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Singlet-octet mixing of scalar mesons in a generalized Nambu–Jona-Lasinio model

L. S. Celenza, Xiang-Dong Li, and C. M. Shakin*

Department of Physics and Center for Nuclear Theory, Brooklyn College of the City University of New York, Brooklyn, New York
~Received 19 June 1997!

We study the nonstrange scalar-isoscalar states of a generalized Nambu–Jona-Lasinio model that includes
the ’t Hooft interaction and a model of confinement. We also include coupling of theqq̄ states to the two-pion
continuum in our analysis.~Our study is limited to energiesq2<1.8 GeV2, since to go beyondq2

52.0 GeV2 we need to change our method of calculation.! After introducing octet-singlet mixing we find two
states,s1 ands2 , at energies of 1.00 and 1.28 GeV, respectively. The first of these is predominantly a SU~3!
singlet, while the second state is rather strongly mixed. Of particular interest for nuclear physics is the behavior
of the quark-quarkT matrix for small spacelike values ofq2. Because of a strongq2 dependence of theT
matrix at the opening of the two-pion continuum atq254mp

2 , the effectivemass that parametrizes scalar-
isoscalar exchange in theT matrix is about 520 MeV. Thus, in a model of the nucleon-nucleon interaction,
whose ingredients are aT matrix for the interaction of off-mass-shell quarks and valence-quark nucleon form
factors, we can provide a basis for the use of a low-masseffective s meson in nuclear physics.
@S0556-2813~97!02112-2#

PACS number~s!: 24.85.1p, 12.39.2x, 13.75.Cs, 21.30.Fe
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I. INTRODUCTION

In a recent work we studied the properties of thes meson
in a generalized Nambu–Jona-Lasinio~NJL! model with
SU~2!-flavor symmetry@1#. Our generalized model contain
a model of confinement which is used in the calculation
loop integrals. The confinement model serves to elimin
unphysical cuts that would arise if the quark and antiqu
were to both go on their positive mass shells@2#. That feature
allows us to use the model at energies larger than those
could consider in the absence of a confinement model.
introduction of a confinement model also allows us to ma
use of dispersion relations in which the discontinuities
across cuts that arise whenhadronsgo on mass shell@1#.

In this work we wish to extend our considerations to
NJL model with SU~3! flavor symmetry and with the
’t Hooft interaction added. Important theoretical develo
ments and various applications of that model may be fo
in Refs.@3–7#, while useful reviews appear in Refs.@8–10#.
Our motivation in studying the SU~3!-flavor version of the
NJL model has its origin in some of our earlier work usi
the SU~2! version of that model@11#. There we found that
the quark-quarkT matrix that describes scalar-isoscalar e
change could be well approximated by the exchange o
effectives meson of mass of about 500 MeV, ifq2 was small
and spacelike. That result allowed us to understand s
aspects of the one-boson-exchange model of the nucl
nucleon interaction@12# in the case of scalar-isoscalar e
change.~Since we had used constituent quark masses
about 260 MeV in our earlier work, our result might not b
all that surprising.! It is of interest to see if our result for th
mass of theeffectives is maintained if we use larger con
stituent quark masses and the SU~3!-flavor version of the
NJL model. Thus, we are here more interested in the beh
ior of the quark-quarkT matrix for small q2 than in the
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spectroscopy in the region of 1 GeV, where thephysicals
meson is to be found.

In a previous work dealing with the octet of pseudosca
mesons and theh8 we studiedh0-h8 mixing which gives
rise to the physical statesh andh8 @13#. When we consider
scalar mesons, the analogous problem is the mixing ofs0

~singlet! with s8 ~octet! states to yield the physical state
which we denote ass1 ,s2 , . . . . Here,s1 has the lowest
energy and is predominantly thes0(1P). It is found that the
next states2 is rather strongly mixed. Note that in the ca
of h0-h8 mixing, it is theh8 that is predominantly the sin
glet state. These features are characteristic of the ’t Ho
interaction@14#.

The use of the SU~3!-flavor NJL model and the ’t Hooft
interaction to study the scalar octet and the scalar singlet
been described in Ref.@14#, where an extensive discussion
the experimental data for scalar meson spectroscopy is
sented. In Ref.@14#, the states considered have energ
equal to or greater than 1 GeV, so that one may question
use of the NJL model~without confinement! to describe the
scalar mesons. This problem is avoided in Ref.@14#, since
the energies of the scalar states are calculated usin
bosonization procedure. That procedure is essentially a l
energy~or low-momentum! expansion. Therefore, in such a
expansion one stays below the unitarity cuts whose thre
olds are given in terms of the constituent quark mass
These thresholds are atq25(2mu)2, q25(mu1ms)

2, and
q25(2ms)

2 in a model without confinement. One advanta
of the methods we use in our work is that we can obtain b
the energy and the width of the various mesonic states, s
we are able to implement our program at fairly large valu
of q2 ~with q2.0!.

A useful approach to the problem of meson mixing is
study a quark-quarkT matrix. When calculating theT ma-
trix, one sums varioust-channel exchange diagrams. If theT
matrix is real, a single mixing angle appears in the formali
when we use an orthogonal transformation to bring theT
matrix to diagonal form.~A more elaborate parametrizatio
3326 © 1997 The American Physical Society
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56 3327SINGLET-OCTET MIXING OF SCALAR MESONS INA . . .
is needed whenT is complex.! The relevant equations de
scribing singlet-octet mixing appear in the literature@3–7#.
In this work we exhibit these equations modified to includ
model of confinement and coupling to the two-pion co
tinuum.

The organization of our work is as follows. In Sec. II w
describe some characteristics of our generalized NJL m
and describe how we implement our model of confineme
In Sec. III we discuss the calculation of vacuum polarizat
diagrams that involve a quark and an antiquark. In Sec.
we describe the formalism used in the calculation ofs0-s8

mixing. In Sec. V we describe the important role played
the coupling ofqq̄ states to the two-pion continuum. Nu
merical results are presented in Sec. VI. In Sec. VII we
scribe the dynamical origin of a low-mass~effective! s me-
son for nuclear physics studies. The exchange of
effectivemeson is shown to provide a good representation
the quark-quarkT matrix, if the exchanged momentum
spacelike (q2<0). Finally, Sec. VIII contains some furthe
discussion and some conclusions.

II. A GENERALIZED NAMBU –JONA-LASINIO MODEL
WITH A MODEL OF CONFINEMENT

In this section we introduce various vacuum polarizat
integrals that are an essential feature of the NJL model@8–
10#. We will then show how the introduction of a model o
confinement removes unphysicalqq̄ cuts from the various
loop integrals studied. In Sec. V we will also discuss t
coupling of theqq̄ states to the two-pion continuum.~It is
this feature that gives rise to the large widths obtained for
scalar states in some cases.!

In the past, we have studied the SU~2!-flavor version of
the NJL model. Here we consider the SU~3!-flavor version of
the model, supplemented by the ’t Hooft interaction. T
Lagrangian we consider is

L5q̄~ i ]”2m0!q1Gs(
i 50

8 F S q̄
l i

2
qD 2

1S q̄ig5

l i

2
qD 2G

1
GD

2
$det@ q̄~11g5!q#1det@ q̄~12g5!q#%1Lconf,

~2.1!

where thel i ( i 51, . . . ,8) are theGell-Mann matrices in

flavor space andl05( 2
3 )1/2I, with I being the unit matrix. In

Eq. ~2.1!, m0 denotes a quark mass matrix with diagon
elements,mu

0,md
0,ms

0. Here, we takemu
05md

055.5 MeV and
ms

05132 MeV, which are the values used in Ref.@8#. Fur-
ther,

Lconf5E d4yq̄~x!gmq~x!VC~x2y!q̄~y!gmq~y!.

~2.2!

This represents a Lorentz-vector confinement model@1#. For
calculations made in Minkowski momentum space, we
glect any dependence ofVC on energy transfer. That is
VC(x2y) contains ad function that serves to equate th
a
-

el
t.
n
V

-

is
f

e

l

-

times associated with pointsx and y in Eq. ~2.2!. We use
VC(r )5kr exp(2mr), wherek is the ‘‘string tension’’ andm
is a small parameter used to soften the singularities of
Fourier transform ofVC(r ). The Fourier transform ofVC(r )
is then

VC~kW2kW8!528pkF 1

@~kW2kW8!21m2#2
2

4m2

@~kW2kW8!21m2#3G .

~2.3!

We have usedm50.020 GeV, and for the Lorentz-vecto
confinement model of Eq.~2.2!, we usek50.05 GeV2.

Another confinement model is theV-A model that we
have used in some of our earlier work@15#. In that model

Lconf~x!5E d4y@ q̄~x!gmq~x!VC~x2y!q̄~y!gmq~y!

2q̄~x!gmg5q~x!VC~x2y!q̄~y!gmg5q~y!#.

~2.4!

In order to describe how confinement is introduced in
model, we refer to Fig. 1. There, the filled triangular regi
denotes a vertex operator that is defined in terms of the c

finement interactionVC(kW -kW8), shown as a dashed line
@Note that the vertexḠS(q,k) satisfies an inhomogeneou
equation.# Since we do not study strange mesons in t
work, we may limit ourselves to the case where the flavor
the quark and antiquark at the vertex is the same. TheV-A

FIG. 1. ~a! The diagram represents the equation for the ver
ḠS(q,k), which serves to represent a sum of a series of confin
interactions. These interactions are shown here as dashed line~b!

A perturbative expansion forḠS(q,k) is shown. ~c! The vertex
G12(q,k) is obtained in our analysis when the quark is on
positive mass shell.~Here the cross denotes a quark on its posit
mass shell.! ~d! A perturbative expansion forG12(q,k) is shown.
The dashed line introduces a factor2 iVC(k2k8)gm(1)gm(2)
when applying the Feynman rules in the evaluation of the diagra
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model leads to a particularly simple resultḠS(q,k)
5IGS(q,k), whereI denotes the unit matrix in flavor spac
and in the space of Dirac matrices, and whereGS(q,k) is a
scalar function@15#. This scalar function has a very impo
tant property. It is equal to zero when the quark and
antiquark both go on their positive mass shells. It is t
feature that eliminates unphysicalqq̄ cuts from the various
functions that arise upon performing loop integrals.

The situation in the case of Lorentz-vector confinemen
more complicated sinceḠS(q,k) then contains several term
having different Dirac matrix structure. In that case it is us
ful to introduce the projection operators

L~1 !~kW !5
k”1m

2m
, ~2.5!

with km5@E(kW ),kW # and

L~2 !~2kW !5
k”̃ 1m

2m
, ~2.6!

with k̃m5@2E(kW ),kW #. HereE(kW )5@kW21m2#1/2. In this case,
we may define functionsG21(q,k), G12(q,k), etc.:

L~1 !~kW !ḠS~q,k!L~2 !~2kW !5G12~q,k!L~1 !~kW !L~2 !~2kW !,
~2.7!

L~2 !~2kW !ḠS~q,k!L~1 !~kW !5G21~q,k!L~2 !~2kW !L~1 !~kW !,
~2.8!

L~1 !~kW !ḠS~q,k!L~1 !~kW !5G11~q,k!L~1 !~kW !, ~2.9!

and

L~2 !~2kW !ḠS~q,k!L~2 !~2kW !5G22~q,k!L~2 !~2kW !.
~2.10!

In Ref. @13# we described the calculation of the various fun
tions that appear in Eqs.~2.7!–~2.10!. We also demonstrate
how these functions are used in the calculation of loop in
grals. In the next section we discuss their use in the calc
tion of qq̄ vacuum-polarization diagrams that are needed
our work.

III. VACUUM-POLARIZATION INTEGRALS

Here we consider the calculation of the diagrams of F
2~c!. A more comprehensive discussion is given in Ref.@13#,
so that our discussion here is limited to a short review. T
basic integral for a quark and antiquark of a single flavo
obtained from the evaluation of the diagram shown in F
2~b!. We have
e
t

s

-

-

-
a-
n

.

e
s
.

2 iJ~q2!5~21!ncTrE d4k

~2p!4 iS~q/21k!iS~2q/21k!,

~3.1!

whereS(p)5@p” 2m1 i e#21 is the quark propagator andm
is the constituent quark mass. The introduction of confi
ment proceeds via the definition

2 i Ĵ~q2!5ncTrE d4k

~2p!4 S~q/21k!ḠS~q,k!S~2q/21k!,

~3.2!

whereḠS(q,k) is represented by the filled triangular area
Fig. 2~c!. In the calculation ofĴ(q2) it is useful to introduce
the representation

S~k!5
m

E~kW !
F L~1 !~kW !

k02E~kW !1 i e
2

L~2 !~2kW !

k01E~kW !2 i e
G , ~3.3!

and work in the frame whereqW 50. Thus,

FIG. 2. ~a! The zero-range two-quark interaction of the NJ
model is shown.~b! The quark-loop integral in the scalar-isoscal
channel is shown.~c! The quark-loop integral that includes a ladd
of confining interactions~dashed lines! is shown. The filled trian-
gular region denotes the vertex function that serves to sum
ladder of confining interactions.~d! The functionKS(q2) describes
the effects of coupling to the two-pion continuum.@See Sec. V.# ~e!

The functionK̂S(q2) includes two confinement vertex functions an
has a cut forq2.4mp

2 .
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2 i Ĵ~q2!52ncTrE d4k

~2p!4

m

E~kW !
F L~1 !~kW !ḠS~q,k!L~2 !~2kW !

@q0/21k02E~kW !1 i e#@2q0/21k01E~kW !2 i e#

1
L~2 !~2kW !ḠS~q,k!L~1 !~kW !

@q0/21k01E~kW !2 i e#@2q0/21k02E~kW !1 i e#
G , ~3.4!
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wherem denotes the constituent quark mass. We proceed
evaluating the integral in the lower half of the complexk0

plane. There are two contributions in which either the qu
goes on itspositivemass shell or the antiquark goes on
negativemass shell@16#. Thus, whenG12(q,k) appears in
the final result, it has the quark on its positive mass shell

we write G12(q0,ukW u) for this function in the frame where

qW 50. On the other hand,G21(q0,ukW u) has the antiquark on
its negativemass shell in the final result. When we ne
lected energy transfer in the confining interaction,

found that G12(q0,ukW u)5G21(q0,ukW u) and G11(q0,ukW u)
5G22(q0,ukW u) for the case of vector confinement@1#. In

Figs. 3 and 4 we show values obtained forG12(q0,ukW u) and

G11(q0,ukW u) in Ref. @1#, where we used a smaller constitue
quark mass for the up and down quarks than that used h
~Here we usemu5md5364 MeV andms5522 MeV.!

In the evaluation of the various functionsĴ(q2), we re-

quire a cutoff for the integral overkW . We chooseukW u<L3 ,
whereL3 is chosen such that the values for the condens
are the same as those presented in Ref.@8#. There, a Euclid-
ean momentum space cutoff ofLE50.90 GeV was used. We
found that we should putL350.622 GeV on the basis of thi
procedure.

It is important to understand that there are solutions

FIG. 3. Values ofG12(q0,ukW u) are shown. Starting from the
uppermost curve and moving downward, the values ofq0 are 0,
0.10, 0.20, 0.30, 0.40, 0.50, 0.55, and 0.60 MeV. For the last tw

these curves,G12(q0,ukWonu)50. Here kWon
2 5(q0/2)22mq

2, mq

50.260 GeV,m50.030 GeV, andk50.05 GeV2. ~This figure ap-
pears as Fig. 2 of Ref.@1#.!
by

k

d

t
re.

es

f

equation forḠS(q,k) when we drop the driving term. The
solutions of the resulting~homogeneous! equation are just
the vertex functions of the bound states in the confining
tential. Since such states are present,ḠS(q,k) will have poles
at q25Mi

2 where theMi are the mass parameters for th
bound states in the confining field. Therefore,Ĵ(q2) will also
have poles atq25Mi

2.

IV. COUPLED CHANNEL DYNAMICS
FOR s0-s8 MIXING

Here we study the quark-quarkT matrix that describes
scalar-isoscalar exchange. We generalize the equations
sented in Refs.@3–7# to include confinement and coupling t
the two-pion continuum. It is useful to define effective co
pling constants

G00
S 5

1

2
~GS2GDc00!, ~4.1!

G88
S 5

1

2
~GS2GDc88!, ~4.2!

G08
S 52

1

2
GDc08, ~4.3!

where

of FIG. 4. Values ofG11(q0,ukW u) are shown. Starting with the
uppermost curve and moving downward, the values ofq0 are 0, 0.4,
and 0.6 GeV. Heremq50.260 GeV, m50.030 GeV, andk
50.05 GeV2. ~This figure appears as Fig. 3 of Ref.@1#.!
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c0052
2

3
~2^ūu&1^ s̄s&!, ~4.4!

c885
1

3
~4^ūu&2^s̄s&!, ~4.5!

and

c085
&

3
~^ūu&2^s̄s&!. ~4.6!

@See Fig. 5.# In this work we do not introduce any new pa
rameters. The parameter values are taken from Ref.@1# and,
except forGS , they are the same as those given in Ref.@8#.
We have GS521.53 GeV22, GD52239.1 GeV25, ^ūu&
5^d̄d&52(0.248 GeV)3520.01525 GeV3, and ^s̄s&5
2~0.258 GeV!3520.01717 GeV3. Recall that we also use
mu

05md
055.5 MeV, ms

05132 MeV, mu5md5364 MeV,
andms5522 MeV.

It is useful to introduce a set of functions defined in ter
of the functions defined previously,

Ĵ00~q2!5
2

3
@ Ĵu~q2!1 Ĵd~q2!1 Ĵs~q2!# ~4.7!

and

Ĵ88~q2!5
1

3
@ Ĵu~q2!1 Ĵd~q2!14Ĵs~q2!#, ~4.8!

Ĵ08~q2!5
&

3
@ Ĵu~q2!1 Ĵd~q2!22Ĵs~q2!#. ~4.9!

We then define the matrices

G5S G00
S G08

S

G08
S G88

S D , ~4.10!

FIG. 5. ~a! The equation for the quark-antiquarkT matrix is
shown for the caseK̂S(q2)50. The circle is the effective interac
tion. @See Eqs.~4.1!–~4.3! and ~c! below.# The filled triangular
region denotes the vertex for the confining interaction.~b! An ex-
pansion of theT matrix is given in terms of the effective interactio
~circle! and the vacuum-polarization integralsĴ(q2). ~c! The effec-
tive interaction ~open circle! is composed of the original~two-
quark! NJL interaction and the three-quark ’t Hooft interaction.
s

and

Ĵ~q2!5S Ĵ00~q2! Ĵ08~q2!

Ĵ08~q2! Ĵ88~q2!
D . ~4.11!

In the next section we will introduce a set of function
that describe the coupling of theqq̄ states to the two-pion
continuum. Making use of the functions defined there,
introduce the matrix

K̂~q2!5S K̂00~q2! K̂08~q2!

K̂08~q2! K̂88~q2!
D , ~4.12!

as well as the matrix

J̄~q2!5 Ĵ~q2!1K̂~q2!. ~4.13!

Note that K̂(q2)5ReK̂(q2)1i ImK̂(q2), with ImK̂(q2) equal
to zero whenq2,4mp

2 .
The T matrix, exclusive of Dirac matrices and flavor m

trices, then satisfies the matrix equation

T~q2!52G1GJ̄~q2!T~q2!, ~4.14!

or

T~q2!52@I2GJ̄~q2!#21G. ~4.15!

We also introduce the matrix

D~q2!5I2GJ̄~q2! ~4.16!

5FD11~q2! D12~q2!

D21~q2! D22~q2! G , ~4.17!

with

D11~q2!512@G00
S J̄00~q2!1G08

S J̄08~q2!#, ~4.18!

D12~q2!52@G00
S J̄08~q2!1G08

S J̄88~q2!#, ~4.19!

D21~q2!52@G08
S J̄00~q2!1G88

S J̄08~q2!#, ~4.20!

and

D22~q2!512@G08
S J̄08~q2!1G88

S J̄88~q2!#. ~4.21!

With these definitions, we may write

T~q2!5FAS~q2! BS~q2!

BS~q2! CS~q2!G , ~4.22!

with

AS~q2!52
1

det D~q2!
@G00

S 2~G88
S G00

S 2G08
S G08

S !J̄88~q2!#,

~4.23!

BS~q2!52
1

det D~q2!
@G08

S 2~G08
S G08

S 2G00
S G88

S !J̄08~q2!#,

~4.24!
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and

CS~q2!52
1

det D~q2!
@G88

S 2~G00
S G88

S 2G08
S G08

S !J̄00~q2!#.

~4.25!

Note that in the absence of octet-singlet coupling@G08
S

5 J̄08(q
2)50#, we haveBS(q2)50,

AS~q2!52
G00

S

12G00
S J̄00~q2!

~4.26!

and

CS~q2!52
G88

S

12G88
S J̄88~q2!

. ~4.27!

If we use Eq.~4.26!, we see that the masses of the sca
singlet mesons are given by the solution of the equation

~G00
S !212ReJ̄00~ms0

2
!50. ~4.28!

Similarly, we have for the mass of the scalar octet meso
the solution of the equation

~G88
S !212ReJ̄88~ms8

2
!50. ~4.29!

As we will see, Eqs.~4.28! and ~4.29! will have more than
one solution.

We note that forq2,4mp
2 , the T matrix is real. If q2

,4mp
2 , or if we neglect ImK̂S(q

2), we can bringT to a di-
agonal form with a real matrix

M ~u!5S cosu 2sinu

sinu cosu D , ~4.30!

whereu is a function ofq2.
Thus,

Tdiag~q2!5M ~u!T~q2!M 21~u!, ~4.31!

5FTs~q2! 0

0 Ts8~q2!
G , ~4.32!

where

Ts~q2!5AS~q2!cos2u22BS~q2!sinucosu1CS~q2!sin2u,
~4.33!

and

Ts8~q2!5AS~q2!sin2u12BS~q2!sinucosu1CS~q2!cos2u.
~4.34!

Alternate expressions forTs(q2) and Ts8(q
2) that are

generally valid are

Ts~q2!5
AS~q2!1CS~q2!

2

r

s,

1H FAS~q2!2CS~q2!

2 G2

1BS
2~q2!J 1/2

,

~4.35!

and

Ts8~q2!5
AS~q2!1CS~q2!

2

2H S AS~q2!2CS~q2!

2 D 2

1BS
2~q2!J 1/2

,

~4.36!

as may be seen by calculating the eigenvalues of the ma
T(q2) in the caseAS(q2), BS(q2), andCs(q

2) are complex
functions.

We can also see that the matrixT(q2) takes on a diagona
form when

tan2u~q2!5
2BS~q2!

CS~q2!2AS~q2!
~4.37!

in the case thatq2,4mp
2 , or if ImK̂S(q

2)50. Equation~4.37!,
therefore, provides the value of the mixing angleu(q2) for
the case in whichAS(q2), BS(q2), andCS(q2) are real func-
tions. We findu(q2)5212.60 at q250. ~At low energies
there is only small singlet-octet mixing.!

It is useful to define the functionsds(q2) and ds8(q
2),

such that

Ts~q2!5
ds~q2!

detD~q2!
, ~4.38!

and

Ts8~q2!5
ds8~q2!

detD~q2!
. ~4.39!

If we neglect ImK̂s(q
2), or if q2,4mp

2 , we may find the
mass of the resonances that appear inTs(q2) or Ts8(q

2)
from the equation

detD~q2!50. ~4.40!

In the general case, we can define meson masses by
condition

Re@detD~q2!#50. ~4.41!

Equation~4.41! may be used in the presence of octet-sing
mixing and in the case that ImK̂s(q

2) is included in the analy-
sis. Note that detD(q2) will have a zero at each bound state
resonance. However, in some casesds(q2), or ds8(q

2), may
have a corresponding zero such that the resonance is a
from Ts(q2) or Ts8(q

2).

V. COUPLING TO THE TWO-PION CONTINUUM

We presented a detailed discussion of the calculation
K̂S(q2) when using the NJL model with SU~2!-flavor sym-
metry in Ref.@1#. In Fig. 6~a! we exhibit the diagram tha
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definesKS(q2) for that theory in the absence of confineme
@Note that for the calculation ofKS(q2), the flavor matrix at
the vertices is the unit matrix.# In Fig. 6~b! we add the con-
firming vertex, so that the only discontinuity forKS(q2) is
that across the two-pion cut. We can calculate the disco
nuity across the cut by placing the pions on mass shell
denoted by a cross on the wavy lines in Fig. 6~c!. In Fig. 6~d!
we show the form factor that has to be calculated when c
structing ImK̂S(q

2).
In Ref. @1# we saw that we could write a once-subtract

dispersion relation to obtain ReK̂S(q
2) from the knowledge of

K̂S(0) and ImK̂S(q
2). @The calculation ofK̂S(0) required a

separate calculation in which we evaluated the form facto
Fig. 6~e! for the caseqm50.# Our results for ImK̂S(0) and
ReK̂S(q

2) are shown in Figs. 7 and 8@1#.
We find that we can calculate the coupling of theqq̄

states to the two-pion continuum in the model with SU~3!-
flavor symmetry by making use of our earlier calculatio
The only modification is the different flavor factors that a
pear at the vertices. The appropriate definition is then

FIG. 6. ~a! The diagram represents the functionKS(q2), which
has cuts starting atq254mu

2 and atq254mp
2 . The wavy lines de-

note pions.~b! The inclusion of the confining vertex defines th
function K̂S(q2), which has only one cut starting atq254mp

2 . ~c!

The calculation of ImK̂S(q
2) may be made by placing the pions o

mass shell, as denoted by a cross on the wavy line.~d! A form
factor needed in the calculation of the diagram in~c! is shown.~See
Ref. @1#.! ~e! A form factor needed in the calculation ofK̂S(0) is
shown.~See Ref.@1#.!

FIG. 7. The function ImK̂S(q
2) is shown. This figure appears a

Fig. 10 of Ref.@1#.
.

ti-
as

n-

f

.

K̂00~q2!5
2

3
K̂S~q2!, ~5.1!

K̂88~q2!5
1

3
K̂S~q2!, ~5.2!

and

K̂08~q2!5
A2

3
K̂S~q2!. ~5.3!

Therefore, the matrixJ̄(q2)5 Ĵ(q2)1K̂(q2), introduced ear-
lier, has the elements

J̄00~q2!5
2

3
@ Ĵu~q2!1 Ĵd~q2!1 Ĵs~q2!1K̂S~q2!#,

~5.4!

J̄88~q2!5
1

3
@ Ĵu~q2!1 Ĵd~q2!14Ĵs~q2!1K̂S~q2!#,

~5.5!

and

J̄08~q2!5
A2

3
@ Ĵu~q2!1 Ĵd~q2!22Ĵs~q2!1K̂S~q2!#.

~5.6!

We have only considered the two-pion cut in the co
struction of ImK̂S(q

2). Other cuts appear in the case
SU~3!-flavor symmetry. However, such cuts appear at hig
energy and involve mesons having masses that are sig
cantly larger than the mass of the pion. Their contribution
ImK̂S(q

2) is expected to be small.
It can be seen thatK̂S(q2) only affects singlet states in th

absence of singlet-octet coupling. In this model, octet sta
will take on a width due to their coupling to the singl
states. These comments will be bourne out when we ins

FIG. 8. The function ReK̂S(q
2) is shown. The calculation was

made using a once-subtracted dispersion relation and a calcu
value of K̂S(0), asdescribed in Ref.@1#. The values of ImK̂S(q

2)
shown in Fig. 7 were used in the dispersion relation.~See Fig. 11 of
Ref. @1#.!
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the form of theT matrix in the representation in which it i
diagonal. For example, ReK̂S(q

2) exhibits strong cusplike be
havior nearq254mp

2 . However, that behavior is only re
flected in the component of the diagonalizedT matrix that
we denote asTs(q2). That component is predominantly o
SU~3!-singlet character since the mixing angle is small in
vicinity of q250.

VI. NUMERICAL RESULTS

When we introduce ImK̂S(q
2) into our analysis, the func

tions AS(q2), BS(q2), and CS(q2) become complex. Also
when theT matrix is brought to diagonal form,Ts(q2) and
Ts8(q

2) will be complex functions. We begin our analys
by presenting values of Re@detD(q2)# in Fig. 9. The singlet-
octet coupling moves two of the four states that origina
appeared in the regionq2<1.8 GeV to higher energy.~The

FIG. 9. The figure shows Re@detD(q2)# for the case where both
ReK̂S(q

2) and ImK̂S(q
2) are included, as is singlet-octet couplin

The zeros of this function correspond to the statess1 ands2 . The
first of these states is predominantlys0(1P). ~The vertical line
shows the position of the singularity atq251.48 GeV2 that is due to
the presence of a bound state in the confining potential.!

FIG. 10. The figure shows Im@detD(q2)#.
e

analysis of Ref.@14# puts the lowest of these states atq2

.2.53 GeV2, which is outside the range ofq2 we are able to
investigate in our work.! In Fig. 9 we see cusp behavior a
q2[4mp

2 . @The singularity seen in Fig. 9 atq2.1.48 GeV2

is due to a singularity ofĴu(q2). That singularity does no
appear in theT matrix elements, as we will see.# Figure 10
shows the values of Im@detD(q2)#.

In Fig. 11 we show both ReTs(q2) ~dashed line! and
ReTs8(q

2) ~solid line!. These curves have the following fea
tures. There are two zeros ofTs(q2) for which the curve
rises from negative values to positive values. These ze
correspond to resonances which we denote ass1 and s2 .
The values ofTs(q2) exhibit strong cusp behavior atq2.
54mp

2 . Note also thatTs8(q
2) has no resonances in th

range shown, since the states that we may calls3 ands4 are
now are at higher energies.

In Fig. 12 we show ImTs(q2) ~dashed line! and ImTs8(q
2)

~solid line!. Again, strong cusp behavior is only seen
ImTs(q2). The states1 at q251.00 GeV2 has a large width
and the width is quite asymmetric due to its proximity to t
region of strong cusp behavior. The states2 has a relatively
narrow width and theT matrix could be well approximated
by the form

FIG. 11. The figure shows ReTs(q2) ~dashed line! and ReTs8(q
2)

~solid line!. The cusp behavior forq2.4mp
2 is only prominent in

ReTs(q2). Resonances appear at 1.00 and 1.28 GeV, where ReTs(q2)
rises through zero from negative values.@No resonance appears fo
ReTs8(q

2) in this energy range.# Note that there is no singularity a
q251.48 GeV2 in the T matrix.

FIG. 12. The figure shows ImTs(q2) ~dashed line! and ImTs8(q
2)

~solid line!.
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Ts~q2!5
g2

q22m21 imG
, ~6.1!

with m251.63 GeV2, G50.033 GeV, andg251.35. The
small value of g2 means that this state is only weak
coupled to quarks. In case of the broad asymmetric re
nance atq251.00 GeV2, we can ask what the resonance p
rameters would be in the case the behavior belowq2

51.00 GeV2 was modified so as to make the resonance s
metric. In that case, we would haveG50.355 GeV andg2

510.6; however, a symmetric form does not provide a go
representation ofTs(q2). @See Fig. 12.#

VII. DYNAMICAL ORIGIN OF AN EFFECTIVE
LOW-MASS SCALAR MESON

FOR NUCLEAR PHYSICS

In this work we have seen that thes1 and s2 mesons
have masses of 1 GeV or greater. Therefore, it appears
the s1 meson cannot be identified with the low-mass sca
(ms.550 MeV) often used in the description of th
nucleon-nucleon interaction that is based upon the o
boson-exchange model@12#. In addition, a low-mass scala
plays an important role in the Walecka model@17# and in
relativistic Brueckner-Hartree-Fock theory@18#.

There is also a body of work that relates the means field
in nuclei to an order parameter for partial restoration of c
ral symmetry at finite baryon density@19–22#. In that work
the mean scalar field is related to the value of the qu
condensate in matter. The reduction of the condensat
matter satisfies a well-known model-independent relation

^q̄q&r5^q̄q&0S 12
sNr

mp
2 f p

2 D , ~7.1!

to first-order in the baryon densityr. In Eq. ~7.1!, sN is the
pion-nucleon sigma term whose value is usually given
sN54568 MeV, and^q̄q&0 is the vacuum value of the con
densate. Thus, the reduction of the condensate is about
in nuclear matter. That is similar to the reduction of t
nucleon mass from its vacuum value as seen in the Wale
model@17#. If one argues that the nucleon mass is~approxi-
mately! proportional to the value of the quark condensate
fairly consistent picture emerges, with the mean scalar fi
being an order parameter for the deviation of the conden
from its vacuum value.

In the present work we wish to show how aneffective
low-masss meson emerges from our study of the qua
quarkT matrix of the generalized NJL model. To study th
matter, we first consider Eq.~6.1!, which may be used to
parametrize theTs(q2) component of theT matrix, if we
makeG q2-dependent. We stress that, sincems is about 1
GeV in that parametrization, that form is only appropriate
largeq2. However, in nuclear physics studies the exchan
mesons arespacelike(q2<0), so we may ask howTs(q2)
should be parametrized in the spacelike region. With re
ence to Fig. 13, we see that inclusion of ReK̂S(q

2) when
calculating detD(q2) changes the behavior in a drama
fashion.
o-
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Note that forq2<4mp
2 , detD(q2) is real. Nearq250, we

may write detD(q2).0.97@(ms
eff)22q2#, with ms

eff

.0.520 GeV. That means that for small spacelike values
q2, we can put

Ts~q2!.
~gsqq

eff !2

q22~ms
eff!2 . ~7.2!

Inspection of Fig. 10 yields an approximate value ofgsqq
eff

53.32. Note that the strongq2 dependence for smallq2 in
Ts(q2) is almost entirely due to the cusplike behavior
detD(q2).

FIG. 13. The figure shows Re@detD(q2)#. The solid line is the
result obtained when including ReK̂S(q

2) and ImK̂S(q
2), as well as

singlet-octet coupling. The dashed line is the result withK̂S(q2)
50 and in the absence of singlet-octet coupling. The dotted
represents a linear approximation to Re@detD(q2)# ~solid line! in the
region q2.0. For the dotted line, Re@detD(q2)#.0.97@(ms

eff)2

2q2#, with ms
eff50.520 GeV.

FIG. 14. ~a! The one-boson-exchange~OBE! amplitude due tos
exchange between nucleons is shown. The circles denote the v
cutoffs of the OBE model.~b! A representation ofs exchange in
the NJL model based upon the use of a valence-quark nucleon
factor is shown.~c! The nucleon-nucleon interaction is related to
quark-quarkT matrix. A s-dominance model of theT matrix is
shown in~b!.
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The T matrix for off-mass-shell quarks can be used in
model of the nucleon-nucleon force that is based upon thT
matrix and valence-quark form factors of the nucleon.@See
Fig. 14.# That model has been developed in a number
works @23–26#. Since theT matrix in the model considere
here is parametrized by isoscalar-scalar exchange withms

eff

.520 MeV, we see how we may understand one import
feature of the boson-exchange model and of the Wale
model.

It is important to note that while inclusion of the cusplik
behavior of ReK̂S(q

2) leads to a significant change when g
ing from ms to ms

eff , the value of detD(q2) nearq250 is
only reduced from its value in the absence of ReK̂S(q

2) by
about 25%. That means that the predominant feature
scalar-isoscalar exchange in the nucleon-nucleon interac
is the exchange of thes1 meson, which we saw to be pre
dominantly thes0(1P) in our model.

VIII. DISCUSSION

In this work we have found two low-lying states that ha
energies of 1.00 and 1.28 GeV. The first of these sta
which we have denoted ass1 , is predominantly thes0(1P),
while the states2 is strongly mixed and has a rather sm
width for decay to two pions. Also,s2 is only weakly
. C

an

s

d
1/
f

nt
ka

in
on

s

coupled to quarks. On the other hand, the states1 is a quite
broad and asymmetric resonance, as may be seen in Fig
Clearly, coupling to the two-pion continuum is importa
over quite a broad range of energies for thes1 . The situation
is simpler forq2<4mp

2 , where theT matrix is well approxi-
mated by the exchange of aneffectives meson that has a
mass parameterms

eff.520 MeV. This small mass paramete
has its origin in the cusplike behavior ofTs(q2) at smallq2

which is due to the rapid opening of the two-pion channe
We have identified theeffectives meson with the low-

mass scalar that is extensively used in nuclear structure s
ies and studies of the nucleon-nucleon interaction. A sc
matic representation of the wave function of this scalar
s.(ūu1d̄d1 s̄s)/) in a first approximation. The conse
quences of this identification will be explored in a futu
work. In such future work, it should be possible to exte
our analysis to an energy region beyondq251.8 GeV2.
However, such an extension requires that we modify
procedure for calculation of the vacuum polarization d
gramsĴ(q2).
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