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Simple mode on a highly excited background: Collective strength and damping in the continuum
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Simple states, such as isobaric analog states or giant resonances, embedded into continuum are typical for
mesoscopic many-body quantum systems. Due to the coupling to compound states in the same energy range,
a simple mode acquires a damping width~‘‘internal’’ dynamics!. When studied experimentally with the aid of
various reactions, such states reveal enhanced cross sections in specific channels at corresponding resonance
energies~‘‘external’’ dynamics which include direct decay of a simple mode and decays of intrinsic compound
states through their own channels!. We consider the interplay between internal and external dynamics using a
general formalism of the effective non-Hermitian Hamiltonian and looking at the situation both from the
‘‘inside’’ ~strength functions and spreading widths! and from the ‘‘outside’’ (S matrix, cross sections, and
delay times!. The restoration of isospin purity and the disappearance of the collective strength of giant reso-
nances at high excitation energy are discussed as important particular manifestations of this complex interplay.
@S0556-2813~97!04307-0#

PACS number~s!: 24.60.Dr, 24.30.Cz, 24.30.Gd, 25.70.Gh
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I. INTRODUCTION

Dynamical features of open mesoscopic quantum syst
are characterized by the presence of ‘‘simple’’~single-
particle and collective! excitations, ‘‘complicated’’~chaotic!
intrinsic motion involving many degrees of freedom, and
reversible decay into continuum. The coexistence and in
play of these phenomena is the important aspect of all p
cesses including the excitation and deexcitation of
system. One of the questions of primary interest in nucl
physics, especially for future experiments with radioact
nuclear beams, is that of the existence and purity of sim
modes of nuclear excitation embedded into continuum. Si
lar problems arise in atomic and molecular physics, phys
of atomic clusters, and mesoscopic solid state devices.

During the last decade, a number of related phenom
were discovered in this area of nuclear physics, see, for
ample,@1,2#. Saturation of the spreading width of the gia
dipole resonance~GDR! in hot nuclei@3–5#, the ‘‘disappear-
ance’’ of the collective strength of the GDR at high excit
tion energy @6#, and the existence and relatively narro
width of the double GDR@7–9# are just a few examples. In
the physics of isobaric analog states~IAS!, one can find evi-
dence of the existence of the so-called ‘‘broad poles’’@10#,
very weak fluctuations of the spreading widths of the IA
throughout the periodic table@11–13#, and the restoration o
isospin purity at high excitation energy@2#.

In such problems, one always deals with a simple exc
tion mixed with the dense background of complicated sta
The simple excitation is associated with a specific signa
can be a quantum number which singles out the state in
ocean of surrounding states as happens in the IAS case.
rule, such a state is relatively pure with respect to this la
when looked at in the entrance channel. The isospin purit
560556-2813/97/56~1!/311~13!/$10.00
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violated by the internal mixing@11# when, due to the high
background level density, the statistical enhancement of
turbations becomes extremely important, similar to the w
known enhancement of weak interactions observed in pa
nonconservation@14#. The individuality of a ‘‘simple’’ mode
can also be referred to by its specific structure, for exam
in the case of a giant collective vibration, whose cohere
makes the state very different from the background. Suc
special state is characterized by a large multipole mom
which provides a strong collectiveg decay@1#. In all cases,
the manifestations of the simple mode in specific react
channels are intertangled with the chaotic mixing inside
system.

As a result of the mixing, the simple mode is fragment
over exact stationary states which form the fine structure
the spectrum. Being averaged over the unresolved fine st
ture, the excitation function is related to the strength dis
bution of the original ‘‘label’’ smoothly depending on exc
tation energy. A more detailed statistical analysis
observed fluctuations, assuming generic correlations of e
gies and strengths for the invisible underlying states, is
pable@15# of extracting their characteristics. In general, t
strength functions and reaction cross sections represent
sides of the process, internal and external, and the rela
between them is far from trivial. Thus, the strength distrib
tion may or may not coincide with the width distributio
seen in the reactions and decays@16#.

The well-known formalism@17# of the strength function
proceeds as if the states under consideration were sta
However, all excited states, strictly speaking, have a fin
lifetime and therefore belong to the continuum spectru
The level widths of the resonances in the continuum@18,19#
are governed by the interaction which is in general differ
from that forming the discrete spectrum inside the syste
311 © 1997 The American Physical Society
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312 56VALENTIN V. SOKOLOV AND VLADIMIR ZELEVINSKY
The effects of intrinsic mixing and coupling to and via th
continuum have to be considered simultaneously.

Below we formulate a consistent quantum-mechanical
proach which fully accounts for the interplay of intern
damping and decay and contains, as particular cases
‘‘disappearance’’ of the collective strength of the giant res
nance@1# explained by kinetic arguments in@20#, and the
restoration of isospin purity at high excitation energy@2# in
accordance with the old idea by Morinaga@21# and Wilkin-
son @22#. We discuss the general properties of the stren
function of a simple mode embedded into the continuum
its relation to what is observed in reactions. Our consid
ation, being intentionally schematic and less specific tha
the well-known review paper@11#, is in many aspects
complementary because of its generality and the simu
neous treatment of internal and external aspects of the p
lem.

II. EFFECTIVE HAMILTONIAN

We use the effective non-Hermitian Hamiltonian@19,24#
in order to take into account internal and external inter
tions on equal footing. The intrinsic structure at high lev
density produces the set~‘‘background’’! of the basis intrin-
sic statesun&, n51, . . . ,N, whereN is supposed to be large
The simple stateu0& is located in the the same range
energy. AllN11 states have the same values of exact in
grals of motion such as total angular momentum. We ass
that the basis states are characterized also by quantities
as isospin or parity which are approximate integrals of m
tion. The isospin mixing which is one of the subjects of o
application is introduced explicitly by the off-diagonal el
ments of the Hamiltonian. Parity nonconservation due
weak interactions can be another example of an approxim
conservation law which can be included in a similar mann

The effective Hamiltonian in (N11)-dimensional space
is the operator

H5H2
i

2
W, ~1!

containing two~real and symmetric for a time reversal in
variant system! matricesH andW which describe interna
and external coupling, respectively.

The anti-Hermitian partW has a special structur
@19,11,24# being originated by the on-shell decays into op
channelsc51,2, . . . ,k,

W5AAT⇒Wnn85(
c
An
cAn8

c . ~2!

Here we introduced the (N11)3k matricesA5$An
c% of real

transition amplitudes which are proportional to the mat
elements of the full original Hermitian Hamiltonian whic
connect intrinsic and channel subspaces of total Hilb
space.

The Hermitian partH consists of the unperturbed energ
e0 of the simple stateu0&, the internalN3N Hamiltonian
h describing the background statesun&, and the coupling
between the simple and complicated states. The real coup
matrix elements H0n5Hn0[Vn ,n>1, form an
-
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N-dimensional column vectorV. The spectrumhn of the
eigenvalues ofh is supposed to be very dense. Along wi
the similarity of generic complicated wave functions@25#,
this justifies the statistical approach.

The effective HamiltonianH can be studied with standar
matrix methods@24,26#. Its diagonalization gives comple
eigenvalues

Ej5Ej2
i

2
G j , j50, . . . ,N ~3!

and the quasistationary eigenstatesu j & with a pure exponen-
tial decay law;exp(2iEj t). The construction of the effec
tive Hamiltonian guarantees the unitarity of the scatter
matrix, see below Sec. VB.

III. STANDARD MODEL OF THE STRENGTH FUNCTION

The description of the mixing of stable internal state
which forms complicated stationary superpositions a
spreads the srength of original simple states, is well kno
@17#. With the anti-Hermitian partW omitted, the intrinsic
propagation within the closed system is described by
Green functionG(E) of the Hermitian part of the Hamil-
tonian,

G~E!5
1

E2H
. ~4!

The eigenvalues of the intrinsic HamiltonianH are given
@17# by the (N11) polesE5ea of the Green function~4!.
They are the roots of the secular equation

G00
21~E![F~E!5E2e02 (

n>1

Vn
2

E2hn
50. ~5!

Each eigenfunctionua& of H carries a fraction

f a5uC0
au25S dFdED

E5ea

21

5F11(
n

Vn
2/~ea2hn!

2G21

~6!

of the collective strength determined by the weight of t
corresponding componentC0

a in the expansion over the bas
states,

ua&5C0
au0&1 (

n51

N

Cn
aun&. ~7!

The smooth strength function of the simple excitation is d
fined in terms of the average local level spacingD of back-
ground states,

P0~e!5@ f a/D~e!#ea5e . ~8!

It is normalized according to(a f
a5*deP0(e)51.

The formal solution~6! requires the knowledge of statis
tical properties of the background spectrumhn and coupling
matrix elementsVn . The simplest ansatz used in the standa
model@17# assumes a roughly equidistant dense spectrum
hn and interaction intensitiesVn

2 uncorrelated with energie
hn and slightly fluctuating around their mean value^V2&. For
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56 313SIMPLE MODE ON A HIGHLY EXCITED . . .
the convenience of the reader, we collect the results of
uniform model in the Appendix, along with a brief discu
sion.

At ^V2&.D2, the strength function of this uniform mode
has the Breit-Wigner shape:

P0~e!5
1

2p

G↓

~e2e0!
21~G↓!2/4

, ~9!

with the spreading width given by the golden rule,

G↓[Gs52p
^V2&
D

. ~10!

The standard model just described is valid@27–29# if Gs
does not exceed the energy rangeDE of coupling strength
Vn
2 (DE is defined by the spread of the doorway states wh

provide the gates for the further mixing of the stateu0&).
This is expected to be a good approximation for the IAS w
the typical spreading width<100 keV. In the case of gian
resonancesGs.DE and the uniform model should be co
rected@30#. However, the difference influences mainly th
shape of the wings of the strength function which is of min
importance for our purpose; here we use the uniform mo
for definiteness.

IV. SIMPLE STATE EMBEDDED INTO CONTINUUM

A. Formulation of the problem

Now we take into account the openness of the syst
The simple stateu0& is open to direct decay~channelsc
which display specific signatures of the simple mode,
example, collectiveg radiation from the giant reasonance
pure isospin of the IAS!. Due to the intrinsic coupling to
compound states, the simple state also acquires acce
many ‘‘evaporation channels’’ labeled by the superscripte;
partial widths depend on the distribution of strength of t
simple mode carried by specific compound states.

When applied to the IAS with isospinT. , we have to
consider the surrounding background statesun& which belong
mainly to the isospinT5T.21. The isospin mixing occurs
mostly through intrinsic interaction@11# so that the decay
channels for the decoupled simple mode and evapora
channels for compound states carry different isospins
many cases, the effects we are interested in can be stu
using one direct channel which will be labeled asc50. Then
we have in the Hamiltonian~1! the amplitudesA0

0[Ag0,
where g0 is the ‘‘natural’’ width of the simple state an
An
e ,n>1. All An

e are assumed to be of the same order
magnitude.

At low energies~for example, for neutron resonances!,
only a few decay channels are open and the narrow c
pound states do not overlap. Their widthsgn5(e(An

e)2 are
small compared to their mean energy spacingD. As energy
and level density increase, we pass the region of strong
pling via the continuum where the width collectivization o
curs and broad ‘‘Dicke resonances’’@23,24,26# form the con-
tribution of direct processes. The situation changes ag
when many uncorrelated decay channels are open, and
off-diagonal elements~2! of the anti-Hermitian partW of the
effective Hamiltonian are averaged out. Then the statesu0&
e
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and un& simply acquire finite widths. These unstable sta
are coupled through the Hermitian interactionV and this is
what bridges the gap between the intrinsic strength func
and its manifestation in the resonance reactions.

To describe the open compound states, we introduce
N3N Green function

g~z!5
1

z2h1~ i /2!w
. ~11!

N complex polesz5 ẽ n of g(z) determine energies an
evaporation widths of compound resonances still decoup
from the simple mode. In Eq.~11!, w stands for the
(N3N) submatrix ofW, Eq. ~2!, which acts in the com-
pound subspace and describes the evaporation together
the interaction between the compound states through c
mon decay channels. The latter is characterized by the
diagonal matrix elements ofw. Being the sums of uncorrel
lated contributions of many evaporation channels,k@1,
these elements, due to mutual cancellations, are sma
comparison with the diagonal elementsuwnn8 /wnnu;1/Ak
~see @24#!. The corresponding corrections are of order
gev
2 /kD2 wheregev is the typical evaporation width. We wil

neglect them below assuminggev!AkD. Under this condi-
tion, partial decay widths of the compound states to spec
evaporation channels are small,gev/k!D.

The complex energies of compound resonances in
approximation are equal to ẽ n5hn2( i /2)gev,
n51,2, . . . ,N, supposing on statistical grounds that the flu
tuations of the widths of compound states are weak since
numberk of evaporation channels is large. The simple st
has its own complex energyẽ 05e02( i /2)g0, whereg0 is
the direct decay width.

Let us now switch to an interaction between the sim
and compound states through the Hermitian coupling op
tor V. The mixing proceeds in competition with the deca
of intrinsic states, both via direct and evaporation chann
Therefore, we need to generalize the standard procedure
the determination of the strength function, Sec. III, for t
decaying system. In our schematic although quite gen
model, it could be done exactly.

B. Decay widths in the presence of intrinsic damping

The diagonalization of the total non-Hermitian Ham
tonian~1! leads toN11 complex eigenvalues~3! which are
the rootsz5Ej of the secular equation@compare to Eq.~5!#

F~z![z2 ẽ 02VTg~z!V50 ~12!

or, in the explicit form,

Ej2 ẽ 02(
n

Vn
2

Ej2 ẽ n

50. ~13!

The interaction amplitudesVn , which couple the unstable
simple stateu0& with complicated~and decaying as well!
intrinsic statesun&, are still real in the approximation take
above~we neglected the off-diagonal part of the continuu
couplingw).
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314 56VALENTIN V. SOKOLOV AND VLADIMIR ZELEVINSKY
Similar to Eq.~7!, the quasistationary eigenstatesu j & can
be represented as superpositions of decoupled unstable
u0&, . . . ,un&:

u j &5C̃0
j u0&1(

n
C̃n
j un&. ~14!

The fraction f̃ j5uC̃0
j u2 of the strength of the simple stat

u0& carried by the quasistationary stateu j & is equal, as in Eq.
~6!, to

f̃ j5
1

11L j , L j5VTg†~Ej !g~Ej !V. ~15!

With Ej5Ej2( i /2)G j , the loopsL j can be written as

L j5(
n

Vn
2

uEj2 ẽ nu2
5

2

G j2gev
Im(

n
Vn
2 1

Ej2 ẽ n

. ~16!

Using the secular equation~13! we arrive at a very simple
expression,

L j5
g02G j

G j2gev
, ~17!

leading to the individual strengths~15!

f̃ j5
G j2gev

g02gev
. ~18!

In other words, the resulting width of the quasistationa
stateu j & can be found from simple probabilistic argument

G j5g0 f̃
j1gev~12 f̃ j !. ~19!

The direct decay width is distributed over all quasistation
states according to their fractions of the strength of the or
nal simple state. It is easy to check the normalization of
weights~18!:

(
j

f̃ j5
1

g02gev
S (

j
G j2~N11!gevD 51, ~20!

where the last step follows from the invariance of the ima
nary part of the trace of the Hamiltonian~1!, ( jG j
5g01Ngev. We have to notice that the probabilistic inte
pretation emerges here as a result of a strict quant
mechanical calculation, with no ensemble averaging or tr
sition to a kinetic description.

C. ‘‘Broad pole’’

Explicit expressions for the properties of the streng
function, including the spreading width along with the dec
widths into continuum can be obtained if the average ch
acteristics of the intrinsic spectrum and of the coupling m
trix elements are specified. In the uniform model@17# used
earlier for the stable states, Eq.~13! gives a pair of coupled
equations for the real and imaginary parts of the comp
energy~3!, see Appendix,
tes
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x

Ej5e01
1

2
Gs

xj~12yj
2!

11xj
2yj

2 , G j5g02Gs

~11xj
2!yj

11xj
2yj

2 .

~21!

Here Gs stands for the standard spreading width~10!, and
notations

xj5cotS p
Ej

D D , yj5tanhS p

2

G j2gev

D D ~22!

are introduced.
At moderate values of the interactionV, the simple state

keeps an appreciable fraction of the collective strength
preserves its individuality, see Eq.~24! below. Such a state
was called the broad pole in@10#. The problem of IAS can
serve as a typical example. The unperturbed analog s
u0& arises at the energye0 carrying almost pure isospin
T. . Its direct decay widthg0 is much larger than the evapo
ration widthgev of background states with isospinT, @19#.
The isospin-violating interactionV mixes these states.

Assuming that the resulting widthG0[G j50 satisfies the
condition (G02gev)@D we have from Eq.~22! y0'1, so
that Eqs.~21! give for the complex root corresponding to th
broad pole

E0'e0 , G05g02Gs . ~23!

The second expression readsG5G↑2G↓ in the notations
chosen in@10#. The stateT. can be observed only if it de
cays before mixing,g0.Gs . The collective strength~18!
carried by the broad pole is then

f̃ 05
g02gev2Gs

g02gev
512

Gs

g02gev
~24!

which remains of order of unity as long asG0 noticeably
exceedsgev. This formula extends to the case of unstab
compound states the measure introduced in@10,31# of the
‘‘purity of analog spin’’ of the broad pole. On the othe
hand, the typical valuesf̃ j for jÞ0 are small.

D. General strength function

The energy dependence of the strengths~18! is hidden in
the secular equations~21!. Exclusion ofxj leads after simple
algebra to the general equation for the strength funct
which depends only on the absolute valueug02gevu,

f̃ j5
D

2pug02gevu

3 ln
~Ej2e0!

21~1/4!@Gs1ug02gevu~12 f̃ j !#2

~Ej2e0!
21~1/4!@Gs2ug02gevu~12 f̃ j !#2

~25!

or, for small f̃ j ,

f̃ j5
D

2pug02gevu
ln

~Ej2e0!
21~1/4!~Gs1ug02gevu!2

~Ej2e0!
21~1/4!~Gs2ug02gevu!2

.

~26!
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56 315SIMPLE MODE ON A HIGHLY EXCITED . . .
Substituting summation overj by integration over energy
one can easily check that this distribution is normalized

E dEj

D
f̃ ~Ej !5H Gs

ug02gevu
, Gs,ug02gevu,

1, Gs.ug02gevu.

~27!

In the upper case, the contributionf̃ 0512Gs /ug02gevu
@compare with Eq.~24!# of the simple state~23! is lost in the
integral. Indeed, the small factor in front of the logarithm
Eq. ~25! is in this case compensated due to the small valu
the denominator of the expression under the logarithm
that Eq.~26! is not valid for this special state. On the oth
hand, when the increasing mixing rate characterized by
spreading width prevails upon the influence of direct deca
the simple mode fully dissolves in the sea of compou
states.

Except for an exponentially narrow domain of paramet
around the pointGs5ug02gevu, the width@full width at half
maximum~FWHM!# G of the distribution~26! is determined
by

G25uGs
22~g02gev!

2u. ~28!

The tails of the strength functionE@(Gs1ug02gevu) are
universal and given by the standard modelf̃ j

'(D/2p)Gs /E
2. In the limits Gs@ug02gevu or Gs

!ug02gevu, Eq. ~26! reduces to the Breit-Wigner distribu
tion

f̃ j5
D

2p

35
Gs

~Ej2e0!
21Gs

2/4
<
2

p

D

Gs
,

Gs

ug02gevu
ug02gevu

~Ej2e0!
21ug02gevu2/4

<
2

p

DGs

~g02gev!
2 ,

~29!

respectively. Near the pointGs5ug02gevu, Eq. ~26! is in-
valid and Eq.~25! gives

f̃ 05
D

pGs
S ln2pGs

D
2 lnln

2pGs

D
1••• D . ~30!

The strengthf̃ 0 is still larger than all f̃ j for jÞ0 but this
cannot influence the normalization~27!. Figure 1 illustrates
the relation between the exact expression for the stren
function, Eq.~25!, the approximation~26!, which is invalid
in the center of the spectrum, and more crude approxi
tions ~29!.

The strength function gives an average description of
fragmentation of individual simple configurations in the i
trinsic space. In the next section we study the problem as
seen in continuum properties.
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V. SCATTERING CHARACTERISTICS

A. Scattering matrix

Up to now we concentrated on the ‘‘inside’’ view of
simple unstable mode mixed with complicated fine struct
states. The ‘‘outside’’ world was present as a reservoir
irreversible decay through numerous open channels. Now
take a glimpse of the same system from the viewpoint
reaction amplitudes and cross sections where o
asymptotic states are observed.

The scattering matrixŜ5$Scc8% at energyE can be writ-
ten as@19#

Ŝ~E!5 ŝ1/2$12 i T̂~E!%ŝ1/2, ~31!

T̂~E!5ATG~E!A. ~32!

Here ŝ includes the potential scattering as well as chan
coupling and direct reactions in the continuum. Those effe
being unrelated to intrinsic dynamics are irrelevant for o
purpose andŝ(E) can be considered as a diagonal mat
with phase shift elements exp(2idc) smoothly depending on
E. The Green function in Eq.~32!

G~z!5
1

z2H , ~33!

describes the propagation governed by the total Hamilton
~1!. It differs from the intrinsic Green function by the ant
Hermitian part of the effective Hamiltonian. BothG(z) and
the scattering matrix~31! have poles at the complex energi
~3!.

It is a straightforward exercise to establish, with the aid
the factorized structure~2! of the anti-Hermitian partW, the
relation

G~E!5G~E!2
i

2
G~E!A

1

11~ i /2!R̂~E!
ATG~E! ~34!

FIG. 1. The strength functionf̃ j as a function of energy for the
values of parametersGs /D5100 andug02gevu/D590. The solid
curve gives the exact numerical solution of Eq.~25!, the dotted line
corresponds to the approximation~26!, the dash-dotted curves sho
the Breit-Wigner approximations~29!.
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316 56VALENTIN V. SOKOLOV AND VLADIMIR ZELEVINSKY
between the two Green functions~33! and~4!. TheR̂ matrix
in Eq. ~34! is familiar from nuclear reaction theory@32#,

R̂~E!5ATG~E!A. ~35!

It describes the propagation inside the closed system
tween two acts of coupling to the continuum; the poles
R̂(E) correspond to the energiesea of intrinsic states with
the mixing V fully accounted for. The reaction matri
T̂(E) of Eq. ~32! is similar to Eq.~35! but includes all inter-
mediate couplings to the continuum. Finally, for the scatt
ing matrix ~31!, ~32! the substitution~34! gives

T̂~E!5
R̂~E!

11~ i /2!R̂~E!
, Ŝ~E!5 ŝ1/2

12~ i /2!R̂~E!

11~ i /2!R̂~E!
ŝ1/2.

~36!

B. Scattering wave function, delay time, and unitarity

The scattering wave functionuCE
c & with the incident wave

in the channelc at energyE can be presented by the supe
position of intrinsicun& and continuum channeluc;E& com-
ponents:

uCE
c &5(

n
bn
c~E!un&1(

c8
E
Ec8

`

dE8xcc8~E,E8!uc8;E8&,

~37!

whereEc8 is the threshold energy in the channelc8. Recall
that the decay amplitudesAn

c are the matrix elements of th
total original Hamiltonian between the statesun& and uc;E&.
By a direct substitution of Eq.~37! into the Schro¨dinger
equation, we find@19# theN3k matrix b(E) of the intrinsic
componentsbn

c as

b~E!5G~E!Aŝ1/2. ~38!

The diagonal elements of thek3k matrix b†(E)b(E) de-
termine the norm of the internal part of the wave functi
initiated in the channelc at energyE. Therefore this matrix
should characterize the fraction of delay time in this react
due to intrinsic resonances. Indeed, the Smith’s time de
matrix is defined@33# as

t̂~E!52 iŜ†~E!
dŜ~E!

dE
. ~39!

Taking into account only the resonance energy depende
via the R̂ matrix in Eq.~36!, we find

t̂ res~E!52 ŝ21/2
1

12~ i /2!R̂~E!

dR̂~E!

dE

1

11~ i /2!R̂~E!
ŝ1/2.

~40!

In the same resonance approximation one can neglec
energy dependence of amplitudesA to get from Eq.~35!

~dR̂/dE!res52ATG2~E!A. ~41!

Using the relation~34! between the Green functionsG and
G, we obtain
e-
f

-

n
y

ce

he

t̂ res5 ŝ21/2ATG†~E!G~E!Aŝ1/2. ~42!

Thus, the time delay matrix~40! coincides with the intrinsic
norm matrix found from Eq.~38!,

b†b5 t̂ res. ~43!

The total Green function~33! describes the propagation i
the open system and, therefore, the delay time as well.

We can now define the normalized probabilitypn
c(E) to

find the system in the intrinsic stateun& in the ‘‘elastic’’
reactionc→c,

pn
c~E!5

1

t res
cc~E!

ubn
c~E!u2, (

n
pn
c~E!51. ~44!

The probabilityp0
c(E) characterizes the weight of the simp

state u0& in the channelc. In the problem of the IAS this
quantity measures the isospin purity in a given channel.

The full scattering matrix~31!,~32! is unitary provided the
potential scattering matrixŝ is unitary. It follows from the
fact that the decay amplitudesA in the entrance and exi
channels of Eq.~32! are the same which appear in all inte
mediate processes described by the total propagatorG(E)
with the aid of the effective Hamiltonian~1!,~2!.

The unitarity conditionŜŜ†5Ŝ†Ŝ51 gives for the reac-
tion matrix ~32!

T̂†T̂5 i ~ T̂2T̂†!, ~45!

which can be transformed, with the help of Eq.~2! and~38!,
into

ŝ1/2b†~E!Wb~E!ŝ21/25 i $T̂~E!2T̂†~E!%. ~46!

VI. A SIMPLE CASE: STABLE BACKGROUND STATES

The simplest situation corresponds to the stable ba
ground states with no direct access to open chann
gev→0, when the intrinsic evolution for the reaction in th
channelc starts and ends at the simple state. The backgro
states are involved by the internal coupling only at the int
mediate stages of the reaction. Calculating the diagonal
ment of the resonance time delay matrix~42! we obtain for
the probability~44!,

p0
c~E![ f ~E!5F11(

n

Vn
2

~E2hn!
2G21

5@dF/dE#21.

~47!

This is nothing but the continuous generalization of t
strengthsf a5uC0

au2 defined above by Eq.~6! in discrete
points ea of the intrinsic energy spectrumf a5 f (E5ea).
Since the intrinsic states are coupled to continuum thro
the stateu0& and the probabilitiespn

c are normalized, Eq.
~44!, the decay~or population! partial widthsg0

c do not ap-
pear in Eq.~47!. If several direct decay channelsc are open,
the energy behavior~47! is identical for all of them being
determined by intrinsic dynamics only.

The probability ~47! vanishes at energiesE5hn of the
unperturbed background states which are located inter
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tently with the actual energiesea . In the vicinity of hn the
complicated states dominate the intrinsic part of the sca
ing wave function.

Another, though equivalent to Eq.~47!, representation of
the time delay in terms of the complex energies~3! of qua-
sistationary states can be derived from Eq.~42!:

t res
cc~E!522

g0
c

g0
Im@ TrG~E!#5

g0
c

g0
(
j

G j

~E2Ej !
21G j

2/4
.

~48!

The delay times for different channelsc are proportional to
the corresponding partial widths of the stateu0& and have the
identical energy dependence determined by the complex
ergy spectrum of intrinsic unstable states.

The representation~48! is useful when the vicinity of the
broad pole~23! is considered. It follows from Eq.~48! that
the contribution of this pole is a smooth function of ener
superimposed onto the picket fence of thed-like peaks with
the average value proportional to the Weisskopf recurre
time p/D for a long-lived wave packet. At the energ
E5E0, the time delay in a channelc due to excitation of the
broad pole is equal to 4g0

c/g0G0. On the other hand, one ge

ub0
c~E0!u25g0

cuG00~E0!u2'4g0
c/~g0!

2 ~49!

since the energyE0 is very close to the unperturbed ener
of the stateu0&. Therefore the probability maximum is dete
mined by the fraction of the total widthg0 of the original
mode which still resides at the broad pole

p0~E0!5
G0

g0
5

g02Gs

g0
, ~50!

in agreement with Eq.~24! taken atgev50.
One should keep in mind that the distribution Eq.~47!

wildly fluctuates on the fine structure energy scale. With
energy resolution worse than the level spacingD, one sees
only a smooth behavior coinciding with that of the streng
functionP0(E), Eq. ~8!. It is quite natural because here th
intrinsic mixing is the only source for the spreading of t
strength or for isospin impurity in the case of IAS. An ave
age magnitude of the probability to find the original isosp
can be easily estimated in the standard model with the
form background. Equation~47! gives here (G↓5Gs)

p0~E!5
sin2~Ep/D !

sin2~Ep/D !1~pG↓/2D !
~51!

or, after averaging over fine structure, and takingG↓@D,

p0~E!5
1

p

D

G↓
. ~52!

This natural estimate~inverse number of fine structure stat
within the spreading width! coincides with that used by vo
Brentano@10#.
r-

n-

ce

e

i-

VII. MIXING WITH OPEN COMPOUND STATES

A. Purity of a simple state

The situation changes in the realistic case with many o
evaporation channels. Strong fluctuations of the probab
p0(E) are smeared out since the compound poles are
placed to the complex energy plane even with no coupling
the simple mode. This probability remains considerable i
finite vicinity of the pointe0 ensuring a noticeable isospi
purity of the internal part of the scattering wave function
this region.

If the simple mode and the compound states have no c
mon decay channels, the nonzero decay amplitudes
A0
c5Ag0 ~consider for simplicity a single direct decay cha

nel! andAn
e . The reaction amplitudes are equal to

Tcc~E!5g0G00~E!, Tce~E!5Ag0(
n
G0n~E!An

e ,

~53!

where nowG0021(E)5F(E) @see Eq.~12!#, whereas

G0n~E!5
Vn

E2 ẽ n

G00~E!. ~54!

The delay time in the elastic process, according to E
~42! and ~38!, is given by

t res
cc~E!5g0uG00~E!u2S 11(

n

Vn
2

uE2 ẽ nu2
D

[g0uG00~E!u2@11L~E!# ~55!

where the loopL(E) is the analog ofL j , Eq. ~16!, taken at
the running real energyE rather than at the complex energ
Ej . Therefore we find instead of Eq.~47!

p0~E![ f̃ ~E!5
1

11L~E!
5F11(

n

Vn
2

uE2 ẽ nu2
G21

.

~56!

The function f̃ (E) extends the strength function~15! of the
quasistationary states to a running real energyE @compare
with the similar correspondence between the functions~6!
and~47! in the case of stable compound states#. Note that, by
definition ~44!, the resonance envelopeuG00u2 is divided out
of normalized probabilitiesp0(E) which behave uniformly
within the spreading width.

The loop function~56! can be calculated in a way simila
to Eq. ~17!. Under the same assumptions, it is equal to

L~E!5
Gs

gev
y

~11x2!

11x2y2
, ~57!

where, instead of Eq.~22!, we now have

x5cotS p
E

D D , y5tanhS p

2

gev

D D . ~58!

For a small evaporation width,gev!D, the expression
~57! reduces to
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L~E!5
pGs

2D
~11x2!. ~59!

The results in this limit do not depend on the evaporat
width at all and therefore coincide with those following fro
Eq. ~47!. In particular, the weight of the simple state in th
intrinsic part of the scattering wave function is in average
order ofD/Gs!1.

As level density and number of open channels increa
the ratiogev/D rapidly grows together with the argument
y, Eq. ~58!. One has a fast transition to the limit of th
overlapping background states wheny'1 and
L(E)→Gs /gev. The probability~56! in this case is notice-
ably greater than in Eq.~52!:

f̃ 5
gev

gev1Gs
@

D

Gs
. ~60!

The fluctuations disappear, and the simple state preserve
individuality in the intrinsic wave function across the who
region of the giant or analog resonance. This behavio
demonstrated in Fig. 2.

The purity of the intrinsic part becomes perfect wh
gev@Gs ; the depletion of admixed states of the oppos
isospin occurs faster than their population. This gives a
croscopic justification of the isospin purity at high excitati
energy predicted in@21,22# and recently observed exper
mentally @2#. At the same conditions, the fraction of th
simple mode carried by a generic compound state

12 f̃ 5
Gs

gev1Gs
~61!

is small. This means that the compound processes hav
time to explore the presence of the exceptional simple st

The equivalent result was formulated in terms of the
netic balance between the processes of decay and mixin
@20# where the mechanism for the disappearance of the

FIG. 2. The relative probabilityf̃ (E), see Eqs.~56!–~58!, of the
excitation of a simple state through the channelc as a function of
energyE/D and the evaporation widthgev/D. The value of the
spreading width,Gs /D510 is chosen for illustrative purposes
make the oscillations along the energy axis clearly seen; the o
lations rapidly disappear asgev grows.
n

f

e,

its

is

i-

no
te.
-
in
l-

lective strength of the GDR at high energies was sugges
The authors showed that the probability of excitation o
collective mode in an initially heated nucleus is equal, us
our notations, toGs /(gev1Gs) and therefore diminishes a
Gs /gev, when the temperature exceeds a critical value de
mined by the conditiongev;Gs . Complementary to the
somewhat qualitative kinetic arguments of@20#, here the
analogous conclusion follows from a full quantum
mechanical consideration.

We need to mention parenthetically that such stateme
assume the saturation of the spreading widthG↓'Gs as a
function of temperature. The absence of a considerable
pendence on excitation energy is well known for the IA
@11–13,34#. The saturation of the intrinsic spreading wid
presumably takes place for the GDR as well@1,3–5#. General
theoretical arguments in favor of such a saturat
@11,28,29,34,30# are based on the chaotization of the intri
sic dynamics and they will not be repeated here.

B. Excitation and decay of a simple mode

Here we compare the cross sections of various proce
initiated in the channelc. They start with the excitation o
the simple mode. The ‘‘elastic’’ scatteringc→c competes
with the evaporationc→e through numerous compoun
channelse. These branches are described by the amplitu
Tcc andTec, respectively, see Eq.~53!.

On the real energy axisz5E the uniform model leads to
the inverse Green functionG0021(E)5F(E), compare Eq.~5!,

F~E!5E2e02Gs

x~12y2!

2~11x2y2!
1

i

2Fg01Gsy
~11x2!

11x2y2G .
~62!

At y50 ~no evaporation!, the elastic cross section

uTccu25g0
2/uF~E!u25g0

2F SE2e02
Gs

2
cot

pE

D D 21g0
2/4G21

~63!

reveals fine structure fluctuations. In the case of sm
yÞ0, these fluctuations are enhanced in a vicinity of t
point E5e0 due to the energy dependence of the imagin
part ofF(E), Eq. ~62!. However, the fluctuations are washe
away when evaporation becomes strong,gev@D, so that
y→1 and Eq.~62! simplifies to

F~E!5E2e01
i

2
~g01Gs!. ~64!

Note that here the decay widthg0 and the spreading width
Gs are combined into the total width of the resonance on
real energy axis. In Fig. 3 we illustrate the energy dep
dence of the elastic cross sectionscc5uTccu2 for different
values of relevant parameters.

Using the optical theorem, one obtains from Eqs.~53!,
~62!, and~57!

22ImTcc~E!5uTcc~E!u2F11
gev

g0
L~E!G ~65!

il-
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FIG. 3. Elastic cross sectionscc in the channelc as a function
of energy. The parameters in part (a) are g0 /D510 and
Gs /D55; the cross section is shown for different evaporat
widths gev/D, which correspond to the valuesy50.3 ~dots!, 0.7
~solid curve!, and 1 ~dash-dotted curve!. The situation with
Gs.g0 is shown, for the same values ofy, in part (b) where
g0 /D55 andGs /D510; note the different scale for the cross se
tion. Part (c) shows the cross section forg0 /D5100 and
Gs /D515 with y50.5 ~oscillatory curve! andy51 ~thick curve!.
for the total cross section initiated in the channelc. The
fraction of uTccu2 in the total cross section determines t
branching ratio of the simple decay mode,

Bcc~E!5
g0

g01gevL~E!
5

g0 f̃ ~E!

g0 f̃ ~E!1gev@12 f̃ ~E!#
,

~66!

in agreement with the probabilistic interpretation of the fun
tion f̃ (E). This function rather than its discrete counterp
~15! is relevant when an actual reaction process is con
ered.

The amplitudeTec(E), Eq. ~53!, for evaporation in a
given channele after the simple state is excited in the e
trance channelc, strongly fluctuates together with the ex
amplitudesAn

e . This amplitude vanishes in average. Assu
ing many uncorrelated statistically equivalent decay ch
nels, we can use a natural statistical suggestion@11,24#

^Am
eAn

e8&5dee8dmngev/k. ~67!

Taking into account Eqs.~53!, ~54!, we obtain

^uTec~E!u2&5g0uG00~E!u2(
mn

VmVn^Am
eAn

e&

~E2 ẽ m* !~E2 ẽ n!

5uTccu2
gev

kg0
L~E!, ~68!

so that the corresponding branching ratio is equal to

Bec5
1

k

gevL~E!

g01gevL~E!
5
1

k

gev@12 f̃ ~E!#

g0 f̃ ~E!1gev@12 f̃ ~E!#
.

~69!

Equations~66! and ~69! give Bcc1kBec51 in accordance
with the unitarity condition. The statistical ansatz~67! is
self-consistent because an equivalent approximation wa
fact introduced earlier when the off-diagonal elements of
anti-Hermitian operatorw in the compound space were su
stituted by the average evaporation width, see the discus
after Eq.~11!.

In the case of considerable evaporation and overlapp
compound resonances,gev/D@1, the branching ratios satu
rate at, see Eq.~60!,

Bcc5
g0

g01Gs
, Bec5

1

k

Gs

g01Gs
. ~70!

For the saturated spreading widthGs , these limiting values
cease to be sensitive to the level density of compound st
and depend on excitation energy or temperature only thro
the direct widthg0. Under such conditions, only the simp
state with the total widthg01Gs , corresponding to the two
possible ways of its decay, escape and internal dissipatio
seen in the scattering in the entrance channelc. Here again

-
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the background of compound states serves as a reservo
irreversible decay, equivalent by its properties to decay i
continuum.

C. Reactions initiated in compound channels

The processes started in the compound channelse, for
example, driven by a nuclear interaction of heavy ions,
populate the simple mode through internal mixing. The c
responding amplitudeTce is the same as the amplitudeTec

considered above, Eqs.~53! and ~68!. The competing
compound-compound processes are described by the s
the amplitudes

Te8e~E!5(
n

An
e8An

e

E2 ẽ n

1(
n

An
e8Vn

E2 ẽ n

G00(
m

VmAm
e

E2 ẽ m

. ~71!

The second term in Eq.~71! accounts for the virtual excita
tion of the simple mode with the subsequent deexcitat
again via compound channels.

To evaluate the total cross section of compoun
compound reactions

se[(
e8

^uTe8eu2&, ~72!

we perform here the statistical averaging as in Eq.~67!. Ne-
glecting the numerical corrections of the order 1/k, and using
the notations of the Appendix for the sums over the spect
of the compound states, we obtain

se5
gev
2

k2
$uSu21kS1112Re@G00* ^V2&~SS021kS12!#

1uG00u2^V2&2~ uS20u21kS112 !%. ~73!

The terms proportional to the numberk of open channels
appear as a result of pairwise coherent averaging of ran
decay amplitudes. Only these terms survive in the lim
k@1. Taking the sums of the Appendix in the overlappi
limit y→1 and recalling that in the same limit, according
Eq. ~68!,

sce[uTceu25
1

k
uG00u2g0Gs , ~74!

we come, after many cancellations, to a simple expres
for the total cross section of all reactions initiated in a g
neric compound channele,

sce1se[uTceu21(
e8

^uTe8eu2&

5
2p

k F ~E2e0!
21

1

4
~g01Gs!

2G uG00u2gev

D
.

~75!

This gives the branching ratio for the deexcitation into t
channelc carrying the signature of the simple mode
for
o

n
-

of

n

-

m

m
it

n
-

e

Bce5
1

2p

g0Gs

~E2e0!
21~g01Gs!/4

D

gev
. ~76!

The resonance at the simple state is suppressed by th
verse numbergev/D of the background states on the typic
evaporation width. As it was discussed above, the obse
tion of the signal of the simple mode in the reaction star
in a compound channel becomes less probable with incr
ing gev, in agreement with the kinetic arguments of@20#.

The same result can be expressed with the aid of the fu
tion f̃ , Eq. ~56!,

f̃ sce

~12 f̃ !se
5

1

2p
g0GsuG00u2

D

Gs
. ~77!

Here f̃ sce determines the fraction of the cross section of t
processe→c due to the intrinsic simple state; the denom
nator is the similar fraction of the compound-compou
cross section due to the complicated intrinsic states, with
excitation of the simple mode. The right-hand side of E
~77! is the resonance curve of the simple mode exci
through the background~entrance factorGs) and deexcited
through its own exit channel~factorg0). The integral of the
left-hand side ratio over the energy region covered by
spreading width gives the inverse number of fine struct
states in this regionD/Gs .

D. Common decay channels

One of the objections raised against the kinetic expla
tion @20# of the disappearance of the collective strength
the giant resonance is related to the possibility of p
equilibrium excitation of the giant mode@35#. In this case the
intrinsic evolution would start with the state which alrea
carries some amount of collective strength. In our langu
such a possibility can be taken into account via the prese
of the reaction channelsa connected both to the simple mod
and to the background states. For such channels, all am
tudes,A0

a andAn
a do not vanish; until now we assumed tha

before the internal mixing, the simple state and the fine str
ture states have no common decay channels. For the ca
the IAS, this situation is associated with the external isos
mixing which is apparently of minor importance@11#. How-
ever, for the giant resonance this effect can change the
ation.

The common decay channels can be incorporated
theory without problems. Here we consider the simplest c
of a single common channel which can be easily analyzed
standard means. The corresponding real amplitudes wil
denoted asa0 and an for the simple state and backgroun
states, respectively. A many-channel case brings in m
amplitudes of such type. Being uncorrelated, they should
lead to any effects of coherent enhancement.

In the single channel case, the exact algebraic solu
gives the matrix elements of the total Green function~33!

G00~E!5FE2 ẽ 02(
n

Vn
2

E2 ẽ n

1
i

2

a0
2

11~ i /2!RaG21

,

~78!



d

c

ti
th

e

io
th

te
s
r
in

te
rs
s

ate

om-
m-
via
ity
on
g
-

s of
tion
es.
on-

-
he
an
e
e
’’
ring
for-
ion-
tive
op-
re,
am-
ro-

ysis
fes-
al
oad
re
t in

tal
is
ad-

r of

be
m.
du-

rly

56 321SIMPLE MODE ON A HIGHLY EXCITED . . .
G0n~E!5Gn0~E!5G00
un

E2 ẽ n

, ~79!

Gmn~E!5
dmn

E2 ẽ n

1
1

E2 ẽ m
S i2 aman

11~ i /2!Ra 1umG00unD .
~80!

Here the renormalized amplitudes are introduced for the
cay of the simple state through the channela:

a0~E!5a01(
n

Vnan

E2 ẽ n

~81!

and for the mixing between the simple state and the ba
ground including the intermediate continuum states:

un~E!5Vn2
i

2
an

a0

11~ i /2!Ra . ~82!

The analog of theR matrix, Eq.~35!, for thea channel is

Ra~E!5(
n

an
2

E2 ẽ n

. ~83!

Using these exact expressions we evaluate the reac
amplitudes. We are interested in reactions starting in
channela and ending either in the channelc specific for our
signature of the simple mode or in any of the other chann
a or e. The elastica→a amplitude is given by@compare Eq.
~36!#

Taa5
Ra

11~ i /2!Ra 1S a0

11~ i /2!RaD 2G00. ~84!

The deexcitation through the special channelc is governed
by the amplitude

Tca5Ag0S G00a01(
n
G0nanD 5Ag0G00

a0

11~ i /2!Ra .

~85!

To make a conclusion of the importance of the excitat
through the common channel we assume that, similar to
amplitudesAn

e , Eq. ~67!, the new amplitudesan are uncor-
related quantities with a large magnitude which contribu
significantly to the total widthgev of the compound state
^a2&[ga;gev@D. Using the estimates of the Appendix fo
the sums over the fine structure states in the overlapp
limit, we obtainRa'2 ip(ga /D). Thus,R

a is a large imagi-
nary quantity determined by the number of compound sta
in the intervalga . According to the same estimates, the fi
term in Eq. ~84! dominates and the contribution of term
containing the sum with the cross productsVnan is relatively
small. Finally,
e-

k-

on
e

ls

n
e

s

g

s
t

^uTcau2&
^uTaau2&

'S D

pga
D 2g0g0

auG00u2. ~86!

The average partial width for the decay of the simple st
into the channela is equal to

g0
a[^ua0u2&5a0

21
ga

gev
Gs . ~87!

This quite general result shows that, in the case of the c
mon channel capable of populating both simple and co
pound states, the statistical branching for the deexcitation
the simple mode drops with the increasing level dens
r;1/D of compound states. Therefore, strong comm
channels with ga;gev cannot recover the disappearin
simple mode. Weak channels,ga.gev/k, are useless be
cause of their small total cross sections.

VIII. CONCLUSION

In the paper we considered the most general propertie
an open quantum system where a simple mode of excita
interacts with the background of very complicated stat
Both simple and compound states are coupled to the c
tinuum and have finite lifetimes. Internal dynamics~mixing!
and external dynamics~decays! are intertangled in a non
trivial way. The intrinsic dynamics in the presence of t
continuum are governed by the effective non-Hermiti
Hamiltonian. The widths of the intrinsic states modify th
strength function of the simple mode. This view from th
‘‘inside’’ has to be supplemented by that from the ‘‘outside
for determining the observables measured in a real scatte
experiment, such as cross sections and delay times. In a
mal language, here we project the dynamics of quasistat
ary intrinsic states back to the real energy axis. The effec
Hamiltonian by its construction guarantees the correct pr
erties of the scattering matrix including unitarity. Therefo
it becomes possible to use the knowledge of internal dyn
ics in order to compare cross sections of competing p
cesses.

The general although schematic character of the anal
allows one to draw the conclusions concerning the mani
tations of the simple mode in various situations. A typic
example is given by the IAS which can be seen as a br
pole @10# or to be dissolved in the sea of the fine structu
levels of another isospin. The analysis, analogous to tha
@11#, confirms the old idea@21,22# of increasing isospin pu-
rity of the IAS at high excitation energy. The experimen
data @2# agree with this conclusion. The isospin purity
restored because of the very fast depopulation of the
mixed background states when their decay widthgev in-
creases compared to the spreading widthGs of the simple
state~IAS in this case!. HereGs is assumed to be a slow
changing or saturating function of excitation energy@5# as
predicted by the analysis based on the chaotic characte
the intrinsic dynamics@29#.

Such a consideration is not specific for the IAS and can
applied to other simple modes embedded into continuu
The giant dipole resonance is known to preserve its indivi
ality up to high excitation energy or temperature@1#. In par-
ticular, this is clearly seen in the observation of the nea
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harmonic double-phonon excitations@9#. The new phenom-
enon of disappearance of the collective strength of the G
@1# is still a debatable subject. Such a behavior was qua
tively explained in@20# as a result of a shift of the kineti
equilibrium in favor of compound decays when the ra
gev/Gs increases. Our general quantum-mechanical anal
confirms this result. Moreover, we made arguments wh
demonstrate that the conclusion is still valid when the sim
mode can be excited from the reaction channels which
common for the simple mode and the background states

To complete the analysis, it would be interesting to co
sider the situation when several simple states can share
collective strength and the decay width into the chan
which signals the deexcitation of the simple mode. This
the case in the realistic calculation of the GDR. The coll
tive peak accumulating a large part of the isovector dip
strength is shifted to high energies compared to the un
turbed shell model position. However, some strength is
concentrated at the unshifted energy. This ‘‘configurat
splitting’’ leads to specific interference phenomena@16#
which again can be described with the use of the effec
non-Hermitian Hamiltonian. The distribution of the dipo
strength and the width evolves with the increasing excitat
energy which should be taken into account when the in
play of the internal interaction and external decays is con
ered. Typically, this results in the quenching of the collect
strength and its redistribution in favor of the low-ener
component. These effects are seen experimentally@36# and
discussed in@37#.
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APPENDIX A: UNIFORM MODEL
OF COMPOUND SPECTRA

Assuming the equidistant spectrum of unstable ba
ground states with the level spacingD and the decay width
g, which corresponds togev of the main text, and substitut
ing actual coupling matrix elementsVn

2 by their average
^V2&, we have to deal with the sums as the trace of the Gr
function ~11!:

S5 (
n52`

`

zn~E!. ~A1!

For the calculations of the scattering processes, the en
E is real and
R
a-

is
h
e
re

-
the
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-
e
r-
ll
n

e

n
r-
-

d
-
-

h

-

n

gy

zn~E!5
1

E2 ẽn

5
1

E2nD1~ i /2!g
. ~A2!

The summation in Eq.~A1! leads to

S5
p

D
cotFp

DSE1
i

2
g D G5

p

D

x2 iy

11 ixy
, ~A3!

where the parameters are introduced

x5cotS pE

D D , y5tanhS pg

2D D . ~A4!

As the decay widthg increases, the quantityy changes
very rapidly from a small valuey'pg/2D for isolated long-
lived states, wheng/D!1, to a value exponentially close t
1 for overlapping levels, wheng/D@1. In practice it is suf-
ficient to consider just these two limiting cases. At smallg,
the imaginary part ofS is small,}y'(pg/2D), and the real
part of S is equal topx/D as for stable levels@17#. In the
opposite case of largeg/D, the real part vanishes
;(12y2), whereas ImS'2p/D. Both cases have a gener
meaning being not limited by restrictions of the unifor
model. Thus, the result for the overlapping case follows i
mediately after substituting the((E2en)

21 by the integral
over the levels with a level density 1/D and using a small
shift of energies into the complex plane. This expression
routinely used in statistical theory of nuclear reactions@11#.
A similar consideration is valid for the sums as in Eqs.~13!
and ~22! taken at a fixed complex energyEj5E2( i /2)G j
instead of running real energyE.

More complex sums can be easily analyzed in the sa
way. Here we give some examples used in the text~the no-
tation Smn corresponds tom factorszn andn factorszn* so
that the basic sumS[S10):

S205(
n

zn
25S p

D D 2 ~12y2!~11x2!

~11 ixy!2
, ~A5!

S115(
n

uznu25
2p

Dg

y~11x2!

11x2y2
, ~A6!

S125(
n

uznu2zn*5
ip

Dg

11x2

11x2y2F2yg 2
p

D
~12y2!

3~12x2y212ixy!G . ~A7!

In the overlapping limity→1, these sums go to 0, 2p/Dg
and 2ip/Dg2, respectively. The first sum~A5! vanishes in
accordance with the fact that both poles in the equival
integral are located on the same side of the real axis.
nonvanishing sums are proportional to the level dens
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r51/D, i.e., they have a coherent component growing
high excitation energy.

The sumS22 can be calculated as

S225(
n

uznu45F ]2

]E]E8(n
zn~E!zn* ~E8!G

E85E

.

~A8!

After simple algebra, we obtain
s.
t
S2252

4

g3ImS1
2

g2Re
dS
dE

. ~A9!

In the overlapping limit, the first term in Eq.~A9! gives
4p/Dg3, whereas the second one is proportional
(12y2)/D2g2 and therefore it is small compared to the fir
term since the exponential smallness of (12y2) overcom-
pensates an extra factorg/D.
.
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