calculation, the Bethe-Salpeter amplitude acts only to restrict
scalar vertex also contains such a pole term but in this cas®e support of the integrand and the asymptotic behavior of the
the residue is related to an “in-meson” quark condensatecross sections is determined by the behavior of the quark propaga-
Eq. (42), which is equal to the vacuum quark condensate irtor.
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