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Soliton formation in s models

Manuel Fiolhais,1 João da Provideˆncia,1 Mitja Rosina,2 and Célia A. de Sousa1
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The connection between the linears model and the Nambu–Jona-Lasinio model is investigated on the basis
of a conventional Hartree-Fock approach. As a missing link, an intermediate model is used: a linears model
with quarks~including the Dirac sea! but no ‘‘Mexican hat.’’ This model is particularly convenient to study the
conditions for soliton formation and the stability of the soliton when the Dirac sea is included.
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I. INTRODUCTION

In the past, considerable attention has been devote
variouss models@1# in order to get a better understanding
the mechanism of chiral symmetry breaking in QCD. Mo
recently, the Nambu–Jona-Lasinio~NJL! model @2# has
gained prominence in this respect. The linears model is
generally applied to valence quarks in order to describe
properties of low-lying states of the baryonic sector@3,4#. On
the other hand, the NJL model is usually used to desc

mesons that are seen as quark-antiquark (q q̄) excitations of
the chirally deformed vacuum@5,6#. Although widely studied
in the literature, a deeper understanding of thes model is
lacking and this is the first motivation of our paper.

The linears model with quarks is often regarded as
approximation to the NJL model. The connection betwe
both models has been discussed in the literature using
technique of path integration over collective fields@7#. We
discuss the connection between both models on the bas
Hartree-Fock techniques. This framework, which is famil
to the nuclear physics community, provides in a very int
tive way the connection between the ‘‘Mexican hat’’ and t
polarization of the Dirac sea of quarks. We try to establ
the missing link between the linears model with ‘‘Mexican
hat’’ and without sea quarks~we denote it asŝ model!, and
the NJL model, in which the sea quarks play a crucial ro
We show that the link is well described by an intermedi
model: a linears model with the Dirac sea of quarks an
without ‘‘Mexican hat’’ ~we denote it ass̃ model!. The me-
sonic self-interaction~the ‘‘Mexican hat’’! is replaced by the
interaction of the Dirac sea with the classicals andp fields.
We regard the ‘‘Mexican hat’’ as a manifestation of th
Dirac sea. Since the Dirac sea is included in the model,
‘‘Mexican hat’’ is excluded in order to avoid double
counting.

The main motivation of our paper is, however, to stu
conditions for soliton formation. It is well known that theŝ
model with three valence quarks yields solitonic solutio
for an appropriate range of the coupling constant@3,4,8,9#.
For the NJL, the conditions for soliton formation are not y
well understood; in@10# the three-valence-quark solito
~nucleon! is obtained with the assumption that the auxilia
s andp fields ~which determine the valence single-partic
560556-2813/97/56~6!/3311~9!/$10.00
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quark states! lie on the chiral circle. The proposed interm
diate model, thes̃ model, is very appropriate to study th
question. We show that for a range of model parameter
gives a soliton and that the presence of the sea cause
instability in the model with a momentum cutoff.

Along the above lines this paper is organized as follow
In Sec. II we present thes̃ model and calculate the vacuum
properties. In Sec. III we describe a soliton in the Thom
Fermi approximation. The Thomas-Fermi approximation
valid for a large soliton~with many valence quarks, a ‘‘quar
star’’!, but some qualitative conclusions are instructive a
for a nucleon. The soliton is also calculated in the N
model in the framework of the Thomas-Fermi approxim
tion. As expected, it is found that the obtained results in t
context essentially coincide with, or are very similar to t
results of thes̃ model. In Sec. IV we describe the pionic an
sigma oscillations around the equilibrium vacuum value. W
show that in thes̃ model important facts of PCAC and cu
rent algebra relations are preserved. In Sec. V we calcu
the spherical three-valence-quark soliton by solving
Dirac equation for thes-state valence quarks in the sel
consistents and p hedghog fields while still keeping th
Thomas-Fermi approximation for the sea quarks.

II. THE s̃ MODEL AND QUARK MATTER

We consider a model of interacting quarks and mes
whose Hamiltonian may be written in the form

H s̃5 (
k51

N

$pk•ak1gbk@F~r k!1 ig5ktW k•CW ~r k!#1m0bk%

1
1

2E d3r @PF
2 1PW C

2 1“F•“F1“Ca•“Ca

1m2~F21CW 2!#, ~1!

whereak ,bk ,g5k stand for the standard Dirac matrices a
ing on the degrees of freedom of the particlek; tW k stands for
the corresponding isospin matrices;F and CW are, respec-
tively, the ~scalar-isoscalar! sigma and the~pseudoscalar-
isovector! pion fields;PF ,PW C are the corresponding conju
3311 © 1997 The American Physical Society
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3312 56FIOLHAIS, da PROVIDÊNCIA, ROSINA, AND de SOUSA
gate momenta. The total number of quarks in positive a
negative energy states isN. The interaction term~the term
starting withg) implies a momentum cutoffL for quarks;
such momentum cutoff is not just a method to regularize
theory but it rather incorporates the finite size of qua
and/or mesons. Since the quark states with momenta be
the cutoff do not interact they can be ignored. We empha
that the cutoff has been introduced in the Hamiltonian,
this allows to look for the solutions in the truncated Fo
space constructed from quark single-particle states with
menta smaller thanL. The truncated Hilbert space should b
invariant under the relevant symmetry group of the mod
namely, the group of chiral rotations. Therefore the sa
truncation~momenta smaller thanL) must be used for nega
tive energy states and positive energy states.

The model parameters areg, L, m and the current quark
massm0 . We consider the chiral limitm050 except when
dealing with pion properties~Sec. IV!.

The vacuum is described by constant meson fields an
a Slater determinantuF0&, constructed out of plane wave
which are negative energy eigenfunctions of the single p
ticle hamiltonianh5p•a1bM . The ‘‘constituent mass’’M
of the particles is treated as a variational parameter.

The homogeneous quark matter is also described b
Slater determinant which now includes positive ene
eigenstates ofh up to the Fermi momentumpF .

The density matrix for the homogeneous quark mat
which is diagonal in thep index but not in Dirac indices, is
given by

r5
1

2S 12
p•a1bM

Ap21M2 D u~L22p2!

1
1

2S 11
p•a1bM

Ap21M2 D u~pF
22p2!. ~2!

For a state of equilibrium, the momentaPF ,PW C vanish and
the fieldsF,CW are also constant in time. Moreover, for th
present choice of single particle states,CW 50. The energy
expectation value is

E5^F0uHuF0&

52
NV

~2p!3E~L.upu.pF!
d3p

p21gFM

Ap21M2
1

1

2
m2F2V, ~3!

whereV denotes the normalization volume and the deg
eracy due to spin, flavor and color isN5NsNfNc512.

Variation of the energy with respect toM leads to

]E
]M

5NV~M2gF!E
pF

L p2dp

2p2

p2

~p21M2!3/2
50, ~4!

which is satisfied for

M5gF. ~5!

The variation ofE with respect toF yields
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]E
]F

5m2FV2NgMVE
pF

L p2dp

2p2

1

Ap21M2
50. ~6!

Inserting~5! into this equation one concludes that~6! is trivi-
ally fulfilled for M50 ~henceF50). ForM50 the follow-
ing self-consistency condition for hadronic matter w
Fermi momentumpF is obtained:

m25Ng2E
pF

L p2dp

2p2

1

Ap21M2
. ~7!

This is the so-called gap equation. Hereafter we denote
M5M pF

the solution of this equation and byM5M0 the

corresponding solution forpF50.
Inserting~5! back into the energy~3! one gets

E52NV@F~L,M pF
!2F~pF ,M pF

!#1
m2M pF

2 V

2g2
, ~8!

where

F~X,M !5E
0

X p2dp

2p2 Ap21M2. ~9!

A seemingly more general ansatz corresponds to using
eigenfunctions of the Hamiltonian h5p•a1bM

1 ibg5tW•MW C to construct the Slater determinantuF0& and
treat M and MW C variationally. The density matrix can b
obtained by chirally rotating the form~2! and it leads to
exactly the same minimal energy for anyM andMW C whose

combinationM5AM21MW C
2 is the same. Therefore we a

free to chose from degenerate ground states the one
vanishingMW C and pion field.

As the order parameter related with the spontaneo
broken chiral symmetry we introduce the ‘‘quark conde
sate’’

Q5^ c̄c&5^ c̄ucu&1^ c̄dcd&5
Trrb

V

52NE
pF

L p2dp

2p2

M

Ap21M2
52S m

g D 2

M . ~10!

The following comments are in order.
~i! The parameterg has no influence on the properties

the model except through the combinationsM5gFv and
(m/g)2. We do not need it here if we use as model param
(m/g)2 and if we are not interested in the unobserva
vacuum expectation value of sigma,Fv .

~ii ! m is not the mass of the sigma meson and does
have a direct physical meaning. Therefore we prefer to
M as input parameter and determinem/g from the gap equa-
tion ~7!. We interpretM as the constituent quark mass a
choose it phenomenologically in the range 0.30–0.45 Ge

~iii ! The regime of the results depends only on the dim
sionless ratioL/M and M only determines the energy~or
length! scale. The ratioL/M can be determined from Eq
~10! using as input the phenomenological order param
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56 3313SOLITON FORMATION IN s MODELS
Q'2(0.283 GeV)3. For typical constituent quark masses
follows a rather low cutoff valueL/M51.80.

III. THE SOLITON WITH VALENCE QUARKS
AND DIRAC SEA

We analyze now, from a variational point of view, th
possibility of havingN1 quarks in positive energy state
localized in a certain domainD or, in other words, whether i
is energetically favorable for a soliton to be formed in thes̃
model. We describe the single particle states by plane wa
now with anr -dependent mass, which is a good approxim
tion for a system with many particles. In addition we cho
the chiral angle such thatCW 50 and therefore the fermion
mass just comes from the sigma meson. The energy fu
tional for the system withr-dependent mass reads

E@M #5E d3rFNF„pF~r !,M ~r !…2NF„L,M ~r !…

1
m2M2~r !

2g2
1

1

2g2“M•“M G . ~11!

Integration is throughout space and a gradient term wh
does not appear in~8! should be noticed. The Ferm
momentum is r -dependent and is given b
pF(r )5AeF

22M2(r ) if eF
22M2(r ).0 and pF(r )50 if

eF
22M2(r ),0, in the spirit of the Thomas-Fermi metho

However, the regularization cutoffL does not depend onr .
According to the Thomas-Fermi method the following co
straint:

E d3r
NpF

3~r !

6p2
5N1 , ~12!

which fixes the particle number, must be imposed in
variational principle for the energy. Since the normalizati
volume is kept constant, the corresponding vacuum ene
also remains unchanged, so it is legitimate to subtract it. T
procedure is not anad hocrule but a logical consequence o
our model. If it is followed, the energy functional of th
soliton becomes

Esol@M #5E
D

d3rFNF„pF~r !,M ~r !…2NF„L,M ~r !…

1
m2M2~r !

2g2
2S 2NF~L,M0!1

m2M0
2

2g2 D
1

1

2g2“M•“M G , ~13!

whereD is the domain whereM2(r )ÞM0
2 .

So far we did not discuss the conditions for the solit
formation which we do now. For the sake of simplicity w
shall consider a domainD, with volumex. Inside this vol-
ume the Fermi momentumpF is constant and, therefore, th
quarks have a constant massM pF

, whereas their mass ou
s,
-
e

c-

h

-

e

gy
is

side the soliton isM0. From ~12! one gets the relation be
tween the volume and the Fermi momentum for a cert
number of particles in positive energy states:

6p2N1

NpF
3

5x. ~14!

The energy of the system is

E5xFNF~pF ,M pF
!2NF~L,M pF

!1
m2M pF

2

2g2 G
1~V2x!F2NF~L,M0!1

m2M0
2

2g2 G , ~15!

where the last term represents the vacuum contribution f
the region outside the soliton. For a given number of posit
energy quarks, the equilibrium volume is determined
minimizing this expression with respect tox. For a set of
parametersM0, L andpF the quark mass inside the soliton
the solution of the equation

E
0

L p2dp

Ap21M0
2

5E
pF

L p2dp

Ap21M pF

2
, ~16!

for pF below the critical value for which chiral symmetr
restoration occurs. Beyond that value,M pF

50.
It is interesting to plot, as a function of the Fermi mome

tum ~or as a function of the densityN1 /x), the soliton en-
ergy per positive energy particle

Esol

N1
5

6p2

pF
3 FF~pF ,M pF

!2F~L,M pF
!1F~L,M0!

1
m2

2g2N
~M pF

2 2M0
2!G . ~17!

In Fig. 1, this quantity, subtracted by the free quark ma
M0, is plotted as a function of the Fermi momentum for thr
sets of the model parameters. It is interesting to note that
transition between the regime of stable to the regime
metastable solitons occurs at the valueL/M51.80 which is
very close to the physically relevant value mentioned in S
II. Whether this is a coincidence, or a feature of the solit
formation remains an open question.

It is interesting to estimate the ratio between the num
of active~i.e., below the cutoffL) Dirac sea quarks and th
number of valence quarks in the soliton,

N2

N1
5S L

pF
D 3

'5.4, ~18!

for the equilibrium value ofpF'0.4 GeV.
In Sec. V we shall treat the soliton with anr -dependent

quark mass, considering three valence quarks, now descr
quantically, while still keeping the semiclassical descripti
of the Dirac sea.

In the present soliton we are not considering the grad
terms in ~11!. Therefore, in the framework of the time
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3314 56FIOLHAIS, da PROVIDÊNCIA, ROSINA, AND de SOUSA
independent mean field approximation, wherePF50 and
PW C50, the model~1! reduces to the so-called bosoniz
NJL. Note that the bosonized NJL is completely equival
to the original NJL; it introduces theF and CW fields as
auxiliary fields and not as new dynamical degrees of freed
as in thes̃ model.

Moreover, thes̃ model and the NJL model are equivale
as far as static properties are concerned. Thus, the resu
interest so far obtained also apply to the NJL model. T
remark is not valid, however, for the discussion in the n
section, since thes̃ model and the NJL model have simila
but not identical dynamical properties.

We summarize now the NJL model. The Hamiltonian
this model may be written

HNJL5 (
k51

N

pk•ak2
g8

2 (
k,l 51

N

d~r k2r l !

3bkb l~12g5kg5ltW k•tW l !. ~19!

The energy expectation value in the Hartree approximatio

E5^F0uHuF0&

52
NV

2p2EpF

L

dp
p4

Ap21M2

2
g8

2
VS N

2p2EpF

L

dp
Mp2

Ap21M2D 2

. ~20!

Using Eq.~9! and the self-consistency condition for hadron
matter with Fermi momentumpF ,

FIG. 1. Soliton energy per positive energy particle, subtrac
by the free quark massM0 as a function of the Fermi momentum
The different curves correspond toL/M051.89 ~dashed line!,
L/M051.80 ~dotted line!, andL/M051.67 ~solid line!. We have
usedL50.7 GeV.
t

m

of
s
t

f

is

15
Ng8

2p2EpF

L dpp2

Ap21M2
, ~21!

one gets, for the NJL model,

E52NV@F~L,M pF
!2F~pF ,M pF

!#1
M pF

2 V

2g8
. ~22!

The comparison between Eqs.~8! and ~22! @or between~7!

and ~21!# establishes the equivalence between thes̃ model
and the NJL model with respect tostatic properties. Clearly,
if the coupling constant in the NJL is chosen such th
g85g2/m2 the NJL and s̃ model results are the same
namely the curves shown in Fig. 1. Finally, we note tha
exchange terms are included, the factorg8 in the self-
consistency equation~21! changes tog8(N11)/N.

For theŝ model, whose mesonic potential~in the limit of
chiral symmetry! reads

Uŝ5
l

4
~F21CW 22Fv

2!2, ~23!

the soliton energy per positive energy particle is

Esol

N1
5

6p2

pF
3 FF~pF ,M pF

!1
l

4g4N
~M pF

2 2M0
2!2G , ~24!

whereM pF
is the solution of the self-consistency conditio

l

g4 ~M pF

2 2M0
2!52

N
2p2E0

pF p2dp

Ap21M pF

2
. ~25!

The behavior ofEsol/N1 @Eq. ~24!# as a function of the
Fermi momentum is similar to the behavior found in thes̃
model ~which is shown in Fig. 1!. In particular, the shape
depends only on the ratiol/g4 and M0 just sets the scale
Similarly to Fig. 1 there are stable and metastable solitons
Fig. 2 we compare (Esol/N1)2M0 in the s̃ model and in the
ŝ model for stable solitons. In order to establish a compa
son of the results the parameters in thes̃ model are chosen
to yield an effective meson potential with the minima locat
at the same position and with the same curvature at the m
mum, in the sigma direction, as in theŝ model ~i.e., the
sigma mass is the same in both models!. From Fig. 2 one
sees that theŝ model soliton is more bound than thes̃
model ~or NJL!, for corresponding model parameters. Ho
ever, the minima occur at similar densities and, in both ca
already in the chiral symmetry restored phase. Another
portant difference between the thes̃ model and theŝ model
is that in thes̃ model the restoration of chiral symmetry
associated with a second order phase transition while in
ŝ model the phase transition is of first order. In other wor
the quark massM pF

approaches 0 continuously in thes̃

model and jumps discontinuously to 0 in theŝ model, when

d
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56 3315SOLITON FORMATION IN s MODELS
chiral symmetry is restored as a result of an increase ofpF .
The equivalence between theŝ model and the NJL model is
only qualitative.

IV. THE s AND p EXCITATIONS

In the s̃ model, the vacuum energy, in terms of the cla
sical fieldsF andCW , can then be written

E52NVE
0

Lp2dp

2p2
Ap21g2~F21CW 2!1

1

2
m2V~F21CW 2!.

~26!

The behavior of the ground state energy~26!, as a function
of the fieldsF andCW , resembles the ‘‘Mexican hat’’ poten
tial ~23!.

In fact, the first term of Eq.~26! ~quark sea energy! de-
creases quadratically for smallF and, subsequently, fo
large F, decreases linearly. The second term, the meso
potential energy, is positive quadratic throughout and do
nates at largeF. If the spontaneous symmetry breaking co
dition is satisfied, this positive second term is weaker th
the negative first term nearF50. So the energyE goes first
quadratically down and then quadratically up. The ‘‘Mexic
hat’’ ~23!, which represents the energy density of t
vacuum, behaves very similarly, except that it raises qua
cally for very largeF. Figure 3 shows the potentials for th
s̃ model and for theŝ model~we setCW 50) for the param-
eters used in Fig. 2. Since the parameters are chosen in
to have the same curvature around the minima, the ag
ment is particularly good there, where it is physically mo
interesting for excitations and for the hedgehog soliton~Sec.

FIG. 2. Soliton energy per positive energy particle, subtrac
by the free quark massM0 as a function of the Fermi momentum

The different curves correspond to thes̃ model~solid line!, and to

the ŝ model ~dashed line!. The model parameters areM05418.5

MeV in both models andL/M051.67 in the s̃ model and

l/g450.13 in theŝ model. The solid line also corresponds to t

NJL model which in this case is equivalent to thes̃ model.
-

ic
i-
-
n

i-

der
e-
t

V!. For the soliton studied in Sec. III the relevant region is
the range 0<F<Fv and the difference atF50 is respon-
sible for the different binding energies of thes̃ and ŝ soli-
tons found in the previous section~see Fig. 2!.

Expanding the right-hand side~RHS! of Eq. ~26! around
the equilibrium valuesF5Fv , CW 50, expressions for the
masses of the phenomenological structureless pion
sigma mesons are obtained,

mp
2 5

1

V

]2E
]CW 2U

~F,CW !5~Fv,0!

5m22
Ng2

2p2E0

L dpp2

Ap21M2
50,

~27!

ms
25

1

V

]2E
]F2U

~F,CW !5~Fv,0!

5m22
Ng2

2p2E0

L dpp4

~Ap21M2!3
.

~28!

The NJL model and thes̃ model are almost equivalen
but not quite since they lead to slightly different dynamic
The familiar relation from the NJL model

ms
254M2, ~29!

does not hold in thes̃ model. Actually, having in mind Eqs
~28! and ~29! in the chiral limit (mp50), it follows that

Ng2

2p2E0

L dpp2

~Ap21M2!3
54. ~30!

The effect of Eq.~30! would be to fix a value forL/M but
this quantity is no longer free since its value is fixed by t
criterium described in the previous section. However,

d

FIG. 3. Comparison between the mesonic self energy in thŝ

model~dotted line! and the Dirac-sea plus mesonic energy in thes̃
model ~solid line!. The model parameters are indicated in the ca
tion of Fig. 2.
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TABLE I. Mesonic properties in the context of thes̃-model and in the quark NJL model. The asteri
denotes results, concerning the NJL in the harmonic order, taken from Ref.@11#. We also include in brackets
some experimental or phenomenological values.

s̃ model NJL model

Mod. param. coupling g53.6 g851.09831025 MeV22*
L @MeV# 610.5 631.0*
m @MeV# 1045.7
m0 @MeV# 5.8 5.5*

~7.061.9!

Inputs f p @MeV# 93 93*
~93!

mp @MeV# 138 138*
~138!

^ c̄c&1/3 @MeV# 302.6 310.7*

~283.5631!

M @MeV# 335 335*
~350!

Outputs ms @MeV# 669.4 675.3*
gpq 3.6 3.5*

~2.7-3.7!
gsq 3.6 2.2*

gspp @MeV# 2306.5 1385.6
Gspp @MeV# 432.1 154.9

g4p 6.2 5.7
l
m

d

ne

t
.
s

ge

n-

n

on
t
y,

or

s
erg
markably enough, the results obtained forms , for both mod-
els, are, nevertheless, very similar~see Table I!.

We identify Fv with the pion decay constantf p as the
Goldberger-Treiman~GT! relation M5gFv suggests@see
Eq. ~5!#. In this context the parameterg has the physica
meaning of the coupling constant between quarks and
sons.

By endowing the quarks with a small current massm0 ,
chiral symmetry is explicitly broken and PCAC is achieve
Then,mp no longer vanishes. Instead we obtain

mp
2 f p

2 .2m0^ c̄c&, ~31!

which shows that the well known Gell-Mann-Oakes-Ren
~GMOR! relation is verified in this simple model.

The parameters of the model can be fitted in order
obtain f p593 MeV, mp5138 MeV as is shown in Table I

In spite of the simplicity of this model with structureles
mesons, the results obtained are in agreement with the
eral requirements of chiral symmetry.

From Eq. ~26! we also obtain the meson coupling co
stants

gspp5
1

2V

]3E
]F]CW 2U

~F,CW !5~Fv,0!

5
ms

22mp
2

2 f p
, ~32!

g4p5
1

24V

]4E
]CW 4U

~F,CW !5~Fv,0!

5
ms

22mp
2

8 f p
2

, ~33!
e-

.

r

o

n-

which, in the chiral limit, are related by the equatio
g4p5gspp

2 /(2ms
2).

The potential energy density of the effective bos
Hamiltonian derived from thes̃ model, taking into accoun
dynamical as well as explicit breaking of chiral symmetr
can be written

U5
1

2
mp

2 CW 21
1

2
ms

2F̃21gsppF̃CW 21g4pCW 41•••,

~34!

whereF̃5F2Fv .
Using the Fermi golden rule, the transition amplitude f

the decays→pp is

Gspp5
3gspp

2

16pms
S 12

4mp
2

ms
2 D 1/2

. ~35!

The s-wave lengths of thepp scattering are defined a
usually and lead to results which agree with the Weinb
relation:

a0
05

1

32pS 7mp
2

f p
2 D , ~36!

a0
25

1

32pS 22
mp

2

f p
2 D . ~37!
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V. THE HEDGEHOG SOLITON

The semiclassical~Thomas-Fermi! method considered in
Sec. III to describe the quarks is certainly a good appro
mation if there are many negative and positive energy p
ticles. However, if one is interested in the baryon structu
N153 and a quantum description of the valence quarks
obviously, necessary. On the other other hand, the numb
sea-quarks should be big enough@see Eq.~18!# to allow for a
semiclassical description which is used here.

We consider both the pion and the sigma fields which
assumed as classical fields in the spirit of a mean field
proximation. The usual hedgehog form is used, namely

F~r !5F~r !, ~38!

CW ~r !5 r̂w~r !. ~39!

The Nc valence quarks occupy the lowest~nodeless! s
state having the spin-isospin hedgehog structure:

uqh&5
1

A4p
S u~r !

iv~r !s• r̂
D 1

A2
~ uu↓&2ud↑&). ~40!

The radial functionsu(r ),v(r ),F(r ),w(r ) in ~38!–~40! are
determined variationally. The energy functional of t
hedgehog~with the constant vacuum energy already su
tracted! differs from ~13! essentially in the quark valenc
contribution. The following variational equations are o
tained, M (r )5gF(r ) and MW C(r )5gCW (r )5gr̂w(r ), and
the energy functional of the hedgehog in terms of the ra
profilesu(r ),v(r ),F(r ),w(r ), reads

E@u,v,F,w#5NcE
0

`Fu
]v
]r

2v
]u

]r
1

2uv
r

1gF~u22v2!

12gwuv G r 2dr 12pE
0

`F S ]F

]r D 2

1S ]w

]r D 2

1
2w2

r 2 G r 2dr 12pm2E
0

`

@F21w22 f p
2 #r 2dr

2
2N
p E

0

`

r 2drE
0

L

@Ap21~gF!21~gw!2

2Ap21~g fp!2#p2dp, ~41!

where we have already chosen the vacuum expectation v
of the s field, Fv5 f p and considered the chiral limit. Th
parameterm satisfies a self-consistency relation similar
~7!:

m25
Ng2

2p2E0

L p2dp

Ap21~g fp!2
. ~42!

We demand the energy functional~41! to be stationary
with respect to variations ofu, v, F, andw subjected to the
constraint

E
0

`

~u21v2!r 2dr 51. ~43!
i-
r-
,

s,
of

e
p-

-

al

lue

This restriction is implemented in the variational principle
means of a Lagrange multiplier,e ~the valence quark
eigenenergy!. We recall that the cutoff parameter is indepe
dent of r . Therefore, contrary to the procedure followed
connection with quarks in positive energy states, who
number was fixed by~12!, no constraint should be impose
to fix the number of sea-quarks. The variational princip
leads to the following set of differential equations:

]u

]r
52~e1gF!v1guf, ~44!

]v
]r

52
2v
r

1~e2gF!u2gvf, ~45!

]2F

]r 2 52
2

r

]F

]r
1
Ncg

4p
~u22v2!1m2F

2
Ng2F

2p2 E
0

L p2dp

Ap21~gF!21~gw!2
, ~46!

]2w

]r 2 52
2

r

]w

]r
1

2w

r
1
Ncg

2p
uv1m2w

2
Ng2w

2p2 E
0

L p2dp

Ap21~gF!21~gw!2
. ~47!

These equations are similar to those obtained for the he
hog in the ŝ model and they even reduce to the sam
asymptotic equations in the limitr→` @8#. It is therefore
interesting to compare the two hedgehog solitons obtaine
the s̃ model and in theŝ model. In order to make the com
parison we relate the model parameters as we already m
tioned in Sec. III:f p is fixed at the experimental value an
we take the same couplingg in both models. For a givenL
in the s̃ model we use~28!, which can be written in the form

ms
25N

g4f p
2

2p2 E
0

L p2dp

„p21~g fp!2
…

3/2
, ~48!

to compute thes mass which is then used as input parame
in the ŝ model.

The radial functions of quarks@u(r ),v(r )# and mesons
@F(r ),w(r )# are essentially the same in both models and t
result is independent of the parameters. Qualitatively,
radial functions are very similar to those found in differe
model calculations in the literature@3,4,8,9#, therefore we do
not present them here.

In Fig. 4 we present the ratio between theeffectivesea-
quark mass squared and the square of its mass in the vac
R5(F21w2)/ f p

2 . Both solutions produce similar result
with R in the range between;1 and;0.7. Such similarity
is a consequence of the similarity of the potentials for
chiral mesons in that range as it can be recognized from
3. The similarity of both models is also corroborated by t
results given in Table II for the quark eigenvalues and for
total soliton energy.

We note that the hedgehog soliton fields wind around
chiral valley, whereas in the soliton of Sec. III there were
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pions and the soliton sigma field interpolates betweenF50
at the center of the soliton andF5Fv in the periphery.
Therefore, the relevant region of the potential is quite diff
ent for the two solitons.

We remark that we have made an approximation, in so
ing Eqs.~45!–~47! since we have calculated the positive e
ergy quark states in full space although we have introdu
in the Hamiltonian@Eq. ~1!# a momentum cutoff for both
negative and positive energy states. We estimate that
error is small since we get admixtures of 8%~2%! of basic
states withp.L for the model parameters in the first~sec-
ond! row of Table II. This result shows also that the questi
whether or not to truncate also positive-energy states is
very important, while the cutoff for negative energy states
essential for mathematics~to avoid divergencies! as well as
for physics~finite size effect!.

VI. CONCLUSION

We have shown that the linears̃ model with valence
quarks and Dirac-sea quarks~but without the ‘‘Mexican
hat’’! possesses the following features

~i! The interaction of the Dirac sea with thes andp fields
gives a similar energy contribution as the mesonic s
interaction~‘‘Mexican hat’’! in the conventionalŝ model.
This energy contribution produces similar effects both
the soliton formation as well as for mesonic excitations
the vacuum.

FIG. 4. Ratio of the square of the effective quark mass to

square vacuum quark mass for the hedgehog soliton in thes̃ model

and in theŝ model. The model parameters are indicated in
caption of Fig. 2.
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~ii ! The proposeds̃ model is also similar to the NJL
model. In fact it differs from the bosonized version of NJ
only by the additional gradient terms~implying that meson
fields are not just auxiliary fields but represent new dyna
cal degrees of freedom!.

The advantage of thiss̃ model over the conventionalŝ
model is in a unified description of the baryonic sector~soli-
ton! and the mesonic sector~chiral distortion of Dirac sea!.
The Dirac sea not only provides the effective mesonic s
interaction, but it contributes also to other physical quan
ties. For example, its contribution to the momentum is like
to give more realistic effects of linear momentum projecti
@12#.

The advantage of thes̃ model over the NJL model is tha
it is easier to handle. At first sight it seems the opposite si
the s̃ model contains the gradient terms in addition. But
turns out that they help to stabilize the calculation of t
soliton with or without the chiral circle condition while in
NJL the variational equations are ill-behaved if the chi
circle condition is not imposed in the variational procedu
@10#.

We believe that having two sets of degrees of freedo
q q̄ and mesons, is not double counting since the full QCD
anyway very much richer than any of these models. Thes̃
model is just slightly richer than the NJL model. This do
not change much the low-energy properties, but it impro
some ambiguities in the calculation. It is a challenge to
whether at some important low energy properties really b
degrees of freedom manifest themselves. We cannot gi
definite answer yet but we conclude that the stabilizing
fects in the soliton formation in thes̃ model support this
view.
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TABLE II. Quark eigenvalues and soliton energies in GeV (L
andms also in GeV!.

s̃ model ŝ model
g L ms e Esol e Esol

4.5 0.7 0.961 0.085 1.175 0.087 1.173
0.9 1.140 0.079 1.186 0.080 1.185

5.0 0.7 1.094 0.019 1.089 0.021 1.089
0.9 1.315 0.016 1.097 0.017 1.097
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