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Resonance contributions to Hanbury-Brown–Twiss correlation radii
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We study the effect of resonance decays on intensity interferometry for heavy ion collisions. Collective
expansion of the source leads to a dependence of the two-particle correlation function on the pair momentum
K . This opens the possibility to reconstruct the dynamics of the source from theK dependence of the measured
Hanbury-Brown–Twiss~HBT! radii. Here we address the question to what extent resonance decays can fake
such a flow signal. Within a simple parametrization for the emission function we present a comprehensive
analysis of the interplay of flow and resonance decays on the one- and two-particle spectra. We discuss in
detail the non-Gaussian features of the correlation function introduced by long-lived resonances and the
resulting problems in extracting meaningful HBT radii. We propose to define them in terms of the second-order
q moments of the correlatorC(q,K ). We show that this yields a more reliable characterisation of the correlator
in terms of its width and the correlation strengthl than other commonly used fit procedures. The normalized
fourth-orderq moments~kurtosis! provide a quantitative measure for the non-Gaussian features of the cor-
relator. At least for the class of models studied here, the kurtosis helps separating effects from expansion flow
and resonance decays, and provides the cleanest signal to distinguish between scenarios with and without
transverse flow.@S0556-2813~97!01812-8#

PACS number~s!: 25.75.Gz, 12.38.Mh, 24.10.Jv, 25.75.Ld
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I. INTRODUCTION

The only known way to obtain direct experimental info
mation on the space-time structure of the particle emitt
source created in a relativistic nuclear collision is throu
two-particle intensity interferometry@1,2#. This information
is therefore indispensable for an assessment of theore
models which try to reconstruct the final state of the collis
from the measured single-particle spectra and particle m
plicity densities in momentum space. Reliable estimates
the sourcegeometryat particle freeze-out are crucial for a
experimental proof that high-energy heavy ion collisions c
successfully generate large volumes of matter with hi
energy density. Direct information from two-particle corr
lations on the expansiondynamicsat freeze-out further pro
vides essential constraints for theoretical models wh
extrapolate back in time towards the initial stages of the c
lision in order to make statements about a possible trans
to deconfined quark matter.

An important insight from recent theoretical research
Hanbury-Brown–Twiss~HBT! interferometry is that for dy-
namical sources which undergo collective expansion
HBT radius parameters, which characterize the width of
two-particle correlation function, develop a dependence
the pair momentum@3–13#. The detailed momentum depen
dence is somewhat model dependent, and in general it is
simple @11#. Still, it opens the crucial possibility to extrac
dynamical information on the source from interferome
data. Unfortunately, the most abundant candidates for in
ferometry studies, charged pions, are strongly contamin
by decay products from unstable resonances some of w
only decay long after hadron freeze-out@14,8#. Such reso-
560556-2813/97/56~6!/3265~22!/$10.00
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nance decays were shown to introduce an additional mom
tum dependence of the HBT radius parameters and of
intercept parameter@8,15# which complicates the extractio
of the expansion flow.

A systematic approach towards extracting the expans
velocity from experimental HBT data thus presuppose
careful analysis of the interplay of flow and resonance
cays on the gross features of the two-particle correlat
function. This is the aim of the present paper. We will u
for our analysis a simple analytical model for the sour
function, which assumes local thermalization at freeze-
and produces hadronic resonances by thermal excitation.
model incorporates longitudinal and transverse expansio
well as a finite duration of particle emission. The two mo
important parameters for our considerations, the tempera
and transverse expansion velocity at freeze-out, can be
ied independently. Our study thus complements publis
HBT analyses of source functions generated by hydro
namic simulations where freeze-out is implemented alon
sharp hypersurface@8# and which do not easily allow us to
gain physical intuition by a systematic variation of the mod
parameters. After freeze-out the resonances are allowe
decay according to an exponential proper time distribut
along their trajectories, and the resulting emission functio
of daughter particles~pions, kaons, etc.! are added to the
direct emission function of particles of the same kind befo
calculating the correlation function. A discussion of the m
mentum dependence of resonance decay effects on the
and two-particle spectra requires the correct treatment of
decay phase space@8,16,17# and does not permit the simpli
fying approximations leading, e.g., to Eq.~1! in Ref. @18#.

The paper is organized as follows. In Sec. II we revie
3265 © 1997 The American Physical Society
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the extraction of space-time information on the source fr
Gaussian fits to the correlation function. This calculatio
scheme is then extended in Sec. III to include resona
decay contributions. The next three sections are devoted
detailed model study based on this formalism. In Sec. IV
describe the model for the emission function including re
nance contributions. Results for the one- and two-part
spectra are presented in Sec. V, and a general discussi
the effects from resonance decays on the shape of the c
lation function is given there. In Sec. VI we then discuss
detail the practical difficulties posed by the non-Gauss
features in the correlation function due to long-lived res
nances, by comparing different fitting procedures. This le
us in Sec. VII to the alternative method ofq moments which
provide a clean definition of the HBT radii and interce
parameter even for non-Gaussian correlation functio
These HBT radii show much weaker resonance decay eff
than the ones obtained in Ref.@8# by fitting a Gaussian func
tion to a non-Gaussian correlator. The normalized fourthq
moment of the correlator, the kurtosis, provides a quant
tive measure for the deviations from a Gaussian shape
e.g., induced by resonance decays. We will show that
least within the general class of source models studied h
the simultaneous study of the pair momentum dependenc
the HBT radii, the intercept parameter and the kurtosis
lows for a relatively clean separation of flow and resona
decay effects. We summarize our findings in Sec. VIII. T
Appendixes contain some background for readers intere
in the technical details. The computer code used in
present study, is on deposit in the E-PAPS archive@44#.

II. GAUSSIAN PARAMETRIZATIONS
OF THE CORRELATION FUNCTION

For a given model for the emission functionS(x,p) and
assuming incoherent particle production as well as pl
wave propagation, the invariant momentum spectrum
two-particle HBT correlation functions are given b
@19,3,20#

Ep

dN

d3p
5E d4x S~x,p!, ~2.1!

C~q,K !'11
u*d4x S~x,K ! eiq•xu2

u*d4x S~x,K !u2
511u^eiq•x&u2,

~2.2!

^ f ~x!&[^ f ~x!&~K !5
*d4x f~x!S~x,K !

*d4xS~x,K !
. ~2.3!

Equation ~2.2! is written down for identical bosons, an

q5p12p2, K5 1
2 (p11p2), with p1, p2 on-shell such that

K•q50. ^ f (x)&[^ f (x)&(K) denotes the (K-dependent! av-
erage of an arbitrary space-time function with the emiss
function S(x,K). As long as the emission function is suffi
ciently Gaussian@11# one can approximate

C~q,K !'11exp@2qmqn^ x̃m x̃ n&~K !#, ~2.4!
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where x̃m(K)5xm2^xm&[xm2 x̄ m(K) is the distance to the
point x̄ (K) of maximum emissivity of particles with mo
mentumK in the source~the so-called ‘‘saddle point’’ of the
source for particles with momentumK). In this approxima-
tion the two-particle correlation function is completely dete
mined by its Gaussian widths which in turn are direc
given by the (K-dependent! space-time varianceŝx̃m x̃ n& of
the emission function. The latter define the size of regions
homogeneity in the source@5,10,21,22# which effectively
contribute to the Bose-Einstein correlations. Finer space-t
structures of the source show up in deviations of the c
relator from a Gaussian shape.

In previous studies of analytically given emission fun
tions, the correlator was sufficiently Gaussian to base all
vestigations on Eq.~2.4!. Then one proceeds as follows: Du
to the on-shell constraintK•q50 only three of the four com-
ponents ofq which appear in the exponent are independe
The dependent component must be eliminated using the
lation

q05b•q5b'qo1b lql . ~2.5!

Here b5K /K0'K /EK , with EK5Am21K2, is approxi-
mately the velocity of the pair, and we used the convent
that l denotes the ‘‘longitudinal’’~beam! direction (z axis!, o
denotes the orthogonal ‘‘outward’’ direction (x axis! which
is oriented such thatK5(K' ,0,Kl) lies in the x-z plane.
Correspondinglyb has noy component in the third Carte
sian direction, the ‘‘sideward’’ direction:bs50. Due to the
mass-shell constraint~2.5!, the inverse of the Fourier trans
form in Eq. ~2.2! is not unique. The missing informatio
required for the reconstruction of the~Gaussian! source in
space-time from the measurable~Gaussian! HBT radii must
thus be provided by model assumptions.

In this paper we will deal only with azimuthally symme
ric sources for which the correlation function is symmet
under qs→2qs @23#. Specifically, we will discuss two
Gaussian parametrizations ofC.

~1! The Cartesian parametrization@21# is obtained by us-
ing Eq. ~2.5! to eliminateq0 in Eq. ~2.4!:

C~q,K !511l exp@2qs
2 Rs

2~K !2qo
2 Ro

2~K !2ql
2 Rl

2~K !

22qoql Rol
2 ~K !#. ~2.6!

The corresponding size parameters are given by the sp
time variances@24,21#

Rs
2~K !5^ ỹ2&, ~2.7a!

Ro
2~K !5^~ x̃2b' t̃ !2&, ~2.7b!

Rl
2~K !5^~ z̃2b l t̃ !2&, ~2.7c!

Rol
2 ~K !5^~ x̃2b' t̃ !~ z̃2b l t̃ !&. ~2.7d!

For a detailed discussion of the meaning of these stand
HBT parameters, in particular of the out-longitudinal (ol)
cross term@21#, and how they mix spatial and temporal a
pects of the source, see Refs.@10,11,23#.
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~2! If one eliminates in Eq.~2.4! qo and qs in terms of q'5Aqo
21qs

2, q0, and ql one arrives at the Yano-Koonin
Podgoretski� ~YKP! parametrization@25,26,23,12#

C~q,K !511l exp$2R'
2 ~K ! q'

2 2Ri
2~K !„ql

22~q0!2
…2@R0

2~K !1Ri
2~K !#@q•U~K !#2%, ~2.8!
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where U(K ) is a (K-dependent! four-velocity with only a
longitudinal spatial component:

U~K !5g~K !@1,0,0,v~K !#, with g5
1

A12v2
. ~2.9!

The YKP parametersR'
2 (K ), R0

2(K ), and Ri
2(K ) extracted

from such a fit do not depend on the longitudinal velocity
the observer system in which the correlation function is m
sured. They can again be expressed in terms of the sp
time varianceŝ x̃m x̃ n& @12#, and take their simplest form in
the frame wherev(K ) vanishes@23,12,13# ~the approxima-
tion in the last two expressions are discussed in@23,13,27#!:

R'
2 ~K !5Rs

2~K !5^ ỹ2&, ~2.10a!

Ri
2~K !5^~ z̃2~b l /b'! x̃ !2&2~b l /b'!2^ ỹ2&'^ z̃2&,

~2.10b!

R0
2~K !5^~ t̃ 2 x̃ /b'!2&2^ ỹ2&/b'

2 '^ t̃ 2& . ~2.10c!

The expressions~2.7!, ~2.10! for the HBT parameters ar
useful for two reasons.~i! They result in an appreciable tech
nical simplification because instead of the Fourier transfo
~2.2! only a small number of four-dimensional real integra
over the source function must be evaluated to comple
determine the correlation function. Their accuracy has b
checked in@11# for models of the type to be used below an
in the absence of resonance decays, for hydrodyna
sources with a sharp freeze-out hypersurface in@28#. ~ii !
They provide an intuitive understanding of which space-ti
features of the source are reflected by the variousq depen-
dences of the correlator. However, their range of validity
limited by the fact that strictly speaking the space-time va
ances determine only the curvature of the correlator atq50:

^~ x̃ i2b i t̃ !~ x̃ j2b j t̃ !&52
1

2

]2C~q,K !

]qi ]qj
U

q50

.

~2.11!
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This agrees with the widths of the correlator if and only
C(q,K ) is Gaussian. We will see that resonance decays
lead to appreciable non-Gaussian features in the correla
function. If this is the case, Eqs.~2.7! and ~2.10! no longer
provide quantitatively reliable expressions for the observ
half widths of the correlator. A detailed discussion will fo
low in Sec. V.

III. RESONANCE DECAY CONTRIBUTIONS

We concentrate on charged pion (p1p1 or p2p2) cor-
relations. In the presence of resonance decays, the emis
function is the sum of a direct term plus one additional te
for each resonance decay channel with a pion of the des
charge in the final state:

Sp~x,p!5Sp
dir~x,p!1 (

rÞp
Sr→p~x,p! . ~3.1!

Note that the sum is over decay channels, not just over re
nances. We compute the emission functionsSr→p(x,p) for
the decay pions from the direct emission functionsSr

dir(X,P)
for the resonances taking into account the correct decay
nematics for two- and three-body decays,

Sr→p~x,p!5(
6

E
R
E

0

`

dt Ge2GtSr
dirS x2

P6

M
t,P6D .

~3.2!

From now on capital letters denote variables associated
the parent resonance, while lowercase letters denote
variables. Here,G is the total decay width of the resonanc
and (6*R goes over the kinematically allowed resonan
momenta as described in Appendix A. Please note that
momentap and P6 in this expression are in general diffe
ent, in contrast to the approximation used in Eq.~1! of Ref.
@18#. This is important for the following discussion of th
momentum dependence of the correlator.

The complete two-particle correlation function is the
given by
e
al
C~q,K !511
u S̃p

dir~q,K !u212( rÞpRe@ S̃p
dir~q,K ! S̃r→p~q,K !#1u( rÞp S̃r→p~q,K !u2

u S̃p~0,K !u2
, ~3.3!

where the denominator includes all resonance contributions according to Eq.~3.1!. The last term in the numerator can b
neglected if resonance production is small@29#. However, in ultrarelativistic heavy ion collisions a major fraction of all fin
state pions stem from resonance decays~see Fig. 1! and this ‘‘Grassberger approximation’’ cannot be used.



r
io

ec
is

e
m

so
n
g

ec
ns
es

o
n
n-
ne
um

ts

n

or
u-
s

in

ry
oks

h’’

at
-
full

at

3268 56URS ACHIM WIEDEMANN AND ULRICH HEINZ
For later reference, we extend the expressions given
Sec. II for the HBT parameters in terms of space-time va
ances of the source to include resonance decay contribut

^ x̃m x̃ n&~K !5
( r*d4x x̃m x̃ n Sr→p~x,K !

( r*d4x Sr→p~x,K !
. ~3.4!

Here the sum runs over all contributions, including the dir
pions. It is instructive to rewrite the average over the em
sion function in the following form:

^xn&~K !5(
r

f r~K ! ^xn& r~K !,

^xmxn&~K !5(
r

f r~K ! ^xmxn& r~K !, ~3.5!

where we introduced the single-particle fractions@8#

f r~K !5
*d4x Sr→p~x,K !

( r*d4x Sr→p~x,K !
5

dNp
r /d3K

dNp
tot/d3K

;

(
r

f r~K !51. ~3.6!

These give the fraction of single pions with momentumK
resulting from decay channelr . We also defined the averag
^•••& r with the effective pion emission function arising fro
this particular channel:

^•••& r~K !5
*d4x . . . Sr→p~x,K !

*d4xSr→p~x,K !
. ~3.7!

The variances~3.4! can then be rewritten as

^ x̃m x̃ n&5(
r

f r^ x̃m x̃ n& r1(
r ,r 8

f r~d r ,r 82 f r 8!^xm& r^xn& r 8.

~3.8!

The first term has a simple intuitive interpretation: each re
nance decay channelr contributes an effective emissio
function Sr→p . The full variance is calculated by weightin
the variance~homogeneity length! of the emission function
from a particular decay channelr with the fraction f r with
which this channel contributes to the single-particle sp
trum. However, the different effective emission functio
Sr→p(x,p) have in general different saddle points; this giv
rise to the second term in Eq.~3.8! which somewhat spoils
its intuitive interpretation.

Also, the full emission function~3.1! is a superposition of
sources with widely differing sizes since long-lived res
nances contribute long exponential tails to the emission fu
tion Sr→p @8,15#. It is easy to see that this leads to no
Gaussian correlation functions: Consider a simple o
dimensional toy model where the emission function is a s
of two Gaussian terms, one of widthRdir for direct pions and
one of widthRhalo for pions from a resonance, with weigh
12e ande, respectively:
in
i-
ns:

t
-

-

-

-
c-

-

Sp~x,K !5Sp
dir~x,K !1Sr→p~x,K !

5~12e! e2x2/~2Rdir
2

!1e e2x2/~2Rhalo
2

!. ~3.9!

According to Eq.~3.3! the correlator is then a superpositio
of three Gaussians which forRhalo@Rdir have very different
widths:

C~q,K !215~12e!2 e2Rdir
2 q2

1e2 e2Rhalo
2 q2

12e~12e!e2~Rdir
2

1Rhalo
2

!q2/2. ~3.10!

Obviously, if e is small, the rough structure of the correlat
will be determined by the large and broad direct contrib
tion. The two other contributions will, however, modify it
functional form as follows.

~i! If the resonance is shortlived such thatRhalo'Rdir , its
effect on the correlator will be minor; its shape will rema
roughly Gaussian, with a width somewhere between 1/Rdir
and 1/Rhalo, depending on the weighte of the resonance
contribution.

~ii ! If the resonance lifetime and thusRhalo are extremely
large, the second and third term in Eq.~3.10! will be very
narrow and, due to the finite two-track resolution of eve
experiment, may escape detection; then the correlator lo
again Gaussian with a width 1/Rdir , but atq50 it will not
approach the value 2, but 11(12e)2,2. The correlation
appears to be incomplete, with a ‘‘correlation strengt
l5(12 f r)

25(12e)2.
~iii ! If the resonance lifetime is in between such th

Rhalo@Rdir but 1/Rhalo is still large enough to be experimen
tally resolved, all three Gaussians contribute, and the
correlator deviates strongly from a single Gaussian.

FIG. 1. The resonance fractionsf r(y,p') according to Eq.~3.6!
for T5150 MeV. Upper row: no transverse flow,h f50; lower row:
h f50.3. Left column:f r as a function of transverse momentum
central rapidity; right column:f r as function of rapidity atp'50.
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In cases~ii ! and ~iii ! the space-time variances calculat
from Eq. ~3.8! yield misleading or outright wrong results fo
the width of the correlation function. They give the curvatu
of the correlator atq50:

^ x̃2&5 f dir^ x̃2&dir1 f halô x̃2&halo5~12e!Rdir
2 1eRhalo

2

52
1

2

]2C~q!

]q2 U
q50

. ~3.11!

In case~ii !, for not too small values ofe, this is dominated
by the second term although the resonance contributio
not even visible in the measured correlator. On a quantita
level, the situation is not very much better for case~iii ! ~see
Sec. VI A 1 for a more detailed discussion!.

However, if the resonances can be clearly separated
two distinct classes, one with very short lifetimes of orde
fm/c, the other with very long lifetimes of order 100 fm/c or
longer, then space-time variances can again provide an a
rate measure for the width of the correlation function.
achieve this, one must leave out the long-lived resonan
from the sum overr in Eq. ~3.8!, i.e., one restricts the cal
culation of the space-time variances to the ‘‘core’’ of t
emission function from direct pions and short-lived res
nances@30,31#. Since the contribution from long-lived reso
nances to the correlator cannot be resolved experimen
~while they do contribute to the single-particle spectra!, one
includes them via a reduced correlation strengthl:

l~K !5S 12 (
r 5 long lived

f r~K ! D 2

. ~3.12!

The K dependence ofl will be discussed in Sec. V.
The real problem comes from resonances with an in

mediate lifetime. They cause appreciable deviations from
Gaussian behavior for the correlator and cannot be relia
treated by the method of space-time variances. In na
there is only one such resonance, thev meson with its 23.4
fm/c lifetime. At low K' it contributes up to 10% of al
pions @ f v(K50)'0.1#, and their non-Gaussian effects o
the correlator can be clearly seen. They will be discus
extensively in Secs. VI and VII.

IV. A SIMPLE MODEL FOR THE EMISSION FUNCTION

As discussed after Eq.~2.5!, a completely model-
independent HBT analysis is not possible. In this section
define a simple model for the emission function in relativis
nuclear collisions which will be used in the rest of the pap
for quantitative studies. It has been used extensively in
literature @9–13,23#, and we present a simple extension
include resonance production. It implements the essen
features expected from sources created in nuclear collisi
It assumes local thermalization prior to freeze-out and inc
porates its collective expansion in the longitudinal and tra
verse directions. On the geometric side, the source ha
finite size in the spatial and temporal directions, i.e., it imp
ments a finite, but nonzero duration for particle emission

The emission function for particle speciesr is taken as
is
e

to

cu-

es

-

lly

r-
a
ly
re

d

e

r
e

ial
s:

r-
-
a

-

Sr
dir~x,P!5

2Jr11

~2p!3 M'cosh~Y2h!

3expS 2
P•u~x!2m r

T DH~x!, ~4.1!

where

H~x!5
1

p~Dt!
expS 2

r 2

2R22
~h2h0!2

2~Dh!2 2
~t2t0!2

2~Dt!2 D ,

~4.2!

with proper time t5At22z2 and space-time rapidity

h5 1
2 ln@(t1z)/(t2z)#. The physical meaning of the param

eters has been explained in detail in Refs.@9–13,23# to
which we refer the reader. The only new ingredients ar
factor 2Jr11 for the spin degeneracy~due to charge identi-
fication in the experiment each isospin state must be tre
separately!, and a chemical potentialm r for each resonance
r . This means that all particles are assumed to freeze
with the same geometric characteristics and the same co
tive flow, superimposed by thermal motion with the sam
temperature. The possible consequences of particle-spe
freeze-out@34,35# will have to be discussed elsewhere.

For later reference we note that the functionH(x) is nor-
malized to the total comoving three-volume according to

E d4x H~x!5pr rms
2 2t0h rms, ~4.3!

r rms
2 52R25xrms

2 1yrms
2 , h rms5Dh. ~4.4!

Note that the rms widths inx andy direction are each given
by R. If the Gaussians inH(x) were replaced by box func
tions @32,33#, the equivalent box dimensions~with the same
rms radii! would beR̃52R, h̃5A3 Dh.

For the flow profile we assume@12# Bjorken scaling in the
longitudinal direction,v l5z/t, and a linear transverse flow
rapidity profile @36#:

h t~r !5h f

r

R
. ~4.5!

In spite of the longitudinal boost invariance of the flow, th
source as a whole is not boost invariant due to the fin
extension inh provided by the second Gaussian in Eq.~4.1!.

Inserting the parametrization~A5! for P the emission
function ~4.1! becomes@13#

Sr
dir~x,P!5

2Jr11

~2p!3 MTcosh~Y2h! emr /T H~x!

3expS 2
MT

T
cosh~Y2h!coshh t~r !

1
PT

T
sinhh t~r !cos~f2F! D . ~4.6!

The direct pion componentSp
dir(x,p) is obtained from this

expression by settingr 5p, P5p, Jp50, mp50, andF50
@see Eq.~A4!#. This last condition reflects a choice for th
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3270 56URS ACHIM WIEDEMANN AND ULRICH HEINZ
orientation of the coordinate system such that the transv
momentump' of the decay pion lies in thex-z plane. For the
transverse momentumP' of resonances which contribut
pions with the samep' as the directly emitted ones, in gen
eral a nonvanishing azimuthal angleF is required, see Ap-
pendix A.

The chemical potentialsm r will be fixed by the assump
tion of chemical equilibrium at freeze-out. Then bary
number and strangeness conservation in the fireball dem
the existence of two independent chemical potentialsmB and
mS , with

m r5brmB1srmS , ~4.7!

wherebr and sr are the baryon number and strangeness
resonancer , respectively. The condition of overall strang
ness neutrality of the fireball allows to eliminatemS in terms
of T andmB @37#.

Unless stated otherwise, the numerical calculations@44#
below are done with the set of source parametersT5150
MeV, R55 fm, Dh51.2, t055 fm/c, Dt51 fm/c, and
mB5mS50. We will work in the fireball c.m. system an
thus seth050.

The resonance channels included are listed in Table I.
S~1193! andL~1116! are treated as one baryonic resonan
Y~1150! at an average mass of 1150 MeV. For simplicity t
decay cascadeS0→gL→pp2 is replaced by an effective
two-particle decayS0→pp2, since the photon in theS0

decay is known not to change the shape of the hyperon s
trum @32#. The p2 decay contributions from the cascad
h8→••• 1h→p21••• and S*→•••1 Y(1150)→p2

1••• are taken into account by enhanced branching ra
for theY andh decay channels. These crude approximatio
are not problematic because they concern quantitativ
small contributions. The cascade decays just mentioned
fect the intercept parameter on the level of a few percent;
K dependence of the HBT radius parameters remains es
tially unaffected.KL

0 decays are neglected because the lo
KL

0 lifetime (ct 5 15.5 m! makes them invisible for mos
detectors.

V. RESULTS FOR ONE- AND TWO-PARTICLE SPECTRA

We now present a quantitative analysis of the one-
two-particle spectra for the model described in Sec. IV. B
types of spectra can be expressed in terms of the f
dimensional Fourier transforms of the direct emission fu
tions S̃r

dir(q,P6), see Appendix A. We show in Appendix B
how the latter can be reduced analytically to tw
dimensional integrals overr andh:

S̃r
dir~q,P6!5

~2Jr11!

p~2p!3/2
M't0 emr /TE dh~11 iAq!

3cosh~h2Y!eiAt0e2~1/2!A2~Dt!2
e2h2/2~Dh!2

3E
0

`

rdre2r 2/2R2
e2~M' /T!cosh~h2Y!coshh t

3I 0~AC2 iD 6!, ~5.1!
se

nd

f

e
e

c-

s
s
ly
f-
e

en-
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d
h
r-
-

where

C~r !5
P'

2

T2 sinh2h t~r !2r 2 q'
2 , ~5.2a!

D6~r !522r
P'

T
sinhh t~r !~qocosF61qssinF6!,

~5.2b!

A~h!5~q0coshh2qlsinhh!, ~5.2c!

Aq~h!5A~h!
~Dt!2

t0
. ~5.2d!

The Bessel functionI 0 arises from thef integration while
the terms containingA andAq stem from thet integration.
Please note that the azimuthal rotation of the resona
transverse momentumP' relative to the pion transverse mo
mentump' ~which defines thex axis of our coordinate sys
tem! enters only through the combination in brackets in E
~5.2b!; the latter stems from the scalar productq•P6, see

TABLE I. The resonance decay contributions top2 production
considered in the present work. Where applicable the factor in fr
of the branching ratio is the Clebsch-Gordon coefficient for
particular decay channel.

Decay channelr M ~MeV! G ~MeV! J br→p2

r2→p2p0 770 150 1 1.0
r0→p2p1 770 150 1 1.0

D2→p2n 1232 115 3/2 1.0
D0→p2p 1232 115 3/2 (1/3)31.0

D̄1→p2 n̄ 1232 115 3/2 (1/3)31.0

D̄11→p2 p̄ 1232 115 3/2 1.0

K* 0→p2K1 892 50 1 (2/3)31.0
K* 2→p2K0 892 50 1 (2/3)31.0

S* 2→p2L(1116) 1385 36 1/2 0.88
S* 2→p2S0(1193) 1385 36 1/2 (1/2)30.12
S* 0→p2S1(1193) 1385 36 1/2 (1/2)30.12

S̄* 1→p2L̄(1116) 1385 36 1/2 0.88

S̄* 1→p2S̄0(1193) 1385 36 1/2 (1/2)30.12

S̄* 0→p2S̄2(1193) 1385 36 1/2 (1/2)30.12

v→p2p1p0 782 8.43 1 0.89

h→p2p1p0 547 1.231023 0 0.24

h8→p1p2h 958 0.2 0 0.44

KS
0→p1p2 498 '0 0 0.69

S2→p2n 1193 '0 1/2 1.0

S̄1→p2 n̄ 1193 '0 1/2 1.0

S0→gL→pp2 1193 '0 1/2 0.65
L→pp2 1116 '0 1/2 0.65
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Eq. ~A19!. This means that the dependence onF6 can be
shifted fromP'

6 to q' by a common rotation by the angl
F6 :

S̃r
dir~q0,qo ,qs ,ql ;E

P
,P'cosF6 ,P'sinF6 ,P

L
!

5 S̃r
dir~q0,qocosF61qssinF6 ,qscosF6

2qosinF6 ,ql ;E
P
,P',0,P

L
!. ~5.3!

Note that this identity does not depend on the model for
emission function. It shows that the resonance decay k
matics leads to a mixing of the sideward and outwardq
dependences of the correlation functions that would be
tained from the resonances if one could use them for in
ferometry directly. This feature is lost in the approximati
leading to Eq.~2! in Ref. @18#.

For the direct pion contribution,F6 is to be set to zero in
Eqs.~5.1!, ~5.3!.

A. The resonance fractionsf r„K…

The single-particle momentum spectrum~2.1! is the
space-time integral over the emission function~3.1!,

dNp

p dy dm'
2 5E d4x Sp~x,p!5 S̃p~q50;m' ,y!.

~5.4!

It is thus given by the Fourier transform~5.1! of the emission
function at zero relative momentum. From this expressio
is straightforward to evaluate the resonance fracti
f r(y,m') of Eq. ~3.6!. For later reference they are shown
Fig. 1. At central rapidity and small transverse momentum
our model only about 40% of the pions are emitted direc
while more than half of the pions stem from resonance
cays. The direct fraction increases rapidly with increas
transverse momentum, but very slowly with increasing lo
gitudinal momentum, respectively, rapidity. In fact, mo
resonance fractions are nearly independent of rapidity@8#. At
large p' the resonance contributions to the single-parti
spectrum die out@17#. The largest resonance contributio
comes from ther meson, due to its relatively small mass a
large spin degeneracy factor. Theh, which is still lighter, has
no spin and a small branching ratio into pions. As can
seen in the lower row of Fig. 1 the resonance fractions
only weakly affected by transverse flow: at smallp' the
direct fraction increases slightly while at largep' the ten-
dency is opposite~see Sec. V B!.

B. Single-particle transverse momentum spectra

Integrating Eq.~5.4! over rapidity we obtain the single
particle transverse momentum distribution

dNp

dm'
2 5pE dy S̃p

dir~0;y,m'!1 (
rÞp

pE dy S̃r→p~0;y,m'!.

~5.5!

The resonance decay contributions are given accordin
Eqs.~A18! and ~A19! by
e
e-

b-
r-

it
s

n
y
-

g
-
t

e

e
re

to

S̃r→p~0;y,m'!52ME
R
Sr

dir~0;Y,M'!. ~5.6!

The factor 2 results from the sum overF6 , noting that at
q50 the integrand is independent ofF6 ~see Appendix B!.
Writing Y5y1vDY @see Eq.~A16!#, whereDY is indepen-
dent of y, the y integration can be pulled through the int
grals*R over the decay phase space, yielding@17#

dNp

dm'
2 5

dNp
dir

dm'
2

1 (
rÞp

2MrE
R

dNr
dir

dM'
2

. ~5.7!

The transverse momentum spectra of the directly emi
resonancesr are given by expression~B5! @17,32#:

dNr
dir

dM'
2

5
2Jr11

4p2 ~2pR2
•2t0Dh!emr /TM'

3E
0

`

dS j2

2 De2j2/2K1S M'

T
coshh t~j! D

3I 0S P'

T
sinhh t~j! D , ~5.8!

where we substitutedj5r /R under the integral. Note tha
the geometric parametersR, Dh, t0 of the source enter only
in the normalization of the spectrum through the effect
volume ~4.3!. Thus the shape of the (y-integrated! single-
particle transverse momentum spectrum contains no in
mation on the source geometry, in agreement with gen
arguments presented, e.g., in@12#. According to Eqs.~5.7!,
~5.8!, the unnormalized transverse momentum dependenc
fully determined by the rest massM , the temperatureT @or
T(j) if T werer dependent#, and the transverse flow profil
h t(j)5h fj

n.
For later reference we plot in Fig. 2 the pion transve

mass spectrum for the two sets of source parameters
which we compute two-particle correlations below. All res
nance decay contributions are shown separately. The
three-body decays are those of thev, h, andh8 whose decay
pions are seen to be particularly concentrated at smallp' .
~A similar low-p' concentration occurs for pions fromKS

0

decays, due to the small decay phase space in this partic
two-body decay.! Comparing the top panel~no transverse
flow, h f50) with the bottom panel (h f50.3) one observes
the well-known flattening of the transverse mass spectrum
transverse radial flow@32–34,38#. The direct pions reflect
essentially an effective ‘‘blueshifted’’ temperatureTeff

5TA(11^b t&)/(12^b t&) @38#. But the heavier resonance
in the regionP',Mr , are affected much more strongly b
transverse flow since at smallP' the flattening of the spectra
by flow is proportional to the particle rest mass@34,38#. Fig-
ure 2~b! shows that this effect on the parent resonance
also reflected in the spectra of the daughter pions, explain
the slight rise withh f of the resonance fractions at largem' .
This flattening of the transverse mass spectra by transv
flow, suggested in Refs.@38,32,33# as an explanation for the
observed features of the single-particle spectra from28Si-
and 32S-induced collisions at the AGS and SPS, seems
have been confirmed by recent collision experiments w
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3272 56URS ACHIM WIEDEMANN AND ULRICH HEINZ
very heavy ions~Au1Au at the AGS, Pb1Pb at the SPS, se
contributions by Y. Akiba, R. Lacasse, Nu Xu, and P. Jon
at the recentQuark Matter ’96conference@39#!. One of the
main goals of two-particle interferometry is to obtain an
dependent and more direct measure of the transverse ex
sion velocity at freeze-out, to confirm this picture and furth
discriminate against possible alternative explanations.

C. Two-particle correlations

In Figs. 3 and 4 we plot the two-pion correlatorC(q,K )
in the three Cartesian directions ofq for zero and nonzero
transverse flowh f , respectively. We use the letterY to de-
note the rapidityof the pair, andK' (M') for its transverse
momentum~transverse mass!. The pion pairs in Figs. 3 and
have pair rapidityY50 in the c.m.s., and transverse m
menta ranging from 0 to 800 MeV/c ~top to bottom!. The
correlation functions were calculated by numerically eva
ating Eq.~3.3! for the source parameters given in Sec. IV

Within each plot, the different lines show the effect
adding in Eq.~3.3! in the sum over decay channelsr succes-
sively more resonances~see Table I!: first the abundantr,

FIG. 2. The single-pion transverse mass spectrum forT5150
MeV and mB5mS50. The overall normalization is arbitrary, th
relative normalizations of the various resonance contributions
fixed by the assumption of thermal and chemical equilibrium. U
per panel: no transverse flow,h f50; lower panel:h f50.3.
s

an-
r

-

then the other short-lived resonances, then thev with its
intermediate lifetime, and finally all the long-lived reso
nances. Comparing these plots row by row gives one a f
ing for theK' dependence of the correlation function and t
various resonance contributions. In the following two su
sections we give a rough and general discussion of the m
features of the correlator without and with transverse flow
the source, respectively, before proceeding to a quantita
analysis in Sec. VI.

1. No transverse flow (Fig. 3)

The direct thermal contribution leads to a correlati
function with a nearly Gaussian shape in all directionsqi ,
i 5o,s,l , and for all pair momentaK' . As K' increases, the
correlator becomes rapidly wider in the longitudinal dire
tion while in the two transverse directions the changes
hard to see and require a finer analysis~Sec. VI!. As more

re
-

FIG. 3. The two-particle correlatorC(q,K ) for p2 pairs with
pair rapidityY50 in the c.m.s. Each row of diagrams correspon
to a different value for the transverse pair momentumK'

(K'50, 200, 400, 600, and 800 MeV from top to bottom!. Left
column: the correlator in the outward direction atqs5ql50.
Middle column: the correlator in the sideward direction
qo5ql50. Right column: the correlator in the longitudinal dire
tion at qs5qo50. Source parameters as in Sec. IV, the transve
flow h f has been set to zero. Here and in the following plots
different lines have the following meaning. Thin solid line: therm
pions only. Long-dashed: including additionallyr decays. Short-
dashed: including additionally all other shortlived resonan
(D,K* ,S* , see Table I!. Dash-dotted: adding alsov decays. Thick
solid line: adding also all longlived resonances (h,h8,KS

0 ,S,L, see
Table I!.
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and more of the short-lived resonances are added, the w
of the correlator becomes smaller, again with a larger ef
in the longitudinal than in the two transverse directions.
much stronger effect is caused by thev meson; now the
narrowing of the correlation function is also clearly seen
the transverse directions, and the correlator becomes m
edly non-Gaussian. As the long-lived resonances are ad
the interceptl of the correlator atq50 decreases below 1
This is a matter ofq resolution~we stop atuqu51 MeV! —
the contribution from the long-lived resonances is entir
concentrated in ad-function-like structure near the origin
and with infinite resolution the correlator could be seen
actually reach the value 1 atq50. This is, of course, an
extreme deviation from Gaussian behavior.

Long-lived resonances thus lead to apparently incomp
correlations,l,1 @8,15#. This effect becomes even stronge
if the correlator is projected onto one particularq direction
by averaging over a finite window in the other directio
where the correlator has already dropped belowl @40#.

As the pion pair momentumK' increases, all resonanc
effects on the width and strength of the correlator are see
decrease. This is a direct consequence of the decreasing
nance fractions, see Fig. 1.

The above lifetime hierarchy of resonance effects can
understood in terms of the following simple picture.

Short-lived resonances,G.30 MeV. In the rest frame of
the particle emitting fluid element these resonances de
very close to their production point, especially if they a
heavy and have only small thermal velocities. This me
that the emission functionSr→p of the daughter pions has
very similar spatial structure as that of the parent resona

FIG. 4. Same as Fig. 3, but for nonzero transverse flowh f50.3.
th
ct
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ed,
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ce

Sr
dir although at a shifted momentum and shifted in time

the lifetime of the resonance. As onlyRo andRl are sensitive
to the lifetime of the source, the shift in time affects th
correlation function only in the outward and longitudinal d
rections. The stronger effect onRl ~which is obvious from
the right column in Fig. 3! is a consequence of the boos
invariant longitudinal expansion of our source: as the de
pions are emitted at a later proper timet, and since the
longitudinal length of homogeneity increases witht because
the longitudinal velocity gradients decrease@10#, the decay
pions show a larger longitudinal homogeneity length than
direct pions. Since the Fourier transform of the direct em
sion function is rather Gaussian and the decay pions fr
short-lived resonances appear close to the emission poin
the parent, they maintain the Gaussian features of the
relator.

Long-lived resonances,G!1 MeV. These are theh and
h8, with lifetimes ctG'17.000 and 1000 fm, respectively
and the weak decays ofKS

0 and the hyperons which on ave
age propagate several cm.~The decays ofKL

0 and charged
kaons are not included in our calculation because their de
products are not seen in most experiments.! Even with ther-
mal velocities these particles travel far outside the dir
emission region before decaying, generating a daughter
emission functionSr→p with a very large spatial support
The Fourier transformS̃r→p(q,K) thus decays very rapidly
for qÞ0, giving no contribution in the experimentally acce
sible regionq.1 MeV. ~This lower limit in q arises from
the finite two-track resolution in the experiments.! The decay
pions do, however, contribute to the single-particle spectr
S̃r→p(q50,K) in the denominator and thus ‘‘dilute’’ the
correlation. In this way long-lived resonances decrease
correlation strengthl without, however, affecting the shap
of the correlator where it can be measured.

Moderately long-lived resonances,1 MeV ,G,30 MeV.
There is only one such resonance, thev meson. It is not
sufficiently long-lived to escape detection in the correlat
and thus it does not affect the intercept parameterl. Its
lifetime is, however, long enough to cause a long exponen
tail in Sv→p(x,K). This seriously distorts the shape of th
correlator and destroys its Gaussian form.

2. Nonzero transverse flow (Fig. 4)

The main difference between Figs. 3 and 4 is that
effects from the short-lived resonances and thev on the
shape of the correlator are weaker. The primary reason
this behavior is that for the class of models~4.6! the trans-
verse sizeRt of the effective emission region for heavy res
nancesshrinksfor nonzero transverse flow. In the Gaussi
saddle-point approximation, this transverse sizeRt can be
calculated fromSr

dir(x,P) in Eq. ~4.6! as

Rt5
R

A11~M' /T!h f
2

. ~5.9!

This is not accurate enough for quantitative studies@11# but
gives the correct tendency and right order of magnitude. G
ing as h f

2 this effect is small, but it tends to increase th
width of the correlator, counteracting the basic tendency
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resonance contributions to make the correlator narrower.
h f50.3 the two effects are seen to more or less balance e
other in the sideward correlator, leaving practically no tra
of the short-lived resonances including thev. A similar ef-
fect is seen in the outward and longitudinal directions,
there the dominant lifetime effect discussed above preva

Please note that none of the correlators shown in Fig
and 4 exhibits a ‘‘volcanic’’ ~exponential or power law
rather than Gaussian! shape as seen for the longitudinal co
relators of Refs.@8#. We have not been able to trace th
origin of this discrepancy; it may be due to the differe
source~hydrodynamics with freeze-out along a sharp hyp
surface! used in Refs.@8#, but why this should manifest itsel
in this way is not obvious. From general arguments
would expect at smallq a Gaussian behavior with a curva
ture related to the longitudinal size of the effective pi
source fromv decays; the longitudinal correlators in Ref.@8#
seem to decay much more steeply for smallq. We have
checked our results with two independent programs, ba
on the formulas given in the Appendixes.

VI. EXTRACTING HBT RADII FROM THE CORRELATOR

Looking at Figs. 3 and 4 it is clear that more quantitati
methods are needed to characterize the shape of the
relator. For an interpretation of the correlator in terms of
space-time structure of the source relatively small change
its shape and its pair momentum dependence play an im
tant role. One would therefore like to describe the key f
tures ofC(q,K ) by a small number of fit parameters whic
are sensitive to this space-time structure. The usual pr
dure is to perform a Gaussian fit with the functions~2.6! or
~2.8!. As we will see this method runs into systematic pro
lems if the two-particle correlator does not have a perf
Gaussian shape, e.g., due to long-lived resonances. Not
do the functions~2.6! or ~2.8! fail to give a good fit, but by
not correctly accounting for the non-Gaussian features
throws away important space-time information contained
the resonance decay contributions to the correlator.

In this section we discuss several different Gaussian
ting procedures which clearly demonstrate these difficult
The main reason for presenting this basically flawed
proach is~i! that it is the method mainly used so far in th
experimental analysis and~ii ! that the discussion throw
some light on how one should compare HBT radius para
eters extracted by different groups using different pro
dures. After having understood the problems and the syst
atic uncertainties they generate we will then suggest a m
reliable approach in the next section which also accounts
non-Gaussian features in a quantitative way.

A. Two-dimensional Gaussian fits to the correlator

We start by discussing two-dimensional fits toC(q,K )
with two parametersl i(K), Ri(K) ( i 5o,s,l ). We approxi-
mate the numerical function in the directionsqi as follows:

C~qi ,qkÞ i50;K !'11l i~K ! e2Ri
2
~K !qi

2
, i 5o,s,l .

~6.1!

The optimal parametersl i(K ) andRi(K ) are determined by
minimizing the following expression:
or
ch
e

t
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e
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s.
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re
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(
n51

n

@ lnC~qi
n ,qkÞ i50;K !2 lnl i1Ri

2~qi
n!2#25min.

~6.2!

The labeln runs over a set ofn equidistant valuesqi
n be-

tween 0 and 50 MeV for which the correlatorC(qi
n ,K ) was

calculated numerically. Although the procedure~6.2! is con-
ceptually different from an experimental fitting procedure
that the function to be fitted is known exactly and the resu
ing optimal fit parameters thus do not have statistical er
bars, they can still vary systematically depending on the
lection of the fit pointsqi

n and the minimization function
~6.2!. These systematic variations reflect the possible n
Gaussian features of the correlator, but not in a way t
allows to easily quantify them. As long as the deviatio
from Gaussian bahavior are small, the extracted Gaussia
parametersRi(K ) andl i(K ) are expected to be useful for
simple characterization of the main features of the correla

1. No transverse flow

For the caseh f50 the results from independent two
dimensional fits to the correlator in the ‘‘side’’~top!, ‘‘out’’
~middle!, and ‘‘long’’ ~bottom! directions are shown in Fig
5. The left column shows the Cartesian HBT radii, the rig
column the associated intercept parameters resulting f
the fit, both as functions ofK' at Y50.

The fitted intercept parameters follow roughly the beha
ior expected from Eq.~3.12! and Fig. 1. Upon closer inspec
tion one sees, however, that also some of the shorter-l

FIG. 5. The Cartesian HBT radiiRi , i 5o,s,l and their corre-
sponding intercept parametersl i , extracted from the correlato
C(q,K ) via two-dimensional fits according to Eq.~6.2!. Shown are
results atY50 as function ofK' for h f50. Top row: sideward
direction. Middle row: outward direction. Bottom row: longitudina
direction. The different lines indicate the effects of including va
ous sets of resonances as described in Fig. 3.
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56 3275RESONANCE CONTRIBUTIONS TO HANBURY- . . .
resonances, in particular the inclusion of thev, have a sig-
nificant lowering effect onl. These effects are different i
the three Cartesian directions and strongest in the longit
nal direction, where even without any resonance effe
l,1 at smallK' .

The deviations of the intercept parameter from unity
flect non-Gaussian features of the correlator. For short-li
resonances these are weak, except in the longitudinalql di-
rection where the correlator has been known to show at s
K' a somewhat steeper than Gaussian fall-off due to
rapid boost-invariant longitudinal expansion of the sou
@11#, even in the absence of resonance decays. The m
non-Gaussian effects come from thev and, of course, from
the long-lived resonance. The latter affect, however, onll
and not the HBT radii extracted from the Gaussian fit, wh
the v also changes the radius parameters.

The fit accomodates these non-Gaussian features by
ering the interceptl. As discussed in Sec. V C the ma
origin of non-Gaussian effects due to resonances is the ta
the time distribution of the decay pions. According to Eq
~2.7! this is expected to affectRo andRl , but notRs . Equa-
tion ~5.3! tells us, however, that the ‘‘out’’ and ‘‘side’’ be
havior of the parent resonance distribution gets mixed in
pair distribution of the daughter pions, so some fraction
this effect propagates into the side correlator of the de
pions. On the other hand, there remains the fact that, c
pared toRs , in Ro an additional lifetime effect comes i
through the termb'

2 ^ t̃ 2& in Eq. ~2.7b!; this contribution in-
creases quadratically for small values ofK' , saturating
aboveK'5mp whereb''1. This explains very nicely the
initial drop and subsequent rise ofl in the outward direction,
which is particularly prominent for thev contribution.

Let us now turn our attention to the HBT radii in the le
column of Fig. 5 and begin with a discussion ofRs . Its size
remains essentially unaffected by the short-lived resonan
with lifetimes of order 1 fm/c, but thev affectsRs . This
effect dies out rapidly for increasingM' due to the decreas
ing v fraction f v(K',0), but the resultingM' dependence o
Rs complicates the extraction of the transverse flow from
@11,13#.

The origin of the effect has already been qualitative
explained in Sec. V C and above by referring to Eq.~5.3!. A
somewhat more quantitative estimate can be obtained
studying the space-time variances of Sec. III, even tho
the discussion presented there makes it clear that this
provide only an upper estimate for thev contribution toRs .
Considering only the direct pions and those fromv decays
and calculatingRs

25^y2& according to Eq.~3.8! we find

^y2&5 f dir^y2&dir1 f v^y2&v ~6.3!

with

^y2&v5
*d4x (6*R*0

`dtGe2tGy2Sv
dir@x2~P6/M !t,P6#

*d4x (6*R*0
`dtG e2tGSv

dir~x2~P6/M !t,P6#

5R21S 1

G2D f corr, ~6.4a!
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f corr52
*R~P'

2 /M2!*d4xSv
dir~x,P6! sin2F6

*R*d4x Sv
dir~x,P6!

. ~6.4b!

Using f dir1 f v51 this yields

^y2&5R21 f corr f v

1

G2 . ~6.5!

This result can be explained as the effect of thev propagat-
ing in they direction before decaying or, more formally, a
the effect of the ‘‘out’’-‘‘side’’ mixing in the decay kinemat-
ics expressed by Eq.~5.3!. Numerically, we determined the
factor f corr'0.52 atK'50 which leads tof corr• f v'0.1 at
the same point. Putting this together with the width of thev
resonance 1/G523.4 fm, one obtains for the side varianc
A^y2&58.9 fm.

This is obviously much larger than the 5.5 fm extracted
K'50, since the curvature~2.11! does not coincide with the
fitted width. For longer living resonances this discrepan
will, of course, be even larger. Another number to comp
with is the half width Rs

half of the correlatorC(qs) at
qo5ql5K50, including all short-lived resonances plus th
v. We find the hierarchy

A^y2&'8.9 fm.Rs
half'6.4 fm.Rs'5.5 fm . ~6.6!

We conclude that estimates of resonance effects, base
space-time variances such asA^y2&, as, e.g., done in@18#, are
quantitatively unreliable. The half widthRs

half is close to the
result one would obtain from a Gaussian fit to the correla
when the interceptl is fixedto the value of Eq.~3.12! ~as,
e.g., done, albeit simultaneously in all threeq directions, in
Refs. @8,41#!. The difference to our procedure which letsl
float is significant, and sinceC at q50 is not experimentally
accessible, a comparison ofRs

half with data @41# is clearly
dangerous. The authors of Refs.@8# also find that at lowK'

resonance decays can increase the longitudinal HBT ra
Rl by up to a factor 2; in a Gaussian fit with floatingl we
never see resonance induced increases inRl by more than 1.5
fm.

We have compared the Gaussians corresponding to
numbers given in Eq.~6.6! with the true ‘‘side’’ correlator in
the lower panel of Fig. 6. In the upper panel we show
three contributions to the correlator@see Eqs.~3.3! and
~3.10!# coming from pairs of two directly emitted pion
~dashed line!, from pairs of one direct and onev decay pion
~difference between dotted and dashed lines!, and from pairs
where both pions come fromv decays~difference between
solid and dotted lines!. While it is obvious that thev contri-
butions are concentrated at lowerqs values than the direc
one, the tail from the mixed direct-v contribution is still
appreciable outside the half point of the direct term n
qs530 MeV. It therefore appears impossible to cleanly se
rate the correlation function into ‘‘core’’ and ‘‘halo’’ contri-
butions with differentq support@15#. In particular, the recen
suggestion by Cso¨rgő @31# to extract the ‘‘core’’ radius by
performing a Gaussian fit to theqs tail of the correlator,
excluding the rangeqs,qcut whereqcut;30 MeV, is likely
to run into systematic problems.
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We now turn toRo . At K'50 the two transverse radiu
parametersRs and Ro are equal by symmetry@23#, and all
above considerations carry over to the ‘‘out’’ direction. A
nonzeroK' , Ro receives an additional contribution from th
source lifetime as indicated by Eq.~2.7b!. Although for the
v the use of this expression is no longer quantitatively r
able, it gives the correct tendency. Short-lived resonance
not destroy the Gaussian shape of the out correlator, and
them Eq.~2.7b! @with Eq. ~3.8!# can be used without restric
tions. It is obvious that even the short-lived resonances c

tribute through their lifetime to the termb'
2 ^ t̃ 2& in Eq.

~2.7b!, strengthening the rise ofRo in Fig. 5 at smallK' .
The strongest resonance effect is seen forRl , which is

affected even by the short-lived resonances. These eff
disappear for largeK' due to the decreasing resonance fra
tions f r , but at smallK' they are significant. Due to th
existence of~weak! non-Gaussian features already in the a
sence of resonances the space-time variances are of lim
use for a quantitative discussion of the effects, and we le
the reader with the numerical results shown in Fig. 5.
qualitative interpretation was given in Sec. V C.

FIG. 6. The correlatorC(qs) at qo5ql5K50, taking into ac-
count only direct pions and pions fromv decays. The upper pane
shows the three contributions according to Eq.~3.3!: direct-direct
pairs ~dashed!, direct-direct1 direct-v ~dotted!, and all contribu-
tions ~including thev-v term where both pions come fromv de-
cays! ~solid line!. The lower panel compares the same solid line
different Gaussians whose radius parameters correspond to the
vature atqs50 ~dotted line!, the half width ofC(qs) ~dash-dotted
line!, and the optimal Gaussian fit according to Eq.~6.2! ~dashed
line!.
-
do
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-
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ve

2. Nonzero transverse flow

In Fig. 7 we show the parametersl i , Ri obtained from
the two-dimensional fit~6.1!, ~6.2! for the case of nonzero
transverse expansion withh f50.3. Comparing with Fig. 5
one sees that the effect of the resonances on the HBT ra
parameters are weaker, and that correspondingly the n
Gaussian effects caused by the short-lived resonances
the v ~which lead to deviations of the intercept parametel
from unity! are less pronounced. In fact, the only remaini
effects of these resonances on the HBT radii come from
terms;^ t̃ 2& in Ro andRl @see Eq.~2.7!# and are due to the
additional contribution to the particle emission duration fro
the resonance lifetimes. The geometrical effect of resona
propagation away from the direct source, described by
second term in Eq.~6.5!, has disappeared, even for thev.
The reason was already discussed in Sec. V C, Eq.~5.9!: due
to transverse flow the transverse size of the emission re
for heavy resonances is smaller than that of the direct pio
and since they do not live very long they usually do n
make it outside the source of direct pions before decay
Thus they do not lead to an increase of the spatial sou
size.

As a consequence, the decrease ofRs with increasingK' ,
which is characteristic for transverse collective flow of t
source@11,13#, is no longer modified by the pions fromv
decays. This is, of course, the ideal situation one might h
for in order to extract quantitative dynamical informatio
from HBT data. Unfortunately, the problem remains that,
the measurement finds a~not too strong! M' dependence of
Rs , it could still be due to either weak transverse flow wit
out resonance contaminations as in Fig. 7, or tov-decay
contributions in the absence of transverse flow as in Fig
~Other mechanisms such as transverse temperature grad

ur-

FIG. 7. Same as Fig. 5, but for nonzero transverse flowh f50.3.
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56 3277RESONANCE CONTRIBUTIONS TO HANBURY- . . .
might also create anM' dependence@9,10#.! We must find a
more quantitative analysis tool which allows us to t
whether theM' dependence ofRs is associated withv de-
cays or not.

B. Five-dimensional Cartesian Gaussian fits to the correlator

Before approaching this task in the next section, we w
now also discuss some generic features of multidimensio
Gaussian fits to the exact correlator where all HBT para
eters and the correlation strength are determined simu
neously. This is clearly desirable in order to avoid the pro
lem of having three different correlation strengths in t
three Cartesian directions, as happens when the three
Rs , Ro , andRl are determined by separate two-dimensio
fits according to Eq.~6.1!, because such a result is clear
unphysical. It is also necessary for the determination of
cross termRol and for a fit with the YKP parametrizatio
~2.8!.

In this subsection we extract the Cartesian parametersRo ,
Rs , Rl , Rol , andl from a five-dimensional fit which mini-
mizes the expression

(
n51

n

@ lnC~qn,K !2 lnl1Ro
2 ~qo

n!21Rs
2 ~qs

n!21Rl
2 ~ql

n!2

12 Rol
2 qo

nql
n#25min. ~6.7!

The labeln again runs overn fit points qn which were cho-
sen to lie at equal distances between 0 and 50 MeV along
three Cartesianq axes and along the two diagona
(qs50,qo5ql) and (qs50,qo52ql). This is, of course, dif-
ferent from a typical experimentalq distribution. They were
selected to economize in the number of fit points where
exact correlator had to be computed.

The results of the fit~6.7! are shown in Fig. 8, again fo
h f50 andh f50.3 at midrapidityY50. Let us first look at
the incercept parameterl. Comparing with Figs. 5, 7 we se
that thel value from the five-dimensional fit lies somewhe
between the three different values obtained in the tw
dimensional~2D! fits. As before it reflects the deviations o
the correlator from a Gaussian. Since such deviations exi
the ql direction even without resonances, due to strong l
gitudinal expansion,l slightly deviates from 1 even in th
absence of resonance decays.

The need for the fit to compromise on a unique interc
parameter affects the optimum values for the HBT rad
l

ll
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dii
l

e
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parameters. For a fixed correlation function, a decreasel
leads automatically also to a smaller Gaussian radius
found by the fit. Since the compromise value forl lies above
the valuel l , but below the valuesls and lo from the 2D
fits, Rl increases andRs , Ro decrease in the 5D fit relative t
the 2D fit values.@This effect is hardly visible if resonanc
decays are switched off but becomes stronger as the r
nance contributions~with their non-Gaussian effects! are
added.# The net result is that even in the absence of tra
verse flow now the resonance effects onRs and on itsM'

dependence appear quite weak. Even the resonance con
tion to the lifetime effect inRo ~the quadratic rise at sma
K') becomes less pronounced.

For completeness we show in Fig. 9 also results at f
ward pair rapidity Y51.5. In this case the fit gives, o
course, a nonvanishing cross termRol with the expectedK'

behavior@10,30,42#. It is affected by resonances essentia
at the same level asRo . The only other qualitative difference
is the much smaller value ofRl relative toY50; this is an
effect of Lorentz contraction.

It must be stressed that the differences between this
section and the previous one are purely due to fit systema
Depending on how the exact correlator is fitted to a Gauss
the extracted Gaussian radii show significant differenc
Since in the experiments the intercept parameter canno
directly measured and must be fitted simultaneously with
HBT radii, we adopted the same procedure and letl float in
the fit. Schlei and co-workers@8,41#, on the other hand, in his
Gaussian fits has always fixedl at the value given by Eq
~3.12!. In the presence of non-Gaussian effects due to re
nance decays our fits give smallerl ’s and, therefore, smalle
HBT radii than his fit. This explains why the resonance
fects on the transverse radii and theirK' dependence were
found to be much stronger in Refs.@8,41# than in our work
here. According to the second inequality in Eq.~6.6! the
difference inRs is about 1 fm, in good agreement with h
compared to our results.

C. Five-dimensional Gaussian YKP fits to the correlator

The extraction of the Yano-Koonin velocity from a fi
according to Eq.~2.8! is a nonlinear problem. To maintai
the simplicity of a least-square fit with linear fit paramete
we have reformulated the YKP fit problem as follows. W
rewrite Eq.~2.8! in the form
C~K ,q!511l
YKP

~K !exp@2R'
2 ~K ! q'

2 2R33
2 ~K !ql

22R00
2 ~K !~q0!212R03

2 ~K !q0ql #, ~6.8!
with

v5
1

2D
@12A12~4D2!2#, ~6.9a!

R0
25

R00
2 2v2R33

2

11v2 , ~6.9b!
Ri
25

R33
2 2v2R00

2

11v2 , ~6.9c!

D5
R03

2

R00
2 1R33

2 . ~6.9d!
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3278 56URS ACHIM WIEDEMANN AND ULRICH HEINZ
We then proceed as with the Cartesian parametrizatio
Sec. VI B, using the same set of fit points as before,
expressing them through their componentsq' ,ql , andq0, in
order to determinel

YKP
,R' ,R33,R00, and R03. Finally we

solve Eqs.~6.9! for the YKP parameters.
However, the one-to-one correspondence between

YKP and Cartesian radius parameters does not imply tha
a fit to experimental data both sets of fit parameters can
determined with similar accuracy. At midrapidity, for in
stance, whereq05b' qo , the YKP fit becomes for smal
transverse pair momentum increasingly insensitive toR0,
sinceq0→0 for b'→0. As a result, in the space of YKP fi
parameters the confidence region for one standard devia
is very elongated inR0. The actual fit value ofR0 thus de-
velops a strong sensitivity to relatively small systematic
viations of the correlator from a Gaussian shape. Since
procedure~6.7! adopted here does not allow to associate
rors to the extracted fit values, we present in Figs. 10 and
the results only for sufficiently large values ofK' where
such systematic effects were found to be small.

For Y50 (b l50, Fig. 10! the systematic uncertainty a
small values ofK' (b') affects onlyR0, according to the

FIG. 8. The Cartesian HBT radiiRo , Rs , Rl , and the intercept
l, obtained from the five-dimensional fit~6.7! to C(q,K ), as func-
tions ofK' at Y50. Rol is not shown since atY50 it vanishes due
to symmetry. Left column: no transverse flow,h f50. Right col-
umn: h f50.3.
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arguments presented above. ForK',100 MeV, we found
that theR0 value extracted from the Gaussian fit develop
strong dependence on the choice of the fit pointsqn while
this problem disappears at larger values ofK' . For Y51.5
(b lÞ0, Fig. 11!, similar systematic uncertainties at smallK'

affect also Ri and YYK . Accordingly, the corresponding
curves in Fig. 11 have been cut off at smallK' .

The intercept parametersl
YKP

extracted from the fit to Eq.
~6.8! essentially coincide with those from the five
dimensional Cartesian fit. This is expected since in both
the same set of fit points was used. Also, the results forR'

compare very well withRs in the Cartesian fit. For a Gauss
ian correlator the formalism of space-time variances s
R'

2 5Rs
25^y2&. The equalityR'5Rs remains essentially un

affected by the non-Gaussian features of the correlator in
presence of resonance decays.

The longitudinal YKP parameterRi is affected by reso-
nance decays roughly in the same way asRl in the Cartesian
fit at Y50. This is expected because atY50 the two param-
eters are again identical on the level of space-time varian
see Eqs.~2.7c!, ~2.10b!. There is no drastic change forRi as
one goes fromY50 to Y51.5: All values~with and without
resonances! decrease somewhat, because one approache
forward end of the source, and the longitudinal homogene
region thus shrinks a bit.

The most significant resonance contribution is seen in
lifetime parameterR0. This agrees with our arguments th

FIG. 9. Same as Fig. 8, but for forward rapidityY51.5. Now
alsoRol is nonzero.
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56 3279RESONANCE CONTRIBUTIONS TO HANBURY- . . .
the dominant effect from resonances on the correlation fu
tion arises from their finite lifetime.

At Y50 the Yano-Koonin velocityv vanishes@12,13#.
This is reproduced by the fit. At forward rapidityv is non-
zero. In the fourth row of Fig. 11 we plot the Yano-Koon

rapidity Y
YK

5 1
2 ln@(11v)/(12v)# as a function of the trans

verse pair momentum. For longitudinally boost invaria
sources, the YK rapidity is known to coincide with the pa
rapidity Y

YK
(K' ,Y)5Y. For the class of models of Sec. I

with longitudinally boost-invariant flow previous studie
without resonance decay contributions gave a linear rela
between the two quantitiesY

YK
(K' ,Y)5c(K') Y. The Y

dependenceY
YK

provides direct experimental access to t
longitudinal expansion of the source. For thermalized mod
the proportionality constantc(K') slowly approaches unity
from below asK' increases@13#. This is clearly seen in Fig
11 which also shows that resonance decay contributions h
a negligible influence on this relation.

VII. q VARIANCES OF THE CORRELATOR

We have seen that resonances, in particular thev with its
intermediate lifetime, create appreciable non-Gaussian

FIG. 10. From top to bottom: the YKP fit parametersR' , R0,
Ri , andl

YKP
as functions ofK' at midrapidityY50. Left column:

no transverse flow,h f50. Right column:h f50.3. At Y50 the
Yano-Koonin velocityv vanishes exactly.
c-
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ve
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fects in the two-pion correlator, and that these deviatio
from a Gaussian shape can thus contain additional infor
tion about the space-time distribution of the source and
physical origin. They also have negative effects on the
traction of HBT radius parameters from Gaussian fits a
affect their K' dependence in a way which, within th
framework of Gaussian fits, is difficult to quantify and
control systematically.

In this section we therefore study an alternative approa
We suggest to extract the HBT radius parameters and q
tify the deviations from Gaussian behavior by studying t
normalized second and fourth orderq moments of the cor-
relator C(q,K ). We first develop the necessary formalis
and then apply it to the correlation functions calculated fro
our class of source models.

A. General formalism

According to Sec. II, the most general Gaussian ansatz
the correlator is

C~q,K !511l~K !expF2 (
i , j 51

3

qi Di j ~K !qj G , ~7.1!

FIG. 11. Same as Fig. 10, but for forward rapidityY51.5. The
additional fourth row now shows the Yano-Koonin rapidity at fun
tion of K' .
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3280 56URS ACHIM WIEDEMANN AND ULRICH HEINZ
where theqi are the three independent relative moment
components obtained after resolving the on-shell constr
q05b•q. For such a Gaussian correlator, the HBT para
etersDi j (K ) can be obtained by either fitting the variou
widths of the correlator as done in Sec. VI, or by comput
the integrals

^^qi qj&&[
*d3q qi qj @C~q,K !21#

*d3q @C~q,K !21#
5

1

2
@D21~K !# i j

~7.2!

and inverting the resulting matrix of second orderq mo-
ments.

For a non-Gaussian correlator we maydefine the HBT
radius parameters in terms of these ‘‘q variances’’: having
determined the matrixD(K ) by inverting the matrix
^^q^ q&&(K ) of q variances, we define

S Rs
2 Ros

2 Rls
2

Ros
2 Ro

2 Rol
2

Rls
2 Rol

2 Rl
2
D [S Dss Dos Dls

Dos Doo Dol

Dls Dol Dll

D ~7.3!

whenqs ,qo ,ql are used as independent coordinates, and

S R'
2 0 0

0 R33
2 2R03

2

0 2R03
2 R00

2
D [S D'' 0 0

0 D33 D03

0 D03 D00

D ~7.4!

if one uses insteadq' ,ql ,q0 as independent variables. Equ
tion ~7.3! corresponds to the Cartesian parametrization~2.6!,
generalized to systems without azimuthal symmetry by
lowing for nonvanishing ‘‘side-out’’ and ‘‘side-long’’ cross
terms. Equation~7.4! corresponds to the YKP parametriz
tion ~2.8! which applies only to azimuthally symmetric sy
tems, and the zeroes in the matrices on the left- and ri
hand side reflect this symmetry.

Similarly, the intercept parameter can be defined in ter
of the q variances and the zeroth-orderq moment as

l~K !5p23/2 AdetD~K !E d3q @C~q,K !21# , ~7.5!

which reproduces the correct value for Gaussian correla
of type ~7.1!.

The deviations from Gaussian behavior in the correla
are then related to higher-orderq moments. A general dis
cussion, including their derivation from a generating fun
tional from which the full correlator can be reconstructed
given in Ref.@43#. SinceC(q,K ) is symmetric with respec
to interchange of the particle momentap1 andp2 and there-
fore even underq→2q, all oddq moments vanish. The firs
non-Gaussian contributions thus show up in the fourth or
moments.

Application of the method ofq moments thus generall
requires at least an inversion of the matrix~7.2! for the de-
termination of the HBT radius parameters and a discuss
of the four-dimensional tensor of fourth-order moments
the non-Gaussian aspects. A complete such analysis in th
dimensionalq space will be postponed to a future public
tion. Here we will perform a unidirectional analysis, whe
nt
-
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these technical complications do not arise, and compar
with the unidirectional Gaussian fits of Sec. VI A.

We thus consider the correlator along one of the th
axesqi ( i 5s,o,l or i 5',l ,0) which we denote byC̃(qi),
suppressing for simplicity theK dependence:

C̃~qi ![C~qi ,qj Þ i50,K !. ~7.6!

The HBT radius parameter in directioni and the correspond
ing intercept parameter are then defined as

Ri
25

1

2 ^^qi
2&&

, ~7.7a!

^^qi
2&&5

*dqi qi
2 @C̃~qi !21#

*dqi @C̃~qi !21#
, ~7.7b!

l i5~Ri /Ap!E dqi@C̃~qi !21#. ~7.7c!

To extract the momentŝ̂ qi
n&& from data one replaces Eq

~7.7b! by a ratio of sums over bins in theqi direction. The
higher the ordern of the q moment, the more sensitive ar
the extracted values to statistical and systematic uncertain
in the region of largeqi . First investigations with even
samples generated by theVENUS event generator indicate tha
the current precision of the data in the Pb-beam experim
at the CERN SPS permits to determine the second-
fourth-orderq moments. Accordingly, we restrict our discu
sion of non-Gaussian features to the ‘‘kurtosis’’

D i5
^^qi

4&&

3 ^^qi
2&&2 21 . ~7.8!

In the following Sec. VII B we will study theK' dependence
of the HBT radius parameters, the intercept, and the kurt
as defined by Eqs.~7.7! and ~7.8!.

B. Unidirectional results for the q moments

In this subsection we present a numerical analysis of
correlation functions computed in Sec. V in terms of theirq
moments along the three Cartesian directions, and giv
comparison with the unidirectional Gaussian fits presente
Sec. VI A.

Figure 12 shows the HBT radii~7.7a! and the kurtosis
~7.8! along the ‘‘side,’’ ‘‘out’, and ‘‘long’’ axes~from top to
bottom!. The left and right column of plots correspond
zero and nonzero transverse flow of the source, respectiv
In each panel we plot as the upper set of curves the H
radius parameterRi in fm, with different line symbols denot-
ing the effects of including various sets of resonances
before. They should be compared with the lines shown in
left columns of Figs. 5 and 7, respectively. The lower set
lines ~clustered around values near 0! denote the correspond
ing kurtosis D i in dimensionless units. These contain t
lowest order information on the non-Gaussian features of
numerically computed correlation function.

The comparison of the HBT radius parameters defined
the q variances of the correlator with those from the Gau
ian fit ~6.2! shows a remarkable agreement. As stres
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56 3281RESONANCE CONTRIBUTIONS TO HANBURY- . . .
above, in the presence of non-Gaussian features in the
relator, the only well-defined definition of the HBT radii
provided by theq variances~7.7a!, while the Gaussian fit
results have possibly severe systematic uncertainties re
to the details of the fit procedure. The agreement between
corresponding curves in Figs. 5, 7, and 12 indicates that
were ‘‘lucky’’ with our choice of fit prescription in Sec
VI A. An essential reason for the good agreement was
decision to let the intercept parameterl float in Eq. ~6.2!,
i.e., to perform a two-dimensional rather than a on
dimensional fit as in Ref.@8#. The discrepancy between th
HBT radii shown in those papers and those shown in Fig.
thus simply reflect the systematic uncertainties of extrac
a Gaussian width parameter from a non-Gaussian correl
In view of these uncertainties, the existence of a clear-
definition via theq variance of the correlator becomes cr
cial.

The space-time interpretation of the HBT radius para
eters has so far been largely based on their relations~2.7!,
~2.10! with the space-time variances of the source which
only true for Gaussian correlators. The agreement betw
the HBT radii from q variances and from~appropriate!
Gaussian fits suggests that these relations continue to be
ful for the space-time interpretation of the correlation fun
tions.

FIG. 12. One-dimensionalq variances according to Sec. VII A
The plots show for the three Cartesian directionsi 5s,o,l the radius
parametersRi(K') defined by Eq.~7.7a! ~upper set of curves in
each panel! and the kurtosisD i(K') defined by Eq.~7.7a! ~lower
set of curves in each panel!. The radii are given in fm, the kurtosi
in dimensionless units on the same scale. Left column: no tra
verse flow,h f50. Right column:h f50.3. The pion pairs have
rapidity Y50 in the c.m.s.
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In view of the above agreement between the two types
HBT radius parameters, and of our discussion of the in
play between the values ofl i and Ri in various types of
Gaussian fits to a given correlation function, it is not surpr
ing that the intercept parameters extracted from Eq.~7.7c!
also agree very well with the ones extracted from the un
rectional Gaussian fits and shown in the right columns
Figs. 5 and 7. They are therefore not presented again.

The interesting new information is, of course, contain
in the kurtosisD i and theirK' dependence shown in Fig. 12
In the side direction the appearance of a nonvanishing~posi-
tive! kurtosis is clearly linked to the influence of thev de-
cays on the correlation function and to its visibility in th
HBT radius parameterRs . This implies that the question
whether or not a givenK' dependence ofRs is caused by
resonance decays or not can be easily answered by chec
the kurtosis of the correlation function. If the kurtosis va
ishes~or is slightly negative!, it is not thev which causes the
K' dependence. At least for the model studied here, the
tosis provides thus the cleanest distinction between scena
with and without transverse flow. Its value andK' depen-
dence are thus very important ingredients for the interpre
tion of two-particle correlations.

The situation is slightly more complicated in the outwa
direction: as long as the source does not expand transver
(h f50), the visibility of resonance decay effects inRo is
clearly linked to a nonzero positive kurtosis of the correlat
and vice versa. For nonzero transverse flow, however,
outward correlator begins to develop small deviations from
Gaussian@11# even without resonance decays; these show
in a negativevalue for the kurtosis. This effect increases f
larger transverse pair momentaK' .

The kurtosis generated by collective expansion is parti
larly prominent in the longitudinal direction where flow
induced non-Gaussian features have been noticed first@11#.
The bottom row of Fig. 12 clearly shows the interplay
non-Gaussian features induced by resonance decays~leading
to a positive kurtosis! and longitudinal expansion flow~caus-
ing a negative kurtosis!. At small K' the resonance contri
butions dominate; at largeK' the resonances lose impo
tance while the flow-induced kurtosis becomes strong
leading to overall negative values of the kurtosis.

VIII. CONCLUSIONS

Within a broad class of model emission functions for l
cally thermalized and collectively expanding sources
have presented a comprehensive study of resonance d
effects on two-pion Bose-Einstein correlations. We ha
found that, with regard to their influence on the correlati
function, the resonances can be subdivided into three clas

Long-lived resonances with width,1 MeV cannot be
resolved in the correlation measurement; they reduce the
relation strengthl but otherwise do not influence the sha
of the correlation function in the region where it can be me
sured.

Short-lived resonances with width.30 MeV: they decay
into pions close to their production point and thus do n
change the spatial width of the pion emission functio
Hence they do not affect the sideward correlator who
width is defined by the transverse spatial size of the sou

s-
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In the outward and longitudinal correlator and in the lifetim
parameterR0 of the YKP parametrization, which are all i
one way or other sensitive to the lifetime of the source, th
contribute via the additional time duration of pion emissi
due to their own lifetime. These contributions are small a
on the order of the resonance lifetime.

The v meson. With its width of about 8 MeV it is no
sufficiently long-lived to escape detection in the correlat
but also not sufficiently short-lived to not change the spa
width of the emission function. As a consequence it can l
to severe non-Gaussian distortions of the correlator.

These latter distortions cause serious problems. We h
shown in Sec. VI that both the method of extracting wid
parameters from the correlator via Gaussian fits and the
culation of these parameters in terms of space-time varia
can lead to quantitatively unreliable results. The system
uncertainties of Gaussian fits to non-Gaussian correla
were identified in Sec. VI@see the discussion following Eq
~6.6!# as the primary reason for previous claims of mu
larger resonance effects on the two-pion HBT radii th
found by us. To remove the ambiguities associated with n
Gaussian features of the correlator we have introduce
Sec. VII an alternative definition of the HBT size paramet
and of the intercept parameterl in terms ofq moments of
the correlator which does not rely on the assumption o
Gaussian correlator. For sufficiently high statistics data, H
radius parameters determined in this way are free of syst
atic uncertainties. For the examples studied here, they sh
much weaker influence from resonance decays than we
expected on the basis of previous work@8#.

The normalized fourth orderq cumulant~kurtosis! serves
as a quantitative lowest-order measure for the non-Gaus
features of the correlator. It is sensitive to both resona
decays and flow which~at least for the models studied her!
contribute, however, with different signs. The kurtosis th
provides the cleanest signal to distinguish between scena
with and without transverse flow.

Our detailed numerical model study ofq moments has
shown that resonance decays which modify the HBT rad
parameters~defined via theq variance of the correlator! also
lead to a positive kurtosis. It can be related to the long n
Gaussian tails in the source distribution generated by
decay pions. Collective expansion, on the other hand, ge
ates a negative kurtosis because it tends~in our model! to let
the source at its edges decay more steeply than a Gaus
We see practically no flow effects on the kurtosis in t
sideward direction, a weak effect due to transverse expan
in the outward direction, and a somewhat larger effect du
the strong longitudinal expansion in the longitudinal dire
tion. In the transverse direction resonance effects on the H
radius Rs can thus be directly correlated with a nonze
positive kurtosis. The existence or not of a nonvanish
kurtosisDs and itsK' dependence can thus be used to ass
the amount of contamination inRs from v decays and to
separate these effects from transverse flow.

q moments thus provide significantly improved inform
tion on the shape of the correlation function in terms of a s
small number of relevant parametersl i ,Ri ,D i , whose size
and momentum dependence lends itself to an interpreta
in terms of the geometric and dynamic space-time struc
of the emitting source. They are thus expected to furt
y
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adapt the HBT method to the increased demand for accu
in view of the complicated nature of the dynamical sourc
created in relativistic heavy ion collisions and of the dras
cally improved quality of recent correlation measuremen
The new method has been demonstrated to work very we
theory. In view of the new high precision data from the P
beam at the CERN SPS, it appears to be experimentally
sible. It will be interesting to see how far the additiona
higher order HBT observables improve our picture of t
spatiotemporal evolution of heavy ion collisions.
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B. Tomášik for many helpful conversations. Intensive di
cussions at the HBT96 Workshop at the ECT*, Tren
helped to sharpen our arguments; we gratefully acknowle
the hospitality of the ECT* and the role it has played
crystallizing our thoughts. We would in particular like t
acknowledge discussions there with S. Voloshin who int
duced us to the concept of ‘‘relative distance distributio
used in Sec. VII. One of us~U.A.W.! would like to thank S.
Kumar, P. Foka, and M. Martin for the hospitality and he
received during visits to Yale and CERN where part of th
work was written. He also acknowledges a critical discuss
with M. Gyulassy at Columbia on the use and abuse
space-time variances. U.H. would like to thank CERN f
warm hospitality and a stimulating atmosphere during
final stages of this work.

APPENDIX A: THE EMISSION FUNCTION
FOR RESONANCE DECAY PIONS

Here, we give details of how to compute the emissi
functionSr→p(x,p) for resonance decay pions from a dec
channelr . We follow the treatment in@16,17# with some
notational improvements. The resonancer is emitted with
momentumP at space-time pointXm and decays after a
proper timet at xm5Xm1(Pm/M )t into a pion of momen-
tum p and (n21) other decay products:

r→p1c21c31•••1cn . ~A1!

The decay rate at proper timet is Ge2Gt whereG is the total
decay width ofr . Assuming unpolarized resonances with is
tropic decay in their rest frame,Sr→p(x,p) is given in terms
of the direct emission functionSr

dir(X,P) for the resonancer
by

Sr→p~x;p!5M E
s2

s1

ds g~s!E d3P

E
P

3d~p•P2E* M !E d4XE dtGe2Gt

3d~4!Fx2S X1
P

M
t D GSr

dir~X,P!. ~A2!

Variables with a star denote their values in the resonance
frame, all other variables are given in the fixed measurem
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frame. Heres5(( i 52
n pi)

2 is the squared invariant mass
the (n21) unobserved decay products in Eq.~A1!. It can
vary betweens25(( i 52

n mi)
2 ands15(M2m)2. g(s) is the

decay phase space for the (n21) unobserved particles.E* is
the energy of the observed decay pion in the resonance
frame and is a function ofs only:

E* 5Am21p* 2, p* 5A@~M1m!22s#@~M2m!22s#

2M
.

~A3!

We choose for the observer frame a Cartesian coordi
system in which the transverse momentump' of the decay
pion has only anx ~‘‘out’’ ! and noy ~‘‘side’’ ! component:

pm5~E,px ,py ,p
L
!5~m'coshy,p' ,0,m'sinhy!. ~A4!

In this coordinate system the resonance four-momentumP is
parametrized by

Pm5~E
P
,Px ,Py ,P

L
!

5~M'coshY,P'cosF,P'sinF,M'sinhY!. ~A5!

The first d function in Eq. ~A2! implements the energy
momentum constraintp•P5E* M . For p'Þ0 it can be used
to fix the azimuthal angleF of the resonance momentumP
to

F656F̃ with cosF̃5
E E

P
2p

L
P

L
2E* M

p'P'

5
m'M'cosh~Y2y!2E* M

p'P'

. ~A6!

We denote byP6 the two values ofP obtained by inserting
the two solutions~A6! into Eq. ~A5!. Rewriting thed func-
tion as d(p•P2E* M )5(6d(F2F6)/p'P'sinF6 and
doing the F integration in d3P/E

P
5M'dM'dY dF we

find

Sr→p~x;p!

5
1

2(6 E
Y2

Y1

dYE
M',2

2

M',1
2

dM'
2 E d4X

3E dtGe2Gtd~4!Fx2S X1
P6

M
t D G

3Sr
dir~X,P6!F r→p~P6;p!, ~A7!

where
est

te

F r→p~P;p!5E
s2

s1

ds g~s!

3
M

AP'
2 p'

2 2@E* M2m'M'cosh~Y2y!#2

~A8!

is the decay probability for a resonancer with momentumP
into a pion with momentump. It is normalized to the branch
ing ratio br→p for the channel~A1! according to

E dydp'
2 F r→p~P;y,p'!5br→p . ~A9!

The casep'50 is a little special: then the constrain
p•P5E* M in Eq. ~A2! cannot be used to do theF integra-
tion, but theM' integral can be done:

Sr→p~x;y,p'50!

5ME
s2

s1

dsg~s!E
0

2p

dFE
Y2

Y1

dY
ME*

m2cosh2~Y2y!

3E d4XE dtGe2Gtd~4!Fx2S X1
P

M
t D G

3Sr
dir~X,P!U

M'5ME* /mcosh~Y2y!

, ~A10!

In the following we discuss only the casep'Þ0. The kine-
matic limits for the integrals in Eqs.~A7! and~A10! are, for
given y,m' of the decay pion, determined by the zeroes
the square root in Eq.~A8!:

M',65M̄'6DM'

[
E* Mm'cosh~Y2y!

m'
2 cosh2~Y2y!2p'

2

6
Mp'AE* 21p'

2 2m'
2 cosh2~Y2y!

m'
2 cosh2~Y2y!2p'

2
, ~A11!

Y65y6DY[y6 lnS p*

m'

1A11
p* 2

m'
2 D . ~A12!

With these ingredients Eq.~A2! can be rewritten as
Sr→p~x,p!5ME
s2

s1

dsg~s!E
Y2

Y1

dYE
M',2

2

M',1
2

dM'
2 E

0

`

dtGe2Gt

1
2 (6Sr

dir@x2~P6/M !t,P6#

Ap'
2 ~M'

2 2M2!2@E* M2m'M'cosh~Y2y!#2
,

~A13!

where the sum is over the two allowed values~A6! for F. Rewriting the square root with the help of~A10! as
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1

Am'
2 cosh2~Y2y!2p'

2

1

A~DM'!22~M'2M̄'!2
~A14!

and introducing new integration variablesvP@21,1#, zP@2p,p# via

M'5M̄'1DM'cosz, ~A15!

Y5y1vDY, ~A16!

Eq. ~A13! can be further transformed into

Sr→p~x,p!5(
6

E
R
E

0

`

dtGe2GtSr
dirS x2

P6

M
t,P6D , ~A17!

with the following shorthand for the integration over the resonance momenta:

E
R
[ME

s2

s1

dsg~s!E
21

1 DYdv

Am'
2 cosh2~vDY!2p'

2 E0

p

dz~M̄'1DM'cosz!. ~A18!

For the calculation of the correlation function we need the Fourier transform of the emission function. It is obtained fr
~A17! as

S̃r→p~q,p!5E d4x eiq•x Sr→p~x,p!5(
6

E
R
E

0

`

d~Gt! expF2GtS 12 i
q•P6

MG D G E d4x eiq•x Sr
dir~x,P6!

5(
6

E
R

1

12 i
q•P6

MG

S̃r
dir~q,P6!, ~A19!

where in the first step we shifted thex integration variable and in the second step we performed thet integration. For two-body
decays this reads

g~s!5
b

4pp*
d~s2m2

2!, ~A20!

S̃r→p~q,p!5
Mb

4pp* (6 E
21

1 DYdv

Am'
2 cosh2~vDY!2p'

2 E0

p

dz
M̄'1DM'cosz

12 iQq
6

S̃r
dir~q,P6!,

Qq
65

M'

MG
~q0coshY2qlsinhY!2

P'

MG
~qocosF61qssinF6!. ~A21!

For three-body decays@s25(m21m3)2, s15(M2m)2# this reads

g~s!5
Mb

2ps

A@s2~m21m3!2#@s2~m22m3!2#

Q~M ,m,m2 ,m3!
, ~A22!

Q~M ,m,m2 ,m3!5E
s2

s1ds8

s8
A~M1m!22s8As12s8As22s8A~m22m3!22s8,

S̃r→p~q,p!5
bM2

2pQ~M ,m,m2 ,m3!
E

s2

s1ds

s
A@s2~m21m3!2#@s2~m22m3!2#E

21

1 DY dv

Am'
2 cosh2~vDY!2p'

2

3E
0

p

dz
M̄'1DM'cosz

12 iQq
6

S̃r
dir~q,P6!.
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APPENDIX B: THE FOURIER TRANSFORM OF THE EMISSION FUNCTION

Here, we give details of the calculation of the Fourier transformS̃r
dir(q,P)5*d4x eiq•xSr

dir(x,P) for the resonance emissio
functions~4.6!. The t integration can be done analytically: Usingq•x5t A2qox2qsy with A from Eq. ~5.2c! we obtain

E tdteiAtexpS 2
~t2t0!2

2~Dt!2 D5A2p~Dt!2eiAt0e2
1
2 A2~Dt!2

@t01 iA~Dt!2#. ~B1!

The angular integral is also easily done: writingqo5q'cosw, qs5q'sinw, such thatqox1qsy5rq'cos(f2w) ~wheref is the
polar angle ofx andy), the integral over the angle-dependent part of the source function~4.6! is written as

E
0

2p

dfe2 irq'cos~f2w!e~P' /T!sinhh tcos~f2F!5E
0

2p

dce2 irq'cos~c1w̃ !e~P' /T!sinhh tcosc, ~B2!

with c5f2F, w̃5F2w. Separating real and imaginary parts one obtains modified Bessel functions@45#:

E
0

2p

dcexpS P'

T
sinhh tcosc D cos~rq'cosw̃cosc2rq'sinw̃sinc!5p@ I 0~AC2 iD !1I 0~AC1 iD !#, ~B3a!

2 i E
0

2p

dcexpS P'

T
sinhh tcosc D sin~rq'cosw̃cosc2rq'sinw̃sinc!5p@ I 0~AC2 iD !2I 0~AC1 iD !#, ~B3b!

whereC andD are given in Eqs.~5.2a! and~5.2b!. The remaining integrals overr andh are given in Eq.~5.1! and must be
done numerically.

The single-particle spectrum is obtained by evaluatingS̃(q,P) at q50. Then alsoA, Aq , andD vanish~i.e., the depen-
dence on the polar angleF of the transverse momentumP' drops out!, andC reduces toC5@P'sinhht(r)/T#2. The transverse
momentum spectrum is obtained by additionally integrating over the rapidityY associated withP. This integral can again be
done analytically:

dNr
dir

dM'
2

5pE dY S̃r
dir~0;M' ,Y!5

2Jr11

~2p!3/2
M't0emr /TE

0

`

rdre2r 2/2R2
I 0S P'

T
sinhh t~r ! D E dh expS 2

h2

2~Dh!2D
3E dYcosh~h2Y!expS 2

M'

T
coshh tcosh~h2Y! D ~B4!

5
2Jr11

2p
~2t0Dh!em i /T M'E

0

`

rdre2r 2/2R2
K1S M'

T
coshh t~r ! D I 0S P'

T
sinhh t~r ! D . ~B5!

The K1 function results from the last integral in Eq.~B4! after a simple shift of the integration variable, and the remain
Gaussian integral overh is trivial.
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