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Meson self-energies calculated by the relativistic particle-hole-antiparticle representation
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A new formulation of meson self-energies is introduceddow, 7, p, 5, and » mesons on the basis of the
particle-hole-antiparticle representation. We have studied the difference between the meson se(f8Ergy
of this representation and the MSE of the traditional density-FeyniBhrepresentation. It is shown that the
new formulation describes exactly the physical processes such as particle-hole excitations or particle-
antiparticle excitations, and that, on the other hand, the meson self-energy based on the DF representation
includes unphysical components. By numerical calculations, the meson self-energies describing the particle-
hole excitations are shown to be close to each other for most of the meson self-energy in low momentum
(R<500 MeV) and low energy Ry<<200 MeV). This fact implies that former calculations using the low
momentum and low-energy part do not change greatly. The density part of the density-Feynman representation
has been shown to have a resonant structure around the energy of particle-antiparticle excitation, which causes
a large difference between the two representations in the meson spectrum calculations. Our investigation
concludes that the former calculations based on the density-Feynman representation are not invalidated in
many cases, but the particle-hole-antiparticle representation is more appropriate to treat exactly the physical
processed.S0556-28187)03809-7

PACS numbsgs): 14.40.Cs, 13.75.Cs, 21.65f, 24.10.Cn

I. INTRODUCTION of the validity of the traditional MSE calculations. Despite
the importance of the problem, up until now there have been
In the relativistic many-body theory, the meson self-no systematic investigations on this point.

energy(MSE) is an essential quantity whose importance in  In this paper, we first show a new formulation of the MSE
nuclear physics has been shown by many autfibr§]. The  of the PHA representation and point out explicitly that the
MSE represents medium effects from particle-hole excitaPF representation includes unphysical components. Next,
tions or particle-antiparticle excitations while the mesonfrom various sides we investigate the approximation of the
propagates in nuclear matter, and has been often used MSE of the DF representathn, and make clgar the effect_lve-
various studies; for example, the energy contribution fromn€ss of the DF representation from the point of numerical
ring diagramg4—9], the instability of the random-phase ap- calculations.
proximation(RPA) [10—12, the meson mass in nuclear mat-

ter [13,14], and the nuclear interactions in nuclear matter Il. FORMALISM

[14]. In these papers, the MSE has been calculated on the )

basis of the density-FeynmafDF) representation of the A. Lagrangian

nucleon propagator. In order to investigate the difference between two repre-

In this representation, the nucleon propagator is separategéntations, we adopt the often used Lagrangian density of
into two parts; one is the Feynman pa@), which is simi-  Yukawa coupling, which is constructed from the degrees of
lar to the free nucleon propagator, except that the free maggeedom associated with two isoscalar mesoasafnd )
is replaced by the effective nucleon mass in nuclear matteand two isovector onesns( andp):
and the other is the density paG¥), which represents ad-
ditional effects arising from the existence of the matter. Even
though this representation has been successful and widely
used, the MSE of the DF representation does not represent
exactly physical processes, such as particle-hole excitationgpere 1 symbolizes the spin and isospin structure of the
or particle-antiparticle excitations. In fact, recently it hascoupling and is given as
been pointed out that the MSE of the DF representation in-
cludes unphysical componerits5,16. Instead of the tradi- ro=g° )
tional density-Feynman representation, we propose the '
particle-hole-antiparticl§PHA) representation to treat the ]
physical processes exactly, which facilitates the investigation IL=i9"y,, ©)

Linr=2 9T ¢y, for a=o, o, m p, (1)
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rr=ig” y,r oM Ty T3, . (5) G%q) 2E, Eqrgo—ic’ (12

The operatory is the nucleon fieldg are the meson Where, in our notation,y,q,=iv;0;— ¥oEo for the particle
fields,M andm_ are the rest masses of the nucleon and pionand hole,iy,q,=iyiai+ yoE, for the antiparticle propaga-
respectively, andj”, g®, f” , g°, and ” are the coupling tor, andEq= JM*2+q?; the effective nucleon madd* is
constants. The notation in this paper is the same as[Ref. given by using the nucleon self-energy>d as

The 7-NN interaction can be written in two possible M*=M+Z2. (See Sec. lll on the expression Bf.)
forms, pseudoscalaiPS and pseudovectofPV) coupling.

We chose the PV coupling in this work, because from gen- D. Meson self-energy in the PHA representation

eral arguments regarding chiral symmetry, PV coupling has
to be used to obtain reasonable results in the one-pion e
change approximation. For tliemeson, the tensor couplings

~ The meson self-energySE) usually used is given under
Yandom phase approximation as

are included along with the vector coupling. Thus the La- d*q
grangian includes four types of interactions, scalar, vector, TI%(R)=(—i) f 2z TG()I*G(q+R)I'],
pseudovector, and tensor couplings. These couplings are also (2m)

applied to other mesons such&meson of a scalar coupling (13

and » meson of a pseudovector coupling, which results are . . . .
included in this paper. where the trace includes also the summation of isospin, so

that the factoi (=2 for the isoscalar mesohappears after
_ ) the summation.
B. Nucleon propagator in the density-Feynman(DF) First, we show the exact expression of the MSE by using
representation the PHA representation. By inserting E@§) into Eq. (13),
The nucleon propagatd® has been traditionally written five unphysical terms are dropped after integratior@bn
as the sum of the density-dependent p&?) and Feynman the complex plane because of the boundary conditien (
part (G"): and only four physical terms are left:

G(q)=G"(q)+G"(q), (6) IT*(R)=1II5(R) + I (R), (14

. i d°q ng(1—ny)| Tr(q,q+R,Eq.Ex)
GO =~ 17,0} +M*Ig 3(a5 ~Egotk—lal), ) Tig(R=—x | AT REer
A Eq 0 q f ph( ) (277)3 4Equ [ Ek_ Eq—RO—IS
(q)_ q2+M*2_is' ( ) Ek_Eq+R0_i8
One merit of this density-FeynmdB®F) representation is o d’q 1- nq[Tr(a,ﬁvL ﬁ,Eq —Ep
that the density part goes to zero and only the Feynman part I{R)=A (2m)3 4Equ[ Ex+Eq+Ro—ie
remains when the baryon density of nuclear matter becomes
zero, resulting in the nucleon propagator smoothly changing Tr(—q,—q— ﬁ,Eq ,—Ep)
to that of the elementary particle at zero density. Moreover, Ect E,—Ry—ie ' (16)
q 0

its form is convenient to use because the density @t

includes explicitly thes function. However, since the form wheren, stands for a step function which is 1 for a hole state

of GP is made artificially by the sum of two pole-parts of the and O for a particle stata, is the isospin degeneracy, and Tr
denominators of the nucleon propagator, it does not have 3eans the trace part of TFG(q)I“G(q+K)T?], and

X hysical meaning. - = .
exact physical meaning k=|g+R|. We rewrote the second terms in Eq4$5) and

(16) by replacingg— — q. The meson self-energy in E(L5)
contains a factony(1—ny), which represents the contribu-
In order to represent the physical processes, alternativelijon from particle-hole excitations. This particle-hole part
we should use the particle-hole-antipartitRHA) represen- 1 is finite because of the facter,. The MSE in Eq(16)
tation where the propagation of particles, holes and antiparcontains the factor 4 n,; it describes the contribution from

C. Particle-hole-antiparticle (PHA) representation

ticles are separately described as follows: particle-antiparticle excitations. The particle-antiparticle part
I1,, is a nonzero-density version of vacuum polarization. It
— P h a pa
G(q)=GP(@)+G(a)+G¥a), )  should be stressed that the expression of the particle-hole
. . part, although it is completely relativistic, is similar to that of
GP(q) = — —i7,0,+M* 6(|q|—ks) (10) the nonrelativistic polarization function, except for the trace

2E, Eq—Qo—ie’ part. This point is one of the merits of the PHA representa-
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tion. Since there are few expressions of the MSE using théhe same as that of the meson, except for the coupling
PHA representation, it is worthwhile to write down their ex- constants, thus only its tensor part is given h¢Bee Ap-
plicit forms for various mesons. Calculating the trace part inpendix | of Ref.[16] for the derivation of Eqs(22) and(23)
Eq. (15) for various interaction types, we obtained the fol- and for the current conservation of the tensor pag ofeson
lowing expressions for the particle-hole part of the MSE:  self-energyl The MSE of § meson andy meson have the
same form as those of (scalar couplingand = (pseudovec-
tor coupling mesons respectively, except for their coupling
constants.

d*q ng(1-ny|
(2m?  EqEc |

,;'h(R)=>\(g"2)f (Ex—Eg)

R? E. Meson self-energy in the DF representation
—| 2M* 24+ —EJ (f iy + o) 17 . .
2 pht T Tph—=/ 1 Next we consider the MSE of the density-Feynnibx)
representation. By using Eq®)—(8), the meson self-energy
. d®q  ny(1—ny) is given by
mR=N? |~ Mgy
(2m) kEq II(R)=1IIp(R) +IIg(R) + jmag R), (24

_(Ri+q3k3_Equ)(fph++fph—)]: (18

d'g n,
Hp(R)=— 5 0(do—Eg)
Hwt(R)_)\(g“’)zf d’q  ng(1—ny) ° f(Zw)WEq ¢
" (@m?® B Tr(a.q+R)
R? (q+R)*+M*2—ig
X|(BEx—Eg) — 7+Q1k1+Q2k2 (fohs +fpn)
Tr(d,9—R) 1 25
(19 (q—R)Z+M*2—ig|’
owmix _ ) d3q nq(l_nk) II-(R)= —j ﬁ
on(R)=X\(g’g )J(ZW)BH F(R)=+( I)J 2m°
X[~ M* (ExctEq)(fons + o)1, (20) Tr@.a+R) (26)

><(q2+M*2—is)[(q+R)2+ M*2—ig]

fr
7(R)=\ (m—ﬁ

2 d®q ng(1-ny

(2m)% 4EqEx

Minad R~ — (=) | THa,q+R)
X ((Ex+Eq)®=R?)+2M*2R2 (fons + fon) ],

X 8(do—Eq) 8(do+Ro—Ey). (27)

The second ternil: comes fromGFGFand is called the
) 5 Feynman part, the first terii, comes fromGPGF+ GFGP
Hp,Tl(R):)\(gpi) f d°q ng(1—ny R2| (E,~E,) and is called the density part, and the third tdili,, comes
ph M (2m)®  EkEq SR from GPGP,which is pure imaginary. The Feynman part is
5 divergent and a special treatment is needed to render it finite.
IM*2+ &+2(q3k3— E Ek)) Since the d_en5|ty part is fln_|te and it is <_:on_5|dered to repre-
2 q sent approximately the particle-hole excitation effects, it has
been often used in many studies. Actually most of the studies
mentioned in the Introduction use the density pHrg .
Therefore, in this paper we focus mainly on the difference
between the density pdrt, of the DF representation and the
«\2 [ dq Ng(1—ny) particle-hole partﬂph of the PHA representation._ As for a
gpﬁ f s T EE (—)[2(Ex—Eq) treatment of the divergent part, we have shown in Ri6]
(2m) k=q one possible way to obtain meaningful results based on the
cutoff field theory.

(21)

+

X (fpns +Fons) |, (22)

MET(R) =X

X((Ex+ Eq)®—R?)+ RE{(2M* 2+ q1ky +d2k,)
X(fph++ fph—)}]! (23) F. Difference between the PHA and DF representations

In this subsection, the difference between two representa-
wheref .. = 1/(Ex—Eq= Ryo—ie), the suffix ph of the coef-  tions based on the equations in Secs. IID and IIE is dis-
ficient represents the particle-hole excitation energy oftussed. In order to show explicitly that the density-p&kp]
Ex—Eq. and the sign+ or — means the sign before the of the MSE in the DF representation does not represent a
meson energyRy. Note that Ri:RZ—RS in our notation.  proper physical process, we rewrote the density part of Eq.
As for thep meson, the MSE of the vector interaction part is (25) and obtained
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d3q n [Tr(ﬁ a+§ Ey.Eq+Ro) interaction) The density part in the DF representation does
HD(R):—)\J 3 4E qE E E’ g{ q not represent proper particle-hole excitations nor particle-
(2m)3 4EqEi kK~ Eq~Ro~le antiparticle excitations.
We can show, however, that by adding the Feynman part

Tr(—q,—q—-R,Eq,Eq—Ro) and the pure imaginary part to the density gag, one can
Ex—EqtRo—ie obtain the same contribution as the total of the particle-hole
IR part and the particle-antiparticle part. The relation of two
Tr(q,q+R,Eq,Eq+Ro) representations is explicitly shown for themeson case as
Ex+EqtRo—ie an example. The Feynman and the pure imaginary parts of

the o meson in the DF representation are obtained by calcu-

Tr(—q,—q—R,Eq,Eq— Ro) lating the trace part in Eq$26) and (27):

Ek+ Eq_RO_iS (28)
L da -1
The density partll; of Eg. (28) includes the term of IIe(R)=Ag j(zw)sﬁ EctEq
font +fpn-, whose denominator is the sameIag;, of Eq. d
(15). Exactly speaking, however, the density part does not R2
represent particle-hole excitations since the factpin Eq. - ( 2M* 2+ 7” (fpa++fpa)}, (32

(28) is different from the particle-hole factar,(1—n) in

Eq. (15). The factomn, represents the integration in the hole 4#a —non
states so that the factor constrains one particle in a hole state, Mimad R) = )\ng g qa k «—E
however, the other particle is not constrained. Thus the MSE (2m)° ExEq a

in the DF representation includes, in principle, unphysical 5
components such as hole-hole excitations besides the _ %2, B
. L . ; : 2M* <+
particle-hole excitations. One more important difference is 2
that the density parll includes a part of the particle- ) ) ) )

antiparticle excitation and it is not fully included because the By adding the density par29) and the pure imaginary
factorn, is also different from the factor of the particle, i.e., Part (33) together, one obtains the correct particle-hole part
(1—n,). This partial inclusion of the particle-antiparticle ex- and then, part of the particle-antiparticle part; the latter is
citations is undesirable. so-called Pauli blocking term. The Pauli blocking term
Furthermore the trace part in the DF representation is difmakes the correct particle-antiparticle part by adding further
ferent from the PHA representation because of the differenfh® Feynman part32). In a similar way, we can verify that
on-shell conditions in the two representations. This is clearljihe total sums in the two representations are formally the
shown in Egs.(15) and (28). Taking thes and @ meson Same as for the other mesons. The verification of the equiva-

cases as examples, one obtains the following expressions tnce for the other mesons is not so straight forward, as it

(fone+fon) | (33)

p: depends on the type of the couplings.
d3q Ng R2 IIl. NUMERICAL RESULTS AND DISCUSSIONS
HS(R)=>\(9")2f ——— = 2E | 2M* 2+ -~ : . : . .
(2m)® ExEq 2 In this section, we investigate more concretely the differ-
ence between the DF and PHA representations from numeri-
cal calculations. For the calculations of the MSE, we adopt
(fph++fph‘+fpa++fpa‘)}’ (29 the relativistic Hartree approximation, which includes the

contribution to the nucleon self-energy arising from the oc-
cupied Fermi sea as well as from the full Dirac sea. In this

d3 n
H‘S'(R):)\(g‘”)zf q3 ﬁ[4Ek—[Ri+ 203k3 approximation, the nucleon self-energ@y, is expressed by
(2m)° BiEq the self-consistent equation
—2Eq(Eq+Ro)1(fpn-+ fpar) —[R}, + 203ks S —M*—M
_2Eq(Eq_RO)](fph++fpaf)]u (30) 2 5
_ 9" KE 3 aak o2 2\1/2
H‘”‘(R):)\(gw)Zf _d3q _Na_ - R_’2‘+q k B (ma) (277)3fo daM MY
b (2m)® EEq " 12 T o2 2
+(—) [M*3In(M*/M)+M2(M—M*)
my) (2m)2

(31

+q2k2)(fph++fph+ fpa++fpaf)

5|\/||v| M*211M M*)3 34
—5(—)+g(—)- (34)

The first terms in the above expressions, which come
from the trace part in Eq(28), are different from those in
Egs. (17)—(19). (As is shown in the following subsection, In this approximation, the coupling constagf$ and g©
this difference in the first terms gives an appreciable deviaare 7.93 and 8.93, respectively; these values reproduce the
tion in the transverse component of the MSE of the vectobinding energy E,= —15.8 Me\) of the nuclear matter at
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FIG. 1. Comparison of the energiR{) dependence in the and FIG. 2. Comparison of the energyrR§) dependence in the

» meson self-energies given by the particle-hole-antipartReA) meson self-energies given by the particle-hole-antipariiPldA)
representation and the density-Feynm@t) representation. The representation and the density-Feynn{@¥) representation. The
momentum is fixed aR=100 MeV. The four lines represent te  momentum is fixed aR=100 MeV. The two lines in the upper
meson self-energgsolid line), the longitudinal component of the figure represent the longitudinal component of the vector interaction
meson(dotted ling, the transverse component of the meson  of the p meson(dotted ling and the transverse component of the
(dashed ling and theo-w meson mixing self-energidash-dotted  vector interaction of the meson(dashed ling The three lines in
line). The lines show the particle-hole paiilg,) of the PHA rep-  the lower figure represent the longitudinal component of the tensor
resentation; the density parlg) of the DF representation is given interaction of theo meson(dotted ling, the transverse component
by the symbolst+ and X. As for the couplings, see text. of the tensor interaction of the meson(dashed ling and the
vector-tensor mixing self-energgash-dotted ling The lines show

the normal densityg=0.193 fm 3 (ke=1.42 fm™1). For  the particle-hole partI{ pn Of the PHA representation; the density
the p meson, we adopy’=2.72 and«”=6.0 which are ob- part (IIp) of the DF representation is given by the symbels
tained from theN-N forward dispersion relatiofl7], and for ~ and X.
the = meson,f”=0.98 [18]. The couplings fors and 7
mesons arg’=2.36,97=8.12 taken from Ref[19]. antiparticle terms with denominatofs, andf,, are small

First in Figs. 1-3 we show the comparison of tRg  for a smallR,. Therefore both representations give similar
dependence of meson self-energies using the two represenilues. However, the situation is different for the transverse
tions. Figure 1 shows the MSE of and w, whereII® is  component of vector interactiol“t. In this case, the nu-
transversell*! is a longitudinal component @ meson self- merator of the second terRZ/2+qk;+ gk, in Egs. (31)
energy, andlI”®™X is the o-w meson mixing self-energy. and(19) is small compared with the first termEg for small
(See Ref[8] on the definition of[I”“™*) Figure 2 shows Ry andR. Therefore, the difference in the first term becomes
the comparison of the MSE of the meson. Five lines and important for the transverse component of vector interaction,
symbols represent the longitudinal and transverse comp@s was mentioned in the previous subsection.
nents of vector and tensor interactions, and the vector-tensor Next we discuss the momentufdependence of the me-
mixing component. Figure 3 shows the comparison of theson self-energies. The comparison Rfdependence of the
MSE of the w, 8, and  mesons, and thé-p mixing. In  MSE is shown in Figs. 4-6. As in Figs. 1-3, theand o
these figures, the MSE of the PHA representation is showmeson self-energies are shown in Fig.p4in Fig. 5, and
with lines, while the DF representation is shown withor 7,8, 7 in Fig. 6, where lines represent PHA results and the
X symbols. We find that most of the MSE of the DF repre-symbols(+ and X) show the DF results. The two represen-
sentation well reproduce those of the PHA representatiortations give similar results, especially for the scalar and vec-
However, the MSE of the transverse component of vectotor interactions. One may notice the following two different
interaction has an appreciable deviation. points. One is the difference of the meson self-energy in

It is easy to understand the reason why the DF represervery small momentunkR~ 0, and the difference in the tensor
tation is good, except for the transverse component of vectdnteraction of p meson. The difference dR~0 does not
interactionII“t. Taking o meson case as an example, thehave an important effect on the results because the integra-
second term has a dominant contribution , then the differenction has the weight of momentuR?, i.e., because the phase
of the first term[ (Ex—E) in Eq. (17) and Z, in EQ.(29)]  volume of theR~0 is very small. When we discuss the limit
is negligible. Among four denominators of the second termyalue atR=0 of the MSE, the difference may be a serious
only one term with the denominatég, is dominant. Com-  problem. The limit value of the MSE of the DF representa-
pared with this dominant term, the unphysical particle-tion atR=0 is not zero. However, it should decrease to zero
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FIG. 3. Comparison of the energiR¢) dependence in the, &, FIG. 5. Comparison of the momenturRY dependence in the

and » meson self-energies given by the particle-hole-antiparticleneson self-energies given by the PHA representation and DF rep-
(PHA) representation and the density-Feynni@f) representation.  resentation. The energy is fixed R§=100 MeV. The meaning of
The momentum is fixed &=100 MeV. The four lines represent the lines and symbols is the same as in Fig. 2.
the = meson self-energgsolid line), the § meson(dotted ling, the
7 meson(dashed ling and thed-p meson mixing self-energy The difference in tensor interaction comes from the cal-
(dash-dotted ling The lines show the particle-hole paiil§,) of  culation of the trace part. The tensor interaction includes the
the PHA representation; the density pdity) of the DF represen- term (Rk)(Rq). For the calculation of this term, the defini-
tation is given by the symbols and X. tion of k,, i.e., ko=0o+ Ry, is used in the DF representa-
tion, but on the other hand, the on-shell condition
as shown in the PHA representation because a particle-holg=E, = VM*2+k? is used for the PHA representation. Be-
pair can not be excited by the zero momentum transfer. Thisause of this difference, the numerators of the second term
is ensured by the factar,(1—n,) in the PHA representa- are also different from each other in tpemeson case. This
tion. difference becomes large as the momentRmincreases,

! ' ! ' ' ' ! ' 2 y T y T ¥ T g T
Ry =100 MeV

Howmiz

Meson Self-energy II™%" [10°MeV?]

Meson Self-energy 117 [10°MeV?]

—2r Ry =100 MeV |
N ] i | N | i L " . L ) L | |
0 200 400 0 200 400
R [MeV] R [MeV]
FIG. 4. Comparison of the momenturR) dependence in the FIG. 6. Comparison of the momenturR) dependence in the,

and o meson self-energies given by the PHA and DF representas, and » meson self-energies given by the PHA and DF represen-
tions. The energy is fixed &,=100 MeV. The meaning of the tations. The energy is fixed &,=100 MeV. The meaning of the
lines and symbols is the same as in Fig. 1. lines and symbols is the same as in Fig. 3.
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FIG. 7. Comparison of large ener@y dependence af meson
self-energyl1“ at fixedR=100 MeV. The solid line represents the
particle-hole partKl,y of the particle-hole-antiparticlePHA) rep-
resentation, while the dotted line shows the density ddg)(of the
density-FeynmariDF) representation.

FIG. 8. Comparison of large enerd®y dependence of the lon-
gitudinal component of thew meson self-energJl* at fixed
R=100 MeV. The solid line represents the particle-hole pHirfj
of the particle-hole-antiparticld®HA) representation, while the dot-
ted line shows the density parlg) of the density-Feynma(DF)

. . . . . . . . representation.
which implies a serious difference at high-density, i.e., a

large Fermi momentum system.

The MSE in this momentum region is important for the
ring energy calculations. In many studies, the meson self-
energy in such momentum regions B3X2Kg~500 MeV
and R,<50 MeV is integrated to calculate the ring energy o
contribution to the binding energy. Therefore, the above fac ]
implies that the new calculations on the PHA representatior
does not change greatly the previous results, when the lo
momentum transfer region is used.

A large difference occurs in a region of high-energy trans-
fer such as around 1300 MeV. The comparison of two rep-
resentations in the large, region is shown in Fig. 7 for the
o meson and in Fig. 8 for the meson. These figures clearly
show that the MSE of the DF representation has a resonai
structure around the particle-antiparticle excitation energy
On the other hand, the MSE of the PHA representation ha I
no structure. The resonant structure causes a large differen e
in the lower energy region below the resonance. The MSE |
has a large positive enhancement from the tail of the reso
nance, especially in the meson. This spurious enhance- e T T
ment makes the meson spectrum calculations doubtful. 0 250 500

In Fig. 9, we show thew meson spectrum, where the R [MeV]
dotted lines are the meson spectrum using the DF represel.
tation, and the full lines are those using the PHA represen-
tation. There are three meson spectra; one longitudinal speg;

trum (the upper ling and two transverse spectftne upper particle-hole partXI,y) of the particle-hole-antiparticltPHA) rep-

and lower lineg The lower line represents the so-called resentation, while the dotted lines show the spectrums using the

zero-mode solution and it coincides with each other in theyensity part [15) of the density-FeynmariDF) representation.
two representations. On the other hand, the upper spectrupire the lower spectrums, so-called zero modes, coincide with each

given by the DF representation lies higher than that of theyther. On the other hand, the upper spectrums calculated by using
PHA representation. As was explained, this is because th@e I1,, run over the one byl,,. The longitudinal and transverse
MSE of the DF representation has the spurious enhancemegdmponents give the same meson spectrum in the PHA representa-
from the resonance tail. The meson spectrum of the PHAion; on the other hand, they separate little from each other in the
representation starts from the free meson mass because thE representation.

e
wemmm=22ll
- -

—
[
o
o

500 .

1

Meson Specrtum [MeV]

FIG. 9. Thew meson spectrums calculated by using two rep-
entations. The solid lines represent the spectrums using the
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particle-hole excitation contributes nothing to the mesonthe spurious enhancement of the DF representation, we
mass aR=0. This is also ensured by the factgy(1—n,).  should use the PHA representation.

Note that the meson mass shift in nuclear matter comes from Several merits for using the PHA representation are sum-
the particle-antiparticle part of the MSE. As for a treatmentmarized in the following sentences. First, it is not difficult to

of the divergent term of this part, see REI6]. calculate the MSE in the PHA representation, even if com-
pared with those in the DF representation. In the PHA rep-
V. CONCLUSIONS resentation, the nucleon propagator is written on the energy-

. ] _shell expression, which easily corresponds to the classical
We have derived new expressions of meson self-energigsicture, i.e., particle-hole image, and the expression is still
for the o, w,p, and (also 6 and 77) mesons and shown the fyly relativistic. In addition, it can be verified that the
difference between the meson self-energy in the traditionahegon self-energ¥l,, in the PHA representation satisfies
- i - Hmv
density-Feynmar(DF) representation and in the particle the current conservation, while on the other hand, it can not

hole-antiparticle(PHA) representation. In the discussion on o . . .
the relation of the two representations, we have shown thaEe satisfied only in the density péﬂDw in the DF repre

as for the real part, the density part in the DF representatio_ﬁe”t?‘t'on- Furthermore, it is also evident that the_ real gnd
includes correct particle-hole excitations and a part ofmaginary part of the MSE in the PHA representation satis-
particle-antiparticle  excitations. Since the particle-fieS the dispersion relation. On the contrary it is not so
antiparticle part makes small contributions in the low-energyStraightforward in the DF representation because the imagi-
region, one can expect that the DF representation causes"&Y Part is given by the sum of the density part and the
similar result to the PHA representation. Actually, we havePUré-imaginary part to make the particle-hole factor
shown by the numerical calculations that the deviation is nof'lq(1—ni) while the real partl, has a different facton,,

so large in the region of the low momentulR<500 Mev) ~ Which can not satisfy the dispersion relation.

and low energy R,< 200 MeV) transfer, although the devia- Fmally, since the PHA representatlpn deS(_:rlbes exactly
tions become appreciable in the transverse component of tH{€ Physical process, it is easy to describe the isovector com-
vector interaction and the tensor interaction. This fact im-POnents such as the proton particle and neutron hole. The
plies that among former calculations, applications using thd”HA representation can serve as a powerful tool to describe
MSE of the low momentum and low-energy regions are jus_lsovector meson self-energies with a nonzero isospin. Such
tified. Such examples may be the ring energy Ca|cu|ationsgompon¢nts,_howeverd can not be described by the DF rep-
binding energy calculations, and the zero mode calculationd€Sentation since th€™ in the DF representation does not
We should investigate these problems further. represent the particle nor hole propagation.

The DF representation, however, also includes a (et
full) of the particle-antiparticle excitations, which is not de-
sirable. This brings about a difference between the two rep-
resentations. The resonant pég_ in the MSE of the DF The authors are grateful for useful discussions with Pro-
representation has the maximum peak arougd=1300 fessor T. Kohmura, Professor T. Suzuki, Professor W. Bentz,
MeV. We have shown that the resonance has a significark. Matsumoto, R. Tokutomi, Y. Mori, H. Hasegawa, M. Mu-
effect also on the off-resonant region. Because of this resaaki, R. Kobayashi, M. Konuma, N. Kakuta, and Dr. H. Mat-
nance tail, the meson spectrum of the DF representation liesuura and the members of the nuclear theorist group in the
higher than that of the PHA representation. Therefore, on&yushu district in Japan. This work was supported by a
should pay particular attention to previous results on the up&rant-in-Aid for Scientific Research of the Japanese Minis-
per spectrum using the DF representation. In order to avoitty of Education under Grant No. C-2-08640402.
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