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High-density nuclear matter with nonlocal confining solitons

Charles W. Johnson* and George Fai†

Center for Nuclear Research, Department of Physics, Kent State University, Kent, Ohio 44242
~Received 30 July 1997!

An infinite system of nonlocal, individually confining solitons is considered as a model of high-density
nuclear matter. The soliton-lattice problem is discussed in the Wigner-Seitz approximation. The cell size is
varied to study the density dependence of physical quantities of interest. A transition to a system where quarks
can migrate between solitons is found. We argue that this signals quark deconfinement. The model is applied
to the calculation of selected in-medium properties.@S0556-2813~97!03412-2#

PACS number~s!: 21.65.1f, 24.85.1p, 25.75.-q
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I. INTRODUCTION

High-density strongly interacting matter is in the focus
attention of nuclear research for several reasons. Stud
large ~on the order of 100 fm3) volumes of dense hadroni
matter experimentally is one aspect of the general effor
extend the investigation of the nuclear phase diagram bey
standard nuclear matter density and zero temperature.
experimental program is carried out at a set of acceler
facilities capable of colliding heavy nuclei at increasing e
ergies. Such collisions provide the only way to access c
ditions in the laboratory that were dominant in an early sta
of the evolution of the Universe and are relevant today
certain celestial objects and events, like dense stars and
pernovas.

It is of particularly great interest to identify and chara
terize in the laboratory the transition where strongly intera
ing matter no longer appears as a collection of hadrons,
as deconfined quarks and gluons in an extended space
domain. The high-density, low-temperature region of
nuclear phase diagram is especially important, as it may
vide access to deconfined quarks without involving copio
particle production and other effects of high excitation. E
perimental results from the Brookhaven Alternating Gradi
Synchrotron~AGS! indicate that this regime may be reach
in the so-called full-stopping scenario achieved at the AG

In the present paper we discuss a static approximation
this kind of high-density nuclear matter. Since we want
address the transition to the quark-gluon phase, we start
a description of the nucleon in terms of the underlying d
grees of freedom. Ideally, such calculations should be car
out in the framework of quantum chromodynamics~QCD!.
However, as long as the solution of QCD at nuclear len
and energy scales~nonperturbative regime! remains out of
reach, modeling of QCD will play an important role. He
we focus on describing strongly interacting matter at z
temperature, as a function of density. Soliton matter has b
used to model high-density hadronic matter earlier@1–3#.
Bound states in a background soliton form the basic idea
the popular description of baryons with the Skyrme Lagra
ian @4#.

*Electronic mail~internet!: johnson@ksuvxd.kent.edu.
†Electronic mail~internet!: fai@ksuvxd.kent.edu.
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The elementary building blocks of the model propos
here are provided by the global color model~GCM! @5#. The
GCM admits soliton solutions with an intrinsically gene
ated, extendedq̄q meson field, in contrast to, e.g., the col
dielectric model@6#, which uses an external field to genera
a cavity ~where quarks can propagate! in the vacuum. In
addition, the individual GCM solitons are confining, as the
are no poles in the quark propagator outside the region wh
the meson field is nonzero@7,8#. The GCM observes the
global symmetries of QCD, but is not locally gauge inva
ant. It has been used successfully to model low-energy Q
as illustrated by the reproduction of chiral perturbati
theory results@5,9,10#, meson form factors@11#, and spectra
@12#, and both, the soliton~mentioned above!, and the Fad-
deev @13# description of the nucleon. A more exhaustiv
summary of these successes and of current work on ha
physics based on the GCM can be found in a recent rev
@14#.

To address high-density nuclear matter, we consider a
tice of GCM solitons. As this model maintains only glob
color symmetry, our work can be considered complement
to approaches that are concerned with a complete treatm
of the color degrees of freedom for the description of nucl
matter@15#. Furthermore, the kinetic energy of the nucleo
~solitons! is neglected in the present work. While this can
considered a reasonable approximation at the lowest t
peratures, it implies that no quantitative agreement with, e
the saturation density of nuclear matter should be expec
For the time being, we are more interested in identifyi
qualitative changes in the behavior of the system with
creasing density, which can justify further work on extend
strongly interacting matter with this model. We describe t
soliton lattice at the mean-field level, utilizing the Wigne
Seitz approximation@16#. As a consequence, the prese
study is restricted to spherically symmetric mean fields. W
are going to calculate excited states with higher orbital
gular momenta in the spherical background field.

The density of the system can be varied by changing
size of the Wigner-Seitz cell. This allows the study of s
tionary energies and in-medium properties as functions
the density in the model. Even though the simplicity of o
picture precludes detailed quantitative predictions, we fin
very interesting qualitative feature, the occurrence of a tr
sition from a color insulator to a color conductor at a certa
density. We argue that this signals the deconfinement tra
3353 © 1997 The American Physical Society
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3354 56CHARLES W. JOHNSON AND GEORGE FAI
tion in the model. We show illustrative results, such as
axial-vector coupling constant and the correlation length
pionlike correlations as a function of density to highlig
possible uses of the model.

The paper is organized as follows. In Sec. II we revi
the hadronization of QCD in the context of the GCM to s
the stage for the present work and to present the cou
equations defining our numerical problem. In Sec. III w
discuss our choice of the gluon propagator and presen
sults on a single soliton. Section IV describes how we put
GCM ‘‘on the lattice,’’ gives details on the solution metho
and presents our results on soliton matter as a function
density, including energy bands and in-medium propert
We discuss the significance of these findings. Finally, in S
V we summarize the present status of the project and ou
our future plans.

II. FROM QCD TO THE GCM SOLITON EQUATIONS

As quarks and gluons are directly unobservable, it is na
ral to seek a description of low-energy strong-interact
phenomena in terms of effective hadronic degrees of fr
dom. An example of the successes of such modeling is
vided by quantum hadrodynamics@17#. Ideally, the effective
degrees of freedom should be derived from the QCD
grangian. An approach to connect QCD and effective h
ronic field theories can be formulated in terms of function
integral methods. The strategy is to transform the integra
variables from quark and gluon fields to hadron fields.
order to make our discussion reasonably self-contained,
we review the major steps leading to the hadronic fields
play a central role in the present work.

One particular implementation of the above ideas is in
framework of the global color symmetry model~GCM!,
which starts with a truncation of QCD@5#, leading to the
Euclidean action

S@ q̄q#52E d4x d4yF q̄~x!~g•]1m!d~x2y!q~y!

1
g2

2
j m
a ~x!Dmn~x2y! j n

a~y!G . ~1!

Here j n
a(x)5 q̄ (x)(la/2)gnq(x) is a local quark current

with Euclidean Dirac matricesgn and Gell-Mann matrices
la . The two-point gluon function,Dmn , can be considered
the phenomenological input point for the model. Using
Feynman-like gauge,Dmn5dmnD(x2y), the gluon propaga-
tor is particularly simple, and provides a single parame
function for the GCM. In the limitD(x2y)→d(x2y), the
GCM reduces to the local Nambu–Jona-Lasinio model@18#.
In Eq. ~1!, m is a current quark mass, which will be taken
be zero in the following. Our choice of the gluon propaga
is dictated by the requirement of quark confinement, and
be detailed in Sec. III. The GCM has the global symmetr
of QCD, but lacks local gauge invariance.

The partition function in terms of the quark degrees
freedom can be written as

Z5NE Dq̄Dqexp~S@ q̄q# !, ~2!
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where the functional integrationDq implies integration over
all values of the quark fields, andN is a normalization con-
stant. To exhibit nonlocal quark-antiquark structures in
action, a Fierz reordering may be performed@19#, which
transforms the current-current term in Eq.~1! as

1

2E d4x d4y jm
a ~x!D~x2y! j m

a ~y!

52
1

2E d4x d4yJu~x,y!D~x2y!Ju~y,x!. ~3!

Here,Ju(x,y)5 q̄ (x)Luq(y) can be looked upon as a bilo
cal current with a quark-antiquark structure and quant
numbers specified byu. The quantityLu is a direct product
of Dirac, flavor, and color matrices, and contains both, col
singlet and color-octet terms. We focus on the color-sing
sector in this work, ignoring correlations that correspond
diquark degrees of freedom.

To cast the partition function in terms of Bose fields, au
iliary nonlocal fields,Bu(x,y), are introduced, and the part
tion function is multiplied by unity in the form

15N8E DBexpF2E d4x d4y
Bu~x,y!Bu~y,x!

2g2D~x2y!
G . ~4!

After the transformation Bu(x,y)→Bu(x,y)1g2D(x
2y)Ju(y,x), the action is bilinear in terms of the quar
fields and the Grassman integration can be performed. T
yields the action in terms of bilocal Bose fields as

S@B#5Tr Ln G21@B#2E d4x d4y
Bu~x,y!Bu~y,x!

2g2D~x2y!
, ~5!

where G21(x,y)5(g•]1m)d(x2y)1LuBu(x,y) is the
inverse quark propagator.

The replacement of the quark fields with Bose fields is,
principle, an exact functional change of variables. Obse
ables calculated from the partition function are not affec
by the variable transformation, but are now expressed
terms of the Bose degrees of freedom, provided the en
sum overu is kept. This is impossible in practice, and th
truncation scheme used can be developed into a system
method of approximation. To retain the chiral content of t
QCD action, at least two Bose fields need to be kept~see
below!.

The classical vacuum configurationB0
u is identified by

dS/dBu50. This produces a quark self-energ
S(x2y)5LuB0

u(x2y) satisfying a Schwinger-Dyson equa
tion. In momentum space

S~p!5 ig•p@A~p2!21#1B~p2!

5g2E d4q

~2p!4
D~p2q!

la

2
gm

1

ig•q1m1S~q!

la

2
gm .

~6!

Numerical solutions for the amplitudesA(p2) andB(p2)
are now available at different levels of sophistication@20#.
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As detailed in Sec. III, our choice for this explorative stu
is governed by simplicity within the context of the requir
ment of confinement. It is important to note that the amp
tudeB(p2) plays a dual role in the model: it also acts as t
distributed vertex for coupling the quarks to theq̄q Gold-
stone modes@7,21#.

The fluctuationsB̂u(x,y)5Bu(x2y)2B0
u are identified as

the propagating Bose fields. If the color-singlet scal
isoscalar and pseudoscalar-isovector fluctuations are
tained, the formalism can be adopted to the requiremen
chiral invariance by the variable transformation

LuB̂u~x,y!5
B~r !

f p
x̂~R!eig5•f~R!/ f p , ~7!

where r 5x2y and R5(x1y)/2, are relative and cm-like
coordinates, respectively,f p is the pion decay constant, an
it has been assumed that the on-shell form factorB can also
be used off-shell. As a further simplification, thef50 point
on the chiral circle can be fixed. In this case the radial fl
tuations away from the chiral circle coincide with the scal
isoscalar field variable prior to the transformation. In t
numerical work that follows the single fluctuation fieldx̂
corresponding to this situation will be used, the notat
serving as a reminder for possible generalizations to res
chiral symmetry in the numerical model.

Letting m→0, the action~up to a constant! can be written
as a sum of fermionic and bosonic terms:

S@m,x̂ #52Tr@ lnG21~m,x̂ !2 lnG21~0,x̂ !#

1E d4RF1

2
~]mx̂ !21U~ x̂2!G . ~8!

The chemical potential (m) dependence of the fermion term
in equation~8! ensures that a meson source from the vale
quarks will be generated@7#. TheU(x̂2) term is the effective
meson self-interaction@5#. For m50 the inverse quark
propagator takes the form

G21~x,y!5g•]xA~x2y!1 f p
21B~x2y!x̂S x1y

2 D , ~9!

and the saddle-point configuration turns out to bex̂5 f p

@22#.
SinceG21(x,y) is time-translationally invariant, station

ary eigenstates of the formuj (x) can be obtained from a
self-consistent Dirac equation, which in momentum sp
takes the form

@ ig•pA~p2!1B~p2!#uj~p!

1 f p
21E d3q

~2p!3/2
BF S p1q

2 D 2Gx~p2q!uj~q!50,

~10!

wherep and q are the three momenta corresponding to
center-of-mass and relative variables, respectively. Note
x5x̂2 f p , and asp45q45 i e j , wheree j is the energy ei-
genvalue, the meson vertexB has an energy dependence.
-
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can also be seen that a wave-function renormalization
pears with the renormalization constantZj given by @7#

Zj52E d3p d3q ūj~p!
]G21~ i e;p,q!

]e j
uj~q!. ~11!

The meson-field equationdE/dx50 may be summarized a

2¹x~z!1
dU

dx~z!
1Qx~z!50, ~12!

with the meson source provided by the valence quarks
cording to

Qx~z!5(
j

1

f pZj
E d3xd3y ū j~x!B~2e j

2 ;x2y!

3dFx1y

2
2zGuj~y!. ~13!

Equations~10! and~12! form a system of coupled differ
ential equations for the quark wave functions and the me
field, which need to be solved self-consistently, with the a
propriate boundary conditions. The different boundary co
ditions distinguish the single-soliton case from a lattice
solitons.

III. SINGLE SOLITON

A. Gluon propagator

One can take the point of view that the gluon propaga
Dmn in Eq. ~1!, represents all phenomenological input to t
model. With the appropriate choice ofD, the GCM can re-
produce key features of QCD, such as confinement. Phen
enologically successful early work with the GCM@5# em-
ployed ad-function gluon propagator,

g2D~q!53p4a2d~4!~q!. ~14!

The momentum-spaced function turns the rainbow approxi
mation Schwinger-Dyson equation~6! into an algebraic
equation, and the Munczek-Nemirovski quark propaga
@23# results:

A~p2!5H 2

1

2 F11S 11
2a2

p2 D 1/2G ,

B~p2!5H ~a224p2!1/2, p2<
a2

4

0, p2.
a2

4

. ~15!

Its simplicity, in addition to its confining nature, make th
form of the gluon propagator particularly appealing. It ha
single strength parameter,a, which ~for a fixed energy! con-
trols the spatial extension of bothA andB: the largera, the
more localizedA andB are in coordinate space. The lack
solutions to the equationp21M2(p2)50, ~whereM5B/A
is the dynamic quark mass! indicates that Eq.~15! produces
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3356 56CHARLES W. JOHNSON AND GEORGE FAI
quark confinement; there is no on-mass-shell point, thus
propagation of a quark in the normal vacuum is prohibi
@8#.

Though phenomenologically successful, the above sim
quark propagator encounters difficulties when improveme
are attempted regarding analyticity@24#. Partly for this rea-
son, recent studies in the hadronic sector moved away f
the point of view of providing the input at the level of th
gluon propagator and, accordingly, from the simple fo
~14!. In order to focus on nuclear matter and to keep co
plications from the GCM to a minimum, we use thed-
function gluon propagator~14! throughout this work. Note
also the recent observation@14# that the parametrization~15!
may well express the infrared behavior of the gluon tw
point function in QCD@25#.

B. Single soliton results

With the self-energy amplitudesA andB of Eq. ~15!, the
coupled equations~10! and ~12! can be solved self-
consistently. For convenience, the Dirac equation is sol
as a matrix equation in momentum space, using Ga
Legendre quadrature, while the Klein-Gordon equation
solved in coordinate space using a functional version
Newton’s method@22#. In order to check our numerical pro
cedure, we have satisfactorily compared our results on
three valence-quark soliton to the results of an earlier inv
tigation @7,22#. In addition, we carried out calculations for
range of the parametera.

Assuming spherical symmetry, the quark spinors can
decomposed as

u~r !5F g~r !

is• k̂ f ~r !
GYj l

mj~ r̂ !. ~16!

Here,Yj l
mj( r̂ ) is a vector spherical harmonic,r̂ represents a

unit vector in the direction ofr , and we have suppressed th
quantum-number labels onf , g, andu. The numerical task is
now reduced to the calculation of the radial functionsg(r )
and f (r ).

The radial parts of the upper and lower components of
quark wave function and the meson field (x) for a51.04
GeV are shown in Fig. 1. These results should be compa
to the results of Ref.@22#, wherea51.04 GeV was chosen to
fit the experimental value off p . For our nuclear matter stud
ies, we find it more important to have a reasonably clo
correspondence to the root-mean-square charge radius o
proton. As discussed in Ref.@8#, this does not fixa in lack of
explicitly considering the pion field, but it appears to call f
larger values of the strength parameter. Witha51.35 GeV
we get ^r 2&1/250.67 fm for the rms charge radius of th
proton. Assuming that the pion cloud will increase this va
by about 25–30%, we get close to the experimental va
To leave room for the uncertainty of this estimate, we co
sider the range 1.04<a<1.45. In the following figures,
whena is fixed, we display results fora51.35 GeV. In Fig.
2 we show the Dirac wave function andx for a single soliton
with this value of the strength parameter.

Figures 1 and 2 represent typical results for a single s
ton. It is noteworthy that the large and small components
the quark wave functions decay faster than exponential@22#,
e
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and are essentially zero byr 53 fm for the values ofa
considered. The range ofx decreases and the magnitude ofx
at r 50 increases asa increases. The changes of thex field
can be attributed to the decrease in the range of the dis

FIG. 1. Upper and lower components of the quark wave fu
tion for a single soliton with the corresponding meson field plot
for a51.04 GeV. The quark eigenenergy ise5356 MeV.

FIG. 2. Upper and lower components of the quark wave fu
tion for a single soliton with the corresponding meson field plot
for a51.35 GeV. The quark eigenenergy ise5537 MeV.
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uted quark-meson vertexB in coordinate space asa in-
creases. The narrowerB, the closerx andy have to be in Eq.
~13! to give a larger value of the source term in Eq.~12!,
which in turn influences the gradient of thex field: a larger
source term leads to a stronger gradient~assuming no chang
in the self-interaction!. In Fig. 3 we plot the dependence o
the quark eigenenergye on the single input parametera. The
increase ofe can be associated with the increasing abso
value ofx at r 50. The spreading ofx in momentum space
causes the coupling term in Eq.~10! to decrease, making th
valence quarks less tightly bound.

IV. SOLITON MATTER

A. Wigner-Seitz approximation

As a means of describing nuclear matter, we conside
infinite collection of solitons. At the lowest energies the so
tons are expected to arrange themselves in a crystal la
@26#. Accordingly, the single-quark eigenenergies will d
velop into energy bands. For simplicity, we assume a sim
cubic crystal~sc!. For a periodic lattice, the Dirac wave func
tion must be invariant to a lattice translation, so the solutio
must have the Bloch form@27#

um
lat~r !5um~r ! eim•r, ~17!

where m is the lattice momentum andum(r ) is a Dirac
spinor which has the periodicity of the lattice. To solve f
the Bloch functions we employ the Wigner-Seitz approxim
tion @16#. This amounts to considering a spherical cell
radiusR and solving form50 in Eq. ~17!. The full solution
um

lat(r ) is then approximated byu0(r ) eim•r. Changing the
density will be implemented by varying the cell radiusR.

FIG. 3. The dependence of the quark eigenenergye on the
strength parametera for a single soliton.
e

n
-
ce

le

s

-
f

The Wigner-Seitz approximation places boundary con
tions on the Dirac spinors. These conditions express the
quirement that the upper component of the wave funct
must be periodic and antiperiodic for the bottom and the
of the band, respectively. We focus attention on the lowe
energy state of the band, for which the above, together w
the r 50 boundary conditions, implies

g8~r !ur 5R5 f ~r !ur 5R50, ~18!

whereg(r ) and f (r ) represent the radial parts of the upp
and lower components of the Dirac wave function~16!, re-
spectively. In addition, the meson-field solution of Eq.~12!,
which also appears in the source term of the Dirac equa
~10! must now be periodic inr , so that

x~r 12R!5x~r !; x8~r !ur 5R50, ~19!

wherex(r ) is the radial part of the meson field.

B. GCM on the lattice

It is convenient to solve the Dirac equation in momentu
space, while the nonlinear Klein-Gordon equation is easie
handle in coordinate space. The Dirac equation~10! can be
written in coordinate space as

05E d3yH ~2g4e j1gW •¹!A~x2y!1B~x2y!

1
1

f p
B~x2y!xS x2y

2 D J uj~y!. ~20!

We seek solutions with the boundary conditions~18!. These
can be incorporated using a Fourier expansion of the for

f ~x!5 (
n152`

`

(
n252`

`

(
n352`

`

F~kn!eikn•x, ~21!

where kn5np/R is a wave number vector, with
n5$n1 ,n2 ,n3%. ExpandingA, B, u, and the meson-field
source, we integrate overy and use orthonormality to get a
equation for the Fourier components of thej th quark wave
function

H F @2eA~kn!1B~kn!#dnm 2knA~kn!dnm

knA~kn!dnm @eA~kn!1B~kn!#dnm
G

14p5 F (
m50

`

km
2 V0~kn ,km! 0

0 (
m50

`

km
2 V1~kn ,km!

G 6 Fgm

f m
G

50 , ~22!

wheregn5g(kn), f n5 f (kn), and
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Vl5E
21

1

BS kn1km

2 Dx~kn2km!Pl~cosu!d~cosu!. ~23!

To get this final form we have written the Dirac wave fun
tions as

u~kn!5F g~kn!

is• k̂nf ~kn!
GYj l

mj~ k̂n!, ~24!

and used the spherical symmetry of the Wigner-Seitz cel
m51,2, . . . ,M , then Eq.~22! is a 2M -by-2M eigenvalue
problem for the energy eigenvaluee. The quantityB/A plays
the role of a dynamic mass and the scalar part of the s
energyB also acts to couple the quarks to the meson field
Eq. ~23!. The self-energy terms have ane dependence which
makes this a highly nonlinear problem. TheVl term repre-
sents the Legendre coefficient for the meson field in the p
ence of the distributed couplingB. One needs to solve th
Dirac equation~22! and the Klein-Gordon equation for th
meson field~12! self-consistently.

C. Details of solution

To solve for a soliton lattice, we first pick a starting m
son field and search for the lowest energy eigenvalue of
~22!. Technically this means finding the energye which
makes the determinant of Eq.~22! vanish. We start ate50
and work upwards in energy until the determinant chan
sign. We then use the bisection method to find the root. C
must be taken so that the initial steps are sufficiently fine
e not to miss the lowest root. With the root in hand, we c
solve for the Fourier components of the Dirac wave fun

FIG. 4. Upper and lower components of the quark wave fu
tion for the soliton lattice with the corresponding meson field
R55.0 fm, a51.35 GeV. The quark eigenenergy ise5526 MeV.
If

lf-
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tions. For this we first perform a lower upper triangular d
composition and use inverse iteration@28#. The momentum-
space meson-field source term is constructed from the D
wave functions and we transform the source to coordin
space for use in the nonlinear Klein-Gordon equation for
meson field~12!. To solve this nonlinear equation, we tre
Eq. ~12! as a functional ofx and use Newton’s method. Onc
the Klein-Gordon equation is solved for the new meson fie
we start over with the Dirac equation in this modified mes
field. We iterate until convergence of the quark wave fun
tions is achieved, which takes between three to six iterati
to reasonable accuracy.

D. Lattice results for the fields

When the convergence of the Dirac and Klein-Gord
equations has been reached, we have the self-consi
ground-state quark wave functions, meson field, and qu
energy at our disposal. ForR510 fm anda51.35 GeV a
quark energye5530 MeV is obtained. This reproduces th
single soliton value (e5537 MeV! within 2%. Figure 4 dis-
plays the upper and lower components of the Dirac wa
functions along with the meson field forR55 fm ~with
a51.35 GeV!. This still is a relatively large cell size and th
results resemble the single-soliton case in shape, but
wave functions and the meson field go to zero faster than
a single soliton~compare to Fig. 2!. The wave functions are
pushed inwards by the boundary: each soliton is isola
around the center of the cell. The quark eigenenergy for
case ise5526 MeV, slightly smaller than atR510 fm.

For Fig. 5, we have decreased the size of the Wigner-S
cell to R51.5 fm, while keeping the strength parametera
unchanged. Now the value of the meson field is differe

-
r

FIG. 5. Upper and lower components of the quark wave fu
tion for the soliton lattice with the corresponding meson field
R51.5 fm, a51.35 GeV. The quark eigenenergy ise5542 MeV.
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56 3359HIGH-DENSITY NUCLEAR MATTER WITH NONLOCAL . . .
from zero at the edge of the cell. The upper component of
Dirac wave function,g(r ), can no longer decay to zer
within the cell and obey the boundary condition~18!. Its
value is substantial at the cell boundary. The lowest qu
energy begins to increase toe5542 MeV.

Figure 6 shows a cell with radiusR50.85 fm and strength
parametera51.35 GeV. The meson field is nonzero at t
cell boundary andg(r ) is becoming relatively flat. As the
quarks now strongly feel the presence of the neighbor
cells, they become less tightly bound, and the eigenene
increases further toe5621 MeV. Comparing Figs. 4, 5, an
6, we conclude that there is a systematic evolution of
solutions as the cell size gets smaller~i.e., the density be-
comes larger! for a fixed value of the strength paramete
One important feature is that the quark distribution near
cell boundary becomes larger with increasing density:
solitons in neighboring cells begin to communicate.
clearly display this trend, we introduce the dimensionle
variable r /R, and plot the upper component of the qua
wave function and the meson field near the cell boundary
a function of this quantity in Fig. 7. This normalized variab
is best suited for comparison between different values oR.
The relative increase of the size of the meson field and of
large component of the wave function at the edge of the
is now obvious.

E. Energy bands

Each soliton of the lattice contributes one level to ea
energy band@27#. In the Wigner-Seitz approximation w
need to calculate only the energy for the case when the c
tal momentumm in Eq. ~17! is zero. To approximate the to

FIG. 6. Upper and lower components of the quark wave fu
tion for the soliton lattice with the corresponding meson field pl
ted for R50.85 fm, a51.35 GeV. The quark eigenenergy
e5621 MeV.
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of the energy band, one may solve the equations with a
periodic boundary conditions@29,30#, or use an estimate fo
the bandwidth@26#. At the level of our computational accu
racy we do not expect these two methods to give sign
cantly different results and follow the simpler bandwidth c
culation. We approximate the Dirac-Bloch wave function f
an arbitrary crystal momentum as

um
lat~r !5u0~r !eim•r, ~25!

and use Eq.~25! to calculate the expectation value for th
square of the Dirac Hamiltonian to estimate the lattice m
mentum dependence of the energy levels in the band as

em5@ebot
2 1m2#1/2, ~26!

whereebot is the energy of the bottom band.
To obtain the possible values ofm the lattice structure

needs to be specified. For a simple cubic crystal ofN solitons
and sides of lengthL52RN, the allowed values of the com
ponent of the lattice momentum in the direction of any of t
three axes are

m50,6
2p

L
,6

4p

L
. . . ,

Np

L
, ~27!

with the top of the energy band corresponding
m5Np/L5p/2R. Thus for the top energy band we obtai

e top5Febot
2 1S p

2RD 2G1/2

. ~28!

-
- FIG. 7. Upper components of the quark wave functions and
corresponding meson field for the lattice case plotted against
dimensionless variabler /R for R51.2, 1.3, and 1.5 fm, and
a51.35 GeV.
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3360 56CHARLES W. JOHNSON AND GEORGE FAI
We have performed the same estimate assuming b
centered and face-centered cubic lattices, the face-cen
cubic deviating the most from the estimate~28!. Different
assumptions in the lattice structure introduce an uncerta
of roughly 8% in our results for the top of the band.

In Fig. 8 we show the three lowest energy bands
a51.35 MeV as a function of the density. The differe
symbols represent the calculated energies of the bottom
each band. On one point we indicate a typical uncertainty
associate with our computation. The main source of this
certainty is the freedom in prescribed tolerances at differ
stages of the calculation. The lines across the symbols
resent a polynomial fit to guide the eye and to facilitate
calculation of the top of the bands with the approximati
~28!.

The lowest band (l 50, l 851, andj 5 1
2 ) is labeled 1s1/2.

The next lowest band has nonzero orbital angular momen
in the large component of the Dirac wave function (l 51,

l 852, and j 5 3
2 ) and is labeled 1p3/2. The next band is

again ans state, corresponding to a radial excitation. F
very low density (R→`) the energy bands shrink to sing
levels and in the limit reproduce the energies of a sin
soliton ~discussed earlier!. As the density increases th
ground-state band develops a minium. The low-density
traction between the solitons is a consequence of the bo
ary conditions on the quark wave functions~18!. In particu-
lar, the upper component of the quark wave function
forced to have less curvature than in the case of a sin
soliton, leading to a lower value of the quark kinetic ener
At higher densities, where the solitons and the quark w
functions begin to overlap, the resulting repulsion overcom

FIG. 8. The bottom and top energies for the lowest energy ba
of the soliton lattice as a function of the density in terms of stand
nuclear matter density (r050.17 fm23), for a51.35 GeV. The
symbols represent the calculated energies of the bottom of the
lowest energy bands. For the top of the energy band we use Eq.~28!
as an approximation. An illustrative error bar is included. T
curves represent a polynomial fit to guide the eye.
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the attraction and the ground-state quark energy starts to
crease. In a more complete calculation one would like
attempt to fit the energy minimum to the saturation dens
of nuclear matter. This, however, requires one to go bey
the present mean field treatment which lacks the details
the nucleon-nucleon interaction and nucleon kinetic energ

As the density increases, the top of the ground-state b
approaches the bottom of the next unfilled band, and
'2.6r0 the highest energy state of the occupied ground-s
band intersects the bottom of the empty 1p3/2 band. At this
point it becomes energetically favorable for the quark in
highest-energy state to move into the empty ‘‘conductio
band. The system goes through a transition very simila
the insulator-conductor transition in metals, and color co
ductivity sets in. Since in the new phase quarks are free
migrate from soliton to soliton, we identify this transitio
with quark deconfinement@1#. Note in this context that we
use uniformly filled bands in our calculation. Partial filling o
the lowest energy band will increase the critical density
the model.

F. In-medium properties

The surrounding dense nuclear matter may significan
change single-particle properties like masses and widths
well as coupling constants, cross sections, and other feat
relevant for transport modeling. For example, dilepton p
duction experiments at CERN@31# seem to indicate a shift
ing r-meson mass in medium@32#. Here we calculate the
axial vector coupling constant in the model to illustrate ho
the density dependence of physical properties can be
tained. As another example of an in-medium property,
present the calculation of a correlation length.

The axial vector coupling constant can be calculated
momentum space. Since there are no explicit pion fields
the model, only the valence quarks contribute. In a sim
approximation@22#

gA5
5

3

1

ZE dp p2A~2e21p2!H g2~p!2
1

3
f 2~p!J ,

~29!

where the5
3 factor is due to the summation over spin a

flavor degrees of freedom. In Fig. 9 we plotgA as a function
of density for several values of the strength parametera.
@The line serves to guide the eye.# For large cell size~low
density! the single soliton result@22# is approached. In gen
eral, the value ofgA decreases with increasing density. Th
can be understood in terms ofg(p) becoming more and
more localized in momentum space asg(r ) spreads out in
coordinate space with decreasing cell size. The decrease
tinues until the critical density, which is the highest dens
up to which we trust our calculations based on a single c
At the transition we physically expect a sudden increase
the value ofgA to higher than its free-space value, as a co
sequence of the fact that the deconfined quarks samp
larger volume of phase space. The trend at higher dens
that gA is smaller for smallera is consistent with the nar
rowing of A in momentum space as the strength parame
decreases.

ds
d

ee
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As another illustration of the utility of the model, we con
struct the pionlike bilocal fluctuation fieldq̄gmg5q, and cal-
culate the current-current correlation function@33#

G~r1 ,r2!5
^ ū~r1!gmg5u~r2! ū~r2!gmg5u~r1!&

^ ū~r1!gmg5u~r1!&•^ ū~r2!gmg5u~r2!&
21 .

~30!

To reduce the number of variables we setr15r and r250.
Averaging over angles and using the properties of the D
spinors makes it possible to write the correlation function
a function of one variable, the relative distancer . The result
is

G~r !5

1

3
f 2~r !

g2~r !2
1

3
f 2~r !

. ~31!

To extract a correlation lengthRcor, Eq. ~31! is transformed
to momentum space and we follow the methods usually
plied in Hanbury-Brown and Twiss types of analyses
bosons: the width of the momentum-space peak is inver
proportional toRcor @34#.

In Fig. 10 we show the correlation lengthRcor as a func-
tion of density for three values ofa. ~The line serves to
guide the eye.! With increasing density the cells becom
smaller, andRcor decreases. At the transition density a su
den increase of the correlation length is expected, as
quarks become free to migrate from cell to cell. For sm
density ~large cell size! there is a large spread inRcor as a
function ofa. This can be connected to the increasing spa

FIG. 9. The axial vector coupling constant as a function of
density fora51.25, 1.35, and 1.45 GeV.
c
s
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-
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localization of the solitons asa increases. For smaller value
of a the solitons spread out more, so that the lower com
nent f (r ) peaks at a larger distance away from the origin. F
small cell size~large density! the wave function has no room
in the cell to spread out, andRcor becomes more independe
of a.

The above examples serve to illustrate how the model
be used to discuss the density dependence of in-med
properties. We plan to calculate other hadronic observab
like in-medium masses and further correlation functions
the future.

V. SUMMARY

We presented a generalization of the global color mo
~GCM! to the many-soliton situation. In particular, the de
sity dependence of the properties of an infinite system
nonlocal, confining solitons was studied in the Wigner-Se
approximation. We found that, at a critical density, an in
nite system of solitons exhibits a transition from a geome
with one soliton localized at the center of each cell to a m
uniform situation where quarks can migrate across c
boundaries. We argued that this transition signals quark
confinement in the model. We have also calculated the d
sity dependence of the axial vector coupling constant and
a correlation length as examples of in-medium properties

It should be kept in mind that the least elaborate o
parameter version of the GCM was used throughout
work. More realistic parametrizations of the quark se
energy functions should improve the accuracy of the desc
tion. In particular, the pion decay constant and the ro
mean-square charge radius of the proton could be fi
simultaneously with a couple of parameters instead of

e
FIG. 10. The correlation length for pionlike currents as a fun

tion of the density fora51.25, 1.35, and 1.45 GeV.
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3362 56CHARLES W. JOHNSON AND GEORGE FAI
one. Such improvements in the hadronic sector can be in
porated in the model if a closer correspondence to exp
mental data is desired. Developments along these lines
quire explicit pion degrees of freedom in the model f
inclusion into the calculation of the root-mean-square pro
radius. The inclusion of explicit pions will also lead to th
restoration of chiral symmetry in the model, as discus
following Eq. ~7!. As this would open the way for chira
calculations, it promises to be an interesting line of futu
development.

It would also be of interest to perform direct compariso
to QCD calculations. This can shed more light on the nat
tt

a,

y,

.

ys
r-
ri-
re-

n

d

e
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e

of the transition we found in the model. We consider t
existence of this transition in the GCM-based soliton latt
to be our most important finding so far. We believe that t
feature is sufficiently robust to survive in more refined ve
sions of the model.
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