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Pion-nucleon scattering at low energies

Paul J. Ellis and Hua-Bin Tang
School of Physics and Astronomy, University of Minnesota, Minneapolis, Minnesota 55455
(Received 7 August 1997

We study pion-nucleon scattering at tree level with a chiral Lagrangian of pions, nucleona, iaodars
using aK -matrix unitarization procedure. Evaluating the scattering amplitude to Q#levhereQ is a generic
small momentum scale, we obtain a good fit to the experimental phase shifts for pion center-of-mass kinetic
energies up to 50 MeV. The fit can be extended to 150 MeV when we include the@?demtributions. Our
results are independent of the off-sh&llparameter.
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PACS numbsd(s): 11.80—m, 12.39.Fe, 13.75.Gx

Pion-nucleon {N) scattering is a fundamental hadronic according to the power counting, a Feynman tree diagram
process for which a large amount of data is available and it isvithout loops contributes terN scattering at orde®” with
important to understand this as completely as possible. Sev-
eral rellativistic model§1—5] exist WhiCh. provide reasonably =14 2 Vi(d;+1n—2), )
good fits to the experimental phase shifts. These models con- i
sider theN, 7r, andA-resonance fields, the isoscalar-scafar
(in some cases implictly via a power series expansitep ~ WhereV; is the number of vertices of typecharacterized by
meson and sometimes higher resonances, although these playParyon fields andi; pion derivatives om,, factors. This
a minor role. Our interest here is to examine whether a modesuggests that we associate+ 3n; powers ofQ to a term of
which contains the minimal number of fields, namely be typei in the Lagrangiari10]. Also, Krause[11] argues that
m, andA, can yield equally good fits. Thus we effectively iP—M is of O(Q), as is a single factor ofs [note y, ys is
integrate out any other fields. For example, provided thedf O(1)]. Although we naively counys asO(Q) for orga-
center-of-masg$c.m) energy is not too high, we can expand hizing the Lagrangian, we shall show later that this counting
the p propagator as r(]’zj—t)_]-:m;z(l-}-t/mi-}-...), is not precise. Chiral symmgtﬂ'ySU(Z)&aSU(g)], Lorentz
where the Mandelstam variabte=(q—q')? andq and q’ invariance, and parity constrain the possibid interactions

are the initial and final pion c.m. four momenta. The series of"d Lheze. Catr)‘ be found mh Ret2]. For u;teractlons_ involv-
terms can be absorbed into contact interactions in the Ldn9 theA Isobar we use the notation of our previous paper

grangian and it is clearly important to employ the most gen—.;g] andtI)OIIogrihceodr';gfsaz'?n;hsergnéfvgfdéy%r'te thnL dagzang—
eral set of such contact interactions which is consistent with art:PL—gqu/é ir u Q% Q
the symmetries of quantum chromodynamics. P The (;I’déerg art46f the Lagrandian is
While theA degree of freedom plays an important role in P grang
7N scattering, th& parameter that specifies the form of the —N(i 1¢2 t
. ) . =N(iD+ “ysa,—M)N+zftr(o,U"o*U
7NA vertex has been controversial, see the discussion of ? ( 9y Ys3u ) afotr(d, )

Benmerroucheet al. [6]. Most of the papers cited above fit +im2f2r(U+UT-2) +A_}iA§§AB+ ha(A,-a,0'N
the Z parameter to therN data. This is unsatisfactory since,
as we showed recent|y], the scattering is independent &f +N_®“”au- A,) +’ﬁAA_Za75A§ ) 2

if the Lagrangian contains the most general set of contact

terms (we demonstrate this explicitly belgwThus results where the pion field arises i (x)=exp(2i 7(x)/f ) with

yvhph_depend orZ indicate that 'ghfa contact terms have beenwz%ﬂ., 7 and the axial vector fielda,=d,m/f +- -,

implicitly constrained, whereas it is clearly preferable to em- . i 1 5

ploy a general Lagrangian and allow the data itself to imposdhilé the vector fielt , = —3i[ .9, m]/f7+ ... The trace

constraints. is taken over the isospin matrices and the covariant deriva-
We would like to employ a Lagrangian which explicitly Ve of the nucleon field iD,N=4d,N+iv,N. As regards

embodies chiral symmetry since this is known to be a funth€ A, the kernel tensor in the kinetic-energy term is

damental symmetry at low energies. Such an approach was v b v

first taken by Peccdi8] to calculate the scattering lengths A#Y=—(ID=Mp)g*"+i(y*D"+ y"D")

and this paper represents a modern extension of his work to —Y*(iD+My) Y. 3)

study the phase shift data. In order to systematically enumer-

ate the Lagrangian we can be guided by Weinberg's poweHere we have chosen the standard paramater—1, be-

counting argument§9]. For this purpose we identify a ge- cause it can be modified by redefinition of thefield with

neric small-momentum scal@. This is of the order of the no physical consequencgk3]. The covariant derivative is

pion three-momentum or the pion mass and therefore much

smaller than the scale of the nucleon or themass. Then D,A,=d,A,+iv,A,—v, XA, (4)
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in which A,=TA,, with T? the standard & 4 isospin to

3 transition matrices. The off-shell parameter appears in AN N ~T N r N
M,,=_gMV_—(Z+ %)'yﬂyv. W_e have simp_lified t_herAA in- \\ \\\ Y
teraction in Eq{(2) by choosing the physically irrelevant pa- N
rametersZ,= —3 and Z;=0 (see Ref[7]); this term does ) N A
not contribute to the scattering amplitude at tree level. e J
The orderQ? part of £ is it s L
“n N T N “’n N
L= PmNNtr(a. Ut 0) = NG o
M g M (a) (b) ©
+ K—12|N_y D Ntr(a*a’)+ 2m2m\l tr(U + ut-2) FIG. 1. Tree Feynman diagrams faiN scattering:(a) contact
2M mey M7 terms,(b) nucleon exchangée) A exchange. Crossed diagrams are
not shown.
+ee [l (5)

where the dots represent terms that do not contribute to the In F_ig. 1 we show the_ tree Feynmqn diagrams e
7N scattering amplitude up t©(Q3) and we have defined scattering. The crossed diagrams for Figd) land Xc) are
suppressed. The Lagrangidn gives contributions to th&

D =D, —(5,—iv,) (6) matrix of O(Q) from all three diagrams; note that the contact
2 ® ® n . . . i .
diagram is due to the Weinberg termNy*v ,N. The inter-
Vup=0,0,—d,0,+i[v,,v,]. (7)  actions inL3 and £, (except for thex, term) give further

. . . . _ contributions to Fig. (a) of orderQ? and Q3, respectively.
We have also applied naive dimensional analys# to fac-  |n Fig. 1(b), each vertex can be either a pseudoveggr
tor out the dimensional factors so that the parameters argertex or a symmetry-breaking, vertex. As mentioned ear-

expected to be of ord4er unity. lier, the appearance af; renders a ; vertex of higher order
Finally, the orderQ® part of £ is than expected from the chiral counting of Efj) so we have
N N included it in £4. The reason for this extra power §f re-
ﬁfmlmer_?’s(U—UT)NﬂL M_ZZN_y,LDuUW N sults from the following relation:
— u(p')4u(p)
P u(p)ys————ysu(p)=———-——, (10
+WmiN7M[a/‘,U—UT]N P 75p+q—|v|75 P (p+q)°—M?
N — o whereu(p) is the positive-energy free Dirac spinor. Thus,
+ WiNawDy N tr(a’D*a”) with one\; and oneg, vertex, Fig. 1b) is of O(Q%); we

include this contribution. With both vertices af; type the
Ns — o o . , result is ofO(Q*), whereas, associating an extra factorQf
+ 1emd N7t D Dy °N tr(7 (D2, a"]) + - -, with each ys as suggested by Refl11] and Eq.(8), we
would expectO(QY).
(8 We follow the standard notation of Hter[17] and Eric-
. son and Weis§18] to write theT matrix as
where the braces denote an anticommutator and

= i LT i Toa=(mp| T|ma) =T  Sap+ 5[ 7,70l T, 11
D,a,=d,a,+i[v,,a,], D%,,=d%,,+i[v7v,,] ba={ 7| T 7a) abt 2 [7b,7al (11)

where the isospin symmetric and antisymmetric amplitudes

Again the dots represent terms that do not contribute to thé"®

7N scattering amplitude up t®(Q?%), such terms include e -

the usual fourth-order pion Lagrangian. T"=A"+3(4+¢")B". (12
Using the pion and nucleon equations of motion N N ) . )

[9,15,16, we have simplified the contact terms listed in Ref. 1€f€A~ andB are functions of the !\/Igmdelstam Invariant

[12]. For example, we reduce theO(Q%) term ye}(lzilbless|=(p+q) L andu=(p;q )% where%ls r’:he

— o pny 3 initial nucleon c.m. momentum. They are given by the sum

(N)DM:‘PV)\N ttr(a a’) éoh.thﬁ sumd of ttheO(Qh)_ El term,_tthi of the contributions from the contact terms in Figa)l the

re(scalt)wé r?erlye ?r?e n:?ni;rf;?r: r?&rr?t:g]rsc\)lly il\cde\g:n?jrgrlmt' tes}ri nucleon exchange in Fig.(l), and theA exchange in Fig.

contributing to therN scattering amplitude up 10(Q%). As ﬁ(c). The amplitudes arising from the contact terms are

we have remarked, the isoscalar-scalarand isovector- 2

vectorp fields as given in Ref.10] have been integrated out. Al Mz [B.(2m2—t)—2k,m2+Ng0%], (13

Their effects show up in the contact termds, «, and\,. ™

For example, in terms of thew coupling @,.,) and the

pNN coupling @,), the rho gives a contribution to the, B¢

=7 (k1= 2N\g)v, (14)
parameter of-2g,,,9,M?f2/m?. Mf
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2k,
Ac===z ¥ (15
1 1 /1 2 )
BC:W(1+4KW)_ W §A2t+4)\3mﬁ—)\5v

(16)

where v=(s—u)/4M. The contributions from the nucleon

andA exchange are well knowsee Ref[17], for example.

We list these contributions in the following for complete-
ness. The amplitudes arising from nucleon exchange are

. M m2
AN=€9A 9a— 41z ) 17)
B*—M ( 4\ mi) 7 (18
N quTgA ga 12 vé—v21
Ay=0, (19

gA M ( i) 4:!
2f2 ffrgA 9a— 412 F (20)

BN=

where vB=(t—2me)/4M. The amplitudes arising from
exchange are

Ate 2h2[ S (Mot M) 4h3
aqt+ + —
A Mf2 the VA_VZ M, f2
M 2
X[ (EA+M)(2MA—M) + 2+W m;,
A
—(Zmi—t)Y}, (22)

2h3
B, = [2(Ex+M)(Ey—2M)+ 3t]

oM f2 VA_VZ
Z2%y 22
91‘2 MA (22
Ay A [+ 3(My+M)t] 8Mhj
= a1t35 + -
4 9Mf2 vl 22 oM, f2

(23
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2

_ A 3 A
By= 2(Ex+M)(E,—2M)+ 2t
A 5 fi[ (Ex+M)(Ey )+ 3 ]ui—v
+ hi 1+ M 2+ 8MY+ [(2m2—t)Z?
—_— —_— JE— m —
of2 Ma/ My MEETTT
—2me2]], (24)

wherevy=(2M3—s—u)/4M, Ey=(M3+M2—m?2)/2M, ,
and

Y(Z)= Z. (26)

M
ZZ+(1+—

2+ M
My M

Notice that in agreement with Reff7] only the nonpole
terms in theA-exchange diagram involve the off-shell pa-
rameterZ. Therefore these contributions can be absorbed
into the parameters of the contact terms according to

Z)= hi 4Y(Z M M 2
ha MM
knlZ)= ko= D= g |AY@)+ g, (29
2 Mz
k1(Z)=rKy(— 3)+ (4ZZ 1)—, (29
A
A M?
NoZ)=ho(— 1) =g (4Z°-1) 7 (30)
A
LU 3\ M?
N3(Z)=N\3(— 5)‘?‘? Z —Z—Z M_i (31
We shall quote parameters obtained with-—3 and the

parameters for other values @fcan be obtained from Eqs.
(27) to (31). We have verified this numerically.

We use the standard labeling for isospin-spin partial wave
channels, namelg=(l,21,2J) wherel is the orbital angular
momentum,| is the total isospin, and=1=1 is the total
angular momentum. The elastic-scattering amplitude

1
fazﬂe' %asing,, (32

is obtained from the amplitude&™ and B* by the usual
partial wave expansiofl9]. Here§,, is the phase shift of the
a partial wave.

TABLE |. Parameters from fits to th& and P-wave phase shifts.

Fit B K K Ko

A A, A3 \a s

0(Q?
0(Q%)

—0.1960 0.5001 0.3061 —0.9328

—0.1376 0.5301 0.7431 —0.5799 0.3650 —0.3239

—0.0401 0.6334 —0.4347
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FIG. 2. The calculate®- and P-wave phase shifts as functions of the pion c.m. kinetic energy. The phase-shift data fronj2ujndt
(triangles, Bugg[22] (squares and Koch and Pietarindi23] (circles are also shown.

Unitarity requiresf , to take the complex structure in Eq.
(32). However,f, is real in a tree-level approximation to the f
scattering amplitude. We may recover unitarity by obtaining
the phase shifts from two common methods. The first asThe calculated real tree-level amplitudlg is then assumed
sumes that the calculatefd, is simply the real part of Eq. to actually beK,, which is true for|g| small enough. For
(32). The second introduceska matrix given by[18] sufficiently small phase shifts, the two methods vyield the

1
=1 Wwhere K,=— tans,. 33
T-1[dK, q 39
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same answer because &jr-tand,~ 8, . However, near the TABLE 1. The calculated S-wave scattering lengths and

resonance region wheré,~ /2, the K-matrix method is P-Wave scattering volumes for th®(Q*) and O(Q’) fits com-

preferred for the following simple reasofiWe note that Pared with the data of Ref@%}] and [%?;]' The scattering lengths

Goudsmitet al. [5] have proposed a justification for the and volumes are in units of, = andm_ ", respectively.

K-matrix method). 2 3
First, for energies near a resonance, the amplitude in thbength/volume o) o)

Ref.[21] Ref.[23]

resonant channel takes the relativistic Breit-Wigner form.a, 0.169 0.144 0.175 0.173
Taking theP33 channel as an example, we h4&] as —-0.074 -0.087 -—0.087 —0.101
an -0.074 -0071 -0.068 —0.081
M T a3 —0.032 -0.081 —0.022 —0.030
o R ——— (34) aax -0.038 ~—0040 —-0.039 —0.045
Mi—s—iMsI'y ags 0.212 0.209 0.209 0.214

wherel’, is the A width. Equationg32) and(34) lead to

Ref. [21] which is to be expected since they are the zero-
M AT 5 energy extrapolation of the data we have fitted.
tandpay= 7 - (39 We now include£,, which involves five additional pa-
A rameters §, to A5), to take the tree approximation to

Next, we expect that the tree-level amplitude can be obtaine®(Q®). The results are indicated by the solid curve in Fig. 2

by setting the imaginary part of the denominator of By)  Which gives a good fitwith a relative weight of 8% for
io zero: x?=1) out to 150 MeV. In fact only th&;; andP,; phase

shifts deviate significantly from the data in the 150-200
MeV range. Of course the rather precise agreemenbfgs
ree AlA is strongly influenced by the phenomenologid¢&matrix
|Q|fpsszm' (36 unitarization. This forces the phase shift tohk ats=M3
8 corresponding to a c.m. energy of 127 MeV. As regards the
and this is indeed obtained by retaining only the pole contrithreshold results given in Table I, the predictions are a little
bution of Egs.(21)—(24) and using the partial wave expan- closer to the data than &(Q?) with the exception of;. In
sion. Finally, given the tree amplitude E@6), the correct this connection it is instructive to examine the isoscalar and
phase shift of Eq(35) is obtained by th&-matrix method.  isovectorS wave scattering lengthsbg,b;). A recent deter-
Thus, while the two methods do not differ for small phasemination [24] gave (—0.008+0.007;-0.096+0.007) in
shifts in the nonresonant channels, ematrix method is  units of m;l, in substantial agreement with Ref21,23;
also good on resonance. We therefore use Khmatrix =~ note that Arndt favors a value &f, consistent with zero. At
method here. 0O(Q? we obtain (0.00%0.081) and at O(Q®
In our calculations we choose the standard valueg—0.010-0.077). Thus the isoscaldr,, which is zero in
M =939 MeV, M,=1232 MeV, andm_=139 MeV. We the chiral limit, has improved by going ©(Q?%), while the
also take[20] f,=92.4 MeV from charged pion decay, magnitude ofb; remains too small.
ga=1.26 from neutrorB decay, anchy=1.46 from theA Apart from N3 which has little influence on the fit, the
width, Iy =120 MeV; allowingg, andh, to vary does not O(Q?®) parameters listed in Table | are of order unity al-
improve the fit. We first consider a®(Q?) approximation though Eqs(27)—(31) show that, while the fit is independent
to theT matrix which neglect£,. The four parameters listed of Z, the actual parameter values will depend B&nThe
in Table | were obtained by g? fit to the data of Arndf21] pseudoscalar coupling with paramexgrallows the effective
for pion c.m. kinetic energies between 10 and 150 MeV.7NN coupling constant to be adjusted in tk&¥ Q%) fit.
Because negligible error bars are given in the data at lovirrom the Goldberger-Treiman relation, our valuesggrand
energies, we assign all the data points the same relative, correspond to arNN coupling, g.nyny=12.8 which is a
weight. In Fig. 2, we plot the calculate§- and P-wave little lower than the value of 13.1 obtained by Arnelt al.
phase shift¢dashed curvgsalong with the data to which we [25]. When the\, term is includedy .y decreases slightly
fit, as a function of the pion c.m. kinetic energy; we alsoto 12.6. We will not comment on the sigma term since this
display older data from Bugf22] and from Koch and Pi- requires extrapolation to the unphysical region which may
etarinen[23]. The calculation is in good agreement with the not be reliable with this tree-level model.
data up to 50 MeV, but beyond this energy the fit deterio- With nine parameters ou®(Q?%) calculation deviates
rates for three of the partial waves. The valueydfis unity ~ from the data only beyond 150 MeV c.m. energy. At the
for a relative weight of 15% which is a measure of the ac-higher energies we do a little better than Goudsehial. [5]
curacy of the fit. The threshol@anishing pion kinetic en- who have seven parameters and fit to 75 MeV. The calcula-
ergy) S-wave scattering lengthsa§,) and theP-wave scat- tion of Boffinger and Woolcock2], which is an improved
tering volumes &,,,;) are given in Table Il. The difference version of Ref[1], contains ten parameters and produces a
between the data from Ref21] and[23] gives an indication fit which is similar to ours but a little better at energie200
of the error in the absence of a more reliable estimate. A8/eV. The remaining modelg3,4] have a larger number of
regards theoretical predictions, apart fraga which is closer  parameters(14) and correspondingly fit to significiantly
to the older valug23], the O(Q?) results agree nicely with higher energies.
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In conclusion, we have discussed a chiral Lagrangian insatisfactory if a unitary scattering amplitude emerged natu-

volving just the basid\, , and A fields, with a series of

rally, rather than being imposed phenomenologically. Such

terms representing a momentum expansion. We find that would be the case if loops were calculated in heavy baryon

tree-level calculation with this model represents the data ashiral perturbation theory and work in this direction is in
well as other models with a similar number of parametersprogress.

Further we have confirmed by explicit calculation that the
parameter of therNA vertex is irrelevant if a sufficiently
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