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High-density nuclear matter with nonlocal confining solitons
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An infinite system of nonlocal, individually confining solitons is considered as a model of high-density
nuclear matter. The soliton-lattice problem is discussed in the Wigner-Seitz approximation. The cell size is
varied to study the density dependence of physical quantities of interest. A transition to a system where quarks
can migrate between solitons is found. We argue that this signals quark deconfinement. The model is applied
to the calculation of selected in-medium propert{€0556-28187)03412-2

PACS numbd(s): 21.65:+f, 24.85+p, 25.75.-q

I. INTRODUCTION The elementary building blocks of the model proposed
here are provided by the global color mod€ICM) [5]. The
High-density strongly interacting matter is in the focus of GCM admits soliton solutions with an intrinsically gener-

attention of nuclear research for several reasons. Studyingted, extended|q meson field, in contrast to, e.g., the color
large (on the order of 100 frf) volumes of dense hadronic dielectric mode[6], which uses an external field to generate
matter experimentally is one aspect of the general effort t&a cavity (where quarks can propagatm the vacuum. In
extend the investigation of the nuclear phase diagram beyoraddition, the individual GCM solitons are confining, as there
standard nuclear matter density and zero temperature. Thige no poles in the quark propagator outside the region where
experimental program is carried out at a set of acceleratahe meson field is nonzer7,8]. The GCM observes the
facilities capable of colliding heavy nuclei at increasing en-global symmetries of QCD, but is not locally gauge invari-
ergies. Such collisions provide the only way to access conant. It has been used successfully to model low-energy QCD,
ditions in the laboratory that were dominant in an early stageas illustrated by the reproduction of chiral perturbation
of the evolution of the Universe and are relevant today intheory result$5,9,10, meson form factor§l1], and spectra
certain celestial objects and events, like dense stars and 2], and both, the solitoimentioned above and the Fad-
pernovas. deev [13] description of the nucleon. A more exhaustive
It is of particularly great interest to identify and charac- summary of these successes and of current work on hadron
terize in the laboratory the transition where strongly interact-physics based on the GCM can be found in a recent review
ing matter no longer appears as a collection of hadrons, bitL4].
as deconfined quarks and gluons in an extended space-time To address high-density nuclear matter, we consider a lat-
domain. The high-density, low-temperature region of thetice of GCM solitons. As this model maintains only global
nuclear phase diagram is especially important, as it may prazolor symmetry, our work can be considered complementary
vide access to deconfined quarks without involving copiouso approaches that are concerned with a complete treatment
particle production and other effects of high excitation. Ex-of the color degrees of freedom for the description of nuclear
perimental results from the Brookhaven Alternating Gradienimatter[15]. Furthermore, the kinetic energy of the nucleons
Synchrotron(AGS) indicate that this regime may be reached (solitong is neglected in the present work. While this can be
in the so-called full-stopping scenario achieved at the AGSconsidered a reasonable approximation at the lowest tem-
In the present paper we discuss a static approximation fgperatures, it implies that no quantitative agreement with, e.g.,
this kind of high-density nuclear matter. Since we want tothe saturation density of nuclear matter should be expected.
address the transition to the quark-gluon phase, we start witRor the time being, we are more interested in identifying
a description of the nucleon in terms of the underlying de-qualitative changes in the behavior of the system with in-
grees of freedom. Ideally, such calculations should be carriedreasing density, which can justify further work on extended
out in the framework of quantum chromodynami{€CD).  strongly interacting matter with this model. We describe the
However, as long as the solution of QCD at nuclear lengtisoliton lattice at the mean-field level, utilizing the Wigner-
and energy scaleonperturbative regimeremains out of  Seitz approximation16]. As a consequence, the present
reach, modeling of QCD will play an important role. Here study is restricted to spherically symmetric mean fields. We
we focus on describing strongly interacting matter at zeraare going to calculate excited states with higher orbital an-
temperature, as a function of density. Soliton matter has beegular momenta in the spherical background field.
used to model high-density hadronic matter earier3]. The density of the system can be varied by changing the
Bound states in a background soliton form the basic idea fosize of the Wigner-Seitz cell. This allows the study of sta-
the popular description of baryons with the Skyrme Lagrangtionary energies and in-medium properties as functions of
ian [4]. the density in the model. Even though the simplicity of our
picture precludes detailed quantitative predictions, we find a
very interesting qualitative feature, the occurrence of a tran-
*Electronic mail(interne): johnson@ksuvxd.kent.edu. sition from a color insulator to a color conductor at a certain
"Electronic mail(interney: fai@ksuvxd.kent.edu. density. We argue that this signals the deconfinement transi-
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tion in the model. We show illustrative results, such as thewhere the functional integraticRq implies integration over

axial-vector coupling constant and the correlation length forall values of the quark fields, ard is a normalization con-

pionlike correlations as a function of density to highlight stant. To exhibit nonlocal quark-antiquark structures in the

possible uses of the model. action, a Fierz reordering may be performgiB], which
The paper is organized as follows. In Sec. Il we reviewtransforms the current-current term in Ed) as

the hadronization of QCD in the context of the GCM to set

the stage for the present work and to present the coupled . .

equations defining our numerical problem. In Sec. lll we2 d*x dlyjL()D(x=y)j5(y)

discuss our choice of the gluon propagator and present re-

sults on a single soliton. Section IV describes how we put the 1

GCM *“on the lattice,” gives details on the solution method, =— EJ d*x d*y 72(x,y)D(x—y) T(y,x). 3)

and presents our results on soliton matter as a function of

density, including energy bands and in-medium properties. — .

We discuss the significance of these findings. Finally, in sedHere, 7’ (x,y)=q(x)A’q(y) can be looked upon as a bilo-

V we summarize the present status of the project and outling"’lI current W'.th a quark-aanuqu satr_ucturg and gquantum
our future plans. numbers specified by. The quantityA? is a direct product

of Dirac, flavor, and color matrices, and contains both, color-
singlet and color-octet terms. We focus on the color-singlet
sector in this work, ignoring correlations that correspond to

As quarks and gluons are directly unobservable, it is natudiquark degrees of freedom. _
ral to seek a description of low-energy strong-interaction To cast the partition function in terms of Bose fields, aux-
phenomena in terms of effective hadronic degrees of freelliary nonlocal fields,3°(x,y), are introduced, and the parti-
dom. An example of the successes of such modeling is prdion function is multiplied by unity in the form
vided by quantum hadrodynamigt7]. Ideally, the effective ) .
degrees of freedom should be derived from the QCD La- 1_N,f DBex;{—f dx gt B7(x,y)B"(Yy,X) @
grangian. An approach to connect QCD and effective had- - y 2 _ :

O : . . 29°D(x—y)
ronic field theories can be formulated in terms of functional
integral methods. The strategy is to transform the integratiomfter the transformation B%(x,y)— B%(x,y) +g?D(x
variables from quark and gluon fields to hadron fields. In_y) 7%(y x), the action is bilinear in terms of the quark

order to make our discussion reasonably self-contained, hefgs|ds and the Grassman integration can be performed. This
we review the major steps leading to the hadronic fields thajje|ds the action in terms of bilocal Bose fields as

play a central role in the present work.

One patrticular implementation of the above ideas is in the BY(x,y)B%(y,x)
framework of the global color symmetry modéGCM), S[B]=TrLn G*[B]—J' d*x dy——————, (5
which starts with a truncation of QCI[5], leading to the 2g°D(x—y)
Euclidean action

Il. FROM QCD TO THE GCM SOLITON EQUATIONS

where G~ (x,y)=(y-d+m)d(x—y)+A’B%x,y) is the
o inverse quark propagator.
g(x)(y-a+m)s(x—y)q(y) The replacement of the quark fields with Bose fields is, in
principle, an exact functional change of variables. Observ-
ables calculated from the partition function are not affected
: (1) by the variable transformation, but are now expressed in
terms of the Bose degrees of freedom, provided the entire
sum overd is kept. This is impossible in practice, and the
, ; ) d ) truncation scheme used can be developed into a systematic
with Euclidean Dirac matricey, and Gell-Mann matrices athod of approximation. To retain the chiral content of the
Na. The two-point gluon functionD ,,, can be considered QCD action, at least two Bose fields need to be kege
the phenomenological input point for the model. Using Apelow).
Feynman-like gaugd ,, = 9,,D(x—y), the gluon propaga-  pe ¢lassical vacuum configuratiasf is identified by
o i parcurl STl ST prowdes 2 Sl PUATCtehs o, This produces @ quark selhenergy
. -y)— -VY), Y I .
GCM reduces to the local Nambu—Jona-Lasinio m¢d8]. 2(x—y)—A Bo(x~y) satisfying a Schwinger-Dyson equa-
) . . tion. In momentum space
In EqQ. (1), mis a current quark mass, which will be taken to
be zero in the following. Our choice of the gluon propagator _ 2y _ 2
is dictated by the requirement of quark confinement, and Wi”E(p) =1y PLAPT) — 11+ B(PY)
be detailed in Sec. Ill. The GCM has the global symmetries , g4 A2 1 A2
of QCD, but lacks local gauge invariance. =g f Dp— )=y, ———<—5Vu-
The partition function in terms of the quark degrees of (2m)* 2 iy-q+m+3(q) 2
freedom can be written as (6)

Stqal=- [ axay
gz
+ S IR00D L (X=)i5(Y)

Here ji(x)=ax)()\a/2)yvq(x) is a local quark current,

B — — Numerical solutions for the amplitudes(p?) andB(p?)
Z_NJ DaDaexp S qql), 2) are now available at different levels of sophisticati@®].
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As detailed in Sec. lll, our choice for this explorative study can also be seen that a wave-function renormalization ap-
is governed by simplicity within the context of the require- pears with the renormalization constafjtgiven by([7]
ment of confinement. It is important to note that the ampli-
tudeB(p?) plays a dual role in the model: it also acts as the
distributed vertex for coupling the quarks to thg Gold-
stone mode$7,21].

The fluctuations3’(x,y) = BY(x—y) — B are identified as
the propagating Bose fields. If the color-singlet scalar- SU
isoscalar and pseudoscalar-isovector fluctuations are re- —Vx(2)+ ———=+Q,(2)=0, (12
tained, the formalism can be adopted to the requirement of ox(2)
chiral invariance by the variable transformation

IG Hiep,q)

zjz—fdg’p Fau(p) —— U@ Ay

The meson-field equatiofE/ Sy=0 may be summarized as

with the meson source provided by the valence quarks ac-
cording to

~ B(r) . .
A’BY(x,y) = f( L(Ryems ety (7) )
! QU= ﬁf d°xdy uj(x)B(— € ix-y)
wherer=x—y and R=(x+Yy)/2, are relative and cm-like I
coordinates, respectively,. is the pion decay constant, and
it has been assumed that the on-shell form faBt@an also X 6|

be used off-shell. As a further simplification, tlle=0 point

on the chiral circle can be fixed. In this case the radial fluc-  Equations(10) and(12) form a system of coupled differ-
isoscalar field variable prior to the transformation. In thefie|q, which need to be solved self-consistently, with the ap-
numerical work that follows the single fluctuation fiefd  propriate boundary conditions. The different boundary con-

corresponding to this situation will be used, the notationgitions distinguish the single-soliton case from a lattice of
serving as a reminder for possible generalizations to restorgg|itons.

chiral symmetry in the numerical model.
Letting m—0, the actionup to a constaftcan be written
as a sum of fermionic and bosonic terms:

X+y
— 2 uj(y). (13

Ill. SINGLE SOLITON

A. Gluon propagator

o Sl A pm—d/pn
S x]=—TrInG™*(u, x) —InG~*(0,x)] One can take the point of view that the gluon propagator,
1 . D, in Eq. (1), represents all phenomenological input to the

+f d"’R[E(&ﬂx)zwL U(xz)}. (8  model. With the appropriate choice Bf, the GCM can re-

produce key features of QCD, such as confinement. Phenom-
enologically successful early work with the GCMN] em-

The chemical potentialy) dependence of the fermion term gloyed ad-function gluon propagator,

in equation(8) ensures that a meson source from the valenc

quarks will be generated]. TheU(x?) term is the effective 92D(q) =37*a256¥(q). (14)
meson self-interactior{5]. For w=0 the inverse quark
propagator takes the form The momentum-spacéfunction turns the rainbow approxi-

mation Schwinger-Dyson equatiof6) into an algebraic

_ - ~[ Xty equation, and the Munczek-Nemirovski quark propagator
1 _ _ 1 _ ’

and the saddle-point configuration turns out to pef 2
[22] 2y _ 2\ 1/2
. 4 o . o . A(p9)=41 @
SinceG™*(x,y) is time-translationally invariant, station- 5|1+ 1+ —- ,
ary eigenstates of the form;(x) can be obtained from a 2 p
self-consistent Dirac equation, which in momentum space )
takes the form (a2—4p2)1/2, ng %
[iy-PA(P?)+B(p*)1uj(p) B(p?) = W2 (15)
0, 2>
+f1f—d3q B pra i =0 "
™ (277_)3/2 2 X(p Q)U](Q)— ’

Its simplicity, in addition to its confining nature, make this
(10) form of the gluon propagator particularly appealing. It has a
single strength parametet, which (for a fixed energycon-
wherep andq are the three momenta corresponding to thetrols the spatial extension of bothandB: the largera, the
center-of-mass and relative variables, respectively. Note thahore localizedA andB are in coordinate space. The lack of
x=x—f,, and asp,=q,=i¢;, whereg; is the energy ei- solutions to the equatiop?+M?(p?) =0, (whereM =B/A
genvalue, the meson vert®&has an energy dependence. Itis the dynamic quark mag@dicates that Eq(15) produces
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guark confinement; there is no on-mass-shell point, thus the
propagation of a quark in the normal vacuum is prohibited
[8].

Though phenomenologically successful, the above simple
qguark propagator encounters difficulties when improvements
are attempted regarding analyticit®4]. Partly for this rea-
son, recent studies in the hadronic sector moved away from
the point of view of providing the input at the level of the
gluon propagator and, accordingly, from the simple form
(14). In order to focus on nuclear matter and to keep com-
plications from the GCM to a minimum, we use tl#
function gluon propagatofl4) throughout this work. Note
also the recent observatiph4] that the parametrizatiofi5)
may well express the infrared behavior of the gluon two-
point function in QCD[25].

B. Single soliton results

With the self-energy amplitudes andB of Eg. (15), the
coupled equations(10) and (12) can be solved self-
consistently. For convenience, the Dirac equation is solved
as a matrix equation in momentum space, using Gauss-
Legendre quadrature, while the Klein-Gordon equation is
solved in coordinate space using a functional version of
Newton’s method22]. In order to check our numerical pro-

x(r) [fm™]
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cedure, we have satisfactorily compared our results on the FIG. 1. Upper and lower components of the quark wave func-
three valence-quark soliton to the results of an earlier investion for a single soliton with the corresponding meson field plotted
tigation[7,22]. In addition, we carried out calculations for a for «=1.04 GeV. The quark eigenenergyds- 356 MeV.

range of the parameter.

Assuming spherical symmetry, the quark spinors can bend are essentially zero by=3 fm for the values ofa

decomposed as

g(r)

i kf(r) (16)

u(r)=

yjrl”i(f).

Here,)f;i(F) is a vector spherical harmonic, represents a
unit vector in the direction of, and we have suppressed the
guantum-number labels dn g, andu. The numerical task is
now reduced to the calculation of the radial functiays)
andf(r).

The radial parts of the upper and lower components of the
quark wave function and the meson fielg)(for a=1.04
GeV are shown in Fig. 1. These results should be compared
to the results of Ref22], wherea=1.04 GeV was chosen to
fit the experimental value df, . For our nuclear matter stud-
ies, we find it more important to have a reasonably close
correspondence to the root-mean-square charge radius of the
proton. As discussed in RgB], this does not fixx in lack of
explicitly considering the pion field, but it appears to call for
larger values of the strength parameter. With 1.35 GeV
we get(r?)12=0.67 fm for the rms charge radius of the
proton. Assuming that the pion cloud will increase this value
by about 25-30%, we get close to the experimental value.
To leave room for the uncertainty of this estimate, we con-
sider the range 1.64a¢<1.45. In the following figures,
whene is fixed, we display results far=1.35 GeV. In Fig.

2 we show the Dirac wave function andfor a single soliton
with this value of the strength parameter.

Figures 1 and 2 represent typical results for a single soli-

the quark wave functions decay faster than exponef2i|

x(r) [fm]

considered. The range gfdecreases and the magnitudeyof
atr=0 increases aa increases. The changes of thdield
can be attributed to the decrease in the range of the distrib-

25

-05

0=1.35 GeV

1.0
r [fm]

1.5

2.0

. FIG. 2. Upper and lower components of the quark wave func-
ton. It is noteworthy that the large and small components ofion for a single soliton with the corresponding meson field plotted

for «=1.35 GeV. The quark eigenenergyds- 537 MeV.
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550.0 | ' ] The Wigner-Seitz approximation places boundary condi-
tions on the Dirac spinors. These conditions express the re-
quirement that the upper component of the wave function
must be periodic and antiperiodic for the bottom and the top
of the band, respectively. We focus attention on the lowest-
energy state of the band, for which the above, together with

5000 | ther=0 boundary conditions, implies

9' (N} —r=1(r)[=r=0, (18

450.0 - i whereg(r) andf(r) represent the radial parts of the upper
and lower components of the Dirac wave functid®), re-
spectively. In addition, the meson-field solution of Efj2),
which also appears in the source term of the Dirac equation
(10) must now be periodic im, so that

£(c) [MeV]

4000 | ]
x(r+2R)=x(r); x'(r)|;=r=0, (19

where x(r) is the radial part of the meson field.

350.0 : : ' i
1.00 1.10 1.20 1.30 1.40 1.50 B. GCM on the lattice

o [GeV] It is convenient to solve the Dirac equation in momentum

space, while the nonlinear Klein-Gordon equation is easier to
handle in coordinate space. The Dirac equatib® can be
written in coordinate space as

FIG. 3. The dependence of the quark eigenenerggn the
strength parameter for a single soliton.

uted quark-meson verteB in coordinate space as in- _

creases. The narrow8;, the closex andy have to be in Eq. 0= f d3Y{ (— va€;+ v V)A(X—Y) +B(Xx=Y)
(13) to give a larger value of the source term in Eg2),

which in turn influences the gradient of thefield: a larger 1

source term leads to a stronger gradi@ssuming no change + f—B(X—Y)X
in the self-interaction In Fig. 3 we plot the dependence of ”

the quark eigenenergyon the single input parameter. The

increase ofe can be associated with the increasing absolutd/V€ Seek solutions with the boundary conditid§). These
value ofy atr=0. The spreading of in momentum space can be incorporated using a Fourier expansion of the form

causes the coupling term in EQ.0) to decrease, making the
valence quarks less tightly bound.

%)]uj(y)- (20

f)= 2 > X F(kyekn?, (21)

Ny=—0% Ny=—0 Ng=—0
IV. SOLITON MATTER

where k,=nw/R is a wave number vector, with
o _ n={ny,n,,ns}. ExpandingA, B, u, and the meson-field
As a means of describing nuclear matter, we consider agoyrce, we integrate ovgrand use orthonormality to get an

infinite collection of solitons. At the lowest energies the soli- equation for the Fourier components of tjt quark wave
tons are expected to arrange themselves in a crystal lattiggnction

[26]. Accordingly, the single-quark eigenenergies will de-

A. Wigner-Seitz approximation

velop into energy bands. For simplicity, we assume a simpl
cubic crystaksc). For a periodic lattice, the Dirac wave func- j [~ €A(kq) +B(kq)16nm —KnA(Kn) Gnm
tion must be invariant to a lattice translation, so the solution kK ACK) S, A(Kk)+B(k)18.
must have the Bloch forrf27] AKn) Onm [eAkn) +B(Kn)]onm

lat _ im-r @

U (1) =Um(r) €™, 7
e > KaVo(kn k) 0
m=0 Om

where m is the lattice momentum and,(r) is a Dirac +4 - }
spinor which has the periodicity of the lattice. To solve for 0 2 K2V (Ky Ke)
the Bloch functions we employ the Wigner-Seitz approxima- i MY Em

tion [16]. This amounts to considering a spherical cell of

radiusR and solving form=0 in Eq.(17). The full solution =0, (22)
u?{(r) is then approximated byy(r) €™'. Changing the

density will be implemented by varying the cell radids whereg,=g(k,), f,=f(k,), and
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u(r) [fm™?]

"_I—I 'TE
£ 1 =
; _//// a=1.35 GeV \;E F- a=1.35 GeV
=
15 ‘ ‘ : 15 : :
0.0 0.5 1.0 1.5 2.0 0.0 0.5 1.0 1.5
r [fm] r [fm]

FIG. 4. Upper and lower components of the quark wave func-  F|G. 5. Upper and lower components of the quark wave func-
tion for the soliton lattice with the corresponding meson field for tion for the soliton lattice with the corresponding meson field for
R=5.0 fm, «=1.35 GeV. The quark eigenenergyds-526 MeV.  R=15 fm, «=1.35 GeV. The quark eigenenergyds 542 MeV.

1
Vi= jﬁlB x(kn—km)Pi(cogf)d(cosh). (23)  composition and use inverse iteratif2g]. The momentum-
space meson-field source term is constructed from the Dirac
To get this final form we have written the Dirac wave func- Wave functions and we transform the source to coordinate
space for use in the nonlinear Klein-Gordon equation for the
meson field(12). To solve this nonlinear equation, we treat
Eqg.(12) as a functional oy and use Newton’s method. Once
}yﬁl‘i(kn), (24)  the Klein-Gordon equation is solved for the new meson field,
' we start over with the Dirac equation in this modified meson
field. We iterate until convergence of the quark wave func-
and used the spherical symmetry of the Wigner-Seitz cell. Itions is achieved, which takes between three to six iterations
m=1,2,... M, then Eq.(22) is a 2M-by-2M eigenvalue to reasonable accuracy.
problem for the energy eigenvalée The quantityB/A plays
the role of a dynamic mass and the scalar part of the self- D. Lattice results for the fields
energyB also acts to couple the quarks to the meson field via ) )
Eq. (23). The self-energy terms have ardependence which Wh_en the convergence of the Dirac and KIem-Gordon
makes this a highly nonlinear problem. The term repre- equations has been reached, we have the self-consistent

sents the Legendre coefficient for the meson field in the pregifound-state quark wave functions, meson field, and quark

ence of the distributed couplinB. One needs to solve the €Nergy at our disposal. F&=10 fm anda=1.35 GeV a
Dirac equation(22) and the Klein-Gordon equation for the duark energye=530 MeV is obtained. This reproduces the
meson field(12) self-consistently. single soliton value =537 MeV) within 2%. Figure 4 dis-
plays the upper and lower components of the Dirac wave
, ) functions along with the meson field fdR=5 fm (with
C. Details of solution a=1.35 GeV. This still is a relatively large cell size and the

To solve for a soliton lattice, we first pick a starting me- results resemble the single-soliton case in shape, but the
son field and search for the lowest energy eigenvalue of Eqvave functions and the meson field go to zero faster than for
(22). Technically this means finding the energywhich  a single soliton(compare to Fig. 2 The wave functions are
makes the determinant of ER2) vanish. We start at=0 pushed inwards by the boundary: each soliton is isolated
and work upwards in energy until the determinant changearound the center of the cell. The quark eigenenergy for this
sign. We then use the bisection method to find the root. Carease ise=526 MeV, slightly smaller than &=10 fm.
must be taken so that the initial steps are sufficiently fine in  For Fig. 5, we have decreased the size of the Wigner-Seitz
€ not to miss the lowest root. With the root in hand, we cancell to R=1.5 fm, while keeping the strength parameter
solve for the Fourier components of the Dirac wave func-unchanged. Now the value of the meson field is different

KntKm tions. For this we first perform a lower upper triangular de-

2

tions as

9(kn)

ukn) = ok, f (ko)
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FIG. 6. Upper and lower components of the quark wave func-
tion for the soliton lattice with the corresponding meson field plot-
ted for R=0.85 fm, «a=1.35 GeV. The quark eigenenergy is
€=621 MeV.

FIG. 7. Upper components of the quark wave functions and the
corresponding meson field for the lattice case plotted against the
dimensionless variable/R for R=1.2, 1.3, and 1.5 fm, and
a=1.35 GeV.

from zero at the edge of the cell. The upper component of thg¢ e energy band, one may solve the equations with anti-

Dirac wave function,g(r), can no longer decay to zero neriggic houndary condition@9,30, or use an estimate for

within the cell and obey the boundary conditiob). Its  he handwidt{26]. At the level of our computational accu-

value is supstant[al at the cell boundary. The lowest quarlfacy we do not expect these two methods to give signifi-

energy begins to increase =542 MeV. cantly different results and follow the simpler bandwidth cal-
Figure 6 shows a cell with radiug=0.85 fm and strength  ¢,jation. We approximate the Dirac-Bloch wave function for

parametere=1.35 GeV. The meson field is nonzero at the 5, arbitrary crystal momentum as

cell boundary andy(r) is becoming relatively flat. As the

qguarks now strongly feel the presence of the neighboring u'gt(r)zuo(r)e‘m'r, (25)

cells, they become less tightly bound, and the eigenenergy

increases further te=621 MeV. Comparing Figs. 4, 5, and and use Eq(25) to calculate the expectation value for the

6, we conclude that there is a systematic evolution of thesquare of the Dirac Hamiltonian to estimate the lattice mo-

solutions as the cell size gets smallee., the density be- mentum dependence of the energy levels in the band as

comes largerfor a fixed value of the strength parameter.

One important feature is that the quark distribution near the €m=[ €2t M?1*'2, (26)

cell boundary becomes larger with increasing density: the

solitons in neighboring cells begin to communicate. Towheree,, is the energy of the bottom band.

clearly display this trend, we introduce the dimensionless To obtain the possible values af the lattice structure

variable r/R, and plot the upper component of the quarkneeds to be specified. For a simple cubic crystal gblitons

wave function and the meson field near the cell boundary asnd sides of length =2RN, the allowed values of the com-

a function of this quantity in Fig. 7. This normalized variable ponent of the lattice momentum in the direction of any of the

is best suited for comparison between different valueR.of three axes are

The relative increase of the size of the meson field and of the

large component of the wave function at the edge of the cell 27 4w N
is now obvious. m=0*——,*—...,—/—, (27)
L L L
E. Energy bands with the top of the energy band corresponding to
Each soliton of the lattice contributes one level to eachM=N7/L=m/2R. Thus for the top energy band we obtain
energy band27]. In the Wigner-Seitz approximation we 211/2
need to calculate only the energy for the case when the crys- e —| &2 4 K 29)
tal momentunm in Eq. (17) is zero. To approximate the top top™| Fbot T} 2R
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950 ‘ ‘ ‘ - the attraction and the ground-state quark energy starts to in-
crease. In a more complete calculation one would like to

=1.35 GeV attempt to fit the energy minimum to the saturation density
of nuclear matter. This, however, requires one to go beyond
850 1 I the present mean field treatment which lacks the details of

I — = » — the nucleon-nucleon interaction and nucleon kinetic energies.
As the density increases, the top of the ground-state band
approaches the bottom of the next unfilled band, and at

S oL m2.6p.0 the highest energy state of the occupied ground_-state
< band intersects the bottom of the empty;% band. At this
= point it becomes energetically favorable for the quark in the

highest-energy state to move into the empty “conduction”
band. The system goes through a transition very similar to
the insulator-conductor transition in metals, and color con-
ductivity sets in. Since in the new phase quarks are free to
migrate from soliton to soliton, we identify this transition
with quark deconfinemerjtl]. Note in this context that we
use uniformly filled bands in our calculation. Partial filling of
the lowest energy band will increase the critical density in
03 10 5 20 25 3.0 the model.

/P,

650

550 p

FIG. 8. The bottom and top energies for the lowest energy bands F. In-medium properties

of the soliton lattice as a function of the density in terms of standard The surrounding dense nuclear matter may significantly

nuclear matter densitypg=0.17 fm~3), for «=1.35 GeV. The . IR C .
symbols represent the calculated energies of the bottom of the threcehange single-particle properties like masses and widths, as

lowest energy bands. For the top of the energy band we us@&q. Wwell as coupling constants, cross sections, and other features

as an approximation. An illustrative error bar is included. The(erIG\./ant for transport mg‘éﬂ'ngi For exam_p:i, dlleptorrll_fpro—
curves represent a polynomial fit to guide the eye. uction experiments at [B1] seem to indicate a shift-

ing p-meson mass in mediufB82]. Here we calculate the
ial vector coupling constant in the model to illustrate how
density dependence of physical properties can be ob-
tained. As another example of an in-medium property, we
resent the calculation of a correlation length.
The axial vector coupling constant can be calculated in
jnomentum space. Since there are no explicit pion fields in

«=1.35 MeV as a function of the density. The different the model, only the valence quarks contribute. In a simple

symbols represent the calculated energies of the bottom &pproxmatlor{ZZ]

each band. On one point we indicate a typical uncertainty we 51

associate with our computation. The main source of this un- 9a=73 Zf dp PPA(— €2+ p?)
certainty is the freedom in prescribed tolerances at different

stages of the calculation. The lines across the symbols rep-

resent a polynomial fit to guide the eye and to facilitate the

calculation of the top of the bands with the approxmaﬂonWhere thed factor is due to the summation over spin and

(28). , e flavor degrees of freedom. In Fig. 9 we plgt as a function

The lowest bandI=0,1"=1, andj=3) is labeled B12.  of density for several values of the strength parameter
The next lowest band has nonzero orbital angular momenturhe |ine serves to guide the eyé&or large cell sizellow
in the large component of the Dirac wave functidr=(L,  density the single soliton resuf22] is approached. In gen-
I’=2, andj=3) and is labeled f5,. The next band is eral, the value ofj, decreases with increasing density. This
again ans state, corresponding to a radial excitation. Forcan be understood in terms gfp) becoming more and
very low density R— ) the energy bands shrink to single more localized in momentum space @g) spreads out in
levels and in the limit reproduce the energies of a singlecoordinate space with decreasing cell size. The decrease con-
soliton (discussed earligr As the density increases the tinues until the critical density, which is the highest density
ground-state band develops a minium. The low-density atup to which we trust our calculations based on a single cell.
traction between the solitons is a consequence of the bound\ the transition we physically expect a sudden increase in
ary conditions on the quark wave functio(is). In particu- the value ofg, to higher than its free-space value, as a con-
lar, the upper component of the quark wave function issequence of the fact that the deconfined quarks sample a
forced to have less curvature than in the case of a singl&rger volume of phase space. The trend at higher densities
soliton, leading to a lower value of the quark kinetic energy.that g, is smaller for smallerr is consistent with the nar-
At higher densities, where the solitons and the quark waveowing of A in momentum space as the strength parameter
functions begin to overlap, the resulting repulsion overcomeslecreases.

We have performed the same estimate assuming body*
centered and face-centered cubic lattices, the face-center
cubic deviating the most from the estimaB). Different
assumptions in the lattice structure introduce an uncertaint9
of roughly 8% in our results for the top of the band.

In Fig. 8 we show the three lowest energy bands fo

1
9%(p) — §f2(p)J,
(29
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FIG. 10. The correlation length for pionlike currents as a func-
tion of the density fora=1.25, 1.35, and 1.45 GeV.

FIG. 9. The axial vector coupling constant as a function of the
density fora=1.25, 1.35, and 1.45 GeV.

As another illustration of the utility of the model, we con-

struct the pionlike bilocal fluctuation field y,, ysq, and cal-
culate the current-current correlation functi88]

localization of the solitons ag increases. For smaller values
of « the solitons spread out more, so that the lower compo-
nentf(r) peaks at a larger distance away from the origin. For
small cell size(large densitythe wave function has no room

I(ryry)= (Uu(ra) v, ysu(ra)u(ra)y, ysu(ry)) 1 in the cell to spread out, arR,,, becomes more independent
1:'2)—  — — .

U(r1) 7, 7sU(r1))-(U(r2) 7, ysu(ro) of a. ,

(ur)y,ysu(r))-Culr2) vysu(rz)) (30) The above examples serve to illustrate how the model can

be used to discuss the density dependence of in-medium
To reduce the number of variables we sgtr andr,=0. properties. We plan to calculate other hadronic observables,
Averaging over angles and using the properties of the Diradike in-medium masses and further correlation functions in
spinors makes it possible to write the correlation function aghe future.
a function of one variable, the relative distancelhe result

IS V. SUMMARY

1, We presented a generalization of the global color model
3f9(n) (GCM) to the many-soliton situation. In particular, the den-
rry=———. (3D sity dependence of the properties of an infinite system of
92(r)— = f2(r) nonlocal, confining solitons was studied in the Wigner-Seitz
3 approximation. We found that, at a critical density, an infi-
nite system of solitons exhibits a transition from a geometry
To extract a correlation lengtR.,,, Eq. (31) is transformed  with one soliton localized at the center of each cell to a more
to momentum space and we follow the methods usually apaniform situation where quarks can migrate across cell
plied in Hanbury-Brown and Twiss types of analyses forboundaries. We argued that this transition signals quark de-
bosons: the width of the momentum-space peak is inverselyonfinement in the model. We have also calculated the den-

proportional toR.,, [34]. sity dependence of the axial vector coupling constant and of
In Fig. 10 we show the correlation lengRy,, as a func-  a correlation length as examples of in-medium properties.
tion of density for three values ok. (The line serves to It should be kept in mind that the least elaborate one-

guide the eyg.With increasing density the cells become parameter version of the GCM was used throughout this
smaller, andR.,; decreases. At the transition density a sud-work. More realistic parametrizations of the quark self-

den increase of the correlation length is expected, as thenergy functions should improve the accuracy of the descrip-
guarks become free to migrate from cell to cell. For smalltion. In particular, the pion decay constant and the root-
density (large cell siz¢ there is a large spread R.,; as a mean-square charge radius of the proton could be fitted
function of @. This can be connected to the increasing spatiakimultaneously with a couple of parameters instead of just
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one. Such improvements in the hadronic sector can be incoof the transition we found in the model. We consider the

porated in the model if a closer correspondence to experiexistence of this transition in the GCM-based soliton lattice

mental data is desired. Developments along these lines rée be our most important finding so far. We believe that this

quire explicit pion degrees of freedom in the model forfeature is sufficiently robust to survive in more refined ver-

inclusion into the calculation of the root-mean-square protorsions of the model.

radius. The inclusion of explicit pions will also lead to the

restoration of chiral symmetry in the model, as discgssed ACKNOWLEDGMENTS

following Eq. (7). As this would open the way for chiral

calculations, it promises to be an interesting line of future Helpful discussions with M. Frank, who participated in an

development. earlier phase of this work, are gratefully acknowledged. This
It would also be of interest to perform direct comparisonswork was supported in part by the Department of Energy
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