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Pion-nucleon scattering at low energies

Paul J. Ellis and Hua-Bin Tang
School of Physics and Astronomy, University of Minnesota, Minneapolis, Minnesota 55455

~Received 7 August 1997!

We study pion-nucleon scattering at tree level with a chiral Lagrangian of pions, nucleons, andD isobars
using aK-matrix unitarization procedure. Evaluating the scattering amplitude to orderQ2, whereQ is a generic
small momentum scale, we obtain a good fit to the experimental phase shifts for pion center-of-mass kinetic
energies up to 50 MeV. The fit can be extended to 150 MeV when we include the order-Q3 contributions. Our
results are independent of the off-shellD parameter.
@S0556-2813~97!03712-6#

PACS number~s!: 11.80.2m, 12.39.Fe, 13.75.Gx
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Pion-nucleon (pN) scattering is a fundamental hadron
process for which a large amount of data is available and
important to understand this as completely as possible. S
eral relativistic models@1–5# exist which provide reasonabl
good fits to the experimental phase shifts. These models
sider theN, p, andD-resonance fields, the isoscalar-scalarf
~in some cases implictly via a power series expansion!, ther
meson and sometimes higher resonances, although these
a minor role. Our interest here is to examine whether a mo
which contains the minimal number of fields, namely theN,
p, and D, can yield equally good fits. Thus we effective
integrate out any other fields. For example, provided
center-of-mass~c.m.! energy is not too high, we can expan
the r propagator as (mr

22t)215mr
22(11t/mr

21•••),
where the Mandelstam variablet5(q2q8)2 and q and q8
are the initial and final pion c.m. four momenta. The series
terms can be absorbed into contact interactions in the
grangian and it is clearly important to employ the most g
eral set of such contact interactions which is consistent w
the symmetries of quantum chromodynamics.

While theD degree of freedom plays an important role
pN scattering, theZ parameter that specifies the form of th
pND vertex has been controversial, see the discussion
Benmerroucheet al. @6#. Most of the papers cited above fi
theZ parameter to thepN data. This is unsatisfactory sinc
as we showed recently@7#, the scattering is independent ofZ
if the Lagrangian contains the most general set of con
terms ~we demonstrate this explicitly below!. Thus results
which depend onZ indicate that the contact terms have be
implicitly constrained, whereas it is clearly preferable to e
ploy a general Lagrangian and allow the data itself to imp
constraints.

We would like to employ a Lagrangian which explicitl
embodies chiral symmetry since this is known to be a f
damental symmetry at low energies. Such an approach
first taken by Peccei@8# to calculate the scattering length
and this paper represents a modern extension of his wor
study the phase shift data. In order to systematically enum
ate the Lagrangian we can be guided by Weinberg’s po
counting arguments@9#. For this purpose we identify a ge
neric small-momentum scaleQ. This is of the order of the
pion three-momentum or the pion mass and therefore m
smaller than the scale of the nucleon or theD mass. Then
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according to the power counting, a Feynman tree diagr
without loops contributes topN scattering at orderQn with

n511(
i

Vi~di1
1
2 ni22!, ~1!

whereVi is the number of vertices of typei characterized by
ni baryon fields anddi pion derivatives ormp factors. This

suggests that we associatedi1
1
2 ni powers ofQ to a term of

type i in the Lagrangian@10#. Also, Krause@11# argues that
iD” 2M is of O(Q), as is a single factor ofg5 @notegmg5 is
of O(1)#. Although we naively countg5 asO(Q) for orga-
nizing the Lagrangian, we shall show later that this count
is not precise. Chiral symmetry@SU(2)^ SU(2)#, Lorentz
invariance, and parity constrain the possiblepN interactions
and these can be found in Ref.@12#. For interactions involv-
ing the D isobar we use the notation of our previous pap
@7# and follow the discussion therein. We write the Lagran
ian up to quartic order as the sum of orderQ2, Q3, andQ4

parts:L5L21L31L4.
The orderQ2 part of the Lagrangian is

L25N̄~ iD” 1gAgmg5am2M !N1 1
4 f p

2 tr~]mU†]mU !

1 1
4 mp

2 f p
2 tr~U1U†22!1D̄m

a Lab
mnDn

b1hA~D̄m•anQmnN

1N̄Qmnam•Dn!1 h̃AD̄m
a a” g5Da

m . ~2!

where the pion field arises inU(x)5exp„2ip(x)/ f p… with

p[ 1
2 p•t and the axial vector fieldam5]mp/ f p1•••,

while the vector fieldvm52 1
2 i @p,]mp#/ f p

2 1•••. The trace
is taken over the isospin matrices and the covariant der
tive of the nucleon field isDmN5]mN1 ivmN. As regards
the D, the kernel tensor in the kinetic-energy term is

Lmn52~ iD” 2MD!gmn1 i ~gmDn1gnDm!

2gm~ iD” 1MD!gn. ~3!

Here we have chosen the standard parameterA521, be-
cause it can be modified by redefinition of theD field with
no physical consequences@13#. The covariant derivative is

DmDn5]mDn1 ivmDn2vm3Dn , ~4!
3363 © 1997 The American Physical Society
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in which Dm5TDm , with Ta the standard 234 isospin3
2 to

1
2 transition matrices. The off-shellZ parameter appears i

Qmn5gmn2(Z1 1
2 )gmgn . We have simplified thepDD in-

teraction in Eq.~2! by choosing the physically irrelevant pa
rametersZ252 1

2 and Z350 ~see Ref.@7#!; this term does
not contribute to the scattering amplitude at tree level.

The orderQ3 part ofL is

L35
bp

M
N̄Ntr~]mU†]mU !2

kp

M
N̄vmnsmnN

1
k1

2M2 iN̄gmDJnNtr~aman!1
k2

M
mp

2 N̄N tr~U1U†22!

1•••, ~5!

where the dots represent terms that do not contribute to
pN scattering amplitude up toO(Q3) and we have defined

DJm5Dm2~]Qm2 ivm!, ~6!

vmn5]mvn2]nvm1 i @vm ,vn#. ~7!

We have also applied naive dimensional analysis@14# to fac-
tor out the dimensional factors so that the parameters
expected to be of order unity.

Finally, the orderQ4 part ofL is

L45
l1

M
mp

2 N̄g5~U2U†!N1
l2

M2N̄gmDnvmn N

1
l3

M2 mp
2 N̄gm@am,U2U†#N

1
l4

2M3 iN̄srmDJn N tr~arDman!

1
l5

16M4 iN̄gr$DJm ,DJn%t
aN tr~ta@Dram,an#!1•••,

~8!

where the braces denote an anticommutator and

Dman5]man1 i @vm ,an#, Dsvmn5]svmn1 i @vs,vmn#.
~9!

Again the dots represent terms that do not contribute to
pN scattering amplitude up toO(Q3), such terms include
the usual fourth-order pion Lagrangian.

Using the pion and nucleon equations of moti
@9,15,16#, we have simplified the contact terms listed in R
@12#. For example, we reduce theO(Q3) term
N̄DJmDJnN tr(aman) to the sum of theO(Q3) k1 term, the
O(Q4) l4 term, and higher-order terms which we omit. As
result we have the minimum number of independent te
contributing to thepN scattering amplitude up toO(Q3). As
we have remarked, the isoscalar-scalarf and isovector-
vectorr fields as given in Ref.@10# have been integrated ou
Their effects show up in the contact termsbp , k2 and l2.
For example, in terms of therpp coupling (grpp) and the
rNN coupling (gr), the rho gives a contribution to thel2

parameter of22grppgrM2f p
2 /mr
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In Fig. 1 we show the tree Feynman diagrams forpN
scattering. The crossed diagrams for Figs. 1~b! and 1~c! are
suppressed. The LagrangianL2 gives contributions to theT
matrix ofO(Q) from all three diagrams; note that the conta
diagram is due to the Weinberg term2N̄gmvmN. The inter-
actions inL3 andL4 ~except for thel1 term! give further
contributions to Fig. 1~a! of orderQ2 andQ3, respectively.
In Fig. 1~b!, each vertex can be either a pseudovectorgA
vertex or a symmetry-breakingl1 vertex. As mentioned ear
lier, the appearance ofg5 renders al1 vertex of higher order
than expected from the chiral counting of Eq.~1! so we have
included it inL4. The reason for this extra power ofQ re-
sults from the following relation:

ū~p8!g5

1

p” 1q” 2M
g5u~p!52

ū~p8!q” u~p!

~p1q!22M2
, ~10!

whereu(p) is the positive-energy free Dirac spinor. Thu
with one l1 and onegA vertex, Fig. 1~b! is of O(Q3); we
include this contribution. With both vertices ofl1 type the
result is ofO(Q4), whereas, associating an extra factor ofQ
with each g5 as suggested by Ref.@11# and Eq. ~8!, we
would expectO(Q5).

We follow the standard notation of Ho¨hler @17# and Eric-
son and Weise@18# to write theT matrix as

Tba[^pbuTupa&5T1dab1 1
2 @tb ,ta#T2, ~11!

where the isospin symmetric and antisymmetric amplitu
are

T65A61 1
2 ~q” 1q” 8!B6. ~12!

HereA6 andB6 are functions of the Mandelstam invaria
variabless5(p1q)2, t, and u5(p2q8)2, where p is the
initial nucleon c.m. momentum. They are given by the su
of the contributions from the contact terms in Fig. 1~a!, the
nucleon exchange in Fig. 1~b!, and theD exchange in Fig.
1~c!. The amplitudes arising from the contact terms are

AC
15

2

M f p
2 @bp~2mp

2 2t !22k2mp
2 1l4n2#, ~13!

BC
15

1

M f p
2 ~k122l4!n, ~14!

FIG. 1. Tree Feynman diagrams forpN scattering:~a! contact
terms,~b! nucleon exchange,~c! D exchange. Crossed diagrams a
not shown.
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AC
252

2kp

f p
2 n, ~15!

BC
25

1

2 f p
2 ~114kp!2

1

M2f p
2 S 1

2
l2t14l3mp

2 2l5n2D ,

~16!

where n5(s2u)/4M . The contributions from the nucleon
andD exchange are well known~see Ref.@17#, for example!.
We list these contributions in the following for complete
ness. The amplitudes arising from nucleon exchange are

AN
15

M

f p
2 gAS gA24l1

mp
2

M2D , ~17!

BN
15

M

f p
2 gAS gA24l1

mp
2

M2D n

nB
22n2

, ~18!

AN
250, ~19!

BN
252

gA
2

2 f p
2

1
M

f p
2 gAS gA24l1

mp
2

M2D nB

nB
22n2

, ~20!

where nB5(t22mp
2 )/4M . The amplitudes arising fromD

exchange are

AD
15

2hA
2

9M f p
2 @a11 3

2 ~MD1M !t#
nD

nD
2 2n2

2
4hA

2

9MD f p
2

3F ~ED1M !~2MD2M !1S 21
M

2MD
Dmp

2

2~2mp
2 2t !YG , ~21!

BD
15

2hA
2

9M f p
2 @2~ED1M !~ED22M !1 3

2 t#
n

nD
2 2n2

2
16hA

2

9 f p
2

M

MD
2 Z2n, ~22!

AD
252

hA
2

9M f p
2 @a11 3

2 ~MD1M !t#
n

nD
2 2n2

2
8MhA

2

9MD f p
2

Yn,

~23!
BD
252

hA
2

9M f p
2 @2~ED1M !~ED22M !1 3

2 t#
nD

nD
2 2n2

1
hA

2

9 f p
2 H S 11

M

MD
D 2

1
8M

MD
Y1

2

MD
2 @~2mp

2 2t !Z2

22mp
2 Z#J , ~24!

wherenD5(2MD
2 2s2u)/4M , ED5(MD

2 1M22mp
2 )/2MD ,

and

a152~ED1M !@MD~2ED2M !1M ~ED22M !#, ~25!

Y~Z!5S 21
M

MD
DZ21S 11

M

MD
DZ. ~26!

Notice that in agreement with Ref.@7# only the nonpole
terms in theD-exchange diagram involve the off-shell pa
rameterZ. Therefore these contributions can be absorb
into the parameters of the contact terms according to

bp~Z!5bp~2 1
2 !2

hA
2

18 F4Y~Z!1
M

MD
G M

MD
, ~27!

kp~Z!5kp~2 1
2 !2

hA
2

9 F4Y~Z!1
M

MD
G M

MD
, ~28!

k1~Z!5k1~2 1
2 !1

4hA
2

9
~4Z221!

M2

MD
2 , ~29!

l2~Z!5l2~2 1
2 !2

hA
2

9
~4Z221!

M2

MD
2 , ~30!

l3~Z!5l3~2 1
2 !1

hA
2

9 S Z22Z2
3

4D M2

MD
2 . ~31!

We shall quote parameters obtained withZ52 1
2 and the

parameters for other values ofZ can be obtained from Eqs.
~27! to ~31!. We have verified this numerically.

We use the standard labeling for isospin-spin partial wa
channels, namelya[( l ,2I ,2J) wherel is the orbital angular
momentum,I is the total isospin, andJ5 l 6 1

2 is the total
angular momentum. The elastic-scattering amplitude

f a5
1

uqu
eidasinda ~32!

is obtained from the amplitudesA6 and B6 by the usual
partial wave expansion@19#. Hereda is the phase shift of the
a partial wave.
TABLE I. Parameters from fits to theS- andP-wave phase shifts.

Fit bp kp k1 k2 l1 l2 l3 l4 l5

O(Q2) 20.1960 0.5001 0.3061 20.9328
O(Q3) 20.1376 0.5301 0.7431 20.5799 0.3650 20.3239 20.0401 0.6334 20.4347
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FIG. 2. The calculatedS- and P-wave phase shifts as functions of the pion c.m. kinetic energy. The phase-shift data from Arnd@21#
~triangles!, Bugg @22# ~squares!, and Koch and Pietarinen@23# ~circles! are also shown.
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Unitarity requiresf a to take the complex structure in Eq
~32!. However,f a is real in a tree-level approximation to th
scattering amplitude. We may recover unitarity by obtain
the phase shifts from two common methods. The first
sumes that the calculatedf a is simply the real part of Eq
~32!. The second introduces aK matrix given by@18#
g
s-

f a5
Ka

12 i uquKa
where Ka5

1

uqu
tanda . ~33!

The calculated real tree-level amplitudef a is then assumed
to actually beKa , which is true foruqu small enough. For
sufficiently small phase shifts, the two methods yield t
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56 3367PION-NUCLEON SCATTERING AT LOW ENERGIES
same answer because sinda'tanda'da . However, near the
resonance region whereda;p/2, the K-matrix method is
preferred for the following simple reason.~We note that
Goudsmit et al. @5# have proposed a justification for th
K-matrix method.!

First, for energies near a resonance, the amplitude in
resonant channel takes the relativistic Breit-Wigner for
Taking theP33 channel as an example, we have@18#

uqu f P33
BW5

MDGD

MD
2 2s2 iM DGD

, ~34!

whereGD is theD width. Equations~32! and ~34! lead to

tandP335
MDGD

MD
2 2s

. ~35!

Next, we expect that the tree-level amplitude can be obtai
by setting the imaginary part of the denominator of Eq.~34!
to zero:

uqu f P33
tree5

MDGD

MD
2 2s

, ~36!

and this is indeed obtained by retaining only the pole con
bution of Eqs.~21!–~24! and using the partial wave expan
sion. Finally, given the tree amplitude Eq.~36!, the correct
phase shift of Eq.~35! is obtained by theK-matrix method.
Thus, while the two methods do not differ for small pha
shifts in the nonresonant channels, theK-matrix method is
also good on resonance. We therefore use theK-matrix
method here.

In our calculations we choose the standard val
M5939 MeV, MD51232 MeV, andmp5139 MeV. We
also take @20# f p592.4 MeV from charged pion decay
gA51.26 from neutronb decay, andhA51.46 from theD
width, GD5120 MeV; allowinggA andhA to vary does not
improve the fit. We first consider anO(Q2) approximation
to theT matrix which neglectsL4. The four parameters liste
in Table I were obtained by ax2 fit to the data of Arndt@21#
for pion c.m. kinetic energies between 10 and 150 Me
Because negligible error bars are given in the data at
energies, we assign all the data points the same rela
weight. In Fig. 2, we plot the calculatedS- and P-wave
phase shifts~dashed curves!, along with the data to which we
fit, as a function of the pion c.m. kinetic energy; we al
display older data from Bugg@22# and from Koch and Pi-
etarinen@23#. The calculation is in good agreement with th
data up to 50 MeV, but beyond this energy the fit deter
rates for three of the partial waves. The value ofx2 is unity
for a relative weight of 15% which is a measure of the a
curacy of the fit. The threshold~vanishing pion kinetic en-
ergy! S-wave scattering lengths (a2I) and theP-wave scat-
tering volumes (a2I2J) are given in Table II. The difference
between the data from Refs.@21# and@23# gives an indication
of the error in the absence of a more reliable estimate.
regards theoretical predictions, apart froma13 which is closer
to the older value@23#, the O(Q2) results agree nicely with
e
.

d

i-

s

.
w
ve

-

-

s

Ref. @21# which is to be expected since they are the ze
energy extrapolation of the data we have fitted.

We now includeL4, which involves five additional pa-
rameters (l1 to l5), to take the tree approximation t
O(Q3). The results are indicated by the solid curve in Fig
which gives a good fit~with a relative weight of 8% for
x251) out to 150 MeV. In fact only theS11 andP13 phase
shifts deviate significantly from the data in the 150–2
MeV range. Of course the rather precise agreement fordP33
is strongly influenced by the phenomenologicalK-matrix
unitarization. This forces the phase shift to bep/2 ats5MD

2

corresponding to a c.m. energy of 127 MeV. As regards
threshold results given in Table II, the predictions are a lit
closer to the data than atO(Q2) with the exception ofa1. In
this connection it is instructive to examine the isoscalar a
isovectorS wave scattering lengths, (b0 ,b1). A recent deter-
mination @24# gave (20.00860.007,20.09660.007) in
units of mp

21 , in substantial agreement with Refs.@21,23#;
note that Arndt favors a value ofb0 consistent with zero. At
O(Q2) we obtain (0.007,20.081) and at O(Q3)
(20.010,20.077). Thus the isoscalarb0, which is zero in
the chiral limit, has improved by going toO(Q3), while the
magnitude ofb1 remains too small.

Apart from l3 which has little influence on the fit, the
O(Q3) parameters listed in Table I are of order unity a
though Eqs.~27!–~31! show that, while the fit is independen
of Z, the actual parameter values will depend onZ. The
pseudoscalar coupling with parameterl1 allows the effective
pNN coupling constant to be adjusted in theO(Q3) fit.
From the Goldberger-Treiman relation, our values forgA and
f p correspond to apNN coupling, gpNN512.8 which is a
little lower than the value of 13.1 obtained by Arndtet al.
@25#. When thel1 term is includedgpNN decreases slightly
to 12.6. We will not comment on the sigma term since t
requires extrapolation to the unphysical region which m
not be reliable with this tree-level model.

With nine parameters ourO(Q3) calculation deviates
from the data only beyond 150 MeV c.m. energy. At t
higher energies we do a little better than Goudsmitet al. @5#
who have seven parameters and fit to 75 MeV. The calc
tion of Boffinger and Woolcock@2#, which is an improved
version of Ref.@1#, contains ten parameters and produce
fit which is similar to ours but a little better at energies;200
MeV. The remaining models@3,4# have a larger number o
parameters~14! and correspondingly fit to significiantly
higher energies.

TABLE II. The calculated S-wave scattering lengths an
P-wave scattering volumes for theO(Q2) and O(Q3) fits com-
pared with the data of Refs.@21# and @23#. The scattering lengths
and volumes are in units ofmp

21 andmp
23, respectively.

Length/volume O(Q2) O(Q3) Ref. @21# Ref. @23#

a1 0.169 0.144 0.175 0.173
a3 20.074 20.087 20.087 20.101
a11 20.074 20.071 20.068 20.081
a13 20.032 20.031 20.022 20.030
a31 20.038 20.040 20.039 20.045
a33 0.212 0.209 0.209 0.214
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In conclusion, we have discussed a chiral Lagrangian
volving just the basicN, p, and D fields, with a series of
terms representing a momentum expansion. We find th
tree-level calculation with this model represents the data
well as other models with a similar number of paramete
Further we have confirmed by explicit calculation that theZ
parameter of thepND vertex is irrelevant if a sufficiently
general Lagrangian is employed. Of course it would be m
d

ay

ys
-

a
s
.

e

satisfactory if a unitary scattering amplitude emerged na
rally, rather than being imposed phenomenologically. Su
would be the case if loops were calculated in heavy bar
chiral perturbation theory and work in this direction is
progress.
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