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Spin-polarization response functions for the high-eneggg’'(p) reaction are examined by computing all 18
response functions for proton kinetic energies of 0.515 and 3.170 GeV froffOatarget. The Dirac eikonal
formalism is applied to account for the final-state interactions. It is found to yield the response functions in
good agreement with those calculated by partial-wave expansion at 0.5 GeV. We identify the response func-
tions that are dominantly determined by the spin-orbit potential in the final-state interaction. Dependence on
the Dirac- or Pauli-type current of the nucleon is investigated in the helicity-dependent response functions, and
the normal-component polarization of the knocked-out proton is compi8€856-28187)02912-9

PACS numbgs): 25.30.Dh, 13.60.Hb, 24.10.Jv, 24.#&

[. INTRODUCTION form factors. We also discuss briefly the response functions
for (€,e'M).
In a hard €,e'p) reaction, involving a few Ge\W or We employ the Dirac formulation for the bound-state

larger momentum transfer, the knocked-out proton experiwave functions and the Dirac eikonal formalism for the
ences a strong, final-state interaction becauseptdecross  knocked-out proton wave function in the final state, as was
sections are largé80—45 mb, corresponding to a mean-free done in previous work at lower energig4—16 and in the
path of only about 1.5 fm. However, perturbative quantumGeV region[17-19. We also neglect some physically im-
chromodynamics suggests the possibility of color transparPortant aspects such as off-shell effects and current conser-
ency[1,2], in which the knocked-out proton undergoes little Vation, as in the previous works. Our objective is to e_stabllsh
final-state interaction: the knocked-out proton would have g€nchmark results that can be compared to more refined cal-
small radius of about the inverse of the momentum transfefulations in the future.

and would be color singlet, and thus, would interact with the The Dirac eikonal formalism is expected to agree better

other nucleons in the nucleus weakly through the color Vaﬁ"’ith the. rigorous part'ial-wave decomposition method as the
der Waals mechanism. This possibility has received muc nergy increases. This agreement has been demonstrated for

attention theoreticallj3—7] and experimentallj8—11]. the analyzing power and spin rotation functions of proton-

R functi for the €’ i focted nucleus elastic scattering at 0.5 GEX0]. However, it need
esponse functions for the@'p) reaction are affected i 1,4 in inelastic processes. It has been npa@iithat the

by the final-state interaction of the knock-out proton. Onc&ncoming and outgoing projectile suffers different eikonal
the initial nuclear wave function is knowfer assumed to be  gjistortions and that the Darwin term would contribute to
known), the response functions provide information of thenose processe@vhile it does not to the elastic amplitude.
final-state interaction; that is, the propagation of theThe validity of the(non-Diragd eikonal formalism had been
knocked-out proton in the nucleus. Polarization meaSUrequestioned for théspin_independemt(e,e’p) Spectra] den-
ments in the ,e"p) and €,e’P) can provide detailed infor- sty in the GeV regior{21], but its validity was later con-
mation on the final-state interaction through the polarizatiorfirmed [22]. In this work, we explicitly demonstrate the va-
response functions. Polarization measurements in the GeNdity of the formalism for the spin-response functions at 0.5
region are thus of great interest, and have been proposed @eV, by comparing the eikonal results to those by the
the Thomas Jefferson National Accelerator FacilltyNAF) partial-wave decomposition method. The formalism should
[12,13. thus be valid in the GeV region.

The polarization response functions have been theoreti- To be consistent with the Dirac eikonal description of the
cally investigated most thoroughly for proton energies ofknocked-out proton, we use the Hartree mean-field wave
several hundred MeV or le§44-14. In the GeV region, function of the Walecka mod¢R3] for the bound-state pro-
only a few calculations have been carried out for tée(p) ton, and so neglect nuclear correlations throughout this work.
and €,e’'p) response functions in the last few yeql§—  There has been a debate over the significance of correlations
19]. for high-energy é,e’p) reactions[24,25, but the effects

In this paper we report a systematic examination of theappear to be small, once other effects such as the finite range
full set of the eighteen spin response functions &e(j) in  of the proton-nucleon interactions are includes].
the GeV region, incorporating spin-dependent, final-state in- In Sec. Il we review briefly the formalism for th&,e’p)
teractions. We do not address the issue of the color transpareaction and the Dirac eikonal method. In Sec. Ill, the nu-
ency, but do calculate the response functions for protongerical results of the 18 spin-dependent response functions
knocked out from different nuclear orbitals and investigateare presented, together with an examination of the role of the
their dependence on the spin-orbit interaction and the protoapin-orbit potential and the dependence on the electromag-
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with 6 the electron scattering angle. The square of the tran-
sition amplitude for the knock-out proton in the-shell,

| M,|?, is written as a product of the leptonic and nuclear
tensors:

| Mal?= 7, W5 ()

The leptonic tensor is defined by

FIG. 1. The coordinate s_ystem and kinematical varigbles of the Nyur= mzz [u_(k,se) y#u(k’,sé)][u_(k’ ,sé)yyu(k,se)]
(é,e'p) reaction. The coordinate system and the notations are the s/
same as those used in Rf$5] and[16].

e

1
= D (KK KK —g, kK —ihet™ K Kk ), (4
netic current operator. A brief discussion is given in Sec. IV, 3 (Kuks wOn ko) @

and our summary and conclusions are presented in Sec. V. ) o ) )
wheres, ands; are the initial and final spins of the electron,

respectively, anc*"** is the antisymmetric rank-4 tensor.
Il. FORMALISM FOR QUASIELASTIC Note that the electron mass is neglected in the second step of
ELECTRON SCATTERING Eq. (4).

The nuclear tensdV4’=W=4"(q;p’,S) depends om, p’,
) ) ) and s, as well as on the quantum numbers of tshell

In this work, we follow the conventions and notations for orpit, and is written in terms of the matrix element of the
the (€,e'p) kinematics that were used by Picklesimer andnyclear current operatar,
Van Orden[15]. For convenience, the various kinematical
guantities are illustrated in Fig. 1, and are defined as follows: , . ut ,
the four-momenta of the incoming and the outgoing electron WA (q;p’,8)= 2 Jh'((a.p)3L (a.p), (5
are denoted as andk’, respectively; the photon momentum Iz

is g=k—k’ with g?>=g5—g?<0 (spacelikg; and the four-  \yherea’ is the quantum number of the protéihat is to be
momentum of the knocked-out protongs. We also takee,  knocked outin thea-shell, includingj,, thez component of

m,, andM to be the electron charge, the electron mass, angs total angular momentum. The matrix elementJf is
the nucleon mass, respectively, dag=(p'>+M?)"*tobe  given by

the on-shell energy of the proton. We follow the Bjorken-

A. Spin-dependent response functions

Drell convention[26] of gamma matrices and Dirac spinors, J;, g(qp')=<,}/,<j)§qu(A_ 1.a)j"(q)|¥,(A). (6
in which the normalization condition is(k,s)u(k,s)=1 for ’ .
Dirac plane waves. Here,zpf),_’?s is the scattered wave function of the knocked-out

In the following, we sketch the formalism on which our p40n that satisfies the incoming boundary conditin(A)
calculation is based. It is rather standard, as described in qus the initial, ground-state nuclear wave function, and

[15], but since it is somewhat involved, we present it here fory, (A-1a') is the final-state nuclear wave function with
the sake of specifying notation and of clarifying the approxi-gne hole that carries the quantum numbeér j*(q) is the
mations involved in the q_uantltle_s we calculate. _ one-body current operator, to be specified shortly.

We assumél) that the interaction between a proton inthe \y/o introduce a Mber-type operator(~), that converts

nucleus and the electron is the one-photon exchange(zind the Dirac plane wave to the distorted wave with the incom-

that the nuc_lear currergt consists of _one—body currents. Wﬁ]g boundary condition,
can then write the €,e’p) cross section foh ands, the
initial electron helicity and the spin polarization of the zp(,_)A:Q(‘)u(T)A. @)
knocked-out proton, respectively, as pe.s ph.s

Note thatQ (™) is not unitary, as seen explicitly in Sec. Il B.

dd M|p’| { d , >
U = P 7 > | dE, | M,[? Equation(7) now allows us to write the nuclear tensor as
dE rdQ rdQ ’ ~ (27T)3 dQ ’ a p a H . . .
k kr835p7 /5 K"/ Mott the diagonal element of the Dirac plane-wave spinor basis,
(=)
X 3(Ep —qP—M—+e3,), 1 |Upd:

, , o W."(g;p’,8)=Tr[Pg(p’)- w4"(q)]. (8
summing over the occupied nuclear shell-orl§dss) in the
single-particle description of the nucleys, is the binding Here, the spin-projection operatBg(p’) is defined in terms
energy in thea shell) Here, the Mott cross section is of the Dirac plane-wave spinors as
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P«(p')= (/‘)A el 9 ~ M|p’
AP =1y 93 R s
2(277) ko/
p’_l_ M Mott
— 5
_( 4M )(l+ 7'8), (10 +v17RYT cos B+v 1Rt cosB

where the spacelike, spin four-vectt is orthogonal to the
momentum four-vector of the knocked-out proton and is nor-
malized to unity.s* is related to the spin vector in the rest
frame of the protons, as

+ho Rl sin B1S,+[vrrRrr sin 28
+v Ry sin B+h(v /R 5, cOSB

| . .
+urrRr1)]8 + [vrRyr Sin 28+ v 1R 1 Sin B

+h(v Rl cosB+vrm RIS

sp’
M=
S ( R

wf”(q) is the nuclear tensor in the Dirac plane-wave spinor
space,

S+

sp’
M(E, +M) P’ (12)

ENn$n+ N|S|+Nt5t1 (16)
where g is the azimuthal angle g’ as illustrated in Fig. 1.
Thev’S (UL, UT, UTT, ULT, ULT/, andUTT/) are kinematic
factors, depending only of, g%, andg?. For completeness,
we list in the Appendix the relations between the response
functions and the nuclear tensor, and the explicit forms of the
kinematic factors.

In the experiments planned at the TINAF, simplified ki-
nematics is applied to reduce the number of the response
functions involved: in-plane kinematicg3&ns) are used
for polarized p= +1)*? and unpolarizedt{= 0)*3 beams. In
the latter case, the induced polarization yields the helicity-
independentnonzerd normal polarization component. The
differential cross section for thise(e’p) reaction is written
in terms of the preceding(h,0) andN, (settingB8=nw) as

w§”<q>=j2 QONW(A-1a")]j"(@)] P (A))

X(W AN (@) Pe(A-1a" )0 (12)

=s(a)Q (1} q)E [y (ar| T (@) Q).

13

Here, ., is the single-particle wave function of the proton
in theath shell,s(a) is its spectroscopic factor, afd{ )" is
the adjoint ofQ(7).

As we defines in the rest frame of the proton, we decom-
pose the trace in Eq8) in terms of the spin-polarization

response functions using tiaght-handedl coordinate sys- do 1
tem in that frame. We write the basis vectors of the coordi- (m) =3 o(h,0)g=nl1+P,], (17
nate system a@|,t). The spin-polarization is projected onto KEETkT R Epr

these vectors as,=n-s, §=I-5 andS,=t-S. When the
trace in Eq.(8) is expressed in terms of these spin projec-
tions, the spin-polarization response functidRS, R', and
RY), emerge in the coefficients of the spin projections, as seen

where

Pr=[Nn/a(h,0)]g=nr- (18

below.
The differential cross section of thes,e’'p) reaction
ejecting a proton withh andsis now written in its full form,

) 1
h,s 2

do
dEk/kolde/ h

)h

1

do
dEdQ,dQp,

do
dE, dQ,.dQ,

N[ =

o(h,00+a(h,s), (14

wherea(h,0) is the differential cross section fog,g’p) and
is given by
Mlp’|

a(h0)= 7 53

(W) {ULRL+UTRT+ UTTRTT Ccos a/),
K"/ Mott
+ULTRLT COSB+ hULT’RLT' sin B} (15)

a(h,9) is the polarized part of thed(e’p) differential cross
section and is given by

In Sec. Il D, we discuss our numerical resultsRyf.
In this work, we use the one-body current operator in free
space,

K
@)=Y\ Fu(@®) ¥ +i 5ir Fa(@®) o', [, (19
neglecting off-shell effects involved in the currd@f]. Dif-
ferent prescriptions for the off-shell extension of the current,
as well as for recovering current conservation, have been
discussed recentlf28] and will be commented on in Sec.
IV. In this work, we use the standard dipole form of the
Dirac and the Pauli form factor§,(q%) andF,(g?) (with
k=1.79, except when noted.

B. Dirac eikonal approximation

The initial- and final-state proton wave functions, (r)

(-) i i o Wi i
and zﬁp,’s(r) satisfy the Dirac equation with a scalar potential
Vs, and a vector potentiaV,. ¢,/ (r) is the quantum-
hadrodynamical wave function in the Hartree approximation
[23], and is expressed in the standard fdi26],

G (D (Q)

1
Va=T | —F (0D, (Q) 20
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for the nuclear shell stag with a’=(n,j,l,j,), wherej and
| are specified through a quantum numkeihe wave func-
tion is normalized to unity, and ., ; are spin spherical

harmonics with angular argumeisd,

The continuum-state wave function of the proton with the

momentump’ and the spirs is expressed as

u ’'s
Y 5= (W‘;) (2D
where each component satisfies
_y2 12
W+VC+VSO(0- L—ir-p’) Upr s=5p7 Un's
i
Wp’,s:_m(a'v)up’,y (22)

with D(r)=E+M+V(r)—V,(r). Here,Vc and Vg are
the central and spin-orbit potentials, relatedtoandV, by

E vi-v?
Ve(r) =Vs+ 17 Vot —u
1 1d
Vsd )= 59577 [V, —Vs]. (23

2MD(r) r dr

The solution of Eq(22) with the incoming boundary con-
dition is given, in the eikonal approximation, by

E,+M\2 1 L
(—) _|ZP p’-raiS(r)
Vo 0=\ E (—iD(r)‘l(a~V) er e xs-
(24)
Here,S(r) is the eikonal phase,
M o
S(r):?J dz'{Ve(z',b)+VgyZ',b)[o-bXp’
z
—ip’'z']}, (25

wherer=ze,+be, , with e, and e, the longitudinal and
transverse unit vectors along the direction @f In this

work, we are interested in each contribution of the central
and spin-orbit potentials to the 18 spin-dependent response

functions. We implement this by switching on and &f§
andVgg in Egs.(24) and (25).

IIl. NUMERICAL RESULTS
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FIG. 2. Comparison of response functions calculated by the
Dirac eikonal formalism(solid) and by the partial-wave decompo-
sition methoddotted, for a proton kinetic energy of 0.5 GeV. The
proton is knocked out of thep,, shell of %0. |p’'—q| is the
magnitude of the recoil momentum of the residual nucleus. Both
calculations use the KMT potential of R¢B0].

experimenf13]. At 0.5 GeV, we compare the response func-
tions calculated by the eikonal and partial-wave decomposi-
tion methods.

A. Comparison of the eikonal approximation
with partial-wave decomposition

In order to establish the accuracy of the Dirac eikonal
approximation, we compare its response functions to those
computed by the Dirac partial-wave decomposition method
[14]. Figure 2 compares ten representative response func-
tions (of the full 18 function$ calculated by the two methods

We now describe our numerical results for the spin-at T, =0.5GeV (p'|=1.090 GeVt) with Q?=—q?

dependent response functions of tiéee( p) reaction, taking

=1(GeV/c)?. The response functions are shown in the ki-

160 as an example. After establishing the accuracy of thexematics commonly used at the low energies: as a function
eikonal approximatioiSec. Il A), we illustrate the response of the magnitude of the recoil momentum of the residual
functions and examine effects of the final-state interactionpucleus,|p’ —q|, at a constant momentum transfgf with

especially of the spin-orbit potentiébec. Il B), and effects
of the nucleon electromagnetic form fact¢&ec. Ill Q. We

lal=[p’].
The response functions of the partial-wave decomposition

also compute the normal-component polarization relevant tavere provided to us by Van Ordg¢@9]. They are computed

an experiment planned at TINAE3] (Sec. Il D). Through-

in momentum spacgl4] using the first-order KMT(Ker-

out Secs. Il B-Ill D, we present results at two kinetic ener-man, McManus, and Thaleoptical potential as described in

gies of the knock-out proton], =0.515 GeV and 3.170

Ref.[30]. In order to compare the two methods for the same

GeV, corresponding to the limiting energies in the plannednput parameters and kinematics, we have converted the
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momentum-space potential to coordinate-space and applie

it in our eikonal calculation. Note that the Hier nucleon A S o
electromagnetic form factdi31] was used in both calcula- O R,
tions. b I\ i\ /

We see in Fig. 2 that the results by the two methods ar 2 F A\ / RY,
quite close, within 10% at the peak for all response function: AR 21 N
shown. The exception iRT;, for which the discrepancy at o Y —
the peak is largetabout 20%. Note that a similar, relatively 20 02t
large (~20%) discrepancy is seen for one of the i 04k
t-component response functioRy; (not shown herg 10r 086 R

In order to solidify this comparison, we repeated the com- ; 08 . ‘T‘
parison atT,,=135 MeV and found the discrepancy to be Y ST
much larger, typically of 30—40 %, and even larg&0— 28
100 9 for the transverse responsé®;, R}, and R}y). 4E /

(We do not exhibit the 135 MeV results in order to limit the a3

number of figures. As we go up to the GeV region, the
number of the partial waves naturally increases, and th
partial-wave decomposition method becomes more cumbe
some, and eventually impractical. On the other hand, thi
eikonal method becomes more accurate as the rafig ofo

the pN potential increases. Though we have no partial-wave
decomposition results with which to compare in the GeV
region, we expect that the eikonal method is reasonably ac
curate. Hence, the Dirac eikonal method should be a pract
cal, reliable method for calculating final-state interactions in
the high-energy €,e’p) reaction.

“0f L

B. PWIA vs DWIA and effects of the spin-orbit potential 0 1 2 0 1 2
We now apply the Dirac eikonal method to examine the [p'-q| (fm 1) Ip'-q| (fm 1)
effects of the final-state interaction, particularly the spin-
orbit potential. Here, we use the optical potential in the F|G. 3. Unpolarized and normal-component response functions
lowest-order impulse approximation, the so-calfgdform,  for a proton knocked out of the,, shell of %0 with the kinetic
wheref is the free-spac@N-scattering amplitude ang is  energy of 0.515 GeV}p’ —q| is the magnitude of the recoil mo-
the nuclear density taken from the Hartree mean-field nucleanentum of the residual nucleus. Solid curves are the DWIA results
wave function. Although this potential is simpler than thatby use of the Dirac eikonal formalism, and dotted curves are the
used in the preceding comparison of the two methods, w@€WIA results. The DWIA results with no spin-orbit potential
use it here because there is no systematic, refined potenti@fso=0) are also shown in dashed curves. All calculations use the
available over the proton energy region of interest. The po- fp” potential.
tentials in the Dirac eikonal method in Sec. Il B are con-
structed[32] using pN phase-shift analyses fdF, =0.515  Rir, andR 1/ vanish. AtT, =0.135 GeV, it was observed
[33] and 3.170 GeM34]. A comparison of Figs. 2 and 3 [14]in a partial-wave decomposition calculation that the sign
shows the response functions calculated by the potential aff Ry is changed by the inclusion of the final-state interac-
the previous subsection and this potential are close to eadfon for the proton knocked out from thepl;, shell. We find
other around 0.5 GeV. the same behavior at, =0.515 and 3.170 GeV. Figure 5
Figures 3 and 4 show the complete set of 18 spinshows the response functiofSs and R"s for the proton
dependent response functions for the proton knock-out fromknocked out from the fi5, shell. Here Ryt does not change
the py, shell with the kinetic energy off,,=0.515 GeV  sign upon the inclusion of the final-state interaction, as is the
(the same kinematics as used in Sec. IIB'|=[|g] case aff,,=0.135 GeV[14]. The response functions for the
=1.133 GeVEt). The response functions are calculated withpolarized proton in tha, |, andt directions are also shown
and without the final-state interactidthat is, DWIA and in Fig. 4, many of which vanish in the absence of the final-
PWIA, respectively. The DWIA responses are generally state interaction.
smaller in magnitude than the PWIA responses, as a conse- Figures 6 and 7 illustrate the response functions for a
quence of the absorption in the final-state interact®pis  proton knocked out from thep,-shell atT, =3.170 GeV
the largest among the unpolarized response functi®ps  (|p’'|=4.024 GeVt) with |g|=4.024 GeVt, and Q2
Rr, Rrr, R, andR /), and dominates the unpolarized =6(GeV/c)?. They are typically smaller by two orders of
cross section. magnitude relative to those &t =0.515 GeV. This reduc-
The helicity-dependent response functi®y , vanishes tion is largely due to th€? dependence of the nucleon elec-
in the absence of the final-state interaction and is useful fotromagnetic form factor, the square of which is a factor in the
investigating the proton-flux attenuation by the final-state intesponse functions. The larger values@f expected in fu-
teraction. At the parallel kinematidse., |p’ —q|=0), Ryt, ture experiments will reduce considerably the magnitude of
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R (fm*)

R (fm’)

Ip'-q| (fm™) Ip'-q| (fm™")

FIG. 4. Similar to Fig. 3, for thé- andt-component polarization
response functions.

p'-q| (fm”) p'-ql (fm™)

the response functions to be investigated.

In order to limit the number of figures, we present here
the full set of the response functions for a proton kno_cked FIG. 5. Similar to Fig. 3, for a proton knocked out of thpzb
out from the I, shell atT,,=0.515 and 3.170 GeV, which  gg.
can be compared to the lower-energy resulty at=0.135
GeV in Ref.[16]. We also show the unpolarized and normal-does not decrease at the higher energy. Indeed, the effect
component response functiof®’'s and R"s, respectively  seems to be even stronger.
for the 1ps, shell, because of their greater contributions to  Finally, we note that the sign of each response function of
P, and to the spin-orbit effects than ti's andR"s. the 1p,,, shell is opposite to that of thepl,, shell, except for

It is interesting to examine how the spin-dependent poteng | R, R, ;, and R,
tial in the final-state interaction affects the response func-
tions. For this purpose, we repeated the calculation omitting
the spin-orbit potential from the final-state interactiorg§
=0). The resultant response functions are shown as dashed We also examine the dependence of response functions on
lines in Figs. 3—12. We see that the interesting sign changthe structure of the nucleon electromagnetic current. Figure 9
of Ryt discussed previously can be attributed to the spinillustrates the response functions with the Dirac-type current
orbit potential, as is clearly demonstrated Ry; in Fig. 3. (¥*) only (F»(q%)=0 andF;(g%)#0), in the case of the
The response function for the normally polarized respons@roton knock-out from the fi,,, shell atT, =0.515 GeV.
state,R}, has a similar feature, but the plane-wave responséhe response functions with the Pauli curreat'(q,) only
and the response without the spin-orbit potential vanish.  (F1(9?)=0 andF,(g?)#0) are shown in Fig. 10. Note that

In order to clarify the spin-orbit effect, we also repeatedthe response functions shown in Fig. 3 correspaodghly
the calculation with the central potential set to zero, but leavSpeaking to the sum of these tweF; andF5), including the
ing the Spin-orbit potentia| intact. Figure 8 compares thénterference between them. We observe that the two types of
three cases of the full potential, the central potential alon€lectromagnetic current are equally important for the re-
(Vso=0), and the spin-orbit potential alon&{=0). We  sponse functions, except for the longitudinal resporiRes
see that the effect of the spin-orbit potential in the final-stat@ndR}’ to which the Pauli current contributes little. Figures 9
interaction dominates the interference between the centr@nd 10 also include similar calculations without the spin-
and spin-orbit potential. If there were no central potential,0rbit potential in the final-state interaction. We also observe
the interesting features &+ andR} described above would the same feature in this case.
be enhanced. Furthermore, comparison of the response func- In the cases of the helicity-dependent response functions,
tions at the two energies in Fig. 8 shows that this effect ofR 1, RET,, and Ry, the contributions of the Dirac-type
the spin-orbit potentialrelative to the interference efféct and the Pauli-type currents have opposite signs, while the

C. Electromagnetic form factors of the nucleon



56 SPIN-POLARIZATION RESPONSE FUNCTIONS\NI. . . 3237

00fF - o2
05
10 F /

asENS R0
200

0.0 g~

Ryx 102 01 F

R, x 10°

R (fm’)

R\ x 10°

. P
0 1 2

p'-q| (fm™) p'-q| (fm™)

FIG. 7. Similar to Fig. 3, for thé- andt-component polarization
response functions at a proton kinetic energy of 3.170 GeV.

p'-q| (fm™) [p'-q| (fm™)
—qg|<1fm™L The polarization induced only by the central
potential V¢ is also shown in Fig. 11. Similar results for
FIG. 6. Similar to Fig. 3, at a proton kinetic energy of 3.170 T, =3.170 GeV are shown in Fig. 12. The nuclear-recoil
GeV. dependence o, is similar at both energies, but its magni-
tude is considerably smallegiby more than 40%at T,
signs remain the same in the other response functions. The3.170 GeV than al,,=0.515 GeV, even becoming com—
neutron has a net zero charge, and its Dirac form factor iparable to the expected experimental accurady,=0.5
extremely smallE;=0), as is well-known from the fact that [13].
the Sachs charge radius of the neutron is almost completely The polarization of the outgoing protd®, is induced by
saturated by the magnetic radius. The response functionge final-state interaction, so it vanishes in the absence of the
shown in Fig. 10 are thus expected to be similar in sign andinal-state interaction. In fac®,, is insensitive to the struc-
magnitude to the response functions for tBge( i) reaction.  ture of the electromagnetic current: numerically we fiag
We have confirmed this expectation by calculating responsfyr the two casesF;(q?)#0 with F,(g%)=0 andF,(q?)
functions for the €,e'n) reaction with realistic neutron form =20 with F;(q%) =0, to be practically identical.
factors. We are neglecting the charge-exchange contribution we have also examinefl,, for the (&,e'fi)) and §,e’p)
to the (€,e’n) reaction, but this contribution is expected to reactions at differenT,, from different orbitals. TheP,, for
be relatively small in the GeV energy region. It is interestingthe two reactions are found to be almost |dent|cal but, as
to note that the helicity-dependent response functi®s;  noted previously, our calculation does not include the
and R'ET, , have opposite signs iré(e’n) and €,e’p). charge-exchange interaction.

D. Polarization of the ejected nucleon IV. DISCUSSION

The normal-component polarization of the outgoing pro- We briefly comment on the two important effects that we
ton, P,, can be observed in theee’p) reaction with an have neglected in this work.
unpolarized electron beai3]. P,, is expressed in terms of Current conservation.A DWIA calculation of the
of the response functions as shown in EG§)—(18). Figure  (&,e’p) amplitude suffers from the violation of current con-
11 illustratesP,, for a proton knock-out from the thepl,  servation. Basically, the violation arises in the truncation of
and Ips, shells atT, =0.515 GeV. In the absence of the the many-body degrees of freedom by restricting the current
final-state interaction, the normal spin-dependent respons® a one-body form.
functionsR{' , R}, R}, andR['; vanish, so thaP,=0 in the Current conservation implies a constraint on the nuclear
PWIA. P, for the 1p,, shell is negative for|p’—q| matrix elements of the longitudinal and time components,
<1.5fm %, while P, for the 1pg, shell is positive forlp”  q%3% (a)=|q|J5 «a). A quantity such as R —R))/(R_
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FIG. 9. Similar to Fig. 3, for the Dirac-type currefft(q?) y*

FIG. 8. Effects of spin-orbit potential in the final-state interac- )
#0 andF,(g%)o*"q,=0].

tion. Rrr and R} are calculated for the central potential alone
(Vs0=0, shown as dashed curyegor the spin-orbit interaction . ) . .
alone (Vc=0, shown as dotted curvesand for the full potential €SS than 10% in the GeV region by imposing current con-
(shown by solid curves The proton is knocked out of thepl,and ~ Servation in various wayg28.

1pa, shells of 20 with kinetic energies of 0.515 Gelthe four From these observations, we suspect that the physics ne-
upper framesand 3.170 Ge\(the four lower frames The dashed glected in this work could contribute appreciably. Clearly,
and solid curves in this figure are identical to the correspondingnore refined work is needed to establish reliable results.
ones in Figs. 3, 5, and 6, but note the different scales used. As in the

other figures|p’ —q| is the magnitude of the recoil momentum of V. SUMMARY AND CONCLUSION

the residual nucleus.

In this work, we have presented a DWIA calculation of all
+R)) would provide a measure of the violation of this con- 18 spin-polarization response functions for tiéee( p) reac-
straint[14]. Here, the longitudinal response functigq is ~ tion in the GeV region of proton energies. As such, we ne-
calculated by the use df; {(q), and theR{ is by the use of glect some important physics such as the nuclear current
qug {a)/|g|. Although this measure was found to reach conservation and the off-shell effects.. The Dlrac.e|konal for-
neariy 40% aff,, =135 MeV[14], it has been estimated to malls_m used seems to agree well Wlt_h the partial-wave ex-
be less than 10% fof,,>0.515 GeV[18]. The latter high- pansion method at the relevant energies.
energy estimate is comparable to other uncertainties in our Our findings are symmanzgd as fO!IOWS' n
calculation, such as those in the optical-potential parameters. (1) Effects of the final-state interaction Rrr andRy are
However, the normal-component polarizations that contripdominated by the spin-orbit potential, and these response
ute toP,, would be less affected by current nonconservatioUnctions either vanish or almost _‘""}P'?h in the absence of the
because they depend mostly on the transverse component§Pin-orbit interaction. The effect iRty is caused mostly by

Off-shell effectsThe issue of the nonconserved current isthe central potential. These effects occur in both the
complicated by off-shell effects because there is no uniquéPuzshell and bg.-shell knock-out processes &,
way to recover current conservation for off-shell nucleons.=0.515 GeV and 3.170 GeV.

For example, other forms of the one-body current operator (2) Except for the helicity-depender®R’;,, each of

j*(q) that are equivalent to E¢19) by means of the Gordon normal-component responses of the, 4 shell has the oppo-
decomposition are no longer equivald2f]. Recently, the site sign to that of the fi;, shell. P, thus receives different
off-shell effects for €,e’'p) were estimated in PWBA to be contributions from the two spin-orbit partners.
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FIG. 10. Similar to Fig. 4, for the Pauli-type current
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FIG. 11. The normal-component polarizatid®,, for a proton
knocked out of the fb;;» and the Db, shells with kinetic energy
T,,=0.515GeV. The dashed curves are calculated with only the
central potential, while the solid curves are with the faéntral and
spin-orbi) potential.

partial-wave decomposition method. R. S. thanks Dr. W. R.
Greenberg for clarifying symmetry properties of the response
functions and G. A. Miller for useful comments which have
improved the manuscript. We have benefited from a Dirac
eikonal calculation of the high-energg,e’'p) reaction by

Dr. A. Allder. This work was supported by the National Sci-
ence Foundation grant at Calte(®HY-9412818 and PHY-

(3) The response functions become smaller G in-

9420470, and by the U.S. Department of Energy grant at

creases, mostly due to ti@g* dependence of the electromag- George Washington UniDE-FG02-95-ER40907and at

netic form factor of the nucleon.

(4) Both the Dirac and Pauli currents are significant for
the response functions except for the longitudinal responses
R, andR]', to which the Pauli current contributes little. The
two currents contribute with different signs to the helicity-
dependent response functiol,» and RET, .

(5) The nonvanishind®, attributed to final-state interac-
tions is insensitive to the structure of the electromagnetic
current operator.

We close with a speculation based @y above: Because
R} and Ryt vanish(or almost vanishin the absence of the
spin-orbit final-state interaction, detailed measurements of
these response functions could reveal spin-dependent prop-
erties of the small, color-singlet proton that might be pro-
duced in high-energye,e’p). So far, no serious investiga-
tion has been made of spin structure of the small proton
except for a speculative descriptip8b]. Such measurements
might reveal more about this strange form of the proton,
especially because most experiments are carried out at ener-
gies where the process would be incompletely controlled by
perturbative QCD.
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APPENDIX: KINEMATIC FACTORS where theR'’s are given in terms of the nuclear tensor in the
OF STRUCTURE FUNCTIONS Dirac plane-wave, spinor space as

The kinematic factorsy’s, in Egs. (15 and (16) are
defined to be v, =Q%q* vr=[Q%2¢%*+tana/2],
vrr=Q%29%, v r=(Q¥d)[Q%*+tarf 4217 v g
=(Q%g?tan@2, and vip =tandl2[ Q% g*+tar? 6/2]*? R =0,
with Q2= —qg2.
The response functions are obtained by the application of
the projection operatoP,=|a){a|3(1+ o) for a=n, I, or
t. More explicitly, they are given by Ry=0?+ ol

R =T{R{I}, R'=Tr{R o-n},
Rr=TrH{RY}, RI=Tr{Ryon},
Rrr=Tr{Ry7l}/cos B, RI;=Tr{Ry7o-n}/cos 2,
Rir=Tr{R7I}/sin B8, R+=Tr{R 7o n}/sin B,
Rt =Tr{R/1}/cosB, R}y, =Tr{Ri7.o-n}/cosp,
R =Tr{R70-t}/cosB, R.;=Tr{R70-I}/cosp,
RL . =TH{Ryro-t}/sin 28, R=Tr{Ryyo-1}/sin 28, RT=i(0P o™

R, =T{RT o-t}/sin B, Rl;,=TH{RT o-1}/sin B,

Rl =TrH{Rm o t}, R =THR o1}, (Al R —i(at— o). (A2)
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