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Meson self-energies calculated by the relativistic particle-hole-antiparticle representation

Masahiro Nakano
University of Occupational and Environmental Health, Kitakyushu 807, Japan

Nobuo Noda, Tomohiro Mitsumori, Kazuharu Koide, Hiroaki Kouno, and Akira Hasegawa
Saga University, Saga 840, Japan

Liang-Gang Liu
Zhongshan University, Guangzhou, China

~Received 31 January 1997!

A new formulation of meson self-energies is introduced fors,v,p,r,d, andh mesons on the basis of the
particle-hole-antiparticle representation. We have studied the difference between the meson self-energy~MSE!
of this representation and the MSE of the traditional density-Feynman~DF! representation. It is shown that the
new formulation describes exactly the physical processes such as particle-hole excitations or particle-
antiparticle excitations, and that, on the other hand, the meson self-energy based on the DF representation
includes unphysical components. By numerical calculations, the meson self-energies describing the particle-
hole excitations are shown to be close to each other for most of the meson self-energy in low momentum
(R,500 MeV! and low energy (R0,200 MeV!. This fact implies that former calculations using the low
momentum and low-energy part do not change greatly. The density part of the density-Feynman representation
has been shown to have a resonant structure around the energy of particle-antiparticle excitation, which causes
a large difference between the two representations in the meson spectrum calculations. Our investigation
concludes that the former calculations based on the density-Feynman representation are not invalidated in
many cases, but the particle-hole-antiparticle representation is more appropriate to treat exactly the physical
processes.@S0556-2813~97!03809-0#

PACS number~s!: 14.40.Cs, 13.75.Cs, 21.65.1f, 24.10.Cn
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I. INTRODUCTION

In the relativistic many-body theory, the meson se
energy~MSE! is an essential quantity whose importance
nuclear physics has been shown by many authors@1–3#. The
MSE represents medium effects from particle-hole exc
tions or particle-antiparticle excitations while the mes
propagates in nuclear matter, and has been often use
various studies; for example, the energy contribution fr
ring diagrams@4–9#, the instability of the random-phase a
proximation~RPA! @10–12#, the meson mass in nuclear ma
ter @13,14#, and the nuclear interactions in nuclear mat
@14#. In these papers, the MSE has been calculated on
basis of the density-Feynman~DF! representation of the
nucleon propagator.

In this representation, the nucleon propagator is separ
into two parts; one is the Feynman part (GF), which is simi-
lar to the free nucleon propagator, except that the free m
is replaced by the effective nucleon mass in nuclear ma
and the other is the density part (GD), which represents ad
ditional effects arising from the existence of the matter. Ev
though this representation has been successful and w
used, the MSE of the DF representation does not repre
exactly physical processes, such as particle-hole excitat
or particle-antiparticle excitations. In fact, recently it h
been pointed out that the MSE of the DF representation
cludes unphysical components@15,16#. Instead of the tradi-
tional density-Feynman representation, we propose
particle-hole-antiparticle~PHA! representation to treat th
physical processes exactly, which facilitates the investiga
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of the validity of the traditional MSE calculations. Despi
the importance of the problem, up until now there have be
no systematic investigations on this point.

In this paper, we first show a new formulation of the MS
of the PHA representation and point out explicitly that t
DF representation includes unphysical components. N
from various sides we investigate the approximation of
MSE of the DF representation, and make clear the effect
ness of the DF representation from the point of numeri
calculations.

II. FORMALISM

A. Lagrangian

In order to investigate the difference between two rep
sentations, we adopt the often used Lagrangian densit
Yukawa coupling, which is constructed from the degrees
freedom associated with two isoscalar mesons (s and v)
and two isovector ones (p andr):

L INT5(
a

c̄Gafac, for a5s, v, p, r, ~1!

where G symbolizes the spin and isospin structure of t
coupling and is given as

Gs5gs, ~2!

Gm
v5 igvgm , ~3!
3287 © 1997 The American Physical Society
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3288 56MASAHIRO NAKANO et al.
Gp5 i
f p

mp
gmg5t]m , ~4!

Gm
r 5 igrS gmt2

kr

2M
smnt]nD . ~5!

The operatorc is the nucleon field,w are the meson
fields,M andmp are the rest masses of the nucleon and pi
respectively, andgs, gv, f p , gr, and kr are the coupling
constants. The notation in this paper is the same as Ref.@8#.

The p-NN interaction can be written in two possib
forms, pseudoscalar~PS! and pseudovector~PV! coupling.
We chose the PV coupling in this work, because from g
eral arguments regarding chiral symmetry, PV coupling
to be used to obtain reasonable results in the one-pion
change approximation. For ther meson, the tensor coupling
are included along with the vector coupling. Thus the L
grangian includes four types of interactions, scalar, vec
pseudovector, and tensor couplings. These couplings are
applied to other mesons such asd meson of a scalar couplin
andh meson of a pseudovector coupling, which results
included in this paper.

B. Nucleon propagator in the density-Feynman„DF…

representation

The nucleon propagatorG has been traditionally written
as the sum of the density-dependent part (GD) and Feynman
part (GF):

G~q!5GD~q!1GF~q!, ~6!

GD~q!5@2 igmqm* 1M* #
p i

Eq
d~q0* 2Eq!u~kf2uqu!, ~7!

GF~q!52
2 igmqm1M*

q21M* 22 i«
. ~8!

One merit of this density-Feynman~DF! representation is
that the density part goes to zero and only the Feynman
remains when the baryon density of nuclear matter beco
zero, resulting in the nucleon propagator smoothly chang
to that of the elementary particle at zero density. Moreov
its form is convenient to use because the density partGD

includes explicitly thed function. However, since the form
of GD is made artificially by the sum of two pole-parts of th
denominators of the nucleon propagator, it does not hav
exact physical meaning.

C. Particle-hole-antiparticle „PHA… representation

In order to represent the physical processes, alternati
we should use the particle-hole-antiparticle~PHA! represen-
tation where the propagation of particles, holes and antip
ticles are separately described as follows:

G~q!5Gp~q!1Gh~q!1Ga~q!, ~9!

Gp~q!52
2 igmqm1M*

2Eq

u~ uqu2kf !

Eq2q02 i«
, ~10!
,

-
s
x-

-
r,
lso

e

rt
es
g
r,

an

ly
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Gh~q!52
2 igmqm1M*

2Eq

u~kf2uqu!
Eq2q01 i«

, ~11!

Ga~q!52
2 igmqm1M*

2Eq

1

Eq1q02 i«
, ~12!

where, in our notation,igmqm5 ig iqi2g0E0 for the particle
and hole,igmqm5 ig iqi1g0E0 for the antiparticle propaga
tor, andEq5AM* 21q2; the effective nucleon massM* is
given by using the nucleon self-energy (Ss) as
M* 5M1Ss . ~See Sec. III on the expression ofSs .)

D. Meson self-energy in the PHA representation

The meson self-energy~MSE! usually used is given unde
random phase approximation as

Pa~R!5~2 i ! E d4q

~2p!4
Tr@G~q!GaG~q1R!Ga#,

~13!

where the trace includes also the summation of isospin
that the factorl ~52 for the isoscalar mesons! appears after
the summation.

First, we show the exact expression of the MSE by us
the PHA representation. By inserting Eq.~9! into Eq. ~13!,
five unphysical terms are dropped after integration ofq0 on
the complex plane because of the boundary condition (i«)
and only four physical terms are left:

Pa~R!5Pph
a ~R!1Ppa

a ~R!, ~14!

Pph
a ~R!52lE d3q

~2p!3

nq~12nk!

4EqEk
FTr~qW ,qW 1RW ,Eq ,Ek!

Ek2Eq2R02 i«

1
Tr~2qW ,2qW 2RW ,Eq ,Ek!

Ek2Eq1R02 i«
G , ~15!

Ppa
a ~R!5lE d3q

~2p!3

12nq

4EqEk
FTr~qW ,qW 1RW ,Eq ,2Ek!

Ek1Eq1R02 i«

1
Tr~2qW ,2qW 2RW ,Eq ,2Ek!

Ek1Eq2R02 i«
G , ~16!

wherenq stands for a step function which is 1 for a hole sta
and 0 for a particle state,l is the isospin degeneracy, and T
means the trace part of Tr@G(q)GaG(q1k)Ga#, and
k5uqW 1RW u. We rewrote the second terms in Eqs.~15! and
~16! by replacingqW→2qW . The meson self-energy in Eq.~15!
contains a factornq(12nk), which represents the contribu
tion from particle-hole excitations. This particle-hole pa
Pph is finite because of the factornq . The MSE in Eq.~16!
contains the factor 12nq ; it describes the contribution from
particle-antiparticle excitations. The particle-antiparticle p
Ppa is a nonzero-density version of vacuum polarization
should be stressed that the expression of the particle-
part, although it is completely relativistic, is similar to that
the nonrelativistic polarization function, except for the tra
part. This point is one of the merits of the PHA represen
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56 3289MESON SELF-ENERGIES CALCULATED BY THE . . .
tion. Since there are few expressions of the MSE using
PHA representation, it is worthwhile to write down their e
plicit forms for various mesons. Calculating the trace par
Eq. ~15! for various interaction types, we obtained the fo
lowing expressions for the particle-hole part of the MSE:

Pph
s ~R!5l~gs2!E d3q

~2p!3

nq~12nk!

EqEk
F ~Ek2Eq!

2S 2M* 21
Rm

2

2 D ~ f ph11 f ph2!G , ~17!

Pph
v l~R!5l~gv!2E d3q

~2p!3

nq~12nk!

EkEq
@2~Ek2Eq!

2~Rm
2 1q3k32EqEk!~ f ph11 f ph2!#, ~18!

Pph
v t~R!5l~gv!2E d3q

~2p!3

nq~12nk!

EkEq

3F ~Ek2Eq!2S Rm
2

2
1q1k11q2k2D ~ f ph11 f ph2!G

~19!

Pph
svmix~R!5l~gsgv!E d3q

~2p!3

nq~12nk!

EqEk

3@2M* ~Ek1Eq!~ f ph11 f ph2!#, ~20!

Pph
p ~R!5l S f p

mp
D 2E d3q

~2p!3

nq~12nk!

EkEq
@2~Ek2Eq!

3~~Ek1Eq!22RW 2!12M* 2Rm
2 ~ f ph11 f ph2!#,

~21!

Pph
r,Tl~R!5lS gr

k

M D 2E d3q

~2p!3

nq~12nk!

EkEq
Rm

2 F ~Ek2Eq!

1S 2M* 21
Rm

2

2
12~q3k32EqEk! D

3~ f ph11 f ph2!G , ~22!

Pph
r,Tt~R!5lS gr

k

M D 2E d3q

~2p!3

nq~12nk!

EkEq
~2 !@2~Ek2Eq!

3~~Ek1Eq!22RW 2!1Rm
2 $~2M* 21q1k11q2k2!

3~ f ph11 f ph2!%#, ~23!

wheref ph651/(Ek2Eq6R02 i«), the suffix ph of the coef-
ficient represents the particle-hole excitation energy
Ek2Eq , and the sign1 or – means the sign before th
meson energyR0. Note that Rm

2 5R22R0
2 in our notation.

As for ther meson, the MSE of the vector interaction part
e

n

f

the same as that of thev meson, except for the couplin
constants, thus only its tensor part is given here.@See Ap-
pendix I of Ref.@16# for the derivation of Eqs.~22! and~23!
and for the current conservation of the tensor part ofr meson
self-energy.# The MSE ofd meson andh meson have the
same form as those ofs ~scalar coupling! andp ~pseudovec-
tor coupling! mesons respectively, except for their couplin
constants.

E. Meson self-energy in the DF representation

Next we consider the MSE of the density-Feynman~DF!
representation. By using Eqs.~6!–~8!, the meson self-energy
is given by

P~R!5PD~R!1PF~R!1P imag~R!, ~24!

PD~R!52E d4q

~2p!3

nq

2Eq
d~q02Eq!

3F Tr~q,q1R!

~q1R!21M* 22 i«

1
Tr~q,q2R!

~q2R!21M* 22 i«
G , ~25!

PF~R!51~2 i !E d4q

~2p!4

3
Tr~q,q1R!

~q21M* 22 i«!@~q1R!21M* 22 i«#
, ~26!

P imag~R!52~2 i !E d4q

~2p!2

nqnk

4EqEk
Tr~q,q1R!

3d~q02Eq!d~q01R02Ek!. ~27!

The second termPF comes fromGFGFand is called the
Feynman part, the first termPD comes fromGDGF1GFGD

and is called the density part, and the third termP imag comes
from GDGD,which is pure imaginary. The Feynman part
divergent and a special treatment is needed to render it fin
Since the density part is finite and it is considered to rep
sent approximately the particle-hole excitation effects, it h
been often used in many studies. Actually most of the stud
mentioned in the Introduction use the density partPD .
Therefore, in this paper we focus mainly on the differen
between the density partPD of the DF representation and th
particle-hole partPph of the PHA representation. As for
treatment of the divergent part, we have shown in Ref.@16#
one possible way to obtain meaningful results based on
cutoff field theory.

F. Difference between the PHA and DF representations

In this subsection, the difference between two represe
tions based on the equations in Secs. II D and II E is d
cussed. In order to show explicitly that the density-part (PD)
of the MSE in the DF representation does not represen
proper physical process, we rewrote the density part of
~25! and obtained



no

le
ta
S

ca
t
i

-
th
.,

x-

di
e
r

s

m

,
via
to

es
le-

art

ole
o

s of
lcu-

art
is
m
her
t
the
iva-
s it

er-
eri-

opt
he
c-

his

the
t
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PD~R!52lE d3q

~2p!3

nq

4EqEk
FTr~qW ,qW 1RW ,Eq ,Eq1R0!

Ek2Eq2R02 i«

1
Tr~2qW ,2qW 2RW ,Eq ,Eq2R0!

Ek2Eq1R02 i«

1
Tr~qW ,qW 1RW ,Eq ,Eq1R0!

Ek1Eq1R02 i«

1
Tr~2qW ,2qW 2RW ,Eq ,Eq2R0!

Ek1Eq2R02 i«
G . ~28!

The density partPD of Eq. ~28! includes the term of
f ph11 f ph2 , whose denominator is the same asPph of Eq.
~15!. Exactly speaking, however, the density part does
represent particle-hole excitations since the factornq in Eq.
~28! is different from the particle-hole factornq(12nk) in
Eq. ~15!. The factornq represents the integration in the ho
states so that the factor constrains one particle in a hole s
however, the other particle is not constrained. Thus the M
in the DF representation includes, in principle, unphysi
components such as hole-hole excitations besides
particle-hole excitations. One more important difference
that the density partPD includes a part of the particle
antiparticle excitation and it is not fully included because
factornk is also different from the factor of the particle, i.e
(12nk). This partial inclusion of the particle-antiparticle e
citations is undesirable.

Furthermore the trace part in the DF representation is
ferent from the PHA representation because of the differ
on-shell conditions in the two representations. This is clea
shown in Eqs.~15! and ~28!. Taking thes and v meson
cases as examples, one obtains the following expression
PD :

PD
s ~R!5l~gs!2E d3q

~2p!3

nq

EkEq
F2Ek2S 2M* 21

Rm
2

2 D
3~ f ph11 f ph21 f pa11 f pa2!G , ~29!

PD
v l~R!5l~gv!2E d3q

~2p!3

nq

EkEq
@4Ek2@Rm

2 12q3k3

22Eq~Eq1R0!#~ f ph21 f pa1!2@Rm
2 12q3k3

22Eq~Eq2R0!#~ f ph11 f pa2!#, ~30!

PD
v t~R!5l~gv!2E d3q

~2p!3

nq

EkEq
F2Ek2S Rm

2

2
1q1k1

1q2k2D ~ f ph11 f ph21 f pa11 f pa2!G ~31!

The first terms in the above expressions, which co
from the trace part in Eq.~28!, are different from those in
Eqs. ~17!–~19!. ~As is shown in the following subsection
this difference in the first terms gives an appreciable de
tion in the transverse component of the MSE of the vec
t

te,
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he
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-
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interaction.! The density part in the DF representation do
not represent proper particle-hole excitations nor partic
antiparticle excitations.

We can show, however, that by adding the Feynman p
and the pure imaginary part to the density partPD , one can
obtain the same contribution as the total of the particle-h
part and the particle-antiparticle part. The relation of tw
representations is explicitly shown for thes meson case as
an example. The Feynman and the pure imaginary part
thes meson in the DF representation are obtained by ca
lating the trace part in Eqs.~26! and ~27!:

PF~R!5lg2E d3q

~2p!3

21

EkEq
FEk1Eq

2S 2M* 21
Rm

2

2 D ~ f pa11 f pa2!G , ~32!

P imag~R!5lg2E d3q

~2p!3

2nqnk

EkEq
FEk2Eq

2S 2M* 21
Rm

2

2 D ~ f ph11 f ph2!G . ~33!

By adding the density part~29! and the pure imaginary
part ~33! together, one obtains the correct particle-hole p
and thenq part of the particle-antiparticle part; the latter
so-called Pauli blocking term. The Pauli blocking ter
makes the correct particle-antiparticle part by adding furt
the Feynman part~32!. In a similar way, we can verify tha
the total sums in the two representations are formally
same as for the other mesons. The verification of the equ
lence for the other mesons is not so straight forward, a
depends on the type of the couplings.

III. NUMERICAL RESULTS AND DISCUSSIONS

In this section, we investigate more concretely the diff
ence between the DF and PHA representations from num
cal calculations. For the calculations of the MSE, we ad
the relativistic Hartree approximation, which includes t
contribution to the nucleon self-energy arising from the o
cupied Fermi sea as well as from the full Dirac sea. In t
approximation, the nucleon self-energySs is expressed by
the self-consistent equation

Ss5M* 2M

52S gs

ms
D 2 2

~2p!3E0

kF
d3qM* ~qW 21M2!1/2

1S gs

ms
D 2 2

~2p!2FM* 3ln~M* /M !1M2~M2M* !

2
5

2
M ~M2M* !21

11

6
~M2M* !3G . ~34!

In this approximation, the coupling constantsgs and gv

are 7.93 and 8.93, respectively; these values reproduce
binding energy (Eb5215.8 MeV! of the nuclear matter a
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56 3291MESON SELF-ENERGIES CALCULATED BY THE . . .
the normal densityrB50.193 fm23 (kF51.42 fm21). For
the r meson, we adoptgr52.72 andkr56.0 which are ob-
tained from theN-N forward dispersion relation@17#, and for
the p meson, f p50.98 @18#. The couplings ford and h
mesons aregd52.36,gh58.12 taken from Ref.@19#.

First in Figs. 1–3 we show the comparison of theR0
dependence of meson self-energies using the two repres
tions. Figure 1 shows the MSE ofs and v, wherePv t is
transverse,Pv l is a longitudinal component ofv meson self-
energy, andPsvmix is the s-v meson mixing self-energy
~See Ref.@8# on the definition ofPsvmix.! Figure 2 shows
the comparison of the MSE of ther meson. Five lines and
symbols represent the longitudinal and transverse com
nents of vector and tensor interactions, and the vector-te
mixing component. Figure 3 shows the comparison of
MSE of the p, d, and h mesons, and thed-r mixing. In
these figures, the MSE of the PHA representation is sho
with lines, while the DF representation is shown with1 or
3 symbols. We find that most of the MSE of the DF repr
sentation well reproduce those of the PHA representat
However, the MSE of the transverse component of vec
interaction has an appreciable deviation.

It is easy to understand the reason why the DF repre
tation is good, except for the transverse component of ve
interactionPv t. Taking s meson case as an example, t
second term has a dominant contribution , then the differe
of the first term@(Ek2Eq) in Eq. ~17! and 2Ek in Eq. ~29!#
is negligible. Among four denominators of the second te
only one term with the denominatorf ph2 is dominant. Com-
pared with this dominant term, the unphysical partic

FIG. 1. Comparison of the energy (R0) dependence in thes and
v meson self-energies given by the particle-hole-antiparticle~PHA!
representation and the density-Feynman~DF! representation. The
momentum is fixed atR5100 MeV. The four lines represent thes
meson self-energy~solid line!, the longitudinal component of thev
meson~dotted line!, the transverse component of thev meson
~dashed line!, and thes-v meson mixing self-energy~dash-dotted
line!. The lines show the particle-hole part (Pph) of the PHA rep-
resentation; the density part (PD) of the DF representation is give
by the symbols1 and3. As for the couplings, see text.
ta-

o-
or
e

n

-
n.
r

n-
or

ce

,

-

antiparticle terms with denominatorsf pa2 and f pa1 are small
for a smallR0. Therefore both representations give simil
values. However, the situation is different for the transve
component of vector interactionPv t. In this case, the nu-
merator of the second termRm

2 /21q1k11q2k2 in Eqs. ~31!
and~19! is small compared with the first term 2Ek for small
R0 andR. Therefore, the difference in the first term becom
important for the transverse component of vector interacti
as was mentioned in the previous subsection.

Next we discuss the momentumR dependence of the me
son self-energies. The comparison ofR dependence of the
MSE is shown in Figs. 4–6. As in Figs. 1–3, thes and v
meson self-energies are shown in Fig. 4,r in Fig. 5, and
p,d,h in Fig. 6, where lines represent PHA results and
symbols~1 and3) show the DF results. The two represe
tations give similar results, especially for the scalar and v
tor interactions. One may notice the following two differe
points. One is the difference of thev meson self-energy in
very small momentumR;0, and the difference in the tenso
interaction of r meson. The difference ofR;0 does not
have an important effect on the results because the inte
tion has the weight of momentumR2, i.e., because the phas
volume of theR;0 is very small. When we discuss the lim
value atR50 of the MSE, the difference may be a serio
problem. The limit value of the MSE of the DF represen
tion atR50 is not zero. However, it should decrease to ze

FIG. 2. Comparison of the energy (R0) dependence in ther
meson self-energies given by the particle-hole-antiparticle~PHA!
representation and the density-Feynman~DF! representation. The
momentum is fixed atR5100 MeV. The two lines in the uppe
figure represent the longitudinal component of the vector interac
of the r meson~dotted line! and the transverse component of th
vector interaction of ther meson~dashed line!. The three lines in
the lower figure represent the longitudinal component of the ten
interaction of ther meson~dotted line!, the transverse componen
of the tensor interaction of ther meson ~dashed line!, and the
vector-tensor mixing self-energy~dash-dotted line!. The lines show
the particle-hole part (P ph) of the PHA representation; the densi
part (PD) of the DF representation is given by the symbols1
and3.
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3292 56MASAHIRO NAKANO et al.
as shown in the PHA representation because a particle-
pair can not be excited by the zero momentum transfer. T
is ensured by the factornq(12nk) in the PHA representa
tion.

FIG. 3. Comparison of the energy (R0) dependence in thep, d,
and h meson self-energies given by the particle-hole-antipart
~PHA! representation and the density-Feynman~DF! representation.
The momentum is fixed atR5100 MeV. The four lines represen
thep meson self-energy~solid line!, thed meson~dotted line!, the
h meson~dashed line!, and thed-r meson mixing self-energy
~dash-dotted line!. The lines show the particle-hole part (Pph) of
the PHA representation; the density part (PD) of the DF represen-
tation is given by the symbols1 and3.

FIG. 4. Comparison of the momentum (R) dependence in thes
and v meson self-energies given by the PHA and DF represe
tions. The energy is fixed atR05100 MeV. The meaning of the
lines and symbols is the same as in Fig. 1.
le
is

The difference in tensor interaction comes from the c
culation of the trace part. The tensor interaction includes
term (Rk)(Rq). For the calculation of this term, the defin
tion of km , i.e., k05q01R0, is used in the DF representa
tion, but on the other hand, the on-shell conditi
k05Ek5AM* 21k2 is used for the PHA representation. B
cause of this difference, the numerators of the second t
are also different from each other in ther meson case. This
difference becomes large as the momentumR increases,

e

a-

FIG. 5. Comparison of the momentum (R) dependence in ther
meson self-energies given by the PHA representation and DF
resentation. The energy is fixed atR05100 MeV. The meaning of
the lines and symbols is the same as in Fig. 2.

FIG. 6. Comparison of the momentum (R) dependence in thep,
d, andh meson self-energies given by the PHA and DF repres
tations. The energy is fixed atR05100 MeV. The meaning of the
lines and symbols is the same as in Fig. 3.
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which implies a serious difference at high-density, i.e.
large Fermi momentum system.

The MSE in this momentum region is important for th
ring energy calculations. In many studies, the meson s
energy in such momentum regions asR,2KF;500 MeV
and R0,50 MeV is integrated to calculate the ring ener
contribution to the binding energy. Therefore, the above f
implies that the new calculations on the PHA representa
does not change greatly the previous results, when the
momentum transfer region is used.

A large difference occurs in a region of high-energy tra
fer such as around 1300 MeV. The comparison of two r
resentations in the largeR0 region is shown in Fig. 7 for the
s meson and in Fig. 8 for thev meson. These figures clear
show that the MSE of the DF representation has a reso
structure around the particle-antiparticle excitation ener
On the other hand, the MSE of the PHA representation
no structure. The resonant structure causes a large differ
in the lower energy region below the resonance. The M
has a large positive enhancement from the tail of the re
nance, especially in thev meson. This spurious enhanc
ment makes the meson spectrum calculations doubtful.

In Fig. 9, we show thev meson spectrum, where th
dotted lines are the meson spectrum using the DF repre
tation, and the full lines are those using the PHA repres
tation. There are three meson spectra; one longitudinal s
trum ~the upper line! and two transverse spectra~the upper
and lower lines!. The lower line represents the so-calle
zero-mode solution and it coincides with each other in
two representations. On the other hand, the upper spec
given by the DF representation lies higher than that of
PHA representation. As was explained, this is because
MSE of the DF representation has the spurious enhancem
from the resonance tail. The meson spectrum of the P
representation starts from the free meson mass becaus

FIG. 7. Comparison of large energyR0 dependence ofs meson
self-energyPs at fixedR5100 MeV. The solid line represents th
particle-hole part (Pph) of the particle-hole-antiparticle~PHA! rep-
resentation, while the dotted line shows the density part (PD) of the
density-Feynman~DF! representation.
a
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FIG. 8. Comparison of large energyR0 dependence of the lon
gitudinal component of thev meson self-energyPv l at fixed
R5100 MeV. The solid line represents the particle-hole part (Pph)
of the particle-hole-antiparticle~PHA! representation, while the dot
ted line shows the density part (PD) of the density-Feynman~DF!
representation.

FIG. 9. Thev meson spectrums calculated by using two re
resentations. The solid lines represent the spectrums using
particle-hole part (Pph) of the particle-hole-antiparticle~PHA! rep-
resentation, while the dotted lines show the spectrums using
density part (PD) of the density-Feynman~DF! representation.
Here the lower spectrums, so-called zero modes, coincide with e
other. On the other hand, the upper spectrums calculated by u
the PD run over the one byPph. The longitudinal and transvers
components give the same meson spectrum in the PHA repres
tion; on the other hand, they separate little from each other in
DF representation.



n

ro
n

gi
e
n
-
n

ha
tio
o

le
rg
e
ve
no

-
f t
m
th
us
n
n

e-
e

a
s
li

on
up
o

we

m-
to
m-
ep-
rgy-
ical
still

s
not

and
tis-
so
agi-
the
tor

ctly
om-
The
ribe
uch
rep-
ot

ro-
ntz,
-
t-
the
a

is-

3294 56MASAHIRO NAKANO et al.
particle-hole excitation contributes nothing to the meso
mass atR50. This is also ensured by the factornq(12nk).
Note that the meson mass shift in nuclear matter comes f
the particle-antiparticle part of the MSE. As for a treatme
of the divergent term of this part, see Ref.@16#.

IV. CONCLUSIONS

We have derived new expressions of meson self-ener
for the s,v,r, andp ~alsod andh) mesons and shown th
difference between the meson self-energy in the traditio
density-Feynman~DF! representation and in the particle
hole-antiparticle~PHA! representation. In the discussion o
the relation of the two representations, we have shown t
as for the real part, the density part in the DF representa
includes correct particle-hole excitations and a part
particle-antiparticle excitations. Since the partic
antiparticle part makes small contributions in the low-ene
region, one can expect that the DF representation caus
similar result to the PHA representation. Actually, we ha
shown by the numerical calculations that the deviation is
so large in the region of the low momentum (R,500 MeV!
and low energy (R0,200 MeV! transfer, although the devia
tions become appreciable in the transverse component o
vector interaction and the tensor interaction. This fact i
plies that among former calculations, applications using
MSE of the low momentum and low-energy regions are j
tified. Such examples may be the ring energy calculatio
binding energy calculations, and the zero mode calculatio
We should investigate these problems further.

The DF representation, however, also includes a part~not
full ! of the particle-antiparticle excitations, which is not d
sirable. This brings about a difference between the two r
resentations. The resonant partf pa2 in the MSE of the DF
representation has the maximum peak aroundR051300
MeV. We have shown that the resonance has a signific
effect also on the off-resonant region. Because of this re
nance tail, the meson spectrum of the DF representation
higher than that of the PHA representation. Therefore,
should pay particular attention to previous results on the
per spectrum using the DF representation. In order to av
s
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the spurious enhancement of the DF representation,
should use the PHA representation.

Several merits for using the PHA representation are su
marized in the following sentences. First, it is not difficult
calculate the MSE in the PHA representation, even if co
pared with those in the DF representation. In the PHA r
resentation, the nucleon propagator is written on the ene
shell expression, which easily corresponds to the class
picture, i.e., particle-hole image, and the expression is
fully relativistic. In addition, it can be verified that thev
meson self-energyPphmn

in the PHA representation satisfie
the current conservation, while on the other hand, it can
be satisfied only in the density partPDmn

in the DF repre-
sentation. Furthermore, it is also evident that the real
imaginary part of the MSE in the PHA representation sa
fies the dispersion relation. On the contrary it is not
straightforward in the DF representation because the im
nary part is given by the sum of the density part and
pure-imaginary part to make the particle-hole fac
nq(12nk) while the real partPD has a different factornq ,
which can not satisfy the dispersion relation.

Finally, since the PHA representation describes exa
the physical process, it is easy to describe the isovector c
ponents such as the proton particle and neutron hole.
PHA representation can serve as a powerful tool to desc
isovector meson self-energies with a nonzero isospin. S
components, however, can not be described by the DF
resentation since theGD in the DF representation does n
represent the particle nor hole propagation.
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