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We study the effect of resonance decays on intensity interferometry for heavy ion collisions. Collective
expansion of the source leads to a dependence of the two-particle correlation function on the pair momentum
K. This opens the possibility to reconstruct the dynamics of the source frokh tlependence of the measured
Hanbury-Brown—TwisgHBT) radii. Here we address the question to what extent resonance decays can fake
such a flow signal. Within a simple parametrization for the emission function we present a comprehensive
analysis of the interplay of flow and resonance decays on the one- and two-particle spectra. We discuss in
detail the non-Gaussian features of the correlation function introduced by long-lived resonances and the
resulting problems in extracting meaningful HBT radii. We propose to define them in terms of the second-order
g moments of the correlat@(q,K). We show that this yields a more reliable characterisation of the correlator
in terms of its width and the correlation strengththan other commonly used fit procedures. The normalized
fourth-orderg moments(kurtosig provide a quantitative measure for the non-Gaussian features of the cor-
relator. At least for the class of models studied here, the kurtosis helps separating effects from expansion flow
and resonance decays, and provides the cleanest signal to distinguish between scenarios with and without
transverse flow[S0556-281®7)01812-9

PACS numbgs): 25.75.Gz, 12.38.Mh, 24.10.Jv, 25.75.Ld

I. INTRODUCTION nance decays were shown to introduce an additional momen-
tum dependence of the HBT radius parameters and of the
The only known way to obtain direct experimental infor- intercept parametdi8,15] which complicates the extraction
mation on the space-time structure of the particle emittingpf the expansion flow.
source created in a relativistic nuclear collision is through A systematic approach towards extracting the expansion
two-particle intensity interferometryl,2]. This information  velocity from experimental HBT data thus presupposes a
is therefore indispensable for an assessment of theoreticabreful analysis of the interplay of flow and resonance de-
models which try to reconstruct the final state of the collisioncays on the gross features of the two-particle correlation
from the measured single-particle spectra and particle multifunction. This is the aim of the present paper. We will use
plicity densities in momentum space. Reliable estimates ofor our analysis a simple analytical model for the source
the sourcegeometryat particle freeze-out are crucial for an function, which assumes local thermalization at freeze-out
experimental proof that high-energy heavy ion collisions carand produces hadronic resonances by thermal excitation. The
successfully generate large volumes of matter with highmodel incorporates longitudinal and transverse expansion as
energy density. Direct information from two-particle corre- well as a finite duration of particle emission. The two most
lations on the expansiodlynamicsat freeze-out further pro- important parameters for our considerations, the temperature
vides essential constraints for theoretical models whickand transverse expansion velocity at freeze-out, can be var-
extrapolate back in time towards the initial stages of the colied independently. Our study thus complements published
lision in order to make statements about a possible transitiorlBT analyses of source functions generated by hydrody-
to deconfined quark matter. namic simulations where freeze-out is implemented along a
An important insight from recent theoretical research onsharp hypersurfacgs] and which do not easily allow us to
Hanbury-Brown—Twis§HBT) interferometry is that for dy- gain physical intuition by a systematic variation of the model
namical sources which undergo collective expansion th@arameters. After freeze-out the resonances are allowed to
HBT radius parameters, which characterize the width of thalecay according to an exponential proper time distribution
two-particle correlation function, develop a dependence ormlong their trajectories, and the resulting emission functions
the pair momentumi3—13). The detailed momentum depen- of daughter particlegpions, kaons, etg.are added to the
dence is somewhat model dependent, and in general it is ndirect emission function of particles of the same kind before
simple[11]. Still, it opens the crucial possibility to extract calculating the correlation function. A discussion of the mo-
dynamical information on the source from interferometry mentum dependence of resonance decay effects on the one-
data. Unfortunately, the most abundant candidates for interand two-particle spectra requires the correct treatment of the
ferometry studies, charged pions, are strongly contaminatedecay phase spa¢8,16,17 and does not permit the simpli-
by decay products from unstable resonances some of whidlying approximations leading, e.g., to Ed) in Ref.[18].
only decay long after hadron freeze-du#,8]. Such reso- The paper is organized as follows. In Sec. Il we review
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the extraction of space-time information on the source from,\,here’;#(K):Xﬂ_<XM>EX#_W(K) is the distance to the
Gaussian fits to the correlation function. This calculational
scheme is then extended in Sec. lll to include resonanc
decay contributions. The next three sections are devoted to
detailed model study based on this formalism. In Sec. IV wi

describe the model for the emission function including resoL ined by its Gaussian widths which in turn are directly

nance contributions. Results for the one- and two-patrticle | ) ) -~
P yen by the K-dependentspace-time variancex*x”) of

spectra are presented in Sec. V, and a general discussion Y ) ) , .
the effects from resonance decays on the shape of the corrd1® €mission function. The latter define the size of regions of

lation function is given there. In Sec. VI we then discuss in"omogeneity in the sourcgs,10,21,22 which effectively

detail the practical difficulties posed by the non-Gaussiarfontribute to the Bose-Einstein corrglationg. I_:iner space-time
features in the correlation function due to long-lived reso-Structures of the source show up in deviations of the cor-

nances, by comparing different fitting procedures. This lead&€'ator from a Gaussian shape.

us in Sec. VIl to the alternative method @fmoments which In previous studies of a”?"}’tica”y given emission func;-
provide a clean definition of the HBT radii and intercept tions, the correlator was sufficiently Gaussian to base all in-

parameter even for non-Gaussian correlation functions/€Stigations on Eq2.4). Then one proceeds as follows: Due

These HBT radii show much weaker resonance decay effecfg the on-shell constrair - q=0 only three of the four com-
than the ones obtained in RE8] by fitting a Gaussian func- ponents ofg which appear in the exponent are independent.

tion to a non-Gaussian correlator. The normalized fogrth 1he dependent component must be eliminated using the re-

moment of the correlator, the kurtosis, provides a guantital2tion

tive measure for the deviations from a Gaussian shape as, 0 e " 2.5
e.g., induced by resonance decays. We will show that, at A"=B-9=F. 0t Al '

Ieast_W|th|n the general class of source models studied her?—{ere B=KIKO~K/E,, with Ex=m?TKZ, is approxi-
the simultaneous study of the pair momentum dependence Q . . .
mately the velocity of the pair, and we used the convention

the HBT radii, the intercept parameter and the kurtosis al;[hatl denotes the “longitudinal'(bean direction @ axis), 0
lows for a relatively clean separation of flow and resonanc%ienotes the ortho ongl “outward” direction @xis) whi,ch
decay effects. We summarize our findings in Sec. VIII. The.” ™ 9 " o
Appendixes contain some background for readers intereste oriented .SUCh thak =(K, ,0,K)) lies n the Xz plane.
in the technical details. The computer code used in th sigarijsifeocr:gggltﬁi h?;g@grgeﬂﬁggﬁg:}én tge éhd;dtg?;f'
. L i : , =0.
present study, is on deposit in the E-PAPS archi4. mass-shell constrainR.5), the inverse of the Fourier trans-
form in Eg. (2.2) is not unigue. The missing information
Il. GAUSSIAN PARAMETRIZATIONS required for the reconstruction of tH&aussiah source in

OF THE CORRELATION FUNCTION space-time from the measuralfldaussiap HBT radii must

E . del for th ission functi q thus be provided by model assumptions.
or a given model for the emission Tunc i&ix, p) an In this paper we will deal only with azimuthally symmet-
assuming incoherent particle production as well as plan?-

. i . ¢ sources for which the correlation function is symmetric
wave propagation, the invariant momentum spectrum an

two-particle HBT correlation functions are given by Gf;%irsﬁas: p;gsm[e%{iatisopnescglfcal|y, we will discuss two
[19,3,20

(1) The Cartesian parametrizatip®l] is obtained by us-
ing Eq. (2.5 to eliminateq® in Eq. (2.4):

oint x(K) of maximum emissivity of particles with mo-

entumK in the sourcdthe so-called “saddle point” of the
Surce for particles with momentuk). In this approxima-
ion the two-particle correlation function is completely deter-

dN
o= | 4 Sxp), @D claK)=1+) exd —q? RA(K)— a2 R¥(K)— g7 RA(K)

— 20,01 R3(K)]1. (2.6

E

|Jd*x S(x,K) e'9%? qx |2
C(q,K)~1+ Td'% SOK)[2 =1+[(e7)?, The corresponding size parameters are given by the space-
’ 2.2 time variance§24,21]

2 —_ /2
X)y=(f(x ——r - .
Ja*Sx.K) RA(K)=((X-B.T)?), @70
Equation (2.2) is written down for identical bosons, and RA(K)=((Z-BT)?) (2.79
ad=p1—P2 K=3(p1+p,), with p;, p, on-shell such that ' | ' '
K-q=0. (f(x))=(f(x))(K) denotes the K-dependentav- RZ(K)=((X-B8,T)(Z-BT)). 2.79

erage of an arbitrary space-time function with the emission
function S(x,K). As long as the emission function is suffi-

. . ; For a detailed discussion of the meaning of these standard
ciently Gaussiafl1] one can approximate

HBT parameters, in particular of the out-longitudinall
o cross tern{21], and how they mix spatial and temporal as-
C(9,K)=1+exd —q,q,{x*“x")(K)], (2.4  pects of the source, see Reff$0,11,23.



56 RESONANCE CONTRIBUTIONS TO HANBURY. .. 3267

(2) If one eliminates in Eq(2.4) g, and g in terms oqu=\/q02+qsz, q°, and g, one arrives at the Yano-Koonin-
Podgoretski (YKP) parametrizatiori25,26,23,12

C(a.K)=1+\ exp{ —RZ(K) o —Rf(K) (@7~ (4%)?)~[R§(K)+RF(K)][q-U(K)]?}, (2.9

where U(K) is a (K-dependentfour-velocity with only a  This agrees with the widths of the correlator if and only if

longitudinal spatial component: C(q,K) is Gaussian. We will see that resonance decays can
lead to appreciable non-Gaussian features in the correlation
function. If this is the case, Eq$2.7) and (2.10 no longer
provide quantitatively reliable expressions for the observed

- 29 half widths of the correlator. A detailed discussion will fol-
low in Sec. V.

U(K)=%(K)[1,0,0p(K)], with y=

IR

| [l
<

N

The YKP parameter’ (K), R5(K), and Rf(K) extracted
from such a fit do not depend on the longitudinal velocity of lIl. RESONANCE DECAY CONTRIBUTIONS
the observer system in which the correlation function is mea- \ye concentrate on charged pion {7+ or =~ 7~) cor-

sured. They can again be expressed in terms of the spacgsjations. In the presence of resonance decays, the emission
time varianceg x, x,) [12], and take their simplest form in  function is the sum of a direct term plus one additional term
the frame where (K) vanisheq23,12,13 (the approxima- for each resonance decay channel with a pion of the desired
tion in the last two expressions are discussefl$,13,27): charge in the final state:

2 () R2(K ) — (T2
RT(K)=Rs(K)=(y*), (2.109 Sw(x,p):s?:r(x,p)er;W S _..(xp) . (3.1

RE(K)=((Z=(B11B)X)?—~(B11B)XY*)=~(Z?), _ _
(2.10p  Note that the sum is over decay channels, not just over reso-
nances. We compute the emission functi@s, ,(x,p) for
the decay pions from the direct emission functiﬁiﬁ@(X, P)
RAK)=((T=XIB)D—(y»IB?~(1?) . (2.109 for the resonances taking into account the correct decay ki-
nematics for two- and three-body decays,
The expression$2.7), (2.10 for the HBT parameters are
useful for two reasonsi) They result in an appreciable tech-
nical simplification because instead of the Fourier transform > et P
(2.2) only a small number of four-dimensional real integrals S,H,(x,p)=2 jRJO dr eS| x- M P
over the source function must be evaluated to completely N (3.2
determine the correlation function. Their accuracy has been
checked i 11] for models of the type to be used below and,
in the absence of resonance decays, for hydrodynamierom now on capital letters denote variables associated with
sources with a sharp freeze-out hypersurfacg28]. (i)  the parent resonance, while lowercase letters denote pion
They provide an intuitive understanding of which space-timeyariables. Herel is the total decay width of the resonance,
features of the source are reflected by the varipuepen- and 3. [ goes over the kinematically allowed resonance
dences of the correlator. However, their range of validity ismomenta as described in Appendix A. Please note that the
limited by the fact that strictly speaking the space-time vari-momentap and P~ in this expression are in general differ-
ances determine only the curvature of the correlatar=a0:  ent, in contrast to the approximation used in Ex). of Ref.
1 2ClaK [18]. This is important for the following discussion of the
b _a (a.K) momentum dependence of the correlator.
2 9 dq; The complete two-particle correlation function is then
(2.11 given by

((;i_BiT)(;j _Bj’f)): -

q=0

1S3, K) |2+ 23, . ,RESH(q,K)S, _ (4, K) ]+ |2, 4 Sy (A, K) 2
1S.,(0K)|?

where the denominator includes all resonance contributions according t@.Hqg.The last term in the numerator can be
neglected if resonance production is snjal]. However, in ultrarelativistic heavy ion collisions a major fraction of all final
state pions stem from resonance dec@ge Fig. 1 and this “Grassberger approximation” cannot be used.

C(g,K)=1+

: (3.3
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For later reference, we extend the expressions given in SW(X,K)ZS‘quir(X.K)+Sr_>W(X,K)
Sec. Il for the HBT parameters in terms of space-time vari- s "
ances of the source to include resonance decay contributions: =(1—e¢) e XI(2RG) 4 ¢ @~ X(2Rby0) (3.9

- S A% X, X, S 1 (X,K)
K)=
P05 T § a0k

(3.4 According to Eq.(3.3 the correlator is then a superposition
of three Gaussians which fé,,,> Ry have very different

Here the sum runs over all contributions, including the directw'dths:

pions. It is instructive to rewrite the average over the emis-

sion function in the following form:
J C(q.K)—1=(1—€)? e Rad + 2 g Ruadt®

)= F(K) (x,)0(K), +2e(1-e)e” FarFmd?™2 (310
r
_ Obviously, if € is small, the rough structure of the correlator
<XMXV>(K)_Z fr(K) (%X} (K), (39 Wil be determined by the large and broad direct contribu-
tion. The two other contributions will, however, modify its
where we introduced the single-particle fractidB$ functional form as follows. _

(i) If the resonance is shortlived such th,~ Ry, its

4 dN"/d3K effect on the cgrrelatpr will pe minor; its shape will remain
f(K)= JdX S #(x.K) = :Tt : roughly Gaussian, with a width somewhere betweeRy1/
3 fd% §_ (%K) dNDTdK and 1Ry, depending on the weight of the resonance

contribution.
(ii) If the resonance lifetime and thi,,, are extremely
Z f (K)=1. (3.6) large, the second and third term in E§.10 will be very
narrow and, due to the finite two-track resolution of every
experiment, may escape detection; then the correlator looks
again Gaussian with a width R¢;,, but atq=0 it will not
approach the value 2, but+l(1—€)?2<2. The correlation
appears to be incomplete, with a “correlation strength”
A=(1-f)2=(1-¢)2
fd%x. . S (x.K) (iii) If the resona.nce-lifetime is in between sugh that
(- )(K)= o Tem T (3.7 Rhaic Rair but 1Ry, is still large enough to be experimen-
Jd*%S . (x,K) tally resolved, all three Gaussians contribute, and the full
correlator deviates strongly from a single Gaussian.

These give the fraction of single pions with momentém
resulting from decay channel We also defined the average
(- +); with the effective pion emission function arising from
this particular channel:

The variance$3.4) can then be rewritten as

(XuX0) = 20 F00X0) o 2 (8= Fo) (X)) -
" (3.9

The first term has a simple intuitive interpretation: each reso-

nance decay channel contributes an effective emission e m=0 n =0
functionS;_. ;. The full variance is calculated by weighting °

the variance(homogeneity lengthof the emission function ¢ 4

from a particular decay channelwith the fractionf, with % o6 f

which this channel contributes to the single-particle spec-= °§
trum. However, the different effective emission functions o4
S _. -(X,p) have in general different saddle points; this gives
rise to the second term in E¢B.8) which somewhat spoils
its intuitive interpretation. 0 500 1000 1500 0 1.0 2.0 3.0
Also, the full emission functioti3.1) is a superposition of K (sY) y
sources with widely differing sizes since long-lived reso- _
nances contribute long exponential tails to the emission func-| | | | i - -
tion S,_, . [8,15]. It is easy to see that this leads to non- e & & "
Gaussian correlation functions: Consider a simple one-
dimensional toy model where the emission function is a sum F|G. 1. The resonance fractiofigy,p, ) according to Eq(3.6)
of two Gaussian terms, one of widRy; for direct pions and  for T=150 MeV. Upper row: no transverse flow;=0; lower row:
one of widthRy,, for pions from a resonance, with weights 7,=0.3. Left column:f, as a function of transverse momentum at
1-— € ande, respectively: central rapidity; right columnf, as function of rapidity ap, =0.

n; =03 n =0.3

0
thermal p A Ks A
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In caseq(ii) and (iii) the space-time variances calculated i J+1
from Eq.(3.8) yield misleading or outright wrong results for S(x,P)= (z—w)ngCOS“Y_ 7)
the width of the correlation function. They give the curvature
of the correlator agj=0: P-u(x)— u,
Xexg ——————|H(Xx), (4.
(X2 = 4 X®) dir+ Fhaid X2 hato= (1~ €) R+ €RAzo where
19°C(q)
=TT | (3.11) H(x) = 1 ext] — 2 (p=n9)? (1—m)°
a=0 ) 2R? 2(Ap)?  2(A7)?)

4.2
In case(ii), for not too small values o€, this is dominated

by the second term although the resonance contribution iwith proper time r=\t?—2%> and space-time rapidity
not even visible in the measured correlator. On a quantitativg,= 1In[(t+z)/(t—z)]. The physical meaning of the param-
level, the situation is not very much better for céiie (see  eters has been explained in detail in Ref8-13,23 to
Sec. VIA1 for a more detailed discussjon which we refer the reader. The only new ingredients are a
However, if the resonances can be clearly separated int@yctor 23, + 1 for the spin degeneradgue to charge identi-
two distinct classes, one with very short lifetimes of order lfication in the experiment each isospin state must be treated
fm/c, the other with very long lifetimes of order 100 fonér  separately and a chemical potential, for each resonance
longer, then space-time variances can again provide an accp- This means that all particles are assumed to freeze-out
rate measure for the width of the correlation function. Toyith the same geometric characteristics and the same collec-
achieve this, one must leave out the Iong—Iiv_ed resonancefe flow, superimposed by thermal motion with the same
from the sum over in Eq. (3.8), i.e., one restricts the cal- temperature. The possible consequences of particle-specific
culation of the space-time variances to the “core” of thefreeze_oul[34,35 will have to be discussed elsewhere.
emission function from direct pions and short-lived reso- Eor |ater reference we note that the functid(x) is nor-

nanceq30,31. Since the contribution from long-lived reso- majized to the total comoving three-volume according to
nances to the correlator cannot be resolved experimentally

(while they do contribute to the single-particle spextane 4 5
includes them via a reduced correlation strength d™x H(X) =71 {02 70 Trms. (4.3
2 r2 =2R?=x2 +y2 _ m=A7. (4.9
)\(K): 1_ Z . fr(K) ) (312 rms rms ms rms
r=long lived

Note that the rms widths iR andy direction are each given

by R. If the Gaussians it (x) were replaced by box func-

TheK dependence af will be discussed in Sec. V. tions [32,33, the equivalent box dimensiorwith the same
The real problem comes from resonances with an interg o radi) would beR=2R, 7=3 A 7.

mediate lifetime. They cause appreciable deviations from a ko the flow profile we assunja2] Bjorken scaling in the

Gaussian behavior for the correlator and cannot be re"ab'Yongitudinal directionp,=2/t, and a linear transverse flow

treated by the method of space-time variances. In naturfaapidity profile[36]:

there is only one such resonance, theneson with its 23.4

fm/c lifetime. At low K, it contributes up to 10% of all r

pions[f,(K=0)~0.1], and their non-Gaussian effects on m(r)=ng- (4.9

the correlator can be clearly seen. They will be discussed

extensively in Secs. VI and VII. In spite of the longitudinal boost invariance of the flow, the
source as a whole is not boost invariant due to the finite
IV. A SIMPLE MODEL FOR THE EMISSION EUNCTION extension iny provided by the second Gaussian in E4J).
Inserting the parametrizatiofA5) for P the emission
As discussed after Eq(2.5, a completely model- function (4.1) becomeg13]
independent HBT analysis is not possible. In this section we

define a simple model for the emission function in relativistic dir 23 +1 T
nuclear collisions which will be used in the rest of the paper ST(xP)= 2m)3 MrcostY—#) e H(x)
for quantitative studies. It has been used extensively in the

literature[9-13,23, and we present a simple extension to My B

include resonance production. It implements the essential xXex T coshY — n)cosh(r)

features expected from sources created in nuclear collisions:
It assumes local thermalization prior to freeze-out and incor-
porates its collective expansion in the longitudinal and trans-
verse directions. On the geometric side, the source has a _
finite size in the spatial and temporal directions, i.e., itimple-The direct pion componerﬁi‘r(x,p) is obtained from this
ments a finite, but nonzero duration for particle emission. expression by setting=#, P=p, J,=0, x.=0, and®=0
The emission function for particle speciess taken as [see Eq.(A4)]. This last condition reflects a choice for the

Pr_
+ ?smhnt(r)cos(qs—(l)) . (4.6



3270 URS ACHIM WIEDEMANN AND ULRICH HEINZ 56
orientation of the coordinate system such that the transverse TABLE I|. The resonance decay contributions#6 production
momentunyp, of the decay pion lies in the-z plane. For the  considered in the present work. Where applicable the factor in front
transverse momentur®, of resonances which contribute of the branching ratio is the Clebsch-Gordon coefficient for the
pions with the same, as the directly emitted ones, in gen- Particular decay channel.

eral a nonvanishing azimuthal angle is required, see Ap-

pendix A. Decay channet M (MeV) T (MeV) J b,_ .-

The chemical potentialg, will be fixed by the assump- p - —m w° 770 150 1 1.0

tion of chemical equilibrium at freeze-out. Then baryon o_, - _+ 770 150 1 1.0

number and strangeness conservation in the fireball demand

the existence of two independent chemical potenigdsand - -, 1232 115 3/2 1.0
ms, with Amp 1232 115 372 (L3X1.0
o A n 1232 115 312 (1/3x1.0

Mr=Drpgt Seus, (4.7 At p 1232 115 312 1.0

whereb, ands, are the baryon number and strangeness OL*O
R

-K+
resonance, respectively. The condition of overall strange- ™ K 892 50 L (2/3k1.0

ness neutrality of the fireball allows to eliminatg in terms K*"—a7K® 892 50 1 (2/3K10
of T and ug [37]. e
Unless stated otherwise, the numerical calculatiighg E*__”T_Aéllm) 1385 36 12 0.88
below are done with the set of source paramefers150 > 0_’77_ 2+(1193) 1385 36 vz (1/30.12
MeV, R=5 fm, A»=1.2, 7o=5 fm/c, Ar=1 fm/c, and z - 2_(1193) 1385 36 12 (1/250.12
ws=pus=0. We will work in the fireball c.m. system and >**—m A(1116) 1385 36 2 088
thus setzy,=0. S* 7 30(1193) 1385 36 172 (1/2x0.12
The resonance channels included are listed in Table I. Thgxo_, ;-5=(1193) 1385 36 1/2 (1/2x0.12
2.(1193 and A (1116 are treated as one baryonic resonance
Y (1150 at an average mass of 1150 MeV. For simplicity the , - _+ o 782 8.43 1 0.89
decay cascad®’— yA—pw~ is replaced by an effective
two-particle decay2®—p=~, since the photon in th&?° a0 547 12102 0 0.24
decay is known not to change the shape of the hyperon spec- ' '
trum [32]. The =~ decay contributions from the cascades mtay 958 02 0 0.44

' —- +p—m +--- and 2*¥—...+ Y(1150)> 7"
+. .. are taken into account by enhanced branching ratio]s<0 .

. . — 498 ~0 0 0.69
for the Y and 5 decay channels. These crude approximations' S m
are not problematic because they concern quantitatively, 1193 ~0 12 10
small contributions. The cascade decays just mentioned -+_’7T_n_ - '
fect the intercept parameter on the level of a few percent; thé —m n 1193 ~0 172 1.0
i - en’— yA—pm- 1193 ~0 1/2 0.65
K dependence of the HBT radius parameters remains ess YA—=Pp
tially unaffected.K? decays are neglected because the long\ —P™ 1116 ~0 12 0.65
K? lifetime (cr = 15.5 m) makes them invisible for most
detectors.
where
2
V. RESULTS FOR ONE- AND TWO-PARTICLE SPECTRA P
C(r) = zsintfy(r) —r? qf, (5.23

We now present a quantitative analysis of the one- and
two-particle spectra for the model described in Sec. IV. Both p
types of spectra can be expressed in terms of the four- Di(r)=—2r—Lsinhr;t(r)(qocosl)t+qssinfl>t),
dimensional Fourier transforms of the direct emission func- T 5.25
tions S™"(q,P*), see Appendix A. We show in Appendix B (5.2
how the latter can be reduced analytically to two- A(5)=(q°coshy—q,sinhy), (5.20
dimensional integrals over and #:

(A7)?

To ’

(23,+1) Aq(7)=A(n) (5.20
m(2m)%? . . . . .

The Bessel function arises from thep integration while
><cosr(7;—Y)e‘ATOe‘<1/2)A2(AT)2e‘ 7?12(An)? the terms containings and A, stem from ther integration.
Please note that the azimuthal rotation of the resonance
transverse momentu®, relative to the pion transverse mo-
mentump, (which defines thex axis of our coordinate sys-
tem) enters only through the combination in brackets in Eq.

X1o(yC—iD™), (5.1)  (5.2b); the latter stems from the scalar produptP=, see

S(a,P*)= M, 7 eﬂr”Jdn(HiAq)

X fmrdrefrZIZRzef(ML/T)coshan)coshr;t
0
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Eqg. (A19). This means that the dependence®n can be - .
shifted fromP}" to g, by a common rotation by the angle Si(0ly,m;)=2M fRS? (0;Y,M ). (5.6)
O
The factor 2 results from the sum ovér. , noting that at
S9(q°,0,,9s.9; ;E_,P, cosb., ,P, sind. ,P ) q=0 the integrand is independent @f. (see Appendix B
: : Writing Y=y+uvAY [see Eq(A16)], whereAY is indepen-
:§§if(qo,qocogbiJrqssinQ)i Noelok (N dent ofy, they integration can be pulled through the inte-
_ grals [ over the decay phase space, yieldiad]
—dosind . ,q;;E_,P,0P ). (5.3 } y
Ir Ir
Note that this identity d t depend on the model for th _dN;:_dNZ’LE ZMJ _der- (5.7
ote that this identity does not depend on the model for the dmi  dm?  “&r R dM?

emission function. It shows that the resonance decay kine-

matics leads to a mixing of the sideward and outward The transverse momentum spectra of the directly emitted

dependences of the correlation functions that would be obresonances are given by expressiofB5) [17,32;
tained from the resonances if one could use them for inter-

ferometry directly. This feature is lost in the approximation de" 2J3,+1
leading to Eq.(2) in Ref.[18]. =

For the direct pion contributiond - is to be set to zero in
Egs. (5.1, (5.3.

(27R%-270A p)et'TM |

dMi T A4x?

2

© 2 MJ_

X J;) d(?) e ¢ IZKl( TCOShI]t(g)
A. The resonance fractionsf,(K)

The single-particle momentum spectruf@.1) is the

space-time integral over the emission functi{@ml),

P,
Xlg 7smh77t(§)>, (5.8

dN,
mdy dnf

where we substituted=r/R under the integral. Note that

the geometric parameteRs A 5, 7y of the source enter only
(5.4  in the normalization of the spectrum through the effective

volume (4.3). Thus the shape of they{integrated single-

It is thus given by the Fourier transfor®.1) of the emission ~Particle transverse momentum spectrum contains no infor-
function at zero relative momentum. From this expression ifhation on the source geometry, in agreement with general
is straightforward to evaluate the resonance fractiongfguments presented, e.g.,[it2]. According to Eqs(5.7),
f.(y,m,) of Eq. (3.6). For later reference they are shown in 5.8), the un_normallzed transverse momentum dependence is
Fig. 1. At central rapidity and small transverse momentum ifully determined by the rest mad4, the temperaturd [or
our model only about 40% of the pions are emitted directlyT (§) if T werer dependerif and the transverse flow profile
while more than half of the pions stem from resonance dem(§) = n:€". o )
cays. The direct fraction increases rapidly with increasing FOr later reference we plot in Fig. 2 the pion transverse
transverse momentum, but very slowly with increasing lon-Mass spectrum for the two sets of source parameters for
gitudinal momentum, respectively, rapidity. In fact, most Which we compute ftwojpartlcle correlations below. All reso-
resonance fractions are nearly independent of rapjéityAt nance decay contributions are shown separately. The only
large p, the resonance contributions to the single-particlethree-body decays are those of they, and»’ whose decay
spectrum die ouf17]. The largest resonance contribution PiONs are seen to be particularly concentrated at small
comes from they meson, due to its relatively small mass and (A similar low-p, concentration occurs for pions froig
large spin degeneracy factor. Thewhich is still lighter, has ~ decays, due to the small decay phase space in this particular
no spin and a small branching ratio into pions. As can bdwo-body decay. Comparing the top paneho transverse
seen in the lower row of Fig. 1 the resonance fractions aréow, 7¢=0) with the bottom panel+;=0.3) one observes
only weakly affected by transverse flow: at smpll the the well-known flattening of the transverse mass spectrum by
direct fraction increases slightly while at large the ten-  transverse radial flof32-34,3§. The direct pions reflect
dency is opposité¢see Sec. V B essentially an effective “blueshifted” temperaturé.g;
=TV(1+{B))/(1—(B)) [38]. But the heavier resonances,
in the regionP, <M, , are affected much more strongly by
transverse flow since at sm#l| the flattening of the spectra
Integrating Eq.(5.4) over rapidity we obtain the single- by flow is proportional to the particle rest md&gt,38. Fig-
particle transverse momentum distribution ure 2b) shows that this effect on the parent resonances is
also reflected in the spectra of the daughter pions, explaining
dN . _ . . . ;
g=7rj dy & 0y,m)+ S Trf dy S__(0:y,m,). the_ slight rise withy; of the resonance fractions at lange .
dmg 4 r#m This flattening of the transverse mass spectra by transverse
(6.5  flow, suggested in Ref$38,32,33 as an explanation for the
observed features of the single-particle spectra fréi®i-
The resonance decay contributions are given according tand 3?S-induced collisions at the AGS and SPS, seems to
Egs.(A18) and(A19) by have been confirmed by recent collision experiments with

d4X SW(le):gw(qzo;mL !y)

B. Single-particle transverse momentum spectra
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FIG. 3. The two-particle correlatd®(qg,K) for 7~ pairs with
pair rapidityY=0 in the c.m.s. Each row of diagrams corresponds
to a different value for the transverse pair momentun

1500
m; - my (MeV)

(K, =0, 200, 400, 600, and 800 MeV from top to bottprheft
column: the correlator in the outward direction qt=q,=0.
Middle column: the correlator in the sideward direction at
FIG. 2. The single-pion transverse mass spectrumTferl50  g,=q,;=0. Right column: the correlator in the longitudinal direc-
MeV and ug=us=0. The overall normalization is arbitrary, the tion atg,=q,=0. Source parameters as in Sec. IV, the transverse
relative normalizations of the various resonance contributions arflow z; has been set to zero. Here and in the following plots the
fixed by the assumption of thermal and chemical equilibrium. Up-different lines have the following meaning. Thin solid line: thermal
per panel: no transverse flow;=0; lower panel:p;=0.3. pions only. Long-dashed: including additionally decays. Short-
dashed: including additionally all other shortlived resonances
very heavy iongAu+Au at the AGS, Pb-Pb at the SPS, see (A,K*,%*, see Table)l Dash-dotted: adding alse decays. Thick
contributions by Y. Akiba, R. Lacasse, Nu Xu, and P. Jonessolid line: adding also all longlived resonanceg ¢',K2,3, A, see
at the recenQuark Matter '96conferencg 39]). One of the  Table ).
main goals of two-particle interferometry is to obtain an in-

dependent and more direct measure of the transverse eXpafien the other short-lived resonances, then d¢hevith its
sion velocity at freeze-out, to confirm this picture and furtherintermediate lifetime, and finally all the long-lived reso-

discriminate against possible alternative explanations. nances. Comparing these plots row by row gives one a feel-
ing for theK , dependence of the correlation function and the
C. Two-particle correlations various resonance contributions. In the following two sub-
In Figs. 3 and 4 we plot the two-pion correlaB(q,K)  Sections we give a rough and general discussion of the main
in the three Cartesian directions gffor zero and nonzero features of the correlator without and with transverse flow of
transverse flowy; , respectively. We use the lett¥rto de- the source, respectively, before proceeding to a quantitative
note the rapidityof the pair andK, (M) for its transverse ~analysis in Sec. VI.
momentum(transverse magsThe pion pairs in Figs. 3 and 4

have pair rapidityY=0 in the c.m.s., and transverse mo- 1. No transverse flow (Fig. 3)

menta ranging from 0 to 800 Me¥/(top to bottom. The The direct thermal contribution leads to a correlation
correlation functions were calculated by numerically evalu-function with a nearly Gaussian shape in all directions
ating Eq.(3.3 for the source parameters given in Sec. IV. i=0,s,l, and for all pair moment& , . AsK, increases, the

Within each plot, the different lines show the effect of correlator becomes rapidly wider in the longitudinal direc-
adding in Eq(3.3) in the sum over decay channelsucces- tion while in the two transverse directions the changes are
sively more resonancgsee Table )t first the abundanp, hard to see and require a finer analy@ec. V). As more
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ne= 03, Y=0 sU although at a shifted momentum and shifted in time by
o= =0 q,=0,=0 the Ilfet|me_ of the resonance. As orfRy .an.dR| are sensitive
to the lifetime of the source, the shift in time affects the
correlation function only in the outward and longitudinal di-
rections. The stronger effect d& (which is obvious from
the right column in Fig. Bis a consequence of the boost-
invariant longitudinal expansion of our source: as the decay
pions are emitted at a later proper time and since the
longitudinal length of homogeneity increases withecause
the longitudinal velocity gradients decredd®], the decay
pions show a larger longitudinal homogeneity length than the
direct pions. Since the Fourier transform of the direct emis-
sion function is rather Gaussian and the decay pions from
short-lived resonances appear close to the emission point of
the parent, they maintain the Gaussian features of the cor-
relator.
Long-lived resonanced, <1 MeV. These are the; and
7', with lifetimes cr-~17.000 and 1000 fm, respectively,
and the weak decays #f2 and the hyperons which on aver-
age propagate several cifi.he decays oKE and charged
kaons are not included in our calculation because their decay
products are not seen in most experimeriiven with ther-
mal velocities these particles travel far outside the direct
emission region before decaying, generating a daughter pion
emission functionS,_, . with a very large spatial support.
01020 ;)?M‘lec{/) 01020 o?so(Mi({/) 010 C13|0(M4£V§0 ;l'he Fourie_r_transforn%r?w(q,K) thus decays very rapidly
or g#0, giving no contribution in the experimentally acces-
FIG. 4. Same as Fig. 3, but for nonzero transverse figw0.3.  Sible regiong>1 MeV. (This lower limit in q arises from
the finite two-track resolution in the experimenfEhe decay
id&ions do, however, contribute to the single-particle spectrum

0 MeV

200 MeV KL

600 MeV K, =400 MeV K|

800 MeV K/

Ky

and more of the short-lived resonances are added, the w , ; e
of the correlator becomes smaller, again with a larger effecPr—=(4=0K) in the denominator and thus “dilute” the
in the longitudinal than in the two transverse directions. ACOrrelation. In this way long-lived resonances decrease the
much stronger effect is caused by themeson; now the correlation strengtfx W|thout, however, affecting the shape
narrowing of the correlation function is also clearly seen in®f the correlator where it can be measured.
the transverse directions, and the correlator becomes mark- Moderately long-lived resonances MeV <I'<30 MeV.
edly non-Gaussian. As the long-lived resonances are addediere is only one such resonance, @hemeson. It is not
the intercept\ of the correlator ag=0 decreases below 1. sufﬂmently_ long-lived to escape d_etectlon in the correlator,
This is a matter ofy resolution(we stop ajg|=1 MeV) — z_ind_ thu_s it does not affect the intercept paramatedts _
the contribution from the long-lived resonances is entirelylifétime is, however, long enough to cause a long exponential
concentrated in a@-function-like structure near the origin, @l N S,_.~(X,K). This seriously distorts the shape of the
and with infinite resolution the correlator could be seen tocorelator and destroys its Gaussian form.
actually reach the value 1 af=0. This is, of course, an
extreme deviation from Gaussian behavior.
Long-lived resonances thus lead to apparently incomplete The main difference between Figs. 3 and 4 is that the
correlationsh <1 [8,15]. This effect becomes even stronger, effects from the short-lived resonances and theon the
if the correlator is projected onto one particutpdirection  shape of the correlator are weaker. The primary reason for
by averaging over a finite window in the other directionsthis behavior is that for the class of modé{s6) the trans-
where the correlator has already dropped beloiv0]. verse sizeR, of the effective emission region for heavy reso-
As the pion pair momenturk; increases, all resonance nancesshrinksfor nonzero transverse flow. In the Gaussian
effects on the width and strength of the correlator are seen tsaddle-point approximation, this transverse digecan be
decrease. This is a direct consequence of the decreasing res@alculated froms‘r’"(x,P) in Eg. (4.6) as
nance fractions, see Fig. 1.

2. Nonzero transverse flow (Fig. 4)

The above lifetime hierarchy of resonance effects can be R
understood in terms of the following simple picture. R=f—ms. (5.9
Short-lived resonance$,>30 MeV. In the rest frame of VI+(ML/T) 7

the particle emitting fluid element these resonances decay

very close to their production point, especially if they areThis is not accurate enough for quantitative studie but
heavy and have only small thermal velocities. This meangives the correct tendency and right order of magnitude. Go-
that the emission functio8, .. of the daughter pions has a ing as 7? this effect is small, but it tends to increase the
very similar spatial structure as that of the parent resonanceidth of the correlator, counteracting the basic tendency of
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resonance contributions to make the correlator narrower. Fo Unidirectional Gaussian fits, Y =0, n;= 0
n¢= 0.3 the two effects are seen to more or less balance eac
other in the sideward correlator, leaving practically no trace
of the short-lived resonances including the A similar ef-
fect is seen in the outward and longitudinal directions, but
there the dominant lifetime effect discussed above prevails.

Please note that none of the correlators shown in Figs. {
and 4 exhibits a “volcanic” (exponential or power law
rather than Gaussiaishape as seen for the longitudinal cor-
relators of Refs[8]. We have not been able to trace the
origin of this discrepancy; it may be due to the different
source(hydrodynamics with freeze-out along a sharp hyper-
surface used in Refs[8], but why this should manifest itself
in this way is not obvious. From general arguments we
would expect at smalfj a Gaussian behavior with a curva-
ture related to the longitudinal size of the effective pion
source fromw decays; the longitudinal correlators in REf]
seem to decay much more steeply for snwllWe have
checked our results with two independent programs, base
on the formulas given in the Appendixes.

0
VI. EXTRACTING HBT RADII FROM THE CORRELATOR 0 200 400 600 0 200 400 600 800
K, (MeV) K, (MeV)

Looking at Figs. 3 and 4 it is clear that more quantitative _ _ _
methods are needed to characterize the shape of the cor- ~'C: 5 The Cartesian HBT radR;, i=0,s,I and their corre-
relator. For an interpretation of the correlator in terms of theSpond'ng. intercept parameteks, extracted from the correlator
space-time structure of the source relatively small changes (%) Via wo-dimensional fits according to E€6.2). Shown are
its shape and its pair momentum dependence play an impo"fsunf5 atY_.O as function OfKi. for.”f_o' Top row: s'dewa.rd

. : firection. Middle row: outward direction. Bottom row: longitudinal
tant role. One would therefore like to (_jescrlbe the key _fea'direction. The different lines indicate the effects of including vari-
tures ofC_(_q,K) by a small nl_meer of fit parameters which < sets of resonances as described in Fig. 3.
are sensitive to this space-time structure. The usual proce-
dure is to perform a Gaussian fit with the functiq@s6) or n
(2.9. As we will see.thls method runs into systematic prob- E [InC(qi”,qk#ZO;K)—In)\i+Ri2(qi”)2]2=min.
lems if the two-particle correlator does not have a perfect /=1
Gaussian shape, e.g., due to long-lived resonances. Not only (6.2
do the functiong2.6) or (2.9) fail to give a good fit, but by
not correctly accounting for the non-Gaussian features onéhe labelv runs over a set oh equidistant values);” be-
throws away important space-time information contained irfween 0 and 50 MeV for which the correlaté(q; ,K) was
the resonance decay contributions to the correlator. calculated numerically. Although the procedu6e2) is con-

In this section we discuss several different Gaussian fitceptually different from an experimental fitting procedure in
ting procedures which clearly demonstrate these difficultiesthat the function to be fitted is known exactly and the result-
The main reason for presenting this basically flawed aping optimal fit parameters thus do not have statistical error
proach is(i) that it is the method mainly used so far in the bars, they can still vary systematically depending on the se-
experimental analysis andli) that the discussion throws lection of the fit pointsq; and the minimization function
some light on how one should compare HBT radius param¢6.2). These systematic variations reflect the possible non-
eters extracted by different groups using different proce-Gaussian features of the correlator, but not in a way that
dures. After having understood the problems and the systenallows to easily quantify them. As long as the deviations
atic uncertainties they generate we will then suggest a morgom Gaussian bahavior are small, the extracted Gaussian fit
reliable approach in the next section which also accounts foparameter®;(K) and\;(K) are expected to be useful for a

non-Gaussian features in a quantitative way. simple characterization of the main features of the correlator.
A. Two-dimensional Gaussian fits to the correlator 1. No transverse flow
We start by discussing two-dimensional fits &{q,K) For the casen;=0 the results from independent two-

with two parameters;(K), R(K) (i=o0,s,1). We approxi- dimensional fits to the correlator in the “sidetop), “out”

mate the numerical function in the directiogsas follows: ~ (middle), and “long” (bottom directions are shown in Fig.
5. The left column shows the Cartesian HBT radii, the right

C(0i ,gx»i=0;K)~1+X\(K) e*Ri2<K)qi2, i=o,s,l. column the associated intercept parameters resulting from
(6.2 the fit, both as functions dk, atY=0.
The fitted intercept parameters follow roughly the behav-
The optimal parameters;(K) andR;(K) are determined by ior expected from Eq(3.12 and Fig. 1. Upon closer inspec-
minimizing the following expression: tion one sees, however, that also some of the shorter-lived
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resonances, in particular the inclusion of thehave a sig- Ir( pf/M Z)fd“rxsiff(xypi) SirPd .
nificant lowering effect on\. These effects are different in feonr= T I p= . (6.4b
the three Cartesian directions and strongest in the longitudi- JrId™ S, (x,P7)
nal direction, where even without any resonance effects L
A<1 at smallK . Using f g+ f,=1 this yields
The deviations of the intercept parameter from unity re-
flect non-Gaussian features of the correlator. For short-lived ( 2>: RZif f i 6.5
resonances these are weak, except in the longitudjndi- y comr tw 2 - '

rection where the correlator has been known to show at small

K, a somewhat steeper than Gaussian fall-off due to thehis result can be explained as the effect of éheropagat-
rapid boost_-lnvarlant longitudinal expansion of the sourceing in they direction before decaying or, more formally, as
[11], even in the absence of resonance decays. The mathe effect of the “out’-“side” mixing in the decay kinemat-
non-Gaussian effects come from teand, of course, from jcs expressed by E@5.3). Numerically, we determined the
the long-lived resonance. The latter affect, however, anly factor f.,~0.52 atk, =0 which leads tof ;. f,~0.1 at
and not the HBT radii extracted from the Gaussian fit, whilethe same point. Putting this together with the width of éhe
the w also changes the radius parameters. resonance 1/=23.4 fm, one obtains for the side variance
The fit accomodates these non-Gaussian features by Iovx(f<y2>: 8.9 fm.
ering the intercept. As discussed in Sec. V. C the main  Thjs is obviously much larger than the 5.5 fm extracted at
origin of non-Gaussian effects due to resonances is the tail IR, =0, since the curvature.11) does not coincide with the
the time distribution of the decay pions. According to Eqs.fitted width. For longer living resonances this discrepancy
(2.7 this is expected to affe®, andR,, but notRs. Equa- ||, of course, be even larger. Another number to compare
tion (5.3 tells us, however, that the “out” and “side” be- \ith is the half width R of the correlatorC(qs) at

havior of the parent resonance distribution gets mixed in th(ao:qlszo including all short-lived resonances plus the

pair distribution of the daughter pions, so some fraction of ;" \ve find the hierarchy
this effect propagates into the side correlator of the decay
pions. On the other hand, there remains the fact that, com-

pared toRg, in R, an additional lifetime effect comes in
through the termB?(t2) in Eq. (2.7b; this contribution in-
creases quadratically for small values Kf , saturating
aboveK, =m_ whereB, ~1. This explains very nicely the
initial drop and subsequent rise »fin the outward direction,
which is particularly prominent for the contribution.

Let us now turn our attention to the HBT radii in the left

Wy?)~8.9 fm>R1'~ 6.4 fm>R~5.5fm . (6.6

We conclude that estimates of resonance effects, based on
space-time variances such&s/?), as, e.g., done ifi8], are
quantitatively unreliable. The half Widtﬁ's1a|f is close to the
result one would obtain from a Gaussian fit to the correlator
when the intercepk is fixedto the value of Eq(3.12 (as,

column of Fig. 5 and begin with a discussionRy. Its size e.g., done, albeit simultaneously in all thrgelirections, in

remains essentially unaffected by the short-lived resonance®efs:[8,41)). The difference to our procedure which lets
with lifetimes of order 1 fm¢, but thew affectsR;. This float is significant, and sind€ atq=0 is not experimentally

effect dies out rapidly for increasing, due to the decreas- accessible, a comparison 82" with dgta[41] is clearly
ing o fractionf (K, ,0), but the resulting , dependence of dangerous. The authors. of Ref8] also flﬂd. thgt at lowK | .
R, complicates the extraction of the transverse flow from itr€sonance decays can increase the longitudinal HBT radius
[11,13. R, by up to a factor 2_; in a Gz_;\u35|an fit with floatingwe

The origin of the effect has already been qualitativelyN€Ver See resonance induced increas&y by more than 1.5
explained in Sec. V C and above by referring to E§3). A fm. ] )
somewhat more quantitative estimate can be obtained by We have compared the Gaussians corresponding to the
studying the space-time variances of Sec. Ill, even thougRumbers given in Eq6.6) with the true “side” correlator in
the discussion presented there makes it clear that this wifl’® lower panel of Fig. 6. In the upper panel we show the
provide only an upper estimate for taecontribution toR,.  thrée_contributions to the correlatgsee Egs.(3.3 and
Considering only the direct pions and those frandecays ~(3-10] coming from pairs of two directly emitted pions

and calculating2§=<y2> according to Eq(3.8) we find (dashed ling from pairs of one direct and one decay pion
(difference between dotted and dashed linaad from pairs

where both pions come from decays(difference between
(Y2 =F 5l y?)airt (Yo (6.3  solid and dotted lings While it is obvious that the» contri-
butions are concentrated at lowgg values than the direct
] one, the tail from the mixed direet contribution is still
with appreciable outside the half point of the direct term near
gs=30 MeV. It therefore appears impossible to cleanly sepa-
o s ir . . rate the correlation function into “core” and “halo” contri-
Jd*x 3. frfodrTe Fyzsfu [x=(P7/M)7,P~] butions with differentg support15]. In particular, the recent
Jd* 2. frfodrT e TSI (x— (P*/M)7,P*] suggestion by C3go [31] to extract the “core” radius by
performing a Gaussian fit to thgs tail of the correlator,
=R2+(i)f (6.43 excluding the range;<q., whereqq,~ 30 MeV, is likely
[2) " corr ' to run into systematic problems.

(Y?) o=
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Unidirectional Gaussian fits, Y =0, n;= 0.3
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L 2. Nonzero transverse flow
FIG. 6. The correlato€(q,) atq,=q,=K=0, taking into ac-

count only direct pions and pions from decays. The upper panel In Fig. 7 we show the parameteks, R; obtained from
shows the three contributions according to E2}3): direct-direct  the two-dimensional fi{6.1), (6.2) for the case of nonzero
pairs (dashed direct-direct+ direct-w (dotted, and all contribu-  transverse expansion with;=0.3. Comparing with Fig. 5
tions (including thew-w» term where both pions come from de-  one sees that the effect of the resonances on the HBT radius
cays (solid ling). The lower panel compares the same solid line toparameters are weaker, and that correspondingly the non-
different Gaussians whose radius parameters correspond to the c@aussian effects caused by the short-lived resonances and
vature atqs=0 (dotted ling, the half width ofC(qs) (dash-dotted  the , (which lead to deviations of the intercept parameter
I!ne), and the optimal Gaussian fit according to E§.2) (dashed  fom unity) are less pronounced. In fact, the only remaining
line). effects of these resonances on the HBT radii come from the

terms~(12) in R, andR, [see Eq(2.7)] and are due to the

We now turn toR,. At K, =0 the two transverse radius additional contribution to the particle emission duration from
parameterd; and R, are equal by symmetrj23], and all  the resonance lifetimes. The geometrical effect of resonance
above considerations carry over to the “out” direction. At propagation away from the direct source, described by the
nonzeroK, , R, receives an additional contribution from the second term in Eq(6.5), has disappeared, even for the
source lifetime as indicated by E(.7h. Although for the ~ The reason was already discussed in Sec. V C(&@): due
w the use of this expression is no longer quantitatively reli-to transverse flow the transverse size of the emission region
able, it gives the correct tendency. Short-lived resonances d@' heavy resonances is smaller than that of the direct pions,
not destroy the Gaussian shape of the out correlator, and fénd since they do not live very long they usually do not
them Eq.(2.7b [with Eq. (3.8)] can be used without restric- make it outside the source of'dlrect pions before Qecaylng.
tions. It is obvious that even the short-lived resonances conlhus they do not lead to an increase of the spatial source

tribute through thelr I|fet|me to .the.terrwf<t2> in Eq. As a consequence, the decreas®goWwith increasingK
(2.7, strengthening the rise &, in Fig. 5 at smallK, . \yhich is characteristic for transverse collective flow of the
The strongest resonance _effect is seenRor which is source[11,13, is no longer modified by the pions from
affected even by the short-lived resonances. These effecifacays. This is, of course, the ideal situation one might hope
disappear for larg&, due to the decreasing resonance frac-or in order to extract quantitative dynamical information
tions f,, but at smallK, they are significant. Due to the from HBT data. Unfortunately, the problem remains that, if
existence ofweak non-Gaussian features already in the ab-the measurement finds(aot too strony M, dependence of
sence of resonances the space-time variances are of limitg®l, it could still be due to either weak transverse flow with-
use for a quantitative discussion of the effects, and we leaveut resonance contaminations as in Fig. 7, orotalecay
the reader with the numerical results shown in Fig. 5. Acontributions in the absence of transverse flow as in Fig. 5.
qualitative interpretation was given in Sec. V C. (Other mechanisms such as transverse temperature gradients
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might also create aM ; dependencfd,10].) We must find a parameters. For a fixed correlation function, a decrease of
more quantitative analysis tool which allows us to tell leads automatically also to a smaller Gaussian radius as
whether theM ; dependence dR, is associated withw de-  found by the fit. Since the compromise value folies above
cays or not. the value\,, but below the valuea ¢ and\, from the 2D
fits, R, increases anR;, R, decrease in the 5D fit relative to
B. Five-dimensional Cartesian Gaussian fits to the correlator  the 2D fit values|This effect is hardly visible if resonance
Before approaching this task in the next section, we willdécays are switched off but becomes stronger as the reso-

now also discuss some generic features of multidimensiondlance contributiongwith their non-Gaussian effegtsare
Gaussian fits to the exact correlator where all HBT paramadded] The net result is that even in the absence of trans-
eters and the correlation strength are determined simultaerse flow now the resonance effects Rpand on itsM
neously. This is clearly desirable in order to avoid the prob-dependence appear quite weak. Even the resonance contribu-
lem of having three different correlation strengths in thetion to the lifetime effect inR, (the quadratic rise at small
three Cartesian directions, as happens when the three radii ) becomes less pronounced.

Rs. Ry, andR, are determined by separate two-dimensional For completeness we show in Fig. 9 also results at for-
fits according to Eq(6.1), because such a result is clearly ward pair rapidity Y=1.5. In this case the fit gives, of
unphysical. It is also necessary for the determination of theourse, a nonvanishing cross teRy, with the expected
cross termR,; and for a fit with the YKP parametrization pehavior[10,30,42. It is affected by resonances essentially
(2.8). at the same level &, . The only other qualitative difference

In this subsection we extract the Cartesian param&gJs s the much smaller value @, relative toY=0; this is an
Rs, Ri, Ry, and\ from a five-dimensional fit which mini- oot of Lorentz contraction.

mizes the expression It must be stressed that the differences between this sub-
n section and the previous one are purely due to fit systematics.

E [InC(q”,K)—Inx+ R§ 992+ R§ (9)%+ R|2 (9/)? Depending on how the exact correlator is fitted to a Gaussian
v=1 the extracted Gaussian radii show significant differences.
Since in the experiments the intercept parameter cannot be
directly measured and must be fitted simultaneously with the

The labelv again runs oven fit points q* which were cho- HBT radii, we adopted the same procedure and|ébat in

sen to lie at equal distances between 0 and 50 MeV along tHg€ fit. Schiei and co-worke{8,41], on the other hand, in his
three Cartesianq axes and along the two diagonals Gaussian fits has always fixedat the value given by Eq.
(9s=0,0,=q;) and @=0,g,= —q,). This is, of course, dif- (3.12. In the presence of non-Gaussian effects due to reso-
ferent from a typical experimental distribution. They were hance decays our fits give smalles and, therefore, smaller

selected to economize in the number of fit points where th&!BT radii than his fit. This explains why the resonance ef-
exact correlator had to be computed. fects on the transverse radii and thKir dependence were

The results of the fit6.7) are shown in Fig. 8, again for found to be much stronger in Ref$8,41] than in our work
7:=0 and 7;=0.3 at midrapidityY=0. Let us first look at N€re. According to the second inequality in E§.6) the
the incercept parametar. Comparing with Figs. 5, 7 we see difference inRg is about 1 fm, in good agreement with his
that thex value from the five-dimensional fit lies somewhere COMpared to our results.
between the three different values obtained in the two-
dimensional(2D) fits. As before it reflects the deviations of
the correlator from a Gaussian. Since such deviations exist in
the q, direction even without resonances, due to strong lon- The extraction of the Yano-Koonin velocity from a fit
gitudinal expansion) slightly deviates from 1 even in the according to Eq(2.8) is a nonlinear problem. To maintain
absence of resonance decays. the simplicity of a least-square fit with linear fit parameters

The need for the fit to compromise on a unique intercepive have reformulated the YKP fit problem as follows. We
parameter affects the optimum values for the HBT radiugewrite Eq.(2.8) in the form

+2R2,929/1?=min. (6.7

C. Five-dimensional Gaussian YKP fits to the correlator

C(K,a)=1+x, (K)exd —RE(K) af —R3(K)af — RG(K)(q%)°+ 2Rgy(K)a°ay], (6.9
[
with , R2,— 2R,
1= 13,7 (6.99
1 1%
v= 5[1—\/1—(4D2)2], (6.93

— D=——>. (6.90
0T 1402 (6.9 Root Ras
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FIG. 8. The Cartesian HBT radR,, Rs, R,, and the intercept
; ! . . . . <
\, obtained from the five-dimensional {#.7) to C(q,K), as func- arguments presented above. FOr<100 MeV, we found

tions ofK, atY=0.R, is not shown since & =0 it vanishes due that theR, value extracted from.the Gaussi_an ﬁ.t deve_lops a

to symmetry. Left column: no transverse flow;=0. Right col- strong depend.ence on the choice of the fit poitswhile

umn: 7;=0.3. this probl_em dlsa_pp_ears at Iarggr vaIuesKgf._ ForY=1.5
(B;#0, Fig. 11, similar systematic uncertainties at smgl|

We then proceed as with the Cartesian parametrization iaffect alsoR; and Yyg . Accordingly, the corresponding

Sec. VI B, using the same set of fit points as before, buturves in Fig. 11 have been cut off at smidl| .

expressing them through their componemtsq, , andq’, in The intercept parameteks extracted from the fit to Eq.
order to determine. R, ,Ra3,Ro0, andRoz. Finally we  (6.8) essentially coincide with those from the five-
solve Eqgs(6.9 for the YKP parameters. dimensional Cartesian fit. This is expected since in both fits

However, the one-to-one correspondence between thide same set of fit points was used. Also, the resultdfor
YKP and Cartesian radius parameters does not imply that inompare very well wittR; in the Cartesian fit. For a Gauss-
a fit to experimental data both sets of fit parameters can b@n correlator the formalism of space-time variances says
determined with similar accuracy. At midrapidity, for in- Rf=R§=<y2). The equalityR, = R; remains essentially un-
stance, wherg’=g, q,, the YKP fit becomes for small affected by the non-Gaussian features of the correlator in the
transverse pair momentum increasingly insensitiveRfp  presence of resonance decays.
sinceq®—0 for B, —0. As a result, in the space of YKP fit The longitudinal YKP parameteR) is affected by reso-
parameters the confidence region for one standard deviatiamance decays roughly in the same wayRan the Cartesian
is very elongated ifRy. The actual fit value oR, thus de- fitat Y=0. This is expected becauseYat 0 the two param-
velops a strong sensitivity to relatively small systematic de-eters are again identical on the level of space-time variances,
viations of the correlator from a Gaussian shape. Since theee Eqs(2.79, (2.10h. There is no drastic change f&j as
procedureg(6.7) adopted here does not allow to associate erone goes fron¥ =0 to Y= 1.5: All values(with and without
rors to the extracted fit values, we present in Figs. 10 and llesonancesdecrease somewhat, because one approaches the
the results only for sufficiently large values &f, where forward end of the source, and the longitudinal homogeneity
such systematic effects were found to be small. region thus shrinks a bit.

For Y=0 (B,=0, Fig. 10 the systematic uncertainty at  The most significant resonance contribution is seen in the
small values ofK, (B,) affects onlyR,, according to the lifetime parameteiR,. This agrees with our arguments that
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Multidirectional YKP fit, Y =0
n=0 ng= 0.3 Multidirectional YKP fit, Y = 1.5
8 n=0 ng= 0.3
8
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0
KL (MeV) K. (MeV) 0 200 400 600 O 200 400 600 800
K; (MeV) K, (MeV)
FIG. 10. From top to bottom: the YKP fit paramet&s, Ry,
Ry, and)\YKP as functions oK, at midrapidityY=0. Left column: FIG. 11. Same as Fig. 10, but for forward rapidity=1.5. The
no transverse flowz;=0. Right column:7;=0.3. At Y=0 the additional fourth row now shows the Yano-Koonin rapidity at func-
Yano-Koonin velocityv vanishes exactly. tion of K, .

the dominant effect from resonances on the correlation fun

. . S Yects in the two-pion correlator, and that these deviations
tion arises from their finite lifetime.

. . . from a Gaussian shape can thus contain additional informa-
At Y=0 the Yano-Koonin velocity vanishes[12,13.  ion apout the space-time distribution of the source and its
This is reproduced by the f.'t' At forward rapidityis non- _physical origin. They also have negative effects on the ex-
zero. In the fourth row of Fig. 11 we plot the Yano-Koonin yaction of HBT radius parameters from Gaussian fits and
rapidity Y, = 3zIn[(1+v)/(1-v)] as a function of the trans- affect their K, dependence in a way which, within the
verse pair momentum. For longitudinally boost invariantframework of Gaussian fits, is difficult to quantify and to
sources, the YK rapidity is known to coincide with the pair control systematically.
rapidity Y., (K, ,Y) =Y. For the class of models of Sec. IV In this section we therefore study an alternative approach.
with longitudinally boost-invariant flow previous studies W€ Suggest to extract the HBT radius parameters and quan-
without resonance decay contributions gave a linear relatioHy the deviations from Gaussian behavior by studying the
between the two quantitie¥, (K, ,Y)=c(K,) Y. The Y normalized second and fourth ordgrmoments of the cor-

. . . relator C(q,K). We first develop the necessary formalism
dependenceér’_ provides direct experimental access to the . . -
YK and then apply it to the correlation functions calculated from

longitudinal expansion of the source. For thermalized modelg;; class of source models.

the proportionality constard(K,) slowly approaches unity

from below asK | increase$13]. This is clearly seen in Fig.

11 which also shows that resonance decay contributions have A. General formalism

a negligible influence on this relation. According to Sec. II, the most general Gaussian ansatz for

the correlator is
VIl. g VARIANCES OF THE CORRELATOR
3

We have seen that resonances, in particulawtiveth its C(q,K)=1+A(K)exg — 2 g9 Dii (K)q; (7.1
intermediate lifetime, create appreciable non-Gaussian ef- ’ ifZs Y gk
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where theq; are the three independent relative momentunthese technical complications do not arise, and compare it
components obtained after resolving the on-shell constrainvith the unidirectional Gaussian fits of Sec. VI A.

q°=B-q. For such a Gaussian correlator, the HBT param- We thus consider the correlator along one of the three
etersD;;(K) can be obtained by either fitting the various axesq; (i=s,0,l ori=1,1,0) which we denote b{C(q;),
widths of the correlator as done in Sec. VI, or by computingsuppressing for simplicity th& dependence:

the integrals

, C(g;)=C(q;,q;+i=0K). (7.6)
_Jd*qq q; [C(q,K)—-1] 1 | _ o
((gi a;))= 3 = 5[0 (K] The HBT radius parameter in directiorand the correspond-
Jdq [C(a.K)—1] 72 ing intercept parameter are then defined as
and inverting the resulting matrix of second ordgmo- R?:_lr, (7.7a
ments. bo2{(ar))

For a non-Gaussian correlator we mdgfinethe HBT

radius parameters in terms of thesg Variances”: having [dag; of [C(a) —1]

determined the matrixD(K) by inverting the matrix (a?y)= = , (7.7
: : Jdag [C(q)—1]
((g®q))(K) of q variances, we define
R: R R Dss Dos Dis xi=(Ri/ﬁ)qui[6(qi)—1]. (7.79
Rgs Rg R§| =| Dos Doo Dol (7.3 ]
R2 R? R? D, D, Dy To extract the momentgq;')) from data one replaces Eq.

(7.7b by a ratio of sums over bins in thg direction. The
the extracted values to statistical and systematic uncertainties
Rf 0 0 D,, O 0 in the region of largeq;. First investigations with event
0 R2 _R2 0 D D samples generated by thienus event generator indicate that
33 03 53 Dos| (74 the current precision of the data in the Pb-beam experiments
0 —RSS R(Z)O 0 Dgs Dgo at the CERN SPS permits to determine the second- and
fourth-orderg moments. Accordingly, we restrict our discus-
if one uses instead, ,q;,q° as independent variables. Equa- sion of non-Gaussian features to the “kurtosis”
tion (7.3) corresponds to the Cartesian parametrizatif),
generalized to systems without azimuthal symmetry by al- {gh)
lowing for nonvanishing “side-out” and “side-long” cross Ai:W‘
terms. Equation(7.4) corresponds to the YKP parametriza- !
tion (2.8) which applies only to azimuthally symmetric sys- |n the following Sec. VII B we will study th&, dependence
tems, and the zeroes in the matrices on the left- and righiof the HBT radius parameters, the intercept, and the kurtosis

1. (7.9

hand side reflect this symmetry. as defined by Eqg7.7) and(7.9).
Similarly, the intercept parameter can be defined in terms
of the q variances and the zeroth-ordgmoment as B. Unidirectional results for the q moments

 _ap 3 In this subsection we present a numerical analysis of the
MK)=m VdeD(K)J' d°q [C(q,K)=1], (7.9  correlation functions computed in Sec. V in terms of thegir
moments along the three Cartesian directions, and give a
which reproduces the correct value for Gaussian correlatorsomparison with the unidirectional Gaussian fits presented in
of type (7.1). Sec. VI A.

The deviations from Gaussian behavior in the correlator Figure 12 shows the HBT radii7.7g and the kurtosis
are then related to higher-ordgrmoments. A general dis- (7.8) along the “side,” “out’, and “long” axes(from top to
cussion, including their derivation from a generating func-bottom). The left and right column of plots correspond to
tional from which the full correlator can be reconstructed, iszero and nonzero transverse flow of the source, respectively.
given in Ref.[43]. SinceC(q,K) is symmetric with respect In each panel we plot as the upper set of curves the HBT
to interchange of the particle momermia andp, and there- radius parametdg; in fm, with different line symbols denot-
fore even undeq— —q, all oddq moments vanish. The first ing the effects of including various sets of resonances as
non-Gaussian contributions thus show up in the fourth ordebefore. They should be compared with the lines shown in the
moments. left columns of Figs. 5 and 7, respectively. The lower set of

Application of the method off moments thus generally lines(clustered around values neardenote the correspond-
requires at least an inversion of the matfix2) for the de- ing kurtosisA; in dimensionless units. These contain the
termination of the HBT radius parameters and a discussiofowest order information on the non-Gaussian features of the
of the four-dimensional tensor of fourth-order moments fornumerically computed correlation function.
the non-Gaussian aspects. A complete such analysis in three- The comparison of the HBT radius parameters defined via
dimensionalg space will be postponed to a future publica- the q variances of the correlator with those from the Gauss-
tion. Here we will perform a unidirectional analysis, whereian fit (6.2 shows a remarkable agreement. As stressed
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Unidirectional g-variances, Y =0 In view of the above agreement between the two types of
n=0 n;= 0.3 HBT radius parameters, and of our discussion of the inter-
=8 play between the values of, and R; in various types of
<6 Gaussian fits to a given correlation function, it is not surpris-
@ prmisisasaa ing that the intercept parameters extracted from &q7o
4 thermal i C .
___________ +p also agree very well with the ones extracted from the unidi-
- +A, KT rectional Gaussian fits and shown in the right columns of
<,w0“"~‘-'~_~l'.'__.'__.'_'_'_ ____ N Figs. 5 and 7. They are therefore not presented again.
The interesting new information is, of course, contained
= 8 in the kurtosisA; and theirK, dependence shown in Fig. 12.
6t In the side direction the appearance of a nonvaniskpogi-
e | sz tive) kurtosis is clearly linked to the influence of the de-

4 cays on the correlation function and to its visibility in the
HBT radius parameteR;. This implies that the question
whether or not a givek, dependence oR; is caused by
resonance decays or not can be easily answered by checking
the kurtosis of the correlation function. If the kurtosis van-
ishes(or is slightly negativg it is not thew which causes the

K, dependence. At least for the model studied here, the kur-
tosis provides thus the cleanest distinction between scenarios
with and without transverse flow. Its value akKd depen-
dence are thus very important ingredients for the interpreta-
tion of two-particle correlations.

The situation is slightly more complicated in the outward
direction: as long as the source does not expand transversally
(n:=0), the visibility of resonance decay effects Ry is
clearly linked to a nonzero positive kurtosis of the correlator,
and vice versa. For nonzero transverse flow, however, the
outward correlator begins to develop small deviations from a
parametersR;(K,) defined by Eq(7.7a (upper set of curves in Gaussiari11] even without resonance decays; these show up
each pangland the kurtosis\;(K ) defined by Eq(7.79 (lower  in anegativevalue for the kurtosis. This effect increases for
set of curves in each panelThe radii are given in fm, the kurtosis larger transverse pair momeria .
in dimensionless units on the same scale. Left column: no trans- The kurtosis generated by collective expansion is particu-
verse flow, »;=0. Right column:»;=0.3. The pion pairs have larly prominent in the longitudinal direction where flow-
rapidity Y=0 in the c.m.s. induced non-Gaussian features have been noticed fitgt

The bottom row of Fig. 12 clearly shows the interplay of
above, in the presence of non-Gaussian features in the cofpn-Gaussian features induced by resonance déteading
relator, the Only well-defined definition of the HBT radii is to a positive kurtOSMnd |ongitudina| expansion floycaus-
provided by theq variances(7.7a, while the Gaussian fit jng a negative kurtosjs At small K, the resonance contri-
results have possibly severe systematic uncertainties relat@glitions dominate; at larg, the resonances lose impor-
to the details of the fit procedure. The agreement between thgnce while the flow-induced kurtosis becomes stronger,

were “lucky” with our choice of fit prescription in Sec.

VI A. An essential reason for the good agreement was our

decision to let the intercept parameterfloat in Eq.(6.2),

i.e., to perform a two-dimensional rather than a one- W.ithin a broad class of model emission functions for lo-

dimensional fit as in Ref.8]. The discrepancy between the cally thermalized and collectively expanding sources we

HBT radii shown in those papers and those shown in Fig. 1have presented a comprehensive study of resonance decay

thus simply reflect the systematic uncertainties of extractingffects on two-pion Bose-Einstein correlations. We have

a Gaussian width parameter from a non-Gaussian correlatdiound that, with regard to their influence on the correlation

In view of these uncertainties, the existence of a clear-cutunction, the resonances can be subdivided into three classes.

definition via theq variance of the correlator becomes cru-  Long-lived resonances with widtkcl MeV cannot be

cial. resolved in the correlation measurement; they reduce the cor-
The space-time interpretation of the HBT radius param+elation strengtt\ but otherwise do not influence the shape

eters has so far been largely based on their relati@ng,  of the correlation function in the region where it can be mea-

(2.10 with the space-time variances of the source which aresured.

only true for Gaussian correlators. The agreement between Short-lived resonances with width 30 MeV: they decay

the HBT radii from q variances and from(appropriat¢  into pions close to their production point and thus do not

Gaussian fits suggests that these relations continue to be usdrange the spatial width of the pion emission function.

ful for the space-time interpretation of the correlation func-Hence they do not affect the sideward correlator whose

tions. width is defined by the transverse spatial size of the source.

600 800
K, (MeV)

FIG. 12. One-dimensiona] variances according to Sec. VII A.
The plots show for the three Cartesian directions,o,| the radius

VIIl. CONCLUSIONS
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In the outward and longitudinal correlator and in the lifetime adapt the HBT method to the increased demand for accuracy
parameteR, of the YKP parametrization, which are all in in view of the complicated nature of the dynamical sources
one way or other sensitive to the lifetime of the source, theycreated in relativistic heavy ion collisions and of the drasti-
contribute via the additional time duration of pion emissioncally improved quality of recent correlation measurements.
due to their own lifetime. These contributions are small andl he new method has been demonstrated to work very well in
on the order of the resonance lifetime. theory. In view of the new high precision data from the Pb
The w meson. With its width of about 8 MeV it is not Peam at the CERN SPS, it appears to be experimentally fea-
sufficiently long-lived to escape detection in the correlator SiPle. It will be interesting to see how far the additional,
but also not sufficiently short-lived to not change the spatiafigher order HBT observables improve our picture of the
width of the emission function. As a consequence it can leagPatiotemporal evolution of heavy ion collisions.
to severe non-Gaussian distortions of the correlator.
These latter distortions cause serious problems. We have ACKNOWLEDGMENTS
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parameters from the correlator via Gaussian fits and the Ca{hank T. Ciegd, P F%T(a M Cglédzicki ,K Ka'dija H Ké-

culation of these parameters in terms of space-time variances . :
can lead to quantitatively unreliable results. The systemati%cq%f;l%’k'\?érwlrﬁgx Eela‘(fj rllkta:lc’)nF\)/'erSs?t/i%%t:’ Iiieigt/t:’ d"’ilg_d

uncertainties Of. Gaussian fits to _non-Ggus&an gorrelatorgussions at the HBT96 Workshop at the ECT*, Trento,
were identified in Sec. V[see the discussion following Eg.

(6.6] as the primary reason for previous claims of muchhelped to sharpen our arguments; we gratefully acknowledge

) i, the hospitality of the ECT* and the role it has played in
larger resonance effects on the two-pion HBT radii than I : . )
Co . . crystallizing our thoughts. We would in particular like to

found by us. To remove the ambiguities associated with non: . ; . ) ;
.acknowledge discussions there with S. Voloshin who intro-

Sec. VIl an alternative definition of the HBT size parametersauced us to the concept of “relative distance distribution

and of the intercept parameterin terms ofq moments of used in Sec. VII. One of udJ.A.W.) would like to thank S.

o oy e oo e % feceved durng st 0 Yale and CERN where part of i
: y nig ' work was written. He also acknowledges a critical discussion

s s e s st M Gyiassy i Columbia on he use and abuse o
o P » ey s&)ace-time variances. U.H. would like to thank CERN for
much weaker influence from resonance decays than we ha

expected on the basis of previous W, :‘,ivr?a::nstgozzltgf“%isar\:\?orak stimulating atmosphere during the
The normalized fourth ordeg cumulant(kurtosig serves 9 ’

as a quantitative lowest-order measure for the non-Gaussian

features of the correlator. It is sensitive to both resonance APPENDIX A: THE EMISSION FUNCTION

decays and flow whickat least for the models studied hgre FOR RESONANCE DECAY PIONS

contribute, however, with different signs. The kurtosis thus  Here, we give details of how to compute the emission

provides the cleanest signal to distinguish between scenarig@gnction S, ..(x,p) for resonance decay pions from a decay
with and without transverse flow. channelr. We follow the treatment if16,17] with some

Our detailed numerical model study of moments has notational improvements. The resonancés emitted with
shown that resonance decays which modify the HBT radiugnomentumP at space-time poink* and decays after a
parametergdefined via they variance of the correlatpalso proper timer at x“=X*+ (P“/M) into a pion of momen-
lead to a positive kurtosis. It can be related to the long nong,,, p and (—1) other decay products:

Gaussian tails in the source distribution generated by the

decay pions. Collective expansion, on the other hand, gener- r—m+Cy+Cyt - +Cp. (A1)
ates a negative kurtosis because it tefidur mode) to let

the source at its edges decay more steeply than a Gaussidthe decay rate at proper times I'e ' " wherel is the total
We see practically no flow effects on the kurtosis in thedecay width of. Assuming unpolarized resonances with iso-
sideward direction, a weak effect due to transverse expansianopic decay in their rest fram&, _, .(x,p) is given in terms
in the outward direction, and a somewhat larger effect due tof the direct emission functio8?"(X,P) for the resonance
the strong longitudinal expansion in the longitudinal direc-py

tion. In the transverse direction resonance effects on the HBT

radius Ry can thus be directly correlated with a nonzero, S+ dp

positive kurtosis. The existence or not of a nonvanishing ~ Sr—=(X;P)=M JS ds g(s)f E

kurtosisA¢ and itsK, dependence can thus be used to assess - P

Kumar, P. Foka, and M. Matrtin for the hospitality and help

the amount of contamination iRg from w decays and to . 4 Cr.
separate these effects from transverse flow. X 6(p-P—E*M) f d"x f drl'e
g moments thus provide significantly improved informa-
tion on the shape of the correlation function in terms of a still 4) P dir
small number of relevant parametevs,R; ,A;, whose size X O x=| X+ M 7] ST XP). (A2)

and momentum dependence lends itself to an interpretation
in terms of the geometric and dynamic space-time structur®/ariables with a star denote their values in the resonance rest
of the emitting source. They are thus expected to furtheframe, all other variables are given in the fixed measurement
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frame. Heres=(=_,p;)? is the squared invariant mass of Sy

the (n—1) unobserved decay products in E&L). It can ‘I’Hw(P;pFL ds g(s)

vary betweers_=(2="_,m;)? ands, =(M—m)Z2. g(s) is the B

decay phase space for the<{ 1) unobserved particleE* is M
the energy of the observed decay pion in the resonance rest = >
frame and is a function of only: VPIpI—[E*M—m, M, coshY—y)]

(A8)

e \/[<M+m>2—s][<M m)2—s]

E + p . . . .
is the decay probability for a resonancaith momentumP

(A3) into a pion with momenturp. It is normalized to the branch-

We choose for the observer frame a Cartesian coordmamgI ratiob;_... for the channe{Al) according to

system in which the transverse momentpmof the decay
pion has only arx (“out” ) and noy (“side” ) component: f dydg@ @, .(P;y,p,)=b, ... (A9)
p*=(E,px,Py,p )=(m, costy,p, ,0m, sinty). (A4)
The casep, =0 is a little special: then the constraint

In this coordinate system the resonance four-momerRum  p-P=E*M in Eq. (A2) cannot be used to do thk integra-
parametrized by tion, but theM , integral can be done:

P =(E,.Px.Py.P) Si—a(Xy.p1=0)

=(M  coshv,P, cosb,P, sin®,M  sinhY). (A5)

S+ 2m + ME*
The first § function in Eq. (A2) implements the energy- :ML dsgis) fo do L dezcosH(Y—y)
momentum constraimi- P=E*M. Forp, #0 it can be used - -
to fix the azimuthal angl@ of the resonance momentul 4 v P
to Jd XJ drle 764 X+—T
_ . EE -pP —-E*M ,
®,.==P with cosb= x S9(X,P) , (A10)
PPy '

M, =ME*/mcoshY—y)
M,cosiY—y)—E*M
= 0 P : (A6)  In the following we discuss only the cage #0. The kine-
L matic limits for the integrals in Eq$A7) and(A10) are, for

We denote byP™ the two values of obtained by inserting giveny,m, of the decay pion, determined by the zeroes of
the two solutiongA6) into Eq. (A5). Rewriting thes func-  the square root in EqA8):
tion as 8(p-P—-E*M)=3_.8(®—-®.)/p, P,sind.. and
doing the ® integration in d3P/EP= M,;dM,dY dd we M, .=M, =AM,
find

~ E*Mm, cosi{Y—y)
S #(Xp) ~ m?cosi(Y—y)—p?

1 Y 2 Mp, VE*2+ p2 —m? cosi(Y —
iy fY+de§’+deJd4x . P, VE*2+p? —m? cosH( y)’ ALD
= )y 2

mt cost(Y—y)—p?

Pi
XJ dle T76¥| x—| X+ VT) p* p*2
_ Yo=y=EAY=yEin| 1+ — (A12)
X S(X,P)®,_A(P*;p), (A7) * M
where With these ingredients EGA2) can be rewritten as
|
s Ys 2 - 35S x—(P*IM)7,P*]
Sr_w(x,p):Mf dsg(s)f deM“def drle ""——— = ,
s a M2 _ 0 Vp? (M2 —=M?)—[E*M—m, M, coshY—y)]?
(A13)

where the sum is over the two allowed vali@®) for . Rewriting the square root with the help @#&10) as



3284 URS ACHIM WIEDEMANN AND ULRICH HEINZ 56

1 1
- - — (A14)
Vm?cosi(Y—y)—p? \/(AML)Z—(ML—ML)Z
and introducing new integration variables[ —1,1], (e[ — 7, 7] via
M, =M, +AM, co<, (A15)
Y=y+vAY, (Al6)
Eqg. (A13) can be further transformed into
* —I'rdir Pi +
S ..(X,p)=>, dle T7s¥ x— — 7P|, (A17)
= JrJo M
with the following shorthand for the integration over the resonance momenta:
J Mjs+d o )fl AYd J dZ(M, +AM , cosl). (A18)
= sg(s co
R s ~1y/m? cosif(vAY)—p? . *

For the calculation of the correlation function we need the Fourier transform of the emission function. It is obtained from Eq.
(Al7) as

S, . .(q, p)—f d* €9%S,__(x,p)= Z J J’ d(I'7) exr{ 1“7-( —|—HJ d*x €9x s¥(x,P™)
— 1 adir *
-3 fR—__q_P+sr (a,P%), (A19)
'™MT

where in the first step we shifted tlkéntegration variable and in the second step we performed theegration. For two-body
decays this reads

b
g(s)= Amp* T d(s—mj), (A20)
- Mb AY dv w M +AM , cog
S_>7T p)=—"-F j f - d|r P
—a(%P) 47Tp*§ ~1ym?cos(vAY)—p? Jo 1-iQq STa.P),
i_ML 0 . PL .
Qq =pyp(d costY —qysinhY) — =-(doCosP . +qsind.. ). (A21)

For three-body decays_ = (m,+my)?, s, =(M—m)?] this reads

Mb \[s—(my+ms3)?][s—(my—mj)?]
2mS Q(M,m,m,,m3)

g(s)= , (A22)

s;ds’
Q(M,m,mz,m3)=J S—S,J(M+m)2—5’Js+—5’Jsf—S’J(mz—ms)z—s’,

AY dv
costt(vAY)—p?

~ _ bM2 s;ds 5
S, AP~ g ). o N[5 (e Mo s () [ T

T M, AM %
q
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APPENDIX B: THE FOURIER TRANSFORM OF THE EMISSION FUNCTION

Here, we give details of the calculation of the Fourier transféfrlf(q, P)=[d* e‘q'XS‘,’"(x,P) for the resonance emission
functions(4.6). The 7 integration can be done analytically: Usiggx= 7 A—q,Xx—qsy with A from Eq.(5.20 we obtain

f d reiATexp< _rmm)” no)”

Sar | = EmAe e T i (A ) (BY)

The angular integral is also easily done: writiqg= g, cosp, qs= (q, Sing, such thag,x+qgyy=rq, cos(@—¢) (Whereg is the
polar angle ofx andy), the integral over the angle-dependent part of the source fungtiéhis written as

2 2 -
f ﬂ-d ¢e—iqucos(¢—<p)e( P, IT)sinhpcod ¢p— D) _ f ﬂ.d lpe—irqlcos( Y+ (p)e( P, /T)sinhr;tcos,b, (BZ)
0 0

with ¢=¢—®, o= — ¢. Separating real and imaginary parts one obtains modified Bessel fungtins

cogrq, cospcosy—rq, singsing) = a1 o(y/C—iD)+1o({/C+iD)], (B3a)

2m P, .
dygexp —sinhn,cosy
0 T

T P _ ~
=i ’ dd;ex;{ %sinhmcoa//) sin(rq, cospcosy—rq, singsing) =7 lo(yC—iD)—14(JyC+iD)], (B3b)
0

whereC andD are given in Eqs(5.29 and(5.2b. The remaining integrals overand » are given in Eq(5.1) and must be
done numerically.

The single-particle spectrum is obtained by evaluafiifg,P) at q=0. Then alsoA, Ay, andD vanish(i.e., the depen-
dence on the polar angf® of the transverse momentuR) drops ou, andC reduces taC=[ P, sinhy(r)/T]%. The transverse
momentum spectrum is obtained by additionally integrating over the rapidagsociated withP. This integral can again be
done analytically:

dN;” 2 23,+1 = ey [ Pu 7
_ . _ T —r4/2R Qi —_—_
dMm? Wj dY §0M,.Y) (22T fo rdre '0( T‘Q"r‘h’“(r))Jd77 exp( Z(Av)z)

X J’ dYcosh n— Y)ex;{ - gcoshmcosh n— Y)) (B4)

2J,+1 - M P
= 2r7'r (270A 7)eti!T MJO rdrefZ’ZRZKl(Ticosmt(r))|0(7lsinhm(r)

. (B5)

The K; function results from the last integral in E@4) after a simple shift of the integration variable, and the remaining
Gaussian integral ovey is trivial.
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