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Singlet-octet mixing of scalar mesons in a generalized NambiJona-Lasinio model
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We study the nonstrange scalar-isoscalar states of a generalized Nambu—Jona-Lasinio model that includes
the 't Hooft interaction and a model of confinement. We also include coupling afdretates to the two-pion
continuum in our analysis(Our study is limited to energies|?><1.8 Ge\?, since to go beyondy?
=2.0 GeV* we need to change our method of calculatigkfter introducing octet-singlet mixing we find two
statesg; ando,, at energies of 1.00 and 1.28 GeV, respectively. The first of these is predominantiBa SU
singlet, while the second state is rather strongly mixed. Of particular interest for nuclear physics is the behavior
of the quark-quarkl matrix for small spacelike values of. Because of a strong? dependence of th&
matrix at the opening of the two-pion continuum qft=4mi, the effectivemass that parametrizes scalar-
isoscalar exchange in the matrix is about 520 MeV. Thus, in a model of the nucleon-nucleon interaction,
whose ingredients are T matrix for the interaction of off-mass-shell quarks and valence-quark nucleon form
factors, we can provide a basis for the use of a low-ma#sctive o meson in nuclear physics.
[S0556-28187)02112-2

PACS numbdrs): 24.85+p, 12.39-x, 13.75.Cs, 21.30.Fe

I. INTRODUCTION spectroscopy in the region of 1 GeV, where {iteysical o
meson is to be found.
In a recent work we studied the properties of theneson In a previous work dealing with the octet of pseudoscalar

in a generalized Nambu—Jona-LasiniNJL) model with ~mesons and the;’ we studied,’- »® mixing which gives
SU(2)-flavor symmetry{1]. Our generalized model contains rise to the physical stateg and »’ [13]. When we consider
a model of confinement which is used in the calculation ofscalar mesons, the analogous problem is the mixingbf
loop integrals. The confinement model serves to eliminatésingled with o® (octe} states to yield the physical states
unphysical cuts that would arise if the quark and antiquarkvhich we denote as,,0,, ... . Here,o; has the lowest
were to both go on their positive mass shells That feature  energy and is predominantly the(1P). It is found that the
allows us to use the model at energies larger than those weext stateo, is rather strongly mixed. Note that in the case
could consider in the absence of a confinement model. Thef 7% 78 mixing, it is the ' that is predominantly the sin-
introduction of a confinement model also allows us to makeglet state. These features are characteristic of the 't Hooft
use of dispersion relations in which the discontinuities arenteraction[14].
across cuts that arise whéadronsgo on mass shelll]. The use of the S(B3)-flavor NJL model and the 't Hooft
In this work we wish to extend our considerations to ainteraction to study the scalar octet and the scalar singlet has
NJL model with SUW3) flavor symmetry and with the been described in Rdfl4], where an extensive discussion of
't Hooft interaction added. Important theoretical develop-the experimental data for scalar meson spectroscopy is pre-
ments and various applications of that model may be foundented. In Ref[14], the states considered have energies
in Refs.[3—7], while useful reviews appear in Ref8-10.  equal to or greater than 1 GeV, so that one may question the
Our motivation in studying the S@3)-flavor version of the use of the NJL modelwithout confinementto describe the
NJL model has its origin in some of our earlier work using scalar mesons. This problem is avoided in R&#], since
the SU2) version of that mode]11]. There we found that the energies of the scalar states are calculated using a
the quark-quarkl matrix that describes scalar-isoscalar ex-bosonization procedure. That procedure is essentially a low-
change could be well approximated by the exchange of aenergy(or low-momentur expansion. Therefore, in such an
effectives meson of mass of about 500 MeV gf was small ~ expansion one stays below the unitarity cuts whose thresh-
and spacelike. That result allowed us to understand somelds are given in terms of the constituent quark masses.
aspects of the one-boson-exchange model of the nucleofhese thresholds are af=(2m,)?, g?=(m,+my)?, and
nucleon interactiof12] in the case of scalar-isoscalar ex- g%=(2mg)? in a model without confinement. One advantage
change.(Since we had used constituent quark masses off the methods we use in our work is that we can obtain both
about 260 MeV in our earlier work, our result might not be the energy and the width of the various mesonic states, since
all that surprising. It is of interest to see if our result for the we are able to implement our program at fairly large values
mass of theeffectives is maintained if we use larger con- of g% (with q>>0).
stituent quark masses and the (S)Jflavor version of the A useful approach to the problem of meson mixing is to
NJL model. Thus, we are here more interested in the behastudy a quark-quarR matrix. When calculating th& ma-
ior of the quark-quarkT matrix for smallg? than in the  trix, one sums various-channel exchange diagrams. If the
matrix is real, a single mixing angle appears in the formalism
when we use an orthogonal transformation to bring The
*Electronic address: CASBC@CUNYVM.CUNY.EDU matrix to diagonal form(A more elaborate parametrization
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is needed wherl is complex) The relevant equations de-

scribing singlet-octet mixing appear in the literatfiB=-7]. %+k
In this work we exhibit these equations modified to include a _ <+ .
model of confinement and coupling to the two-pion con- 4 c B R
tinuum. -g+k
The organization of our work is as follows. In Sec. Il we 2 (@)
describe some characteristics of our generalized NJL model :
and describe how we implement our model of confinement. = <+ <+ < e
In Sec. Il we discuss the calculation of vacuum polarization b
diagrams that involve a quark and an antiquark. In Sec. IV ark (b)
we describe the formalism used in the calculatiors8fo?® z
mixing. In Sec. V we describe the important role played by _ <+ e
the coupling ofqq states to the two-pion continuum. Nu- g B =
merical results are presented in Sec. VI. In Sec. VII we de- -g+k
scribe the dynamical origin of a low-massffective o me- z ()
son for nuclear physics studies. The exchange of this _ <+ <+ < ..
effectivemeson is shown to provide a good representation of ‘ ‘
the quark-quarkT matrix, if the exchanged momentum is (d)
spacelike ¢2<0). Finally, Sec. VIII contains some further
discussion and some conclusions. __FIG. 1. (a) The diagram represents the equation for the vertex

I's(g,k), which serves to represent a sum of a series of confining
interactions. These interactions are shown here as dashed(bihes.
Il. A GENERALIZED NAMBU —-JONA-LASINIO MODEL A perturbative expansion foFg(q,k) is shown.(c) The vertex
WITH A MODEL OF CONFINEMENT I'*7(qg,k) is obtained in our analysis when the quark is on its

. . . . .. positive mass shellHere the cross denotes a quark on its positive
In this section we introduce various vacuum polarization,,5¢ shell.(d) A perturbative expansion fdf* ~(q,k) is shown.

integrals that are an essential fe.ature of .the NJL mf8lel  The dashed line introduces a facteriVE(k—k') ¥(1)7,(2)

10]. We will then show how the introduction of a model of \when applying the Feynman rules in the evaluation of the diagrams.
confinement removes unphysicgy cuts from the various

loop integrals studied. In Sec. V we will also discuss the

coupling of theqq states to the two-pion continuurfit is  times associated with points andy in Eq. (2.2). We use
this feature that gives rise to the large widths obtained for the/C(r) = kr exp(—ur), wherex is the “string tension” andu
scalar states in some cages. is a small parameter used to soften the singularities of the

In the past, we have studied the @Wflavor version of  Fourier transform o¥/°(r). The Fourier transform o§°(r)
the NJL model. Here we consider the @Yflavor version of s then
the model, supplemented by the 't Hooft interaction. The
Lagrangian we consider is .. 1 4p?
) VE(k—k')=—8m«k — - — .
i L(k—k')zﬂﬂz [(k=Kk")?+p?P?
alys 5 9 2.3

8
£=Wiﬂ—m0)q+65_20

2
+

_A
(CIEQ

We have usedu=0.020 GeV, and for the Lorentz-vector

Gp _ - .
+—{defq(1+ v5)q]+defq(1—v5)q]} + Leonr, confinement model of Eq2.2), we usex=0.05 Ge\A.
2 {defa(l+7s)ql fa vs)al} conf Another confinement model is thé-A model that we

2.1 have used in some of our earlier wdrks]. In that model

where the\' (i=1,...,8) are theGell-Mann matrices in gcom(x):j d*y[a(x) y*q(x)VE(x—y)q(y) Y,4(Y)
flavor space andl®= (%), with I being the unit matrix. In
Eq. (2.1), m® denotes a quark mass matrix with diagonal

—a i Cixv—v)al
elementsm®,m3,m2. Here, we taken)=mJ=5.5 MeV and 4775000V X=Y)AY) 7, 754(Y) ]
mg:132 MeV, which are the values used in RES]. Fur- (2.4)
ther,

In order to describe how confinement is introduced in the

Econf:f d*yq(x) y*a(x)VE(x—y)a(y) 7,a(y)- model, we refer to Fig. 1. There, the filled triangular region

22 denotes a vertex operat(zr Ehat is defined in terms of the con-

@. finement interactionvVS(k-k’), shown as a dashed line.
This represents a Lorentz-vector confinement mptlelFor  [Note that the verteX's(q,k) satisfies an inhomogeneous
calculations made in Minkowski momentum space, we neequation] Since we do not study strange mesons in this
glect any dependence &f€ on energy transfer. That is, work, we may limit ourselves to the case where the flavor of
VE(x—y) contains aé function that serves to equate the the quark and antiquark at the vertex is the same. \Fhe
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model leads to a particularly simple resulig(q,k) G ><

=1IT"4(q,k), wherel denotes the unit matrix in flavor space S

and in the space of Dirac matrices, and whEggq,k) is a (@)

scalar function15]. This scalar function has a very impor- i) =

tant property. It is equal to zero when the quark and the s (b)

antiquark both go on their positive mass shells. It is that Ao

feature that eliminates unphysicaf cuts from the various -s(@7) = + (Q

functions that arise upon performing loop integrals. :
The situation in the case of Lorentz-vector confinement is + I
more complicated sincEg(q,k) then contains several terms
having different Dirac matrix structure. In that case it is use- - (>
ful to introduce the projection operators

iKs(q?) = m

- k+m
A=, 29 @
o iKs(@®) = ()::@
with k“=[E(K),K] and )
. Kk+m FIG. 2. (@) The zero-range two-quark interaction of the NJL
AT (k)= m (2.0)  model is shown(b) The quark-loop integral in the scalar-isoscalar

channel is shown(c) The quark-loop integral that includes a ladder
_ N N N of confining interactiongdashed linesis shown. The filled trian-
with k*=[—E(k),k]. HereE(k)=[k?+m?]"2 In this case, gular region denotes the vertex function that serves to sum the
we may define function§ =" (q,k), I'"7(q,k), etc.: ladder of confining interactiongd) The functionK s(q?) describes

the effects of coupling to the two-pion continuufBee Sec. M.(e)

The functionK ¢(g?) includes two confinement vertex functions and

A(“(IZ)F_S(q,k)A(‘)(—IZ)=F+‘(q,k)A<+)(IZ)A<‘)(—IZ), has a cut forg?>4m?.

(2.7)
AC(=RTs(q AR =T (g, k) AT (— kAT (K), ~iJ(g)=(-1)n Trf L4kiS( 12+ K)iS(—q/2+k)

(3.9

AP RT(q)A DK =T (g, kAT (K), (2.9
whereS(p)=[p—m+ie] ! is the quark propagator ard
and is the constituent quark mass. The introduction of confine-
ment proceeds via the definition

A=K, AT(=K) =T~ (q,k A (= K).
(2-19 R d4k —

—iJ(q2)=nCTrf (ZT)“ S(q/2+k)T's(q,k)S(—qg/2+k),

In Ref.[13] we described the calculation of the various func- (3.2

tions that appear in Eq§2.7)—(2.10. We also demonstrated

how these functions are used in the calculation of loop inte-

grals. In the next section we discuss their use in the calcuIaA/hereFS(q k) is represented by the filled triangular area in

tion of gqq vacuum-polarization diagrams that are needed irFig. 2(c). In the calculation oﬂ(qz) it is useful to introduce

our work. the representation

Ill. VACUUM-POLARIZATION INTEGRALS

Here we consider the calculation of the diagrams of Fig. m A(K) AC(=K)
2(c). A more comprehensive discussion is given in R&8], S(k)=— - - , (3.3
so that our discussion here is limited to a short review. The E(k) —E(k)+ie K°+E(k)—ie

basic integral for a quark and antiquark of a single flavor is
obtained from the evaluation of the diagram shown in Fig. .
2(b). We have and work in the frame wherg=0. Thus,
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d* m AT, k) AT (—K)

—iJ(g?)=—n,Tr - = =
f(zw)“ E(k) [ [q%2+K°—E(K)+ie][ —q%2+ Ko+ E(K) —i€]

() — VT ()
N A Ek)FS(q,k)A (k) _ , 3.4)
[q%2+ KO+ E(k)—i€][—q%2+K°—E(k)+ie]

evaluating the integral in the lower half of the complék  sojutions of the resultinghomogeneoysequation are just
plane. There are two contributions in which either the quarkne vertex functions of the bound states in the confining po-

goes on itspositivemass shell or the fﬁtiquark goes on itS tential. Since such states are preséitg, k) will have poles
negativemass shel[16]. Thus, whenl™~(q,k) appears in t g°>=M? where theM; are the mass parameters for the

the fm_atll rl?ililt’ I(t) hl?s tfhe ?;ar]lf ont?ts p.os;trllvefmass sf;]ell angound states in the confining field. Therefo}eqz) will also
we write (a”,|k[) for this function in the frame where 4 e poles at?=M2,

g=0. On the other hand?*(q‘{“?l) has the antiquark on
its negativemass shell in the final result. When we neg-
lected energy transfer in the confining interaction, we

found that T+~ (g% |K|])=T""(q%|k|]) and T'**(q° K|
=T~ (g% |K|) for the case of vector confinemeft]. In

IV. COUPLED CHANNEL DYNAMICS
FOR o o® MIXING

Here we study the quark-quark matrix that describes
b scalar-isoscalar exchange. We generalize the equations pre-
Figs. 3 and 4 we show values obtained For ~(q° |k|) and  sented in Refg:3—7] to include confinement and coupling to
F++(q°,|I2|) in Ref.[1], where we used a smaller constituent the two-pion continuum. It is useful to define effective cou-
guark mass for the up and down quarks than that used herpling constants
(Here we usen,=my=364 MeV andmg=522 MeV.)

In the evaluation of the various functiod$q?), we re-

quire a cutoff for the integral ovek. We choosdﬂsAs,
whereA ; is chosen such that the values for the condensates
are the same as those presented in [f.There, a Euclid- s 1

ean momentum space cutoff 4£=0.90 GeV was used. We G88:§ (Gs—GpCsg), 4.2
found that we should put ;=0.622 GeV on the basis of this

procedure.

L , s 1
It is important to understand that there are solutions of Ggg=~ 5 GoCos; 4.3

1
Ggozz (Gs—GpCoo), 4.7)

where

0.0 0.5 .

(g k)

-0.5 - B

1 | 1 | | ] ! ] 1 00
0.0 0.4 0.8 1.2 16 20 I /
Ikl (GeV) t 1 | ! | 1 | 1 1 I E
0.0 04 0.8 12 16 2.0
FIG. 3. Values ofl“+‘(q°,|I2|) are shown. Starting from the |E| (GeV)

uppermost curve and moving downward, the valuegbfare 0,

these curves,F*’(q°,|l20n|):O. Here E§n= (00/2)%— mg, mg uppermost curve and moving downward, the valueg’adre 0, 0.4,
=0.260 GeV,+=0.030 GeV, andc=0.05 Ge\%. (This figure ap- and 0.6 GeV. Herem,=0.260 GeV, u=0.030 GeV, and«
pears as Fig. 2 of Ref1].) =0.05 Ge\’. (This figure appears as Fig. 3 of R¢t].)
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FIG. 5. (8) The equation for the quark-antiquailk matrix is
shown for the cas&«(g?)=0. The circle is the effective interac-
tion. [See Egs.(4.1)—(4.3) and (c) below] The filled triangular
region denotes the vertex for the confining interactidm.An ex-
pansion of thel matrix is given in terms of the effective interaction
(circle) and the vacuum-polarization integralgy?). (c) The effec-
tive interaction(open circlg is composed of the originaltwo-
quark NJL interaction and the three-quark 't Hooft interaction.

2 - -
Coo=— 3 (2{uu)+{ss)),

i
Ca=3 (4(UU)—(59)),
and

7
Cos= 3 ((uu)—(ss)).

[See Fig. 5 In this work we do not introduce any new pa-
rameters. The parameter values are taken from [Réfand,
except forGg, they are the same as those given in RR&f.

4.9

(4.5

(4.6

We have Gg=21.53 GeV?, Gp=-239.1GeV?>, (uu)
=(dd)=—(0.248 GeV§{=—0.01525 GeV, and (ss)=

—(0.258 Ge\)®*=—0.01717 GeV. Recall that we also use
mo=mJ=5.5MeV, ml=132MeV, m,=my=364 MeV,

andmg=522 MeV.

and

Jool@?) 308<q2)> w1
Jos(0?)  Jgd@?)) .

In the next section we will introduce a set of functions
that describe the coupling of thegq states to the two-pion
continuum. Making use of the functions defined there, we
introduce the matrix

3(q2)=(

. Koo(d?) F<08<q2)>
K(g?)=| ~ R , 4.1
(@ (Koa(qz) Kea(9%) (412
as well as the matrix
A=) +K(g?). (4.13

Note thatK(g?)=ReK(q?)+i ImK(g?), with ImK(g?) equal
to zero wherg?<4m?.

The T matrix, exclusive of Dirac matrices and flavor ma-
trices, then satisfies the matrix equation

T(q)=-G+GIg)T(g?), (4.14
or
T(q?)=-[1-GJ(g)] 'G. (4.19
We also introduce the matrix
D(g?)=1-GJ(q?) 4.16
_ D11(g%) Dixq?)
T1Dx(g?) DaAg?d)) 4.17
with
D11(02)=1-[GJo 02) + Giplos(@)],  (4.18
D102 = —[G5los(02) + Gipdes(@D)],  (4.19

D21(q%) =~ [Gdod 02 + Gidos(@D],  (4.20

It is useful to introduce a set of functions defined in terms

of the functions defined previously,
3 2 2 = 217 (q2Y+ 1 (a2
Joo(@%) = 3 [3u(a%) +3a4(a) +35(a%) ]
and

. 1 - . .
Jeg(0%) = 3 [3u(0?) +34(0%) +43s(0?)],

3 2 V2 - 2\ 1 1 2 T (A2
Jog(q )=§[Ju(q )+34(9%) —235(99) ]
We then define the matrices

(6% G
65 G5’

4.7

4.9

4.9

(4.10

and
D2A0%) = 1-[Giedos(0%) + Gigles( D). (4.20
With these definitions, we may write

As(g?) Bs(qz)}
Bs(d®) Cs(g?))’

T(g%)= (4.22

with

1 I
AS(0%) =~ Gorp ey [Coo (GaGao— GeGoeJea %),
(4.23

1 I
BS(0°) =~ Gerb(q?) [Cor (GoeGos CacSan Jos(4”)],
(4.249
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and
[Gas— (G3Gas— GosCor) oo 02) -
(4.25

_Note that in the absence of octet-singlet coupl[niﬁ8
=Jog(q?) =0], we haveBg(g?) =0,

) 1
Cs(q ):_W

gt S0 .26
S 1- G5Jod @) '
and
GS
Cs(g?) =~ % (4.27)

1-Giles( @)

3331

2y _ 2
+HAs(q )2Cs(Q)

2 1/2
+ B%(qz)] :
(4.35
and

As(9?)+Cs(g?
T ()= s,(q)2 s(9%)

) (As<q2>—cs<q2>
2

2 1/2
+ Bé(qz)) ,

(4.39

as may be seen by calculating the eigenvalues of the matrix

T(g?) in the caseAg(g?), Bs(g?), andC4(g?) are complex
functions.

We can also see that the matfixq?) takes on a diagonal
form when

If we use Eq.(4.26), we see that the masses of the scalar

singlet mesons are given by the solution of the equation

(GS) 1~ Relgg(M20) =0, (4.29

2B4(q?)
tan2(q) = ¢ ?>S—15<q7)

s(q (4.37

in the case thaq2<4mfr, or if |mF<S(q2)=o. Equation(4.37),

Similarly, we have for the mass of the scalar octet mesonsyqrefore provides the value of the mixing anglg?) for

the solution of the equation

(Gge) '~ Relgg(mZs)=0. (4.29
As we will see, Eqs(4.28 and (4.29 will have more than
one solution.

We note that forg?<4m?, the T matrix is real. If g2
<4me, or if we neglect Inkg(g?), we can bringT to a di-
agonal form with a real matrix

(cosﬂ —sine)
M(6)= sind  cosd )’ (4.30
where 6 is a function ofg?.
Thus,
Taiad 4 =M (O T(GHM 1(9), (4.3)
T, (9% 0
_[ 0 m«ﬁ}’ 432
where

T,(9%) =Ag(q%) cos 06— 2Bs(g%)sindcosh+ Co(q?)sin’ e,
(4.33

and

T,(g%) =Ag(q?)sir? 6+ 2B(g?)sinfcosh+ C<(q?) coS 6.
(4.34

Alternate expressions fof ,(g%) and T,.(g?) that are
generally valid are

As(g?)+Cg(g?
T.(q%)= s(q)2 s(@%)

the case in whictAg(g?), Bs(g?), andCg(qg?) are real func-
tions. We find6(g%)=—12.6 at g>=0. (At low energies
there is only small singlet-octet mixing.

It is useful to define the functiond,(q?) andd,. (q?),
such that

d, (g
T o7 (439
and
do” 2)
T, (9%)= ﬁ(qqz)- (4.39

If we neglect Inf(s(qz), or if q2<4mi, we may find the
mass of the resonances that appeaf j{g®) or T,.(q?)
from the equation

deD(g?)=0. (4.40

In the general case, we can define meson masses by the

condition

Rd deD(qg?)]=0. (4.41

Equation(4.41) may be used in the presence of octet-singlet

mixing and in the case that I1A<rg(q2) is included in the analy-
sis. Note that d&(g?) will have a zero at each bound state or
resonance. However, in some cadgég?), ord,.(q?), may

have a corresponding zero such that the resonance is absent

from T,(g?) or T,.(q?).

V. COUPLING TO THE TWO-PION CONTINUUM

We presented a detailed discussion of the calculation of

K<(g?) when using the NJL model with §)-flavor sym-
metry in Ref.[1]. In Fig. 6@ we exhibit the diagram that
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(@ (o) (c) % 0.02 | .
Q
g+k K —~
2 %+K X (\\'g
o 000
q k-K )
nd
g Eh % -«
0.02 | -
e
(d) ( ) 1 1 | | ]
FIG. 6. (a) The diagram represents the functikg(q?), which 0 ) ! ) 2
has cuts starting aj?=4m? and atq?=4m?. The wavy lines de- q° (GeV?)
note pions.(b) The inclusion of the confining vertex defines the A
function K5(g?), which has only one cut starting q€=4mi. (c FIG. 8. The function Réq?) is shown. The calculation was

The calculation of m:(s(qZ) may be made by placing the pions on made usiAng a once-subtracted dispersion relation and a calculated
mass shell, as denoted by a cross on the wavy lideA form value of K(0), asdescribed in Ref[1]. The values of IFKq?)
factor needed in the calculation of the diagrantdnis shown.(See  shown in Fig. 7 were used in the dispersion relati@ee Fig. 11 of
Ref.[1].) (¢) A form factor needed in the calculation &f(0) is  Ref.[1])

shown.(See Ref[1].)

- 2 .
definesK 5(g?) for that theory in the absence of confinement. Koo(q®) = 3 Ks(a?), 5.
[Note that for the calculation df 5(g?), the flavor matrix at
the vertices is the unit matrikin Fig. 6(b) we add the con- - 1 -
firming vertex, so that the only discontinuity féts(q?) is Kgs(g%) = 3 Ks(g?), (5.2
that across the two-pion cut. We can calculate the disconti-
nuity across the cut by placing the pions on mass shell, agnd
denoted by a cross on the wavy lines in Fic)6In Fig. 6(d)
we show the form factor that has to be calculated when con- - ) \/E -,
structing ImK<(cP). Kog(a%) = 7~ Ks(q%). (5.3
In Ref.[1] we saw that we could write a once-subtracted _ . R
dispersion relation to obtain Re(q?) from the knowledge of ~ Therefore, the matrid(q?) =J(q?) +K(q?), introduced ear-
K<(0) and InK(c?). [The calculation ofk(0) required a lier, has the elements
separate calculation in which we evaluated the form factor of 5
Fig. 6(e) for the caseg”=0.] Our results for InK40) and Jo(92) = 3 [J,(9%) +34(a%) +I(a?) +Ks(g?) ],
ReK(g?) are shown in Figs. 7 and [@].

We find that we can calculate the coupling of theg 5.4
states to the two-pion continuum in the model with(SlJ _ 1 . R R R
flavor symmetry by making use of our earlier calculation. Jgs(?) =5 [Ju(9?) + J4(g?) +4I4(g?) +Kg(g?)],
The only modification is the different flavor factors that ap- 3 5.5
pear at the vertices. The appropriate definition is then '
and

[34(92) +J4(q?) — 234(q?) +Ks(g?)].
(5.6)

Jos(0D) =

@[

We have only considered the two-pion cut in the con-
struction of InKgg?). Other cuts appear in the case of
SU(3)-flavor symmetry. However, such cuts appear at higher
energy and involve mesons having masses that are signifi-
o ‘ cantly larger than the mass of the pion. Their contribution to

0 1.0 2.0 ImK4(Q?) is expected to be small.
q2(GeVv?) It can be seen tha€s(q?) only affects singlet states in the
A absence of singlet-octet coupling. In this model, octet states

FIG. 7. The function Ir'Kg(0?) is shown. This figure appears as Wwill take on a width due to their coupling to the singlet

Fig. 10 of Ref.[1]. states. These comments will be bourne out when we inspect
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FIG. 9. The figure shows ReetD(q?)] for the case where both
ReK{(q?) and InKg(g?) are included, as is singlet-octet coupling.
The zeros of this function correspond to the statesando,. The
first of these states is predominanéy’(1P). (The vertical line
shows the position of the singularity gt=1.48 GeVf that is due to
the presence of a bound state in the confining potential.

the form of theT matrix in the representation in which it is
diagonal. For example, Re(q?) exhibits strong cusplike be-
havior nearq2=4mf,. However, that behavior is only re-
flected in the component of the diagonalizEdmatrix that

we denote ad ,(g?). That component is predominantly of

SU(3)-singlet character since the mixing angle is small in the

vicinity of g?>=0.

VI. NUMERICAL RESULTS

When we introduce Iig(q?) into our analysis, the func-
tions Ag(q?), Bs(g?), and Cg(g?) become complex. Also,
when theT matrix is brought to diagonal fornT, (g?) and
T,(9%) will be complex functions. We begin our analysis
by presenting values of RéeD(g?)] in Fig. 9. The singlet-
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FIG. 11. The figure shows Rg(¢?) (dashed linpand R ,.(?)
(solid line). The cusp behavior fog?=4m? is only prominent in
ReT (¢?). Resonances appear at 1.00 and 1.28 GeV, wheFe(6%
rises through zero from negative valugido resonance appears for
ReT,.(¢f) in this energy rangéNote that there is no singularity at
g?=1.48 GeV in the T matrix.

analysis of Ref[14] puts the lowest of these states gt
=2.53 GeVf, which is outside the range gf we are able to
investigate in our work.In Fig. 9 we see cusp behavior at
g?=4mZ. [The singularity seen in Fig. 9 af=1.48 GeV

is due to a singularity 08,(q%). That singularity does not
appear in thel matrix elements, as we will sgerigure 10
shows the values of IfdeD(g?)].

In Fig. 11 we show both Re(q?) (dashed ling and
ReT,.(¢?) (solid line). These curves have the following fea-
tures. There are two zeros af,(q?) for which the curve
rises from negative values to positive values. These zeros
correspond to resonances which we denoterasand o, .
The values ofT (%) exhibit strong cusp behavior af=
=4me. Note also thatT,.(g?) has no resonances in the
range shown, since the states that we mayeathndo, are
now are at higher energies.

In Fig. 12 we show Irfi () (dashed lingand InT . (q?)
(solid line). Again, strong cusp behavior is only seen in

octet coupling moves two of the four states that originallylmT,(¢?). The states; at q>=1.00 GeVf has a large width

appeared in the region’<1.8 GeV to higher energyThe
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— T
08 10 1.2

q® (GeV?)

0.0 1.8

FIG. 10. The figure shows IfdetD(g?)].

and the width is quite asymmetric due to its proximity to the
region of strong cusp behavior. The statehas a relatively
narrow width and thé matrix could be well approximated
by the form

o

N
o
—

B
o
—T T

0.4

1.2 1.6

(2]
o

Im To (g2) and Im Ty (%) (GeV2)

08
9*(GeV?)

FIG. 12. The figure shows IMy(q?) (dashed lingand IniT . (¢?)
(solid line).
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2

g 04 —_—
T,(9%)= P=mEimT (6.0
0.34 i

with m?=1.63 GeV¥, I'=0.033 GeV, andg?=1.35. The
small value ofg? means that this state is only weakly
coupled to quarks. In case of the broad asymmetric reso-
nance afg?=1.00 Ge\f, we can ask what the resonance pa-
rameters would be in the case the behavior belgfv
=1.00 Ge\f was modified so as to make the resonance sym-
metric. In that case, we would hate=0.355 GeV andy?
=10.6; however, a symmetric form does not provide a good
representation of ,(g?). [See Fig. 13,

Re[det D(g?)]

oMt
0.0 0.2 0.4 0.6 0.8 1.0

VII. DYNAMICAL ORIGIN OF AN EFFECTIVE
LOW-MASS SCALAR MESON q° (GeV?)
FOR NUCLEAR PHYSICS
FIG. 13. The figure shows RéetD(g?)]. The solid line is the

In this work we have seen that the, and o, mesons : . P -
: result obtained when including R and K , as well as
have masses of 1 GeV or greater. Therefore, it appears that 9 Rea) L), as )

. e . Sihglet-octet coupling. The dashed line is the result viigq?

the o, meson cannot be Identlf.led with the IQWTmaSS scalar_ Og and in the a%se%ce of singlet-octet coupling. The (tjgc(Jge)d line

(m,=550 MeV) then u_sed In t_he description of the represents a linear approximation to[&etD(q?)] (solid line) in the

nucleon-nucleon interaction that is based upon the ON€egion q?~0. For the dotted line, ReetD(q?)]=0.97 (me")?

boson-exchange modgl2]. In addition, a low-mass scalar — 2], with m®"=0.520 GeV. 7

plays an important role in the Walecka mod&l7] and in 7

relativistic Brueckner-Hartree-Fock thedri8]. Note that forq2s4mi, detD(c?) is real. Neag?=0, we
There is also a body of work that relates the medffeld  may  write delD(q2)20.97[(m§ﬁ)2—q2], with m‘;ﬁ

in nuclei to an order parameter for partial restoration of chi-—g 520 GeV. That means that for small spacelike values of

ral symmetry at finite baryon densifit9—-22. In that work 2, we can put

the mean scalar field is related to the value of the quark

condensate in matter. The reduction of the condensate in (g‘;fé'q)2
matter satisfies a well-known model-independent relation T,(g%)= = (mTZ (7.2
o o oNp Inspection of Fig. 10 yields an approximate valuegjﬁq
<q(1>p:<q(1>o( 1- W) (7.)  =3.32. Note that the strong® dependence for smaff? in
mm T,(g%) is almost entirely due to the cusplike behavior of
detD(q?).

to first-order in the baryon densigy In Eq.(7.2), oy is the
pion-nucleon sigma term whose value is usually given as
on=45=8 MeV, and(qq), is the vacuum value of the con-
densate. Thus, the reduction of the condensate is about 35% o o
in nuclear matter. That is similar to the reduction of the
nucleon mass from its vacuum value as seen in the Walecka
model[17]. If one argues that the nucleon massapproxi- (@) (b)
mately proportional to the value of the quark condensate, a
fairly consistent picture emerges, with the mean scalar field
being an order parameter for the deviation of the condensate
from its vacuum value.

In the present work we wish to show how affective
low-masso meson emerges from our study of the quark-
quark T matrix of the generalized NJL model. To study this
matter, we first consider Ed6.1), which may be used to
parametrize theT ,(q?) component of theT matrix, if we (c)
makeI' g2-dependent. We stress that, sinoe is about 1
GeV inzthat parametrization, that form is only appropriate for FIG. 14. (a) The one-boson-exchang®@BE) amplitude due tar
largeq”. However., In n2uclear physics studies the eXChzange%xchange between nucleons is shown. The circles denote the vertex
mesons arespacellke;(q §o), SO we may ask' hoWU(q ) cutoffs of the OBE model(b) A representation ofr exchange in
should be parametrized in the spacelike region. With referge N1 model based upon the use of a valence-quark nucleon form
ence to Fig. 13, we see that inclusion of Rgg?) when  factor is shown(c) The nucleon-nucleon interaction is related to a
calculating deD(g?) changes the behavior in a dramatic quark-quarkT matrix. A o-dominance model of thd matrix is
fashion. shown in(b).
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The T matrix for off-mass-shell quarks can be used in acoupled to quarks. On the other hand, the statés a quite
model of the nucleon-nucleon force that is based uponThat broad and asymmetric resonance, as may be seen in Fig. 12.
matrix and valence-quark form factors of the nucle®ee Clearly, coupling to the two-pion continuum is important
Fig. 14] That model has been developed in a number obver quite a broad range of energies for the The situation
works [23—26. Since theT matrix in the model considered is simpler forq?<4m?2, where theT matrix is well approxi-
here is parametrized by isoscalar-scalar exchange m‘jfh mated by the exchange of aifectivec meson that has a
=520 MeV, we see how we may understand one importaniass parametemﬁﬁ:SZO MeV. This small mass parameter
feature of the boson-exchange model and of the Waleckhas its origin in the cusplike behavior &f,(q?) at smallg?
model. which is due to the rapid opening of the two-pion channel.

It is important to note that while inclusion of the cusplike ~ We have identified theffectives meson with the low-
behavior of REq?) leads to a significant change when go- mass scalar that is extensively used in nuclear structure stud-
ing from m, to mfrff, the value of deD(q?) nearg?=0 is ies and studies of the nucleon-nucleon interaction. A sche-

only reduced from its value in the absence ofkgeP) by matic representation of the wave function of this scalar is
about 25%. That means that the predominant feature iw=(uu+dd+ss)/v3 in a first approximation. The conse-

scalar-isoscalar exchange in the nucleon-nucleon interactigiiences of this identification will be explored in a future
is the exchange of the; meson, which we saw to be pre- work. In such future work, it should be possible to extend

dominantly thes®°(1P) in our model. our analysis to an energy region beyond=1.8 Ge\~.
However, such an extension requires that we modify our

procedure for calculation of the vacuum polarization dia-
VIIl. DISCUSSION gramsJ(qZ).

In this work we have found two low-lying states that have
energies of 1.00 and 1.28 GeV. The first of these states
which we have denoted as , is predominantly the°(1P),
while the states, is strongly mixed and has a rather small  This work has been supported in part by a grant from the
width for decay to two pions. Alsog, is only weakly National Science Foundation and by PSC-CUNY.
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