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Soliton formation in ¢ models
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The connection between the lineamodel and the Nambu—Jona-Lasinio model is investigated on the basis
of a conventional Hartree-Fock approach. As a missing link, an intermediate model is used: & Imedel
with quarks(including the Dirac s@abut no “Mexican hat.” This model is particularly convenient to study the
conditions for soliton formation and the stability of the soliton when the Dirac sea is included.
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I. INTRODUCTION guark stateslie on the chiral circle. The proposed interme-

jate model, ther model, is very appropriate to study this

In the past, considerable attention has been devoted ion. We sh hat f ¢ model .
variouso modelg[1] in order to get a better understanding of qgestlon. ye show that for a range of model parameters it
gives a soliton and that the presence of the sea causes no

the mechanism of chiral symmetry breaking in QCD. More: T .
2 instability in the model with a momentum cutoff.

recently, the Nambu-Jona-LasinidNJL) model [2] has ) . . .

gained prominence in this respect. The linearmodel is Along the above Ilnei this paper is organized as follows.

generally applied to valence quarks in order to describe thil Sec._II we present the mode! and calt_:ulat_e the vacuum

properties of low-lying states of the baryonic sed@#]. On properties. In Sec. Ill we describe a soliton in the Thomas-

the other hand, the NJL model is usually used to describgerm' apprOX|mat|9n. The Thomas-Fermi approxn’rlatlon IS
valid for a large solitofwith many valence quarks, a “quark

mesons that are seen as quark-antiquarg)(excitations of  star) but some qualitative conclusions are instructive also
the chirally deformed vacuuib,6]. Although widely studied  for a nucleon. The soliton is also calculated in the NJL
in the literature, a deeper understanding of thenodel is  model in the framework of the Thomas-Fermi approxima-
lacking and this is the first motivation of our paper. tion. As expected, it is found that the obtained results in this

The linearc model with quarks is often regarded as ancontext essentially coincide with, or are very similar to the

approximation to the NJL model. The connection betweenesults of ther model. In Sec. IV we describe the pionic and
both models has been discussed in the literature using th§gma oscillations around the equilibrium vacuum value. We

technique of path integration over collective fieldd. We  ghqy that in thér model important facts of PCAC and cur-
discuss the connection between both models on the basis pin; gigebra relations are preserved. In Sec. V we calculate

Hartree-Fock techniques. This framework, which is familiarthe spherical three-valence-quark soliton by solving the

to the nuclear physics community, provides in a very intui-pjrac equation for thes-state valence quarks in the self-
tive way the connection between the “Mexican hat” and theconsistenta and 7 hedghog fields while still keeping the

polarization of the Dirac sea of quarks. We try to establishr, g mas-Fermi approximation for the sea quarks.
the missing link between the linear model with “Mexican
hat” and without sea quark@ve denote it agr mode), and -
the NJL model, in which the sea quarks play a crucial role. Il. THE o MODEL AND QUARK MATTER

We show that the link is well described by an intermediate \ye consider a model of interacting quarks and mesons
model: a linearc model with the Dirac sea of quarks and yhose Hamiltonian may be written in the form

without “Mexican hat” (we denote it agr mode). The me-

sonic self-interactiorithe “Mexican hat”) is replaced by the N .

interaction of the Dirac sea with the classicabnd 7 fields. Hz= > {Pr- @+ 9B P (r) +iyseric- V(r) 1+ mgBy}

We regard the “Mexican hat” as a manifestation of the k=1

Dirac sea. Since the Dirac sea is included in the model, the

1 R
“Mexican hat” is excluded in order to avoid double- +—f Br[I2+13+VP.-VO+VV¥ . VI,
) 2
counting.
The main motivation of our paper is, however, to study +mA(D2+§2)] 1)

conditions for soliton formation. It is well known that tle

model with thrge valence quarks yiel_ds solitonic SOIUtiO”%hereak,ﬁk,y5k stand for the standard Dirac matrices act-
for an appropriate range of the coupling const$4,8,9.

For the NJL, the conditions for soliton formation are not yetIng on the degrees of freedom of the partikler stands for

well understood; in[10] the three-valence-quark soliton the corresponding isospin matriced; and ¥ are, respec-
(nucleon is obtained with the assumption that the auxiliary tively, the (scalar-isoscalarsigma and the(pseudoscalar-
o and = fields (which determine the valence single-particle isovectoj pion fields;I14, ,I1y are the corresponding conju-
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gate momenta. The total number of quarks in positive and , A p2dp 1
negative energy states bé. The interaction ternithe term —=m-dV— M MVJ - ———==0
starting withg) implies a momentum cutofA for quarks; o ? Pr 2m* Vp*+M?
such momentum cutoff is not just a method to regularize th? . . . . o
theory but it rather incorporates the finite size of quarks nsertln_g(S) into this equation one concludes tH@ is trivi-
and/or mesons. Since the quark states with momenta beyorfY fulfilled for M=0 (hence®=0). ForM =0 the follow-
the cutoff do not interact they can be ignored. We emphasiz 9 ;elf-consmtency COI"Id!tIOI’] for hadronic matter with
that the cutoff has been introduced in the Hamiltonian, buf €™M MOMeNtuNpe is obtained:

this allows to look for the solutions in the truncated Fock

(6)

2
space constructed from quark single-particle states with mo- m?=Ag? A pdp ; 7)
menta smaller thaA. The truncated Hilbert space should be pe 272 \pZ+M?2

invariant under the relevant symmetry group of the model, _
namely, the group of chiral rotations. Therefore the samdhis is the so-called gap equation. Hereafter we denote by
truncation(momenta smaller than) must be used for nega- M=M,_ the solution of this equation and by =M, the

tive energy states and positive energy states. corresponding solution fopg=0.

The model parameters age A, m and the current quark Inserting(5) back into the energy3) one gets
massm,. We consider the chiral limitny=0 except when
dealing with pion propertie§Sec. V). mZMf, \%

The vacuum is described by constant meson fields and by  £=—-AV[F(A,M pF)— F(pe,M pF)]+ —ZF (8
a Slater determinarjid®,), constructed out of plane waves 29

which are negative energy eigenfunctions of the single par- h
ticle hamiltonianh=p- a+ 8M. The “constituent massmM  WNere
of the particles is treated as a variational parameter. X p2dp

The homog_eneous quark matt_er is also dgs_cribed by a F(X’M):J ﬁ‘/p?jLM?_ 9
Slater determinant which now includes positive energy 0 &m
eigenstates ofi up to the Fermi momentumg . _ )

The density matrix for the homogeneous quark matter” S€emingly more general ansatz corresponds to using the
which is diagonal in the index but not in Dirac indices, is €igenfunctions — of the  Hamiltonian h=p- a+ M
given by +iBys7-My to construct the Slater determingdt,) and

treat M and M\y variationally. The density matrix can be

1 p- a+ M . obtained by chirally rotating the forn®2) and it leads to
pP=5\+~ \/m O(A"=p) exactly the same minimzil energy for aiWy andl\7lq, whose
combinationM = \/M?+ M3, is the same. Therefore we are
1 p-a+ BM 2 free to chose from degenerate ground states the one with
pZ+M vanishingM 4, and pion field.

As the order parameter related with the spontaneously
broken chiral symmetry we introduce the “quark conden-

For a state of equilibrium, the momerih, ,I1, vanish and sate”

the fieIds<I>,\I7 are also constant in time. Moreover, for the

present choice of single particle statés=0. The energy — — — TrpB
expectation value is Q=(y4h)={buhu) +(Yatha)=—,—
E=(Dg|H|D A p%d M m) 2
(®o[H[ Do) :_NJ _pzwf—:—<—) M. (10
ANV p2+gdM 1 PF Vpe+M 9
= - f Fp———— + =mZD2,  (3) , |
(2m)3)a>lpl=pe)  p?+M2 2 The following comments are in order.

(i) The parameteg has no influence on the properties of
whereV denotes the normalization volume and the degenthe model except through the combinatiolls=g®, and

eracy due to spin, flavor and color Aé= N NN =12. (m/g)2. We do not need it here if we use as model parameter
Variation of the energy with respect ¥ leads to (m/g)? and if we are not interested in the unobservable
vacuum expectation value of sigmd,, .
9E A p2dp p2 (i) m i_s not the_mass of t_he sigma meson and does not
a_l\/I:NV(M —g®) > 5 >0, (4 have a direct physical meaning. Therefore we prefer to use
pe 27° (p*+M?) M as input parameter and determimég from the gap equa-

tion (7). We interpretM as the constituent quark mass and

which is satisfied for choose it phenomenologically in the range 0.30-0.45 GeV.
(iii) The regime of the results depends only on the dimen-

M=gd. (5)  sionless ratioA/M and M only determines the energpr

length scale. The ratioA/M can be determined from Eq.
The variation of€ with respect tod yields (10) using as input the phenomenological order parameter
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Q~ —(0.283 GeVy}. For typical constituent quark masses it side the soliton isM,. From (12) one gets the relation be-
follows a rather low cutoff value\/M = 1.80. tween the volume and the Fermi momentum for a certain
number of particles in positive energy states:

Ill. THE SOLITON WITH VALENCE QUARKS

2
AND DIRAC SEA 6m N, _ (14)
3
We analyze now, from a variational point of view, the Npe
possibility of havingN., quarks in positive energy states The energy of the system is
localized in a certain domai or, in other words, whether it
is energetically favorable for a soliton to be formed in the szf)F
model. We describe the single particle states by plane waves, E=X| NF(pg .M pF)—/\/F(A,M pF)+
now with anr-dependent mass, which is a good approxima-
tion for a system with many particles. In addition we chose m2M2
the chiral angle such thaf =0 and therefore the fermion +(V=x)| =AVF(A,Mg)+ 20]' (15)
mass just comes from the sigma meson. The energy func- 29

tional for the system withi-dependent mass reads o
where the last term represents the vacuum contribution from

the region outside the soliton. For a given number of positive
NF(Pe(r),M(r))—NF(A,M(r)) energy quarks, the equilibrium volume is determined by
minimizing this expression with respect to For a set of
parameterd!,, A andpg the quark mass inside the soliton is
(11) the solution of the equation

g[lvl]:der

m2M?2(r)
+—
2g°

Integration is throughout space and a gradient term which f /—22Jr M f ’—2_2+M
does not appear in8) should be noticed. The Fermi- o P

momentum 'i r- depezndeng and is  given i by for pg below the critical value for which chiral symmetry
pF(r) ZVGF M#(r) if ee—M%(r)>0 and pe(r)=0 if  regtoration occurs. Beyond that vald, =0.

EF M#(r)<0, in the spirit of the Thomas-Fermi method. It is interesting to plot, as a function of the Fermi momen-
However, the regularization cutoff does not depend on

) ) . tum (or as a function of the density, /x), the soliton en-
According to the Thomas-Fermi method the following con-ergy per positive energy particle

(16)

straint:
NP(T) G e Mpy) —F(AMy )+ F(AMo)
f dng:Nw 12 N.  pi PF
2
which fixes the particle number, must be imposed in the +2 ZN(M,ZJF—M?)) : 17)

variational principle for the energy. Since the normalization
volume is kept constant, the corresponding vacuum energ
also remains unchanged, so it is legitimate to subtract it. Thi
procedure is not and hocrule but a logical consequence of
our model. If it is followed, the energy functional of the
soliton becomes

¥ Fig. 1, this quantity, subtracted by the free quark mass
ﬁ/lo, is plotted as a function of the Fermi momentum for three
sets of the model parameters. It is interesting to note that the
transition between the regime of stable to the regime or
metastable solitons occurs at the valuBv =1.80 which is
very close to the physically relevant value mentioned in Sec.
NEE(r),M(1))—NE(A,M(r)) ][I. Whgther this' is a coincidence,_or a feature of the soliton
ormation remains an open question.
It is interesting to estimate the ratio between the number

SSO[M]szd:‘r

m>M?2(r) m?M3 of active(i.e., below the cutoff\) Dirac sea quarks and the
+ 2g2 —NF(A,Mq)+ number of valence quarks in the soliton,
1 N —( A )3 5.4 18
+5g2IM-VM |, (13 N, lpe > (18

for the equilibrium value op~0.4 GeV.
whereD is the domain Wheer(r)iMé. In Sec. V we shall treat the soliton with anrdependent
So far we did not discuss the conditions for the solitonquark mass, considering three valence quarks, now described
formation which we do now. For the sake of simplicity we guantically, while still keeping the semiclassical description
shall consider a domaiB, with volumex. Inside this vol-  of the Dirac sea.
ume the Fermi momentum, is constant and, therefore, the  In the present soliton we are not considering the gradient
quarks have a constant mavs,F, whereas their mass out- terms in (11). Therefore, in the framework of the time-
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FIG. 1. Soliton energy per positive energy particle, subtracte
by the free quark masil, as a function of the Fermi momentum.
The different curves correspond th/My;=1.89 (dashed ling
A/My=1.80 (dotted ling, and A/My=1.67 (solid line). We have
usedA=0.7 GeV.

independent mean field approximation, whéifg =0 and
ﬁq,:O, the model(1) reduces to the so-called bosonized

NJL. Note that the bosonized NJL is completely equivalent

to the original NJL; it introduces thé and ¥ fields as
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1— 92 2I0I0 - 21)
PEVP +M
one gets, for the NJL model,
M2V
_/\/V[F(A,MpF)—F(pF,MpF)H 5 (22

The comparison between Eq8) and (22) [or between(7)
and (21)] establishes the equivalence between dhenodel
and the NJL model with respect static propertiesClearly,
if the coupling constant in the NJL is chosen such that
g’'=g%m? the NJL ando model results are the same,
namely the curves shown in Fig. 1. Finally, we note that if
exchange terms are included, the facwr in the self-
consistency equatio(21) changes tay’ (N+1)/N.

For theo model, whose mesonic potenti@h the limit of

dphiral symmetry reads

A -
=Z(<1>2+\1f2—c1>5)2, (23)
the soliton energy per positive energy particle is
Esol N
N— O o o)+ o Mam MO (24

auxiliary fields and not as new dynamical degrees of freedomyhereM,, s the solution of the self-consistency condition

as in thea model.

Moreover, thes model and the NJL model are equivalent
as far as static properties are concerned. Thus, the results

interest so far obtained also apply to the NJL model. This

p2d

Mz)_ pr’:
“ 2atlo \JpPrmZ

A 2
of E ( M Pe (25)

remark is not valid, however, for the discussion in the next

section, since the- model and the NJL model have similar
but not identical dynamical properties.

The behavior ofé,, /N, [Eq. (24)] as a function of the
Fermi momentum is similar to the behavior found in e

We summarize now the NJL model. The Hamiltonian of model (which is shown in Fig. L In particular, the shape

this model may be written

N
g’
Haol= >, Pe @%— 248
=g

||b4Z

o(r—=ry)

><,3|<,3|(1_7’5|<7’5|;'k'7*'|)- (19

The energy expectation value in the Hartree approximation igium, in the sigma direction, as in the model (i.e., th

E=(Do|H|Do)
J\N A p*
\/HW
2
g’ N A M p?
_7v< P ] (20)

Using Eq.(9) and the self-consistency condition for hadronic
matter with Fermi momenturpg,

depends only on the ratin/g* and M, just sets the scale.
Similarly to Fig. 1 there are stable and metastable solitons. In

Fig. 2 we compareds,/N.)— M, in the = model and in the
o model for stable solitons. In order to establish a compari-

son of the results the parameters in thenodel are chosen
to yield an effective meson potential with the minima located
at the same position and with the same curvature at the mini-

e
sigma mass is the same in both modelRrom Fig. 2 one

sees that ther model soliton is more bound than the
model (or NJL), for corresponding model parameters. How-
ever, the minima occur at similar densities and, in both cases,
already in the chiral symmetry restored phase. Another im-

portant difference between the themodel and ther model

is that in thes model the restoration of chiral symmetry is
associated with a second order phase transition while in the

o model the phase transition is of first order. In other words,
the quark massvi b approaches 0 continuously in the

model and jumps discontinuously to 0 in tbremodel, when
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FIG. 2. Soliton energy per positive energy particle, subtracted

by the free quark masil, as a function of the Fermi momentum.  F|G. 3. Comparison between the mesonic self energy inothe
The different curves correspond to themodel (solid line), and to model(dotted ling and the Dirac-sea plus mesonic energy indhe
the ¢ model (dashed ling The model parameters aM;=418.5 model(solid line). The model parameters are indicated in the cap-
MeV in both models andA/M,=1.67 in the ¢ model and tion of Fig. 2.
A g*=0.13 in thea model. The solid line also corresponds to the ) o L
NJL model which in this case is equivalent to themodel. V). For the soliton studied in S_ec. Il the relevar_1t region isin
the range &e®=<®, and the difference ab=0 is respon-
chiral symmetry is restored as a result of an increaseg:of ~ Sible for the different binding energies of theand o soli-
The equivalence between themodel and the NJL model is tons found in the previous sectidsee Fig. 2

only qualitative. Expanding the right-hand sid®HS) of Eqg. (26) around
the equilibrium valuesb=9®,, ¥ =0, expressions for the
V. THE o AND 7 EXCITATIONS masses of the phenomenological structureless pion and

sigma mesons are obtained,
In the = model, the vacuum energy, in terms of the clas-

sical fields® and ¥, can then be written 2ot d%e :mz_/\/gz A dpp? o
5 TV op2 - 2mw2J)o \p?+M? ’
Ap<dp — 1 . (@ ¥)=(d,.0
E=-MW | S \/p2+g2(<D2+\P2)+EmZV(CDZwL‘PZ). (27)
0
(26) ) 1 [?25 ) Ngz A dp p4
. . mi=—— =m— .
o 2 2 2 2\3
The be.hawor of thr-:\ ground state enel@ﬁ)., as a function V od @~ 0 2m2 )0 (‘/p +M?)
of the fields® andW¥, resembles the “Mexican hat” poten- (28)
tial (23).

In fact, the first term of Eq(26) (quark sea energyde- The NJL model and ther model are almost equivalent

Creases quadratically for sma® and, subsequently, for but not quite since they lead to slightly different dynamics.
large ®, decreases linearly. The second term, the MesONIGha familiar relation from the NJL model

potential energy, is positive quadratic throughout and domi-
nates at large. If the spontaneous symmetry breaking con-
dition is satisfied, this positive second term is weaker than
the negative first term ned@=0. So the energy goes first L~ S
guadratically down and then quadratically up. The “Mexicandoes not ho'd in ther mOd?'- Actually, ha}vmg in mind Egs.
hat” (23), which represents the energy density of the(28) and(29) in the chiral limit (m,=0), it follows that
vacuum, behaves very similarly, except that it raises quarti-

m2=4M?, (29

cally for very large®. Figure 3 shows the potentials for the Ng? (A dpp? "y (30
o model and for ther model(we set¥ =0) for the param- 272Jo (VpZ+M?)3

eters used in Fig. 2. Since the parameters are chosen in order

to have the same curvature around the minima, the agred+e effect of Eq.(30) would be to fix a value for\/M but
ment is particularly good there, where it is physically mostthis quantity is no longer free since its value is fixed by the
interesting for excitations and for the hedgehog solitdac.  criterium described in the previous section. However, re-
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TABLE |. Mesonic properties in the context of themodel and in the quark NJL model. The asterisk
denotes results, concerning the NJL in the harmonic order, taken fronmiIRgfWe also include in brackets
some experimental or phenomenological values.

o model NJL model
Mod. param. coupling g=3.6 g’'=1.098<10"° MeV ~2*
A [MeV] 610.5 631.0
m [MeV] 1045.7
my [MeV] 5.8 5.5
(7.0=1.9
Inputs f,. [MeV] 93 93*
(93
m, [MeV] 138 138
(138
(I) 3 [MeV] 302.6 310.7
(283.5+31)
M [MeV] 335 335
(350
Outputs m, [MeV] 669.4 675.3
g 3.6 3.5
(2.7-3.9
g 3.6 2.2
Uorm [MeV] 2306.5 1385.6
T,..[MeV] 432.1 154.9
Uan 6.2 5.7

markably enough, the results obtainedifigy, for both mod-  which, in the chiral limit, are related by the equation
els, are, nevertheless, very similaee Table)l Oan=02_./(2m3).

We identify &, with the pion decay constarit, as the The potential energy density of the effective boson
Goldberger-Treimar(GT) relation M=g®, suggestisee  Hamiltonian derived from ther model, taking into account
Eqg. (5] In this context the parametey has the physical gynamical as well as explicit breaking of chiral symmetry,
meaning of the coupling constant between quarks and mgsan pe written
sons.

By endowing the quarks with a small current masg, 1 1
chiral symmetry is explicitly broken and PCAC is achieved. U= _mi\ff2+§m§c“152+ Uorn®@P2+g,, T4+ -,

Then,m_ no longer vanishes. Instead we obtain 2 (34

o=~ Moy, GY where®=0-o

Using the Fermi golden rule, the transition amplitude for

which shows that the well known GelI-Mann-Oakes-Renner,[he decayr— mr is

(GMOR ) relation is verified in this simple model.

The parameters of the model can be fitted in order to
obtainf =93 MeV, m,=138 MeV as is shown in Table I.

In spite of the simplicity of this model with structureless
mesons, the results obtained are in agreement with the gen-
eral requirements of chiral symmetry.

From Eg.(26) we also obtain the meson coupling con-

T —

T 16mm,\ T m?

o

(39

397, 4mi) v

The s-wave lengths of therw scattering are defined as
usually and lead to results which agree with the Weinberg

stants i
relation:
1 93¢ mi_ maz-r 32) 1 { 7m?
g()”IT’IT:_—_)Z T of 0_— m7T
2V (7(1)(9’\1, (CI),:I’):(Q)U,O) 2f7T a0_3277 f2 ] (36)
1 o€ ma—m, :
94~ 20V 34| - ez 0 & ag:i( -2 <
J (®,9)=(P,,0) ™ s2m ffT




V. THE HEDGEHOG SOLITON

The semiclassicalThomas-Fermi method considered in
Sec. Il to describe the quarks is certainly a good approxi
mation if there are many negative and positive energy pa

ticles. However, if one is interested in the baryon structure
S

N, =3 and a quantum description of the valence quarks i
obviously, necessary. On the other other hand, the number
sea-quarks should be big enoUgke Eq(18)] to allow for a
semiclassical description which is used here.

We consider both the pion and the sigma fields which ar

assumed as classical fields in the spirit of a mean field ap-

proximation. The usual hedgehog form is used, namely

O(r)y=>d(r), (38

W (r)=re(r). (39)

The N, valence quarks occupy the lowegtodeless s
state having the spin-isospin hedgehog structure:
1

( u(r)
|qh>:\/T—7T

iv(ror
The radial functionsu(r),v(r),®(r),¢(r) in (38)—(40) are
determined variationally. The energy functional of the

1
)E(IUU—MT))- (40)

hedgehog(with the constant vacuum energy already sub-

tracted differs from (13) essentially in the quark valence
contribution. The following variational equations are ob-
tained, M(r)=g®(r) and My (r)=g¥(r)=gre(r), and
the energy functional of the hedgehog in terms of the radi
profilesu(r),v(r),®(r),¢(r), reads

® —me v <9u+2qur D(U2—p2
gu,u,®,0]=N; o Yar Vot te (u=v?)
+2 2dr+2 fw o 2+ %)

geuv |rodr+2m o\ ar ar

2

4 ri;}rde-Zﬂ'mzf [0+ o2 £2]r 2
0

2N [= (A
—7f0 rzdrf0 [Vp?*+(g®)*+(ge)?

—\p?+(gf,)?]p?dp,

where we have already chosen the vacuum expectation val
of the o field, ®,=f_ and considered the chiral limit. The
parametemn satisfies a self-consistency relation similar to

(7):

(41)

_Ng? (A pPdp
2m2Jo p?+(gf,)?
We demand the energy functiongtl) to be stationary

with respect to variations af, v, ®, and¢ subjected to the
constraint

2

m (42

Jm(u2+v2)r2dr=1. (43
0
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This restriction is implemented in the variational principle by
means of a Lagrange multipliere (the valence quark
eigenenergy We recall that the cutoff parameter is indepen-
dent ofr. Therefore, contrary to the procedure followed in
connection with quarks in positive energy states, whose
humber was fixed by12), no constraint should be imposed
t? fix the number of sea-quarks. The variational principle

%ads to the following set of differential equations:

or (44)

e (e+g®d)v+gug,

2v
—7+(e—g<1>)u—gv¢>,

Jv
or

(45)

9*® 2 9d
ST T T oo T
ar r or

Ng?®

B 272

N,
4—f(u2—v2)+m2<b
p2dp
9®)%+(g¢)?’

FPo  2dp 20 Ng
_2: R _+ PR
or roor r 2

(46)

fOAJpzwL(

UU+m2go

K

272

p2dp
9®)%+(ge)?

These equations are similar to those obtained for the hedge-

(47

joAJszr(

apog in the o model and they even reduce to the same

asymptotic equations in the limit—co [8]. It is therefore
interesting to compare the two hedgehog solitons obtained in

the o model and in ther model. In order to make the com-
parison we relate the model parameters as we already men-
tioned in Sec. llI:f , is fixed at the experimental value and
we take the same coupligin both models. For a given

in the'c model we us&28), which can be written in the form
p*dp

A
fo (P?+(gfn)H*?

to compute ther mass which is then used as input parameter

in the & model.

The radial functions of quarkpu(r),v(r)] and mesons
[®(r),e(r)] are essentially the same in both models and this
result is independent of the parameters. Qualitatively, the
Y&dial functions are very similar to those found in different
model calculations in the literatuf8,4,8,9, therefore we do
not present them here.

In Fig. 4 we present the ratio between thiectivesea-
quark mass squared and the square of its mass in the vacuum
R=(d2+ ¢?)/f2. Both solutions produce similar results
with R in the range betweern 1 and~0.7. Such similarity
is a consequence of the similarity of the potentials for the
chiral mesons in that range as it can be recognized from Fig.
3. The similarity of both models is also corroborated by the
results given in Table Il for the quark eigenvalues and for the
total soliton energy.

We note that the hedgehog soliton fields wind around the
chiral valley, whereas in the soliton of Sec. Il there were no

4fi_

m2

o 2 772 (48)
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1.02 TABLE Il. Quark eigenvalues and soliton energies in GeV (
] andm,, also in GeV.
. o model o model
0.96
B g A mg € Esol € Esol
E 45 0.7 0.961 0.085 1.175 0.087 1.173
“;_f 0.9 - 0.9 1.140 0.079 1.186 0.080 1.185
P ]
N?*r i 5.0 0.7 1.094 0.019 1.089 0.021 1.089
“ig/ 0.84 E 0.9 1.315 0.016 1.097 0.017 1.097
E (i) The proposed? model is also similar to the NJL
0.78 model. In fact it differs from the bosonized version of NJL
] only by the additional gradient termnplying that meson
] fields are not just auxiliary fields but represent new dynami-
N cal degrees of freedom
072 I T I | I I I I | T T I I | I I T T Th d t fthN d | th t a}
0.0 10 50 <0 4.0 e advantage of thiss model over the convention

r (fm) model is in a unified_ descriptio_n of _the b_aryonic _sec(mrli-

ton) and the mesonic sectdchiral distortion of Dirac sea
FIG. 4. Ratio of the square of the effective quark mass to theThe Dirac sea not only provides the effective mesonic self-
square vacuum quark mass for the hedgehog soliton io-timedel  interaction, but it contributes also to other physical quanti-
and in theo model. The model parameters are indicated in theties. For example, its contribution to the momentum is likely

caption of Fig. 2. to give more realistic effects of linear momentum projection
[12].
pions and the soliton sigma field interpolates betwden0 The advantage of the model over the NJL model is that

at the center of the soliton ané=®, in the periphery. itis easier to handle. At first sight it seems the opposite since
Therefore, the relevant region of the potential is quite differ-the 7 model contains the gradient terms in addition. But it
ent for the two solitons. o turns out that they help to stabilize the calculation of the
_ We remark that we have made an approximation, in solvsgliton with or without the chiral circle condition while in
ing Egs.(45)—(47) since we have calculated the positive en-NjL the variational equations are ill-behaved if the chiral
ergy quark states in full space although we have introducegjrcie condition is not imposed in the variational procedure
in the Hamiltonian[Eq. (1)] a momentum cutoff for both 10,

negative and positive energy states. We estimate that the \ye pelieve that having two sets of degrees of freedom,

error is small since we get admixtures of §28%0) of basic — . , . .
states withp> A for the model parameters in the firgec- a9 and mesons, is npt double counting since the full QED 'S
ond row of Table I1. This result shows also that the question2YWay very much richer than any of these models. #he

whether or not to truncate also positive-energy states is ndf'ode! is just slightly richer than the NJL model. This does
very important, while the cutoff for negative energy states ig'°t change much the low-energy properties, but it improves

essential for mathematidto avoid divergencigsas well as  SOMe ambiguitieg in the calculation. It is a chgllenge to see
for physics(finite size effect whether at some important low energy properties really both

degrees of freedom manifest themselves. We cannot give a
definite answer yet but we conclude that the stabilizing ef-
fects in the soliton formation in the model support this
We have shown that the linear model with valence View.
quarks and Dirac-sea quarkbut without the “Mexican
hat”) possesses the following features
(i) The interaction of the Dirac sea with theand = fields We are glad to acknowledge many critical remarks of
gives a similar energy contribution as the mesonic selfgojan Golli. This work was supported by the Ministry of
interaction (“Mexican hat”) in the conventionab- model.  Science and Technology of the Republic of Slovenia and by
This energy contribution produces similar effects both forJNICT, Portugal(Contracts PRAXIS /2 /2.1 [Fis /451 /94,
the soliton formation as well as for mesonic excitations ofPRAXIS /PCEX /P /FIS /6 /96, and PESO /S /PRO /1057
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