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Vacuum fluctuation effects on thep-meson mass and the ong-exchange potential
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Based on thermofield dynamics, the temperature- and density-dependent effective mass and screening mass
of p meson have been calculated. The effects of vacuum fluctuation corrections through effective nucleon mass
are examined. We have shown that vacuum fluctuations give an important correction to the self-energy of the
p meson and lead to a reduction of thaneson mass in hot and dense matter. The temperature and density
dependence of ongmeson exchange potential with vacuum fluctuation correction is also given.
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[. INTRODUCTION tensor coupling opNN in detail.
The second objective of this paper is to study the mass of
The study of the nuclear force plays an important role inthe p meson in a hot and dense medium. There have been
understanding the physical properties of nuclear systemsnany papers publishd@—13] which employ different mod-
When we extend our study to the high temperature and higbls and different methods for studying the temperature and/or
density region, obviously, it is essential to determine thedensity effects of the-meson mass, but unfortunately, the
temperature and density dependence of nuclear force. results are very different. Some of them, including that using
As is well known, the nuclear force can be understood oran effective chiral Lagrangiaf6], the vector dominance
the basis of the exchange of various mesons. At large disnodel[7], QCD sum rules and taking the mixing of vector
tances, the exchange of a pion gives the dominant contribuand axial vector mesons into accolt, the =7 scattering
tion to the nuclear force. At intermediate distances, the domiamplitude[9], etc., have shown that the mass of theeson
nant contribution arises fromo-meson or two-pion increases with temperature. But the oth¢i®-13 have
exchange, and at the short distances, it is generally believeshown the opposite results: The mass of pheeson de-
that the dominant contribution of the nucleon-nuclediNj creases with temperature. The recent CERN experimental
interaction comes from ong-meson and one-meson ex- data on dileptons seem to support the reduction of ghe
change. In our previous papers, by means of a finite temperaneson masgl4,15. To clarify this puzzle, Shiomi and Hat-
ture quantum field theory, after summing the temperaturesuda[16] and Songet al.[17] have shown that, for theNN
and density-dependent vacuum polarization diagrams and theector and tensor coupling/TC) model, even though the
three-line vertex diagram which gives the correction of thep-meson mass increases with temperature by summing the
coupling constant, we have extended the one-pion, ®@ne- matter polarization diagrams, but if taking the vacuum fluc-
meson, and one-meson exchange potential to finite tem- tuation (VF) effect into account, i.e., changing the mass of
perature and densifyl—4]. We have found that the attractive the nucleonmy, in the Feynman propagator by its effective
part of theNN interaction becomes weaker and the repulsivenassmy; in a medium and recalculate the vacuum polariza-
part becomes stronger when the temperature and/or densitipn diagrams, one finds that themeson mass in a medium
of the system increase. However, the study of the gne- decreases with temperature or density. But in their calcula-
meson exchange potentiOREP is still lacking. But the tions, the effective mass of the nucleony; , is adopted from
OREP in theNN interaction is very important because it hasthe mean field approximation results in the Walecka model
not only a vector coupling but also a tensor coupling, and, asQHD-I) [18].
was pointed out by Brown and Machlei@], unlike the We hope to reexamine this problem by employing the
oNN interaction, the tensor coupling of t@N coupling is  Bonn potential(BP) model. This model has intermediate
very strong. In our previous calculatig¢@], the tensor cou- bosonsm, o, 7, 8, w, andp. In a previous papefl9], we
pling of NN has been neglected. The first objective of thisextended the BP model to finite temperature and found the
paper is to investigate the temperature and density depeeffective mass of the nucleomy,, reasonable. We will use
dence of the OREP; in particular, we will investigate thethis value to study the VF effects on themeson mass as
well as the OREP. We will show that in this case the tensor
potential of the OREP will change in a hot medium as in Ref.
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and thep-meson mass. We find that the effective mass of the

nucleon almost decreases linearly with density at various

fixed temperatures. The effective mass and the screening -—- -—--
mass of thep meson all increase with temperature and den-

sity if the VF effect is neglected. But when one takes the VF

effect into account the results are the opposite. In Sec. Ill, we (a)

will calculate the vertex correction of theN N coupling in a

hot and dense medium. In Sec. IV, we will discuss piNN

interaction at finite temperature and density and compare our

result with that given by Brown and Rho. _eael

L

i
II. p-MESON MASS IN A HOT AND DENSE MEDIUM /

The interaction Lagrangian of theNN in a vector-tensor
coupling model which plays an important role in theN
interaction is

>

f, -
pNN gp‘vb’)/,uleb VM+ WUWT ¢(&MVV VV;JL)’
oY)

whereg, andf , are the vector and tensor coupling constants,
my is the nucleon mass) and \7" are, respectively, the

nucleon field ang-meson f|eldpw (112 [y, vl andr

th tor. A dina to th tsof B FIG. 1. Feynman diagram&) The self-energy correction of the
is the isospin operator. According to the arguments o rownp meson; the solid line denotes the nucleon and the dashed lines the
and Machleidt, the coupling constants are chosen

; ﬁ meson.(b) Self-energy diagram correction of nucledis) The
f,/9,=6.1 for a strong tensor couplif].

) ) ) ) three-line vertex correction.
We use thermofield dynami¢dFD) [21] to discuss this
problem. According to TFD, each field has double compo- 4k
nents and they lead to a<2 matrix propagator, but only the M4’ = —j f Tr[PMAn(k)fyAn(kJrq)] (6)
1-1 component has a contribution to the self-energy. The 1-1 (2m)* '
components of the nucleon apdneson arg¢2,3,21]

{c)

where
AY(K) = (k+my) +2miINE(K) S(k2—m32)
k2—mi+ie NI f,
2 F”=_9p7"—2—mN|ff" A |[7i s
D“”(k)_( o'+ k#"v)
. 2 N
p mp rv= gp 2 (7)

x[z%—zmnB(k)a(kz—mﬁ)}, (3)
ke—mg+ie It can easily be shown that when we substitute &.into

o Eq. (6), 11" can be separated into two parts; one refers to
respectively, whereNg(k) =[ 8(kg)ne(k) + 8(—kg) n(k)1, the naive zero temperature and density contribution, and the
6(ko) is the step functionmy, andm, are the masses of other depends on temperature and density, because the first
nucleon ancgp meson in a vacuum, respectively, and term of the right-hand side of E¢R) is independent of tem-
perature and density. The temperature and density part of
2" is

1 _ 1
nF(k)=m, nF(k):m’ (4)

e d*k T s(k?—m?) ’
1 (q T:P) f (2 )3 (k+q)2_m’%lNF( )
el w1 ® | Alkra?-mi]
M- — r(k+a)(, (8)
N

are the corresponding fermion, antifermion, and boson dis-
tribution functions. The self-energy of themeson under a
one-loop approximation readEig. 1(a)] where
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f
(k+ mN)[g,ﬂ’V_ 2_n’:Ni0'V5q(S (k+q+my)

T=Tr{|g “+—fp iothq
24 2my A

=4g%{k*(k+0)"+K"(k+a)* = g* k- (k+a)—m]} —4g,f (9" — q°g"")
2
_ fp V(2 _ 2N v 1% 2 v V| 2 ~N2(L2_ 2
m_N{qu (k“—k-gq+my)— 2k-q(k“q”+g*k") +29°k*k”+g*"[2(k-q)*—g=(k“—k-q—my) ]} 9

Because of the self-energy correction, the propagator of % _
the massive vectop meson in the hot and dense medium |2=f = [Ne(X)+ne(X)],
o En(X)
reads
= dx ¥ _
D,uV(q) PILLV P#V (10) |3/2: fo m[nF(x)—i_ nF(X)]!
=— — , N
V7T o e

p

= dx x* —
whereI1{ and I1% are the longitudinal and the transverse ly= fo géN(X)[”F(X)+ ne(X)], (16)
components of the-meson self-energy, respectively,

and Ey(x) = Vx2+ mZN. The effective massn; can be ob-
tained from Eqs(14)—(16) numerically.

However, there is another way to define fhmeson mass
(12) in a hot and dense medium. It is the so-called screening
mass. The screening mass is defined as the inverse Debye
screening lengtfi3,4,6]. The equations for defining the long-
itudinal screening masr:‘nf,L and the transverse screening
massm> of the p meson are

2 2

H”z—q—u u 1+ H"zE q—u u,—g,, I1*”
L azuvpv Tzaz,uv v p

u, is the four-velocity of the medium, and in the medium
rest frameuM=(1,6); P{¥ and P#” are projection tensors
defined as

S _rm?2 P(0.6—0)]12
PR—pY=pi0=0, pPil=si—qgi/g T M HHOATOT

mSr=[m2+11%(0,g—0)]*2 (17
PY"+PE=—gr"+q*q"/g% 12
oot gmrarard (12 We can prove

The effective mass of the meson is defined as the pole of 117(0,)=—I15404),
the propagatoD’” in the limit g—0 [4,6]. One can prove

that, in the limitq—0, .1 R .
| 15(04)= 5 {1150 - [117]408) (19
R R 1 R
[1¢(do,q—0)=T17(do,q—0) = — 3[11”](do,q—0). and
(13 4g? 12
m,SJL:[HL m5+ W_zplzﬂ ,
Then the effective mass of themeson is
2 1/2
*2 2 p * 2 S =|H 2+& 2| 19
mp “=m,+1I{(qo=m; ,q—0). (14 Mar=| Hr| M+ —amMilaez) | (19
From Egs.(8), (11), and(13), we obtain where
- g,(g,+2f) 2 9,171t
M{(do.a—0T.p) HL:{ - Pl g
2g§ f2 -1
= —2(2l,+m?l ) _ 9,(9,141,) P l2+14
3 7 (2l mylg H—{l—— — L 2l at =t
T T 4772 3/2 471_2 3/2 m’2\‘
+ 9 | +g”fp fp 1 l.]102 (15) 20
3m? 32 a2 32 340 mrﬁ 4| o The numerical results of the effective mam§ and screen-

ing massesn, , m>; vs T and p are shown in Figs. @),
where 2(b) and Figs. 8a), 3(b) by dashed lines, respectively, where
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FIG. 2. (a) The temperature dependence of the effective mass of (e)
the p meson: the solid line with a vacuum fluctuation correction 1.0 VIC
and the dashed line withouth) Same aga), but for density. =z
8 o9}
we choose the parameters asmy=939 MeV, ~
m, =769 MeV, 95/477':1.2, andf,/g,=6.1. We see from xZ 08} BP
Figs. 2a), 2(b) and Figs. &), 3(b) thatm? , m?, , andm>; g
all increase with temperature and density, even though the 0.7¢
increments fomy , my, , andm>; are different. 0.6 . . .
Now let us examine the above calculations carefully. In ‘0.00 0.05 0.10 0.15 0.20
the above calculations, we choose the mass of the nucleon,
my, as its vacuum value, say, 939 MeV, and put it into P (fm™>)

A(k). It is only an approximation because in a hot and

dense medium, the effective mass of the nucleon will shift g 3. (a) Same as Fig. @), but for the screening mass of the
from its vacuum value. A complete calculation must take the, meson:L denotes the longitudinal part, afddenotes the trans-
temperature and density dependence of the nucleon effectiv@rse part(b) Same asa), but for density(c) mf/my vs density at

mass into account. T=0 for the VTC model and BP model.
To consider the contribution of a hot and dense medium

to the effective mass of the nucleon, we calculate the self- 2 o

3 : . g, I5 615
energy of the nucleon. The self-energy diagrams of the mi=my! 1+ 25| 31(m,) = — + —5——
nucleon throughp-meson exchange under a one-loop ap- Am om,  Amy—m,
proximation are shown in Fig.(f). It can easily be seen that

the contribution of tadpole diagrams frggameson exchange + i 9pfs (EZ +3lg— _6sz2|§)
to the nucleon self-energy is zero; then, according to the 4 4my\ mo 4my—mj
Feynman rules of TFD, the self-energy of the nucleon reads 1 12
P 2 2
d®k _ +—2—2—2[(2mN—3mp)I2—2led
2N=if il sA100T, D (- p) 4m* 4my 4m,
2m?
R _ 4 _ P
=C~ yop°A+y-PB. @ smptimy) —4m§—m§H' (22

Substituting Egs(2) and (3) into Eq. (21), after a straight-
forward calculation, we finally find where
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4
= dx % Ne(X) I#*(q) = — i d*k
I(m,)= o po'd (2m)?
o En(X)|2mg mp—2myEn(X)
ne(x) TF{F’Z‘( 7“|:fg+ mﬁ)F”[v"(ka;r QZ*); my 1}
*Z__ H * * _ H
2m§—m§+2mN5N(X) , (k my“+ie)[(K*+g*)°—m{“+ie]
(25
| = °°d 2 Ne(X) Hgv” involves divergent integrals. These divergences may be
E Jo X 2m§‘—m§—2mNgN(x) rendered finite by the renormalization procedure, and these
o finite contributions are called VF correctiof$6,17. The
Nne(x) effects of VF corrections can be calculated by the method of

dimensional regularization, and using the subtraction proce-

- 2 2 ’
—m2+
2my—mj, + 2mMyén(X) dure as if16]. We obtain

. - = dxx® I147(q) = (g*q"/9*— g*")11,,,(q), (26)
|d=f X XTNe(X) = ne(x) ], f ——=ng(X).
/ 2
0 0 X2+ r‘np 23 Whel'e
( ) q2X(1 X)
Hpv<q)=—zqzj dXX(l—X)m—z—

The effective nucleon mass changes with densities for fixed 77 0 9°x(1=x)
temperaturesT=0 MeV) are shown in Fig. @) by a solid f 2%(1—-X)
line denoted by VTC. From Fig.(8), we find that the effec- gp q2f —d
tive nucleon masmy, decreases with density. The reductions —q MR—a%x(1-X)

of my, are linear with density for fixed temperatures in low
density regions.

Obviously, the reduction afny due to the exchange of a
p meson in the VTC model is too small. The valuengf at mi2— g2x(1—x)
the saturation density isiy,=0.98my . In fact, the values of XIn '\;2— (27)
my, depend on the model and the approximation consider- My~ a"x(1=X)
ably. We have shown thaty, reduces to 0.6hy at the satu- The total self-energy of the meson reads
ration density for the QHD-Il moddH], 0.75my, for a chiral
o-w model[3], and 0.74ny, for the BP mode[19]. The main A" (q) =114 (q) +1157(q,T,p,my). (28
contributions of the reduction ofy come from the ex-
change of scalar mesons. The VTC model cannot lead to a
reasonable reduction ahy . To exhibit the effects of the
reduction ofmy, on thep-meson mass and OREP expilicitly,
hereafter we employ the BP model to study our problem
Since it is generally believed that the BP model can succes
fully describe the nuclear force, it includes not oplyw, o,

gp’

> 24m§q f dx{my*+a%x(1-x)]

We use the above procedure to calculate the effective mass
&nd the screening mass of themeson by substitutingny,

for my. Them{ is glven by the BP model from our previous
paper{19]. This my, is more reasonable than that of the Wa-
éecka model because it considers more intermediate mesons,
especially thep meson. Our results are shown in Figéa)2

7, ;, and é intermediate bosons, but alpdlN vector-tensor 2(b), 3(a), 3(b), and 3c) by the solid curves. We see from

1l * S S H
coupling, and adopting this model for further study would belN€Se€ figures thim , M., andm, decrease rapidly when
suitable. employing themy, of the BP model.

We study VF effects from the VTC model first. Substitut-

ing Eqg. (22) into Eq. (2), we find the propagator of the lll. EFFECTIVE COUPLING OF pNN

nucleon as
In a hot and dense medium, the coupling of thmeson
1 to the nucleon will be modified by the temperature- and
All(k):(y“kfﬁrm’,;) e density-dependent vertex corrections. The Feynman diagram
K*“—my“tie for the three-line vertex correction is shown in Figc)l

According to the Feynman rules of TFD, the contribution of

+27iNE(k) 8(k*2—m¥?) |. (24)  the three-line vertex correction is

; dk 110 7

Instead ofmy, and the first term K+ my)[ 1/(k?*—mZ+i€)] A IJ (2m)* FuA™p" k)

; ; *
on tDe right- harld2 S|de of Eq(2), we have m{ and X, A% (p—K)T,g“"DH(K), (29)
(v"K, +my)[1/(k* =—my, 2+i€)]in Eq. (24) wheremy, de-
pends on the temperature and density. Therefore, the zewith D*(k)= 1/(k?—m2+ie) — 2ming(k) 8(k?—m?). Sub-
temperature and density part of the self-energy ofgimee-  stituting the propagator of TFD into E€R9), using the same
son obtained from Eq6) becomes temperature and density procedure as Ref$1,3], we find that the temperature- and
dependent, which is density-dependent part df, is
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(k?=m?2)ng(k)

Ne(p'—K) 8l (p’ —k)2—m3)]

(30

Ne(p—Kk) o[ (p—k)2—md)],

2
% | aRits(e) -4 fe(e0)

T

g,f -
—5-2 f dIK|[f7(&,)+3 fa(£0]
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AT )= d*k T, 5
MNP (2m)3[(p'—k)2—m3][(p—k)2—mZ]
. d*k T,
(2m)° [(p—k)?—my][k?—m}]
. d*k T,
(2m)° [(p’ —k)*~mg[k?—m’]
[
where
Af(TrP)z
T)\=[gpyﬂ+ z—n':Nia'luak“ (P’ —k+my)
X g”%‘_Z_rrl;,\,iU"‘skﬁ T(p—K+my)

X

f
gpyM_Z_n[;,\,iUMBle Tj. (31

Substituting Eq.(31) into Eg. (30), after a straightforward
calculation, we can rewrite E¢30) as

f, P
Z—mN'Umq A¢(T,p) |7k,

(32

A)\(T!p) = [ gp'}/)\Ag(T,p) -

and the full vertex can be written as

I\(T,p)=T\+A\(T,p)

s Tn(Tp) 0500, (33

:gp(Tvp)’Y)\_

From Egs.(7), (32), and (33), we can define the effective
coupling constant gbNN vector and tensor couplings due to
the finite-temperature and -density vertex correction as

9,=0,(T,p)=9g,[1+Ay(T,p)],

f:Efp(T!p):fp[l+Af(T:p)]a (34)

where

% [ .
No(Tup)= 52 [ dRILt(E)+4 o8]

9,f5
2a?

fdllzl[f3<5p>+%f4<5k>]

B pae
_ﬁfd|k|[f3(5p)+§f4(gk)]v (359

f2 N )
~ 25 [ dRILt(E,) + e, @b

and &=VIK2+mg, &=VIK?+mZ, and the functions
f,—fg are given in the Appendix. The numerical results of
the coupling constants vs temperature or density for a fixed
densityp=0 or for a fixed temperatur€=0 are shown in
Fig. 4@ and Fig. 4b) where the solid lines refer tg} /g,

and the dashed lines g /f,, respectively. From Fig. (&)

and Fig. 4b), we find that the coupling constants decrease as
T or p increases.

1.2
1.0
08¢
061
047

02r

Ratio of coupling constants

0.0
0

1.2 .
®)

Ratio of coupling constants

02
0.0 . . .
0.0 0.1 0.2 0.3
ol (fm™%)

FIG. 4. (a) The ratio of coupling constants vs temperat(fieed
p=0); the solid line refers t@? /g, and the dashed line tJ/f, .
(b) Same aga), but vs density(fixed T=0).
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TABLE I. Symmetry energy(in MeV unit) for the Walecka  from Table | that when the-meson VTC is added to the
model and the Walecka model with a free and effecimmeson  Walecka model, the SE’s change considerably. Though the
vector-tensor coupling at different temperatures. SE’s obtained here are somewhat larger than those given in
Ref.[22], they are still near to the empirical values given by
T=0  T=10 T=20 other paper$18,23. However, if the free VTC is used in-

Models Mev MeV MeV stead of an effective one, the changes of SE’s are too large.
Walecka mode(WM) 4351 45.39 46.64  This is because medium effects suppress the effective cou-
WM with effective pNN VTC 57.23 5954 6173  Plings.

WM with free pNN VTC 79.90 84.05 89.15

IV. pNN INTERACTION POTENTIAL

We now discuss thaIN interaction through one-meson

Of course, instead afny, we can use its value in a hot exchange in a hot and dense medium by taking into account
medium,my;, in the above calculation to discuss VF effectsthe self-energy and vertex corrections. The OREP becomes
on the effective coupling. But it can be shown that comparedemperature and density dependent because of the depen-
to the vacuum polarization diagrams, the VF effects on thalence of the screening mass and the effective coupling con-
three-line vertex and then to the effective coupling are smallstants of thep meson on temperature and density, which are
and can be neglected. given in Secs. Il and lll. Following treatments similar to our

To see the importance of the temperature and density dgrevious works[1-4], the OREP at finite temperature and
pendences of the VTC effective coupling, we hereafter caldensity under the nonrelativistic approximation can be found
culate the changes of symmetry ene(@f) brought by the as
VTC effective coupling in the mean field approximation. For
simplicity, we first employ the Walecka modgl8] to cal- Vp(r)zvp;-l- 7, (36)
culate the SE and then repeat the calculation by adging
meson VTC. The results are listed in Table I. We can seavith

He .
VPZEmPL[gp

s2 52 32
+E Srgr? Tyt 1- il 2 Y(X1)— il 2 Zy(xq)L- S+
47 "7 9o 4m 16mg, 16m

msZ 1 Y m;S)L 2 ..
1+ Y(XL) l(XL)L S gpfp m_N Y(XL)_ZZ]_(XL)LS

ms 2
-~ ) Y(x7)(0q- 0p) — Z(XT)SIZ}

s \2 *2 s \2
wpn| 1Mot - -2 1 P m,r o .
+opf, 3\ my Y(XT)(Ul'UZ)_Zl(XT)L'S_EZ(XT)SR t 6 y Y(XT)(Ul'UZ)_EZ(XT)SH ,
(37)
|
where,x =m> r, xp=mp;r, and A2—m? N
AZ—(p'—p)?
s\ 2
Y(x;) =€ %ilx;, Zl(xi):(%) Sy, to the meson-nucleon vertex because of(theark substruc-
my Xi . ture of the nucleon and mesofik3,24. Considering the ef-
fect of the form factor of thep-meson-nucleon vertex and
takingn,=1 [18,24, we obtain the OREP as
ms_ 2
=~
Z(Xl) (mN 1+ |+ : Y(X) . Ag_m:iz
V,(r)=V,(m5 ,r)—mVp(Al,f)
s s s s %_m*.z
3(0’1'r)(0'2'r) > > _—pl 1=
= = 010, (38) AZ=A2 Vp(Ag,r) (i=L,T), (39

where A;=A,+e and A,=A,—€ with e/A,<1, A, the
with i=L,T. In the meson-nucleon interaction theory, it is cutoff mass of thegNN vertex. As in Ref[24], we choose
necessary to apply a form factor A=1.2 GeV ande=10 MeV.
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FIG. 5. (a) The central part of onp-meson exchange potential
for thel =1, S=0 state, where the solid line refersTe=0, p=0,
the dot-dashed line t@ =200 MeV, p=0, and the dashed line to
T=0, p=0.1 fm 3. (b) Same aga), but for the tensor part =0,
S=1). The dotted line corresponds 16=0, p=0.1 fm 3 without a
VF correction.(c) Same agb), but for the spin-orbit part.

The OREP expressed by Ed86)—(39) can be separated
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into different components:
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(40)

refers to T=0, p=0 and the dot-dashed line to
T=200 MeV, p=0 as well as the dashed line {6=0,
p=0.1 fm 3. We find that the temperature and density play
the same role which makes the repulsive force of the OREP
become stronger.

The results for the tensor pak(r) (I1=0, S=1) at
different temperatures and densities are shown in Rig), 5
where the solid line refers td =0, p=0, the dot-dashed
line to T=200 MeV, p=0, and the dashed line t6=0,
p=0.1fm 3 For both dot-dashed and dashed curves,
we have taken the VF into account. It is of interest to com-
pare our results with those obtained earlier by Brown and
Rho [20]. Based on a scaling conjecture of the effective
masses of the nucleon apdneson in a mediurf25] and the
correction of the form factor of the OREP, they found an
enhancement of the tensor potential of the OREP in a me-
dium. We restudy this problem by a detailed calculation of
vacuum polarization diagrams and vertex correction dia-
grams ofp mesons and nucleons under a one-loop approxi-
mation, and obtain the density and the temperature depen-
dences of the tensor potential of the OREP. We see from Fig.
5(b) that our results are in qualitative agreement with that of
Brown and Rho. An enhancement @f(r) due to density
and/or temperature is found. In order to explain our results
clearly, we show &/(r) vsr curve forT=0, p=0.1 fm™3
but without a VF correction by a dotted line in Fig(b®
simultaneously. We see that the dotted curve \Gf(r)
becomes lower than the solid line, i.e., the vacuum tensor
potential. Instead of enhancement, a declination has been
found. The reason for the declination of the dotted line
comes from the increment of themeson mass. As shown
in Figs. 2a) and Zb), when we neglect the VF, themeson
mass will increase with temperature and density, and
it makes V¢(r) decrease. But if we consider the VF, an
opposite result for the-meson mass and thew:(r) will
happen.

Finally, we show the temperature and density dependence
of the spin-orbit nuclear potential through openeson ex-
changegl =1, S=0) in Fig. 5(c) where the solid line refers to
T=0, p=0, the dot-dashed line t6=200 MeV, p=0, and
the dashed line td=0, p=0.1 fm 3. For comparison, we
show theV q(r) curve without a VF correction fol =0,
p=0fm~2 by dotted line in Fig. &) simultaneously. Be-
cause of same reason, we find the same behavior as that of
Fig. 5b).

In summary, employing the vector-tenseNN coupling
model, Bonn potential model and thermofield dynamics, we
have calculated the effective mass and the screening mass of
the p meson as well as the effective mass of the nucleon
under a one-loop approximation, and studied VF effects. Of
course the vacuum fluctuation effect can also come from
other baryon-antibaryon vacuum polarization. But since we
focus our attention only on the nuclei, in particular, the
nuclear force and, usually, its dominant contribution comes

where V(r), V+(r), and V g(r) are, respectively, the from the exchange of mesons between nucleons; here we
central, tensor, and spin-orbit nuclear potential through oneeonsider the nucleon-antinucleon vacuum polarization only.

p-meson exchange. The results for the central peaytr)
(isospin =1, spin S=0 state at different temperatures interaction. We have shown that the contributions of the VF

and densities are shown in Fig(a where the solid line

The baryon-antibaryon VF may be important in the baryon

to the mass of the meson and to the OREP are very impor-
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tant. Any calculations without a VF correction for the meson ACKNOWLEDGMENTS

mass in a hot medium are incomplete. One of the author$Y.J.Z) would like to thank Dr. W.
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temperature- and density-dependent potential, for example;;jy NNSE of China.

the extended Bonn potential, to discuss the thermodynamical
properties of symmetric or asymmetric nuclear matter, for

example, its phase transition, Coulomb instability, equation

of state, and the critical point, as was previously done in Ref. The functions used in the integrals for the vertices correc-
[26]. Work on this topic is in progress. tions are as follows:

APPENDIX
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