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Simple mode on a highly excited background: Collective strength and damping in the continuum
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Simple states, such as isobaric analog states or giant resonances, embedded into continuum are typical for
mesoscopic many-body quantum systems. Due to the coupling to compound states in the same energy range,
a simple mode acquires a damping wi@tmternal” dynamics). When studied experimentally with the aid of
various reactions, such states reveal enhanced cross sections in specific channels at corresponding resonance
energieq“external” dynamics which include direct decay of a simple mode and decays of intrinsic compound
states through their own channel8/e consider the interplay between internal and external dynamics using a
general formalism of the effective non-Hermitian Hamiltonian and looking at the situation both from the
“inside” (strength functions and spreading widtlend from the “outside” § matrix, cross sections, and
delay time$. The restoration of isospin purity and the disappearance of the collective strength of giant reso-
nances at high excitation energy are discussed as important particular manifestations of this complex interplay.
[S0556-281@7)04307-0

PACS numbse(s): 24.60.Dr, 24.30.Cz, 24.30.Gd, 25.70.Gh

I. INTRODUCTION violated by the internal mixing11] when, due to the high
background level density, the statistical enhancement of per-

Dynamical features of open mesoscopic quantum systemntsirbations becomes extremely important, similar to the well-
are characterized by the presence of “simpl€Single- known enhancement of weak interactions observed in parity
particle and collectiveexcitations, “complicated(chaotig nonconservatiofl4]. The individuality of a “simple” mode
intrinsic motion involving many degrees of freedom, and ir-can also be referred to by its specific structure, for example,
reversible decay into continuum. The coexistence and inteiin the case of a giant collective vibration, whose coherence
play of these phenomena is the important aspect of all promakes the state very different from the background. Such a
cesses including the excitation and deexcitation of thespecial state is characterized by a large multipole moment
system. One of the questions of primary interest in nucleawhich provides a strong collective decay[1]. In all cases,
physics, especially for future experiments with radioactivethe manifestations of the simple mode in specific reaction
nuclear beams, is that of the existence and purity of simplehannels are intertangled with the chaotic mixing inside the
modes of nuclear excitation embedded into continuum. Simisystem.
lar problems arise in atomic and molecular physics, physics As a result of the mixing, the simple mode is fragmented
of atomic clusters, and mesoscopic solid state devices.  over exact stationary states which form the fine structure of

During the last decade, a number of related phenomentie spectrum. Being averaged over the unresolved fine struc-
were discovered in this area of nuclear physics, see, for exure, the excitation function is related to the strength distri-
ample,[1,2]. Saturation of the spreading width of the giant bution of the original “label” smoothly depending on exci-
dipole resonancéGDR) in hot nuclei[3-5], the “disappear- tation energy. A more detailed statistical analysis of
ance” of the collective strength of the GDR at high excita- observed fluctuations, assuming generic correlations of ener-
tion energy[6], and the existence and relatively narrow gies and strengths for the invisible underlying states, is ca-
width of the double GDR7-9] are just a few examples. In pable[15] of extracting their characteristics. In general, the
the physics of isobaric analog stat¢&S), one can find evi-  strength functions and reaction cross sections represent two
dence of the existence of the so-called “broad polg¢s0], sides of the process, internal and external, and the relation
very weak fluctuations of the spreading widths of the IASbetween them is far from trivial. Thus, the strength distribu-
throughout the periodic tabld1-13, and the restoration of tion may or may not coincide with the width distribution
isospin purity at high excitation enerdg]. seen in the reactions and decy$].

In such problems, one always deals with a simple excita- The well-known formalisn{17] of the strength function
tion mixed with the dense background of complicated stategroceeds as if the states under consideration were stable.
The simple excitation is associated with a specific signal. IHowever, all excited states, strictly speaking, have a finite
can be a quantum number which singles out the state in thifetime and therefore belong to the continuum spectrum.
ocean of surrounding states as happens in the IAS case. AsTée level widths of the resonances in the continu®,19
rule, such a state is relatively pure with respect to this labetre governed by the interaction which is in general different
when looked at in the entrance channel. The isospin purity ifrom that forming the discrete spectrum inside the system.
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The effects of intrinsic mixing and coupling to and via the N-dimensional column vecto¥. The spectrumh,, of the

continuum have to be considered simultaneously. eigenvalues oh is supposed to be very dense. Along with
Below we formulate a consistent quantum-mechanical apme similarity of generic complicated wave functiof5),

proach which fully accounts for the interplay of internal {5 justifies the statistical approach.

damping and decay and contains, as particular cases, the The effective Hamiltoniart can be studied with standard

“disappearance” of the collective strength of the giant reso-y51rix methods[24,26]. Its diagonalization gives complex
nance[1] explained by kinetic arguments {20], and the eigenvalues

restoration of isospin purity at high excitation enef@y in

accordance with the old idea by Morinapi] and Wilkin- i )

son[22]. We discuss the general properties of the strength ¢=Ej—3l, 1=0....N 3
function of a simple mode embedded into the continuum in

its relation to what is observed in reactions. Our considerand the quasistationary eigenstafgswith a pure exponen-
ation, being intentionally schematic and less specific than iftial decay law~exp(-i&;t). The construction of the effec-
the well-known review papefll], is in many aspects tive Hamiltonian guarantees the unitarity of the scattering
complementary because of its generality and the simultamatrix, see below Sec. VB.

neous treatment of internal and external aspects of the prob-

lem. Ill. STANDARD MODEL OF THE STRENGTH FUNCTION

The description of the mixing of stable internal states,
which forms complicated stationary superpositions and
We use the effective non-Hermitian Hamiltonift9,24  spreads the srength of original simple states, is well known
in order to take into account internal and external interac{17]. With the anti-Hermitian partw omitted, the intrinsic
tions on equal footing. The intrinsic structure at high levelpropagation within the closed system is described by the
density produces the sétbackground”) of the basis intrin-  Green functionG(E) of the Hermitian part of the Hamil-
sic stategn), n=1,... N, whereN is supposed to be large. tonian,
The simple statd0) is located in the the same range of
energy. AlIN+1 states have the same values of exact inte-
grals of motion such as total angular momentum. We assume
that the basis states are characterized also by quantities such
as isospin or parity which are approximate integrals of mo-The eigenvalues of the intrinsic Hamiltonidh are given
tion. The isospin mixing which is one of the subjects of our[17] by the (N+1) polesE=¢,, of the Green functior{4).
application is introduced explicitly by the off-diagonal ele- They are the roots of the secular equation
ments of the Hamiltonian. Parity nonconservation due to

II. EFFECTIVE HAMILTONIAN

1
G(E)=g—q- 4

2
weak interactions can be another example of an approximate 1 e e
conservation law which can be included in a similar manner. Goo (E)=F(E)=E-¢€ n; E-h, =0. ©
The effective Hamiltonian in N+ 1)-dimensional space

is the operator Each eigenfunctiona) of H carries a fraction

i dF -1 5 -1

H=H-5W, (o f“=|08|2=(—) =1+ Vil(e,~hp)?|  (6)
2 dE E=e, n

containing two(real and symmetric for a time reversal in- of the collective strength determined by the weight of the

variant System ma.t-riceSH andW which describe internal Corresponding Componeﬁjg in the expansion over the basis
and external coupling, respectively. states,

The anti-Hermitian partW has a special structure
[19,11,24 being originated by the on-shell decays into open N
channelc=1,2, ...k, |a>:C§|O>+nZl Caln). (7)

W=AATSW. = > ASAS, . (2)  The smooth strength function of the simple excitation is de-
c fined in terms of the average local level spacihgf back-

ground states,
Here we introduced theN+ 1) X k matricesA={A[} of real

transition amplitudes which are proportional to the matrix Po(€)=[f*/D(€)]c - (8)

elements of the full original Hermitian Hamiltonian which

connect intrinsic and channel subspaces of total Hilberit is normalized according t& ,f“= [dePq(€)=1.

space. The formal solution6) requires the knowledge of statis-
The Hermitian part consists of the unperturbed energy tical properties of the background spectrjpand coupling

€ of the simple statg0), the internalNX N Hamiltonian — matrix elementy/,, . The simplest ansatz used in the standard

h describing the background statgs), and the coupling model[17] assumes a roughly equidistant dense spectrum of

between the simple and complicated states. The real couplirfy, and interaction intensitie¥3 uncorrelated with energies

matrix  elements Ho,=Hpo=V,,n=1, form an h, and slightly fluctuating around their mean val\). For
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the convenience of the reader, we collect the results of thand |n) simply acquire finite widths. These unstable states
uniform model in the Appendix, along with a brief discus- are coupled through the Hermitian interactignand this is

sion. what bridges the gap between the intrinsic strength function
At (V?)>D?, the strength function of this uniform model and its manifestation in the resonance reactions.
has the Breit-Wigner shape: To describe the open compound states, we introduce the
NXN Green function
1 r!
Pole) = o (e—ep?+ (T)74" © 1 an
9= hrw
with the spreading width given by the golden rule,
(V2 N complex polesz="¢, of g(z) determine energies and
IN=r=2r-—. (10 evaporation widths of compound resonances still decoupled

D from the simple mode. In Eq(11), w stands for the

The standard model just described is valRr—29 if T,  (NXN) submatrix ofW, Eg. (2), which acts in the com-
does not exceed the energy ran§E of coupling strength pound subspace and describes the evaporation together with

Vﬁ (AE is defined by the spread of the doorway states whicﬁhe interaction between the compound states through com-

provide the gates for the further mixing of the stgs). (rjnon decI:ay chanr|1els. The(v:?attBer_is cEaracterizefd by theI off-
This is expected to be a good approximation for the IAS with lagona mgtrnf elements at. Being t € sums ot uncorrel-
the typical spreading widtlk=100 keV. In the case of giant lated contributions of many evaporatlon. channeis; 1, .
. : these elements, due to mutual cancellations, are small in
resonance$’s=AE and the uniform model should be cor- . . ;
rected[30]. However, the difference influences mainly the comparison with the d|agqnal elemerjwnn,/wnn|~1/\/ﬁ
shape of the wings of the strength function which is of minor(szee [221])' The co.rrespondllng correchqn s are of order. of
importance for our purpose; here we use the uniform mode?’e\/kD whereyey is the typl_cal evaporation W'dth' We W'II
for definiteness. neglect them below assuming,,<kD. Under this condi-
tion, partial decay widths of the compound states to specific
evaporation channels are smay,,/k<D.
The complex energies of compound resonances in this
A. Formulation of the problem approximation are equal to €,=h,—(i/2) ey

Now we take into account the openness of the system?=1,2,...,N, supposing on statistical grounds that the fluc-
The Simp|e Staté0> is open to direct decaYChanneBC tuations of the widths of Compound states are weak since the
which display specific signatures of the simple mode, forumberk of evaporation channels is large. The simple state
example, collectivey radiation from the giant reasonance or has its own complex energyo,= €o—(i/2)yg, Wherey, is
pure isospin of the IAB Due to the intrinsic coupling to the direct decay width.
compound states, the simple state also acquires access tolLet us now switch to an interaction between the simple
many “evaporation channels” labeled by the supersceipt and compound states through the Hermitian coupling opera-
partial widths depend on the distribution of strength of thetor V. The mixing proceeds in competition with the decays
simple mode carried by specific compound states. of intrinsic states, both via direct and evaporation channels.

When applied to the IAS with isospifi., we have to Therefore, we need to generalize the standard procedure for
consider the surrounding background stéwgswhich belong  the determination of the strength function, Sec. Ill, for the
mainly to the isospim =T~ — 1. The isospin mixing occurs decaying system. In our schematic although quite generic
mostly through intrinsic interactiopl1] so that the decay model, it could be done exactly.
channels for the decoupled simple mode and evaporation
channels for compound states carry different isospins. In g pecay widths in the presence of intrinsic damping
many cases, the effects we are interested in can be studied
using one direct channel which will be labeledcas0. Then
we have in the Hamiltoniaril) the amplitudesAJ= /o,
where vy, is the “natural” width of the simple state and
Af,n=1. All A} are assumed to be of the same order of
magnitude.

At low energies(for example, for neutron resonanges or, in the explicit form,
only a few decay channels are open and the narrow com-
pound states do not overlap. Their widths=3,(A%)? are
small compared to their mean energy spadihgAs energy gj_"go_z
and level density increase, we pass the region of strong cou- v
pling via the continuum where the width collectivization oc-
curs and broad “Dicke resonancef?3,24,26 form the con-  The interaction amplitude¥,, which couple the unstable
tribution of direct processes. The situation changes agaisimple state|0) with complicated(and decaying as well
when many uncorrelated decay channels are open, and timrinsic stateqv), are still real in the approximation taken
off-diagonal element€) of the anti-Hermitian patv of the  above(we neglected the off-diagonal part of the continuum
effective Hamiltonian are averaged out. Then the stfigs couplingw).

IV. SIMPLE STATE EMBEDDED INTO CONTINUUM

The diagonalization of the total non-Hermitian Hamil-
tonian(1) leads toN+ 1 complex eigenvalue3) which are
the rootsz=¢; of the secular equatiofcompare to Eq(5)]

Fz)=z—"€,—VTg(z)V=0 (12

2
—=0. (13
€

Y
&~

v
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Similar to Eq.(7), the qua_s;istationary eigenstat¢s can 1 Xi(l_yjz) (1+Xj2)yj
be represented as superpositions of decoupled unstable states Ej= €+ 51’ 77 i=Yo  ls— 27 -
) 2 1+x3y; 1+x37y;
[0), ... |v): iYi iYi
(21)
ljy=CLloy+ >, Tl|v). (14)  HereI's stands for the standard spreading widtl), and
v notations
The fraction T1=|CL|? of the strength of the simple state 3 E; L T i Yey 05
|0) carried by the quasistationary staj¢ is equal, as in Eq. Xj=co D/’ yj=tan 2 D (22
(6), to

are introduced.
1 - At moderate values of the interactidf the simple state

fJ:1+ L) lengT(gj)g(gj)v, (15 keeps an appreciable fraction of the collective strength and
preserves its individuality, see E4) below. Such a state
With &=E;—(i/2)I';, the loopsL! can be written as was called the broad pole [10]. The problem of IAS can
serve as a typical example. The unperturbed analog state
_ V2 |0) arises at the energy, carrying almost pure isospin
L= 2 = 5= e .mz V2 —. (16)  T.. Its direct decay widthy, is much larger than the evapo-
v [g— el Yev v €& ration width vy,, of background states with isospin. [19].

The isospin-violating interactiol’ mixes these states.
Assuming that the resulting width,=T";_ satisfies the
condition (['y— v.,)>D we have from Eq(22) y,~1, so
r that Eqs.(21) give for the complex root corresponding to the
Liz Yo i (17)  broad pole
Fj ~Yev'

Using the secular equatiofi3) we arrive at a very simple
expression,

Eo~eg, To=7y0—Ts. 23
leading to the individual strength45) o T s @3
The second expression realis=T''—T'! in the notations
?—j:Fj— Yev (18) chosen in10]. The stateT- can be observed only if it de-
Yo— Yev cays before mixing,yo>I's. The collective strengtt{18)
carried by the broad pole is then
In other words, the resulting width of the quasistationary

state|j) can be found from simple probabilistic arguments, Fo_ Yo~ Yev—rszl_ I's (24)
Yo~ Yev Yo~ Yev

Fj=y0?j+ye\,(l—7j). (19 _ _ _ _
which remains of order of unity as long 4% noticeably
The direct decay width is distributed over all quasistationaryexceedsy,,. This formula extends to the case of unstable
states according to their fractions of the strength of the origicompound states the measure introduced1i®,31] of the
nal simple state. It is easy to check the normalization of the'purity of analog spin” of the broad pole. On the other

weights(18): hand, the typical value§! for j#0 are small.

> T

E Ii—(N+1)ye =1, (20) D. General strength function
i 'y Yev

The energy dependence of the strendit is hidden in
the secular equatior(®1). Exclusion ofx; leads after simple
algebra to the general equation for the strength function
which depends only on the absolute valgg— ye.,

where the last step follows from the invariance of the i |mag|
nary part of the trace of the Hamiltoniafl), ;I
=¥+ Nvye,. We have to notice that the probabilistic inter-

pretation emerges here as a result of a strict quantum- - D
mechanical calculation, with no ensemble averaging or tran-  f! =5 ]
sition to a kinetic description. |70~ Vel

(E —€0)*+ (VAT s+ [ y0— vl (1-FH]

- _ _ "~ e+ (VBT o~ ved (1= THT?

Explicit expressions for the properties of the strength
function, including the spreading width along with the decay (25
widths into continuum can be obtained if the average char-
acteristics of the intrinsic spectrum and of the coupling ma-2r. for smaIIf
trix elements are specified. In the uniform mof#&¥] used 5 )
earlier for the stable states, EG3) gives a pair of coupled ~ j_ D n (Ej =€)+ (1A (I's+[yo— ved)
equations for the real and imaginary parts of the complex 27 Yo~ Yed (E — €)%+ (1A(Ts— | vo— Vel )?
energy(3), see Appendix,

C. “Broad pole”




56

SIMPLE MODE ON A HIGHLY EXCITED ... 315

Substituting summation ovérby integration over energy,
one can easily check that this distribution is normalized as

J

In the upper case, the contributiof®=1—T"/|yo— Vel
[compare with Eq(24)] of the simple stat€23) is lost in the
integral. Indeed, the small factor in front of the logarithm in
Eqg.(25) is in this case compensated due to the small value of
the denominator of the expression under the logarithm so
that Eq.(26) is not valid for this special state. On the other
hand, when the increasing mixing rate characterized by the _
spreading width prevails upon the influence of direct decays, FIG. 1. The strength functiof’ as a function of energy for the
the simple mode fully dissolves in the sea of compoundvalues of parameterEs/D =100 and|y,— ve,|/D=90. The solid
states. curve gives the exact numerical solution of E2p), the dotted line

0.01 F

T
|70~ Yed’

0.008
dEj~ I‘s<|7’0_7ev|v
5 f(E)= (27)

1, I‘s>|'y0_ 'yevl-

0.004

0.002 |

0.0
-150

100 150

around the point's=|yy— v/, the width[full width at half
maximum(FWHM)] I" of the distribution(26) is determined

by

P2=IT3= (70— 7e)l- (29
The tails of the strength functioE> (I's+|yo— ved) are
universal and given by the standard modef!
~(DR2m)T4/E? In the limits I'¢>|yo— yed or T

<|vo— ved, EQ. (26) reduces to the Breit-Wigner distribu-
tion

e
s
I 2 D
—$——
(Ej—€)?+T5/4  w Ty
X
Fs |7’O_7ev| <E Drs
| Y0~ Yed (Ej— €0)*+ 70— Yl /4~ 7 (v0— yeu)?’
(29

respectively. Near the poifdts=|y,— ved, EQ. (26) is in-
valid and Eq.(25) gives

D |
WFS\

27l

InD

27l
D

"]T:'OZ 4+ ...

® —Inin (30)

The strengthf © is still larger than allf! for j#0 but this
cannot influence the normalizatig@7). Figure 1 illustrates

the Breit-Wigner approximation&9).

V. SCATTERING CHARACTERISTICS
A. Scattering matrix

Up to now we concentrated on the “inside” view of a
simple unstable mode mixed with complicated fine structure
states. The “outside” world was present as a reservoir for
irreversible decay through numerous open channels. Now we
take a glimpse of the same system from the viewpoint of
reaction amplitudes and cross sections where only
asymptotic states are observed.

The scattering matri$={S"®'} at energyE can be writ-
ten as[19]

S(E)=sYq1-iT(E)}s*? (31)

T(E)=ATG(E)A. (32

Here s includes the potential scattering as well as channel
coupling and direct reactions in the continuum. Those effects
being unrelated to intrinsic dynamics are irrelevant for our

purpose ands(E) can be considered as a diagonal matrix
with phase shift elements exp@) smoothly depending on
E. The Green function in Eq32)

92)= = (33

describes the propagation governed by the total Hamiltonian
(2). It differs from the intrinsic Green function by the anti-
Hermitian part of the effective Hamiltonian. Boti{z) and

he scattering matrix31) have poles at the complex energies

the relation between the exact expression for the strengt

function, Eq.(25), the approximatior(26), which is invalid
in the center of the spectrum, and more crude approxim
tions (29).

It is a straightforward exercise to establish, with the aid of

%he factorized structur€2) of the anti-Hermitian partV, the

relation

The strength function gives an average description of the

fragmentation of individual simple configurations in the in-

trinsic space. In the next section we study the problem as it is

seen in continuum properties.

G(E)=G(E)— IEG(E)A«;AATG(E)

(34
+(i/2)R(E)
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between the two Green functiof33) and (4). The R matrix Tes=S Y2ATGT(E)G(E)ASY2 (42)
in Eq. (34) is familiar from nuclear reaction theof32],
Thus, the time delay matri¢d0) coincides with the intrinsic
R(E)=ATG(E)A. (35 norm matrix found from Eq(39),

It describes the propagation inside the closed system be- bTb:}reS_ (43
tween two acts of coupling to the continuum; the poles of

Ifz(E) correspond to the energies, of intrinsic states with The total Green functiori33) describes the propagation in
the mixing V fully accounted for. The reaction matrix e Open system and, therefore, the delay time as well.
T(E) of Eq. (32) is similar to Eq.(35) but includes all inter- We can now define the normalized probabilg§(E) to

mediate couplings to the continuum. Finally, for the scatter—flnd t_he system in the intrinsic stafe) in the “elastic”
ing matrix (31), (32) the substitution34) gives reactionc—c,
. A 1
fEy)e — B gy gt (RRE), PR(E)= e gy 1OR(EI” 2 pr(E)=1. (49
1+(i/2)R(E) 1+(i/2)R(E)
(36)  The probabilityp$(E) characterizes the weight of the simple
state|0) in the channek. In the problem of the IAS this
B. Scattering wave function, delay time, and unitarity quantity measures the isospin purity in a given channel.
The scattering wave functidt’S) with the incident wave The full scattering matrix31),(32) is unitary provided the

in the channet at energyE can be presented by the super- potential scattering matrir_s is uni_tary. It follows from the_
position of intrinsic/n) and continuum channét;E) com- fact that the decay amplitudes in the entrance and exit
ponents: channels of Eq(32) are the same which appear in all inter-

mediate processes described by the total propadgati)
wey =S pe D 2 e R with the aid of the effective Hamiltonia(L),(2).
Ve)= n or(B)n)+ < jEc’dE x* (BB, The unitarity conditionSS'=S5'S=1 gives for the reac-
(37)  tion matrix (32)

whereE®’ is the threshold energy in the chanmel Recall TT=i(T-T7), (45)
that the decay amplitudes, are the matrix elements of the ) i

total original Hamiltonian between the stafe$ and|c;E).  Which can be transformed, with the help of &) and(38),
By a direct substitution of Eq(37) into the Schrdinger N0
equation, we find19] the N k matrix b(E) of the intrinsic - ~ A A
componentd as sYbT(E)Wb(E)s™"*=i{T(E)-T"(E)}. (46

b(E)= g(E)Aéllz_ (38 VI. A SIMPLE CASE: STABLE BACKGROUND STATES

The diagonal elements of the<k matrix b'(E)b(E) de- The simplest situation corresponds to the stable back-
termine the norm of the internal part of the wave functionground states with no direct access to open channels,
initiated in the channet at energyE. Therefore this matrix Yev—0, when the intrinsic evolution for the reaction in the
should characterize the fraction of delay time in this reactiorfhannek starts and ends at the simple state. The background
due to intrinsic resonances. Indeed, the Smith’s time delagtates are involved by the internal coupling only at the inter-

matrix is defined33] as mediate stages of the reaction. Calculating the diagonal ele-
ment of the resonance time delay mat{#2) we obtain for
. ot dSE) the probability(44),
T(E)Z—IS (E)T (39) )

Po(E)=f(E)=

A
1+, ————| =[dF/dE] %
Taking into account only the resonance energy dependence % (E—hy) } [ |

via the R matrix in Eq.(36), we find (47)
1 dR(E) 1 This is nothing but the continuous generalization of the

Tred E)=—5 12— IE sl strengthsf*=|C§|? defined above by Eq(6) in discrete

1-(i/2R(E) 1+(i/2)R(E) points €, of the intrinsic energy spectruri®*=f(E=¢,).

(40) Since the intrinsic states are coupled to continuum through

A ;
In the same resonance approximation one can neglect tHB€ state|0) and the probabilitiesp;, are normalized, Eq.

energy dependence of amplitudego get from Eq.(35) (44), the decay(or population partial widthsyg do not ap-
pear in Eq.(47). If several direct decay channalsare open,
(dR/AE) o= —ATG?(E)A. (41  the energy behaviof47) is identical for all of them being
determined by intrinsic dynamics only.
Using the relation(34) between the Green functiors and The probability (47) vanishes at energieE=h,, of the

g, we obtain unperturbed background states which are located intermit-
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tently with the actual energies, . In the vicinity of h,, the VII. MIXING WITH OPEN COMPOUND STATES
complicated states dominate the intrinsic part of the scatter-
ing wave function.

Another, though equivalent to E¢47), representation of The situation changes in the realistic case with many open
the time delay in terms of the complex energi@sof qua-  €vaporation channels. Strong fluctuations of the probability
sistationary states can be derived from Ef): Po(E) are smeared out since the compound poles are dis-

placed to the complex energy plane even with no coupling to
¥S the simple mode. This probability remains considerable in a
S(E)——Z—"“[ TIG(E)]= 2 I finite vicinity of the pointe, ensuring a noticeable isospin
YT (E-Ep)“+Ij/4 purity of the internal part of the scattering wave function in
(48)  this region.
If the simple mode and the compound states have no com-
The delay times for different channatsare proportional to mon decay channels, the nonzero decay amplitudes are
the corresponding partial widths of the stie and have the A§= \Vyo (consider for simplicity a single direct decay chan-
identical energy dependence determined by the complex emel) andA¢. The reaction amplitudes are equal to
ergy spectrum of intrinsic unstable states.

The representatiof¥8) is useful when the vicinity of the e
broad pole(23) is considered. It follows from Eq48) that T*(E)= 7090 E), T*AE)= \/%EV Gou(BIA,,
the contribution of this pole is a smooth function of energy (53
superimposed onto the picket fence of #hike peaks with
the average value proportional to the Weisskopf recurrencehere nowGog (E) = F(E) [see Eq(12)], whereas
time /D for a long-lived wave packet. At the energy

A. Purity of a simple state

E=E,, the time delay in a channeldue to excitation of the E)— Vv, E 54
broad pole is equal to¥/ yoI . On the other hand, one gets GoulB)= E_’gygo‘)( )- (54)
[bS(E0)|%= v5Goo E0)|2=4 75/ (70)? (49) The delay time in the elastic process, according to Egs.

(42) and (398), is given by

since the energ¥, is very close to the unperturbed energy
of the statg0). Therefore the probability maximum is deter- 7S5 E) = 0| Goo E) |2
mined by the fraction of the total widtl, of the original
mode which still resides at the broad pole

V2
2 “éf)
=y0lGoo E)|?[1+L(E)] (55)

o v~ Ts where the loof_(E) is the analog oL/, Eq. (16), taken at
Po(Eo)= Y Y 50 the running real energ rather than at the complex energy
&; . Therefore we find instead of E7)

in agreement with Eq24) taken aty.,=0. 2 -1
One should keep in mind that the distribution E47) 1+ 2 l _

wildly fluctuates on the fine structure energy scale. With the |E— €,?

energy resolution worse than the level spacdihgone sees (56)

only a smooth behavior coinciding with that of the strength

function Py(E), Eq. (8). It is quite natural because here the The functionf (E) extends the strength functid5) of the

intrinsic mixing is the only source for the spreading of the quasistationary states to a running real endegjcompare

strength or for isospin impurity in the case of IAS. An aver- with the similar correspondence between the functit)s

age magnitude of the probability to find the original isospinand(47) in the case of stable compound staté&ote that, by

can be easily estimated in the standard model with the unidefinition (44), the resonance envelopéyg? is divided out

- 1
Po(E)=T(E)= 15 5=

form background. Equatio7) gives here ['=T) of normalized probabilitiepy(E) which behave uniformly
within the spreading width.
Si2(E#/D) The loop function(56) can be calculated in a way similar
= Eq. (17). h i it i |
po(E) SI(En/D) + (aT1/2D) (51) to Eqg.(17). Under the same assumptions, it is equal to
T (1+x2)
or, after averaging over fine structure, and takig>D, L(E)= )’_evy1+X2y2’ (57)
1D where, instead of Eq22), we now have

Po(B)=—FT- (52 . _—

x=cof w=|, y=tan = (58)
D/’ 2D

This natural estimaténverse number of fine structure states
within the spreading widthcoincides with that used by von For a small evaporation widthy.,<D, the expression
Brentano[10]. (57) reduces to



318 VALENTIN V. SOKOLOV AND VLADIMIR ZELEVINSKY 56

lective strength of the GDR at high energies was suggested.
The authors showed that the probability of excitation of a

\
\\\\\\\\\\\\
\§\§§\\\\\\\\

- N . e : .
02 NN Y collective mode in an initially heated nucleus is equal, usin
0.2 M&&&&&@\ our notations, td g/ (ye,t+ FS))/ and therefore dimir?ishes asg
NHhnnnkiciéko;auD!jilxn’fRO;kHu I'</ ey, When the temperature exceeds a critical value deter-
. 015 \\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\ s/ Yevs N
5 1lNniaihuist mined by the conditiony.,~TI's. Complementary to the
0.1 %&\\\\\\%&%\\\\M\ somewhat qualitative kinetic arguments [&0], here the
\\\\\\§\\\§§\\\\\\\\\\\\\\\§§\\\\\\\§§\\§\\\\\\\\\\\Q analogous conclusion follows from a full quantum-
0.0 \\\\QQQ \\\\\\§\\\\\\\\§ \‘QQ\\\ mechanical consideration.
0 \\\ We need to mention parenthetically that such statements

\ \\\ NARK N
N\ \\Q§\§\\§\N\ ; ) g
\ &@\ NS ] assume the saturation of the spreading wibl fs as a
N ‘ function of temperature. The absence of a considerable de-
pendence on excitation energy is well known for the IAS
o s [11-13,34. The saturation of the intrinsic spreading width
presumably takes place for the GDR as W&|B—5. General
FIG. 2. The relative probabilitf (E), see Eqs(56)—(58), of the  theoretical arguments in favor of such a saturation
excitation of a simple state through the chanoels a function of [11,28,29,34,3Dare based on the chaotization of the intrin-
energyE/D and the evaporation widtly,/D. The value of the  sjc dynamics and they will not be repeated here.
spreading widthI's/D=10 is chosen for illustrative purposes to
make the oscillations along the energy axis clearly seen; the oscil-

’ - ! B. Excitation and decay of a simple mode
lations rapidly disappear ag., grows.

Here we compare the cross sections of various processes
initiated in the channet. They start with the excitation of
(1+x3). (59)  the simple mode. The “elastic” scattering—c competes
with the evaporationc—e through numerous compound

The results in this limit do not depend on the evaporatioﬁgfgﬁzl_ﬁ'chiizgg\?Q@hiz:ré q(ézfcribed by the amplitudes

width at all and therefore coincide with those following from . .

Eq. (47). In particular, the weight of the simple state in the ©OnN the real energy axis=E the uniform model leads to
intrinsic part of the scattering wave function is in average ofth€ inverse Green functiofyg (E) = 7(E), compare Eq(S),
order of D/T'g<<1.

wlg

L(E)= °D

As level density and number of open channels increase, B x(1—y?) i (1+x?)
the ratioy,, /D rapidly grows together with the argument of FE)=E-e€—T 2(1+x%y?) + 2 7’0+Fsy1+xzy2 '
y, Eqg. (568). One has a fast transition to the limit of the (62)

overlapping  background states wheny~1 and ) _ )
L(E)—Ts/ye,. The probability(56) in this case is notice- At y=0 (no evaporatio)) the elastic cross section
ably greater than in Eq52):

I, =E\? -1
) b |T°°|2=73/|f(E)|2=73[(E—eo— 5 C0t5- ) +75/4}
f=—""s_—. 60
Yot I's T's (60 (63

. : . reveals fine structure fluctuations. In the case of small
Th? fluctu_atl_ons dlsap_pegr, and the S'r.“p'e state preserves 9%&0 these fluctuations are enhanced in a vicinity of the
individuality in the intrinsic wave function across the whole oint,E= ¢, due to the energy dependence of the imaginary
region of the giant or analog resonance. This behavior i%art of]—‘(EO) Eq.(62). However, the fluctuations are washed

demonstrated in Fig. 2. '
. . away when evaporation becomes strong,>D, so that
The purity of the intrinsic part becomes perfect wheny_)l and Eq.(62) simplifies to

v>1's; the depletion of admixed states of the opposite
isospin occurs faster than their population. This gives a mi-
croscopic justification of the isospin purity at high excitation
energy predicted 21,22 and recently observed experi-
mentally [2]. At the same conditions, the fraction of the
simple mode carried by a generic compound state Note that here the decay widty, and the spreading width
I'g are combined into the total width of the resonance on the
I real energy axis. In Fig. 3 we illustrate the energy depen-

s (61)  dence of the elastic cross sectiofi®=|T¢? for different
Yeut I's values of relevant parameters.

_ ) Using the optical theorem, one obtains from E(£3),
is small. This means that the compound processes have 1g2) and(57)

time to explore the presence of the exceptional simple state.

The equivalent result was formulated in terms of the ki-
netic balance between the processes of decay and mixing in —2IMTe(E) =| T°Y(E) |2
[20] where the mechanism for the disappearance of the col-

FHE)=E—¢y+ Iz(y0+rs). (64)

1-F=

Yev
1+ ’Y_oL(E)} (65)
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FIG. 3. Elastic cross sectiom® in the channet as a function
of energy. The parameters in parg)( are y,/D=10 and
I's/D=5; the cross section is shown for different evaporation
widths y.,/D, which correspond to the valugs=0.3 (dots, 0.7
(solid curveg, and 1 (dash-dotted curye The situation with
I's> v, is shown, for the same values gf in part (b) where
vo/D=5 andI'4/D=10; note the different scale for the cross sec-
tion. Part €) shows the cross section foty,/D=100 and
I's/D =15 with y=0.5 (oscillatory curv¢ andy=1 (thick curve.
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for the total cross section initiated in the chaniel The
fraction of | T¢%? in the total cross section determines the
branching ratio of the simple decay mode,

¥oT (E)

o F(E)+ el I-T(E)]’
(66)

Yo
Yot Vel (E)

BC C( )

in agreement with the probabilistic interpretation of the func-

tion T (E). This function rather than its discrete counterpart
(15) is relevant when an actual reaction process is consid-
ered.

The amplitudeT¢%(E), Eq. (53), for evaporation in a
given channek after the simple state is excited in the en-
trance channet, strongly fluctuates together with the exit
amplitudesA® . This amplitude vanishes in average. Assum-
ing many uncorrelated statistically equivalent decay chan-
nels, we can use a natural statistical suggedtidn24]

(ASAS) =595, Yo I K. (67)
Taking into account Eq€53), (54), we obtain
V(ASAS
Tec E 2 g ) 2
(IT°(E)I*) =0l ool E |%(E_ E-2)
= [Te2. 7% (B, (68)
Ko

so that the corresponding branching ratio is equal to

1 y[1-T(B)]

K 5T (E)+ ya[1-T(E)]
(69)

Yel-(E) _
Yot Vel (E)

Bec:E
k

Equations(66) and (69) give B°°+kB*°=1 in accordance
with the unitarity condition. The statistical ansai@?) is
self-consistent because an equivalent approximation was in
fact introduced earlier when the off-diagonal elements of the
anti-Hermitian operatow in the compound space were sub-
stituted by the average evaporation width, see the discussion
after Eq.(12).

In the case of considerable evaporation and overlapping
compound resonances,,/D> 1, the branching ratios satu-
rate at, see Eq60),

Yo
')’O+Fs’

ec_ s

K yo+Ts’

CC_

(70

For the saturated spreading widfh, these limiting values
cease to be sensitive to the level density of compound states
and depend on excitation energy or temperature only through
the direct widthyy. Under such conditions, only the simple
state with the total widthy,+1'g, corresponding to the two
possible ways of its decay, escape and internal dissipation, is
seen in the scattering in the entrance chamnéfiere again
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the background of compound states serves as a reservoir for 1 Yol's
irreversible decay, equivalent by its properties to decay into Bcezz— (E—e0)2+ (7ot T4 you' (76)
continuum. m €0 Yo L)% Yev

The resonance at the simple state is suppressed by the in-
C. Reactions initiated in compound channels verse numbely,,/D of the background states on the typical

The processes started in the compound chaneefor eyaporation _Width. As it was discussgd above, the observa-
example, driven by a nuclear interaction of heavy ions, carﬁ'on of the signal of the simple mode in the reacthn _started
populate the simple mode through internal mixing. The cor/N @ compound channel becomes less probable with increas-
responding amplitudd@®® is the same as the amplitud&® NG Yev, IN agreement with the kinetic a_rgument.s[ﬁf)].
considered above, Eqg53) and (68). The competing Tkle same result can be expressed with the aid of the func-
compound-compound processes are described by the setggn f, Eq. (56),
the amplitudes

Toce 1 D
, N A°'V, V,AS T =5 Y0l sl God* - (77)
T} (E)=>, = +> - ;9’002 —= (7 (1=Heo s
v — €, v — €, N — €,

) ) ] Here T o°® determines the fraction of the cross section of the
The second term in Ed71) accounts for the virtual excita- processe—c due to the intrinsic simple state; the denomi-
tion of the simple mode with the subsequent deexcitatiothator is the similar fraction of the compound-compound

again via compound channels. _ cross section due to the complicated intrinsic states, with no
To evaluate the total cross section of compound-excitation of the simple mode. The right-hand side of Eq.
compound reactions (77) is the resonance curve of the simple mode excited

through the backgroun¢entrance factof’ ) and deexcited

o o o2 through its own exit channéfactor v,). The integral of the
o =Z (IT*¢%), (72 |eft-hand side ratio over the energy region covered by the
€ spreading width gives the inverse number of fine structure

we perform here the statistical averaging as in &3). Ne-  states in this regio®/I's.
glecting the numerical corrections of the ordek,Xdnd using
the notations of the Appendix for the sums over the spectrum D. Common decay channels

of the compound states, we obtain One of the objections raised against the kinetic explana-

tion [20] of the disappearance of the collective strength of

e Yau 2 ) the giant resonance is related to the possibility of pre-
o :Fﬂsl + kSt 2R Go V) (SSoztKS12)] equilibrium excitation of the giant mod85]. In this case the
intrinsic evolution would start with the state which already
+]God (V)2(|Syg 2+ kS2)}. (73)  carries some amount of collective strength. In our language

such a possibility can be taken into account via the presence
The terms proportional to the numbkrof open channels of the reaction channetsconnected both to the simple mode
appear as a result of pairwise coherent averaging of randoghd to the background states. For such channels, all ampli-
decay amplitudes. Only these terms sgrvive in the ".mittudes,Ag‘ andA? do not vanish; until now we assumed that,
k>1. Taking the sums of the Appendix in the overlappingpefore the internal mixing, the simple state and the fine struc-
limit y—1 and recalling that in the same limit, according to tre states have no common decay channels. For the case of
Eq. (68), the IAS, this situation is associated with the external isospin
mixing which is apparently of minor importan¢&1]. How-
ce |—caiz L 5 ever, for the giant resonance this effect can change the situ-
oe=[T° —E|goo| Yol's, (749 ation.
The common decay channels can be incorporated into
we come, after many cancellations, to a simple expressiotieory without problems. Here we consider the simplest case

for the total cross section of all reactions initiated in a ge-of a single common channel which can be easily analyzed by
neric compound channel standard means. The corresponding real amplitudes will be

denoted as, anda, for the simple state and background
states, respectively. A many-channel case brings in many
o+ geE|T°9|2+2 <|Te’9|2> amplitudes of such type. Being uncorrelated, they should not
e lead to any effects of coherent enhancement.
In the single channel case, the exact algebraic solution

- 2% (E—€g)?+ %(70+ I'y)? |g00|2%’. gives the matrix elements of the total Green functi88)
(75) V2 | a2 -1
~ v 0
GooE)=| E—¢o— Lt o ,
This gives the branching ratio for the deexcitation into the oo E) 0 EV: E-¢, 21+(i/2R?

channelc carrying the signature of the simple mode (78
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UV <|Tca|2> D 2 a )
Go(E)=G,0(E)=Goo = (79 <|-|——aa|27“ e ¥0Y0l Godl*- (86)

14

The average partial width for the decay of the simple state
into the channed is equal to

G, (E)= N L. +U,Gool
M E-Te, E—T,\21+(i2RT AT ,
(80) ve=(lao?)=a5+_"Tk. (87)
Yev
Here the renormalized amplitudes are introduced for the d

®his quite general result shows that, in the case of the com-
cay of the simple state through the chanael q 9 '

mon channel capable of populating both simple and com-
pound states, the statistical branching for the deexcitation via

V. a the simple mode drops with the increasing level density
ao(E)=a0+E - (81 p~1/D of compound states. Therefore, strong common
v E-e, channels with y,~v,, cannot recover the disappearing

o . simple mode. Weak channely,= y.,/k, are useless be-
and for the mixing between the simple state and the backsgse of their small total cross sections.

ground including the intermediate continuum states:

VIIl. CONCLUSION
'_aV ‘_KO =, (82) In the paper we considered the most general proper‘_[ies_ of
2771+ (iR an open quantum system where a simple mode of excitation
. . interacts with the background of very complicated states.
The analog of th&k matrix, Eq.(35), for thea channel is  Both simple and compound states are coupled to the con-

tinuum and have finite lifetimes. Internal dynamiosixing)

UV(E):VV_

22 and external dynamicé&ecay$ are intertangled in a non-
R(E)=>D —~—. (83)  trivial way. The intrinsic dynamics in the presence of the
v E—e€, continuum are governed by the effective non-Hermitian

Hamiltonian. The widths of the intrinsic states modify the

Using these exact expressions we evaluate the reactigirength function of the simple mode. This view from the

amplitudes. We are interested in reactions starting in thé&inside” has to be supplemented by that from the “outside”
channela and ending either in the channekpecific for our  for determining the observables measured in a real scattering
signature of the simple mode or in any of the other channelsxperiment, such as cross sections and delay times. In a for-
a or e. The elastim— a amplitude is given bycompare Eq. mal language, here we project the dynamics of quasistation-
(36)] ary intrinsic states back to the real energy axis. The effective
Hamiltonian by its construction guarantees the correct prop-

erties of the scattering matrix including unitarity. Therefore,

Taa= Ra +( ‘_)‘0 )Zg _ (84) it becomes possible to use the knowledge of internal dynam-
1+(i2R* " | 1+(i/12)R?) 7% ics in order to compare cross sections of competing pro-

cesses.
The deexcitation through the special chanoés governed The general although schematic character of the analysis
by the amplitude allows one to draw the conclusions concerning the manifes-

tations of the simple mode in various situations. A typical
example is given by the IAS which can be seen as a broad
pole [10] or to be dissolved in the sea of the fine structure
levels of another isospin. The analysis, analogous to that in
(85  [11], confirms the old ide$21,27 of increasing isospin pu-
rity of the IAS at high excitation energy. The experimental
To make a conclusion of the importance of the excitationdata [2] agree with this conclusion. The isospin purity is
through the common channel we assume that, similar to theestored because of the very fast depopulation of the ad-
amplitudesA?, Eq. (67), the new amplitudes, are uncor- mixed background states when their decay wigtly in-
related quantities with a large magnitude which contributegreases compared to the spreading wiithof the simple
significantly to the total widthy,, of the compound states state(IAS in this casg HereI'g is assumed to be a slow
(a®)=y,~v.>D. Using the estimates of the Appendix for changing or saturating function of excitation enef§y as
the sums over the fine structure states in the overlappingredicted by the analysis based on the chaotic character of
limit, we obtainR?®~ —im(y,/D). Thus,R? is a large imagi- the intrinsic dynamic$29].
nary quantity determined by the number of compound states Such a consideration is not specific for the IAS and can be
in the intervaly, . According to the same estimates, the firstapplied to other simple modes embedded into continuum.
term in Eqg.(84) dominates and the contribution of terms The giant dipole resonance is known to preserve its individu-
containing the sum with the cross produets,, is relatively  ality up to high excitation energy or temperat{ig. In par-
small. Finally, ticular, this is clearly seen in the observation of the nearly

To= \/%( Gootot+ 2 o,

_\/%g°°1+(i/2)Ra'
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harmonic double-phonon excitation8]. The new phenom- 1 1
enon of disappearance of the collective strength of the GDR ((BE)y=——= . .
[1] is still a debatable subject. Such a behavior was qualita- E-¢, E-vD+(i/2)y
tively explained in[20] as a result of a shift of the kinetic

equilibrium in favor of compound decays when the ratioThe summation in Eq(A1) leads to

vau!/I's Increases. Our general quantum-mechanical analysis

confirms this result. Moreover, we made arguments which

demonstrate that the conclusion is still valid when the simple ™ ‘{Tr

(A2)

T X—Iiy

}:Slﬂxy’ (A3)

D

mode can be excited from the reaction channels which are S= BCO

common for the simple mode and the background states.

. To complete_ the analysis, it wopld be interesting to CON~ here the parameters are introduced
sider the situation when several simple states can share the
collective strength and the decay width into the channel

which signals the deexcitation of the simple mode. This is #E o
x=cot( ) y=tan?‘( )

i
+_
E 2y

D

°D (A4)

the case in the realistic calculation of the GDR. The collec-
tive peak accumulating a large part of the isovector dipole
strength is shifted to high energies compared to the unper-
turbed shell model position. However, some strength is still As the decay widthy increases, the quantity changes
concentrated at the unshifted energy. This “configurationvery rapidly from a small valug~ /2D for isolated long-
splitting” leads to specific interference phenomefs]  lived states, whery/D<1, to a value exponentially close to
which again can be described with the use of the effectivél for overlapping levels, when/D>1. In practice it is suf-
non-Hermitian Hamiltonian. The distribution of the dipole ficient to consider just these two limiting cases. At small
strength and the width evolves with the increasing excitatiorthe imaginary part of is small,xy~(7y/2D), and the real
energy which should be taken into account when the interpart of S is equal tomrx/D as for stable level§17]. In the
play of the internal interaction and external decays is considopposite case of largey/D, the real part vanishes
ered. Typically, this results in the quenching of the collective~ (1—y?), whereas IS~ — 7/D. Both cases have a general
strength and its redistribution in favor of the low-energy meaning being not limited by restrictions of the uniform
component. These effects are seen experimenfd8yand model. Thus, the result for the overlapping case follows im-
discussed in37]. mediately after substituting thB(E—¢,) " by the integral
over the levels with a level density[l/and using a small
shift of energies into the complex plane. This expression is
ACKNOWLEDGMENTS routinely used in statistical theory of nuclear reactiphs].

The authors are indebted to P. von Brentano who initiated® Similar consideration is valid for the sums as in EG3)
this work and made an important impact by numerous dis@nd (22) taken at a fixed complex enerd§{=E— (i/2)I’;
cussions at the initial stage. We thank D.V. Savin for con-Anstead of running real enerdy.
structive discussions and assistance. One of(\W1S) is More complex sums can be easily analyzed in the same
grateful to Y. Fyodorov, F. Izrailev, I. Rotter, and H.-J. Som-Way. Here we give some examples used in the (the no-
mers for interesting discussions. He also thanks tfién Ko tation Sy, corresponds ten factors¢, andn factors{y so
University and the National Superconducting Cyclotronthat the basic sun§=S;):
Laboratory for their generous hospitality. This work was
supported by the National Science Foundation, through

Grant Nos. 94-03666 and 95-12831, and by the INTAS 5= S 2= 3)2(1—y2)(1+x2) (A5)
Grant No. 94-2058. 204 Svip (1+ixy)?
APPENDIX A: UNIFORM MODEL 27Ty(1+X2)
OF COMPOUND SPECTRA = 2"
Su=2 1P =5 a7 (A6)
Assuming the equidistant spectrum of unstable back-
ground states with the level spacibgand the decay width
v, which corresponds t¢,, of the main text, and substitut- ir 1+x2[2y
ing actual coupling matrix elementg? by their average Si= 2, |§V|2§t:D—71+—Xzy2 7—5(1—)/2)
(V?), we have to deal with the sums as the trace of the Green ’
function (11):
X (1—x2y%+2ixy) |. (AT)
S= >, ¢,(E). (Al) In the overlapping limity—1, these sums go to 0,/ZDy

V=—%

and 2 7/Dy?, respectively. The first surA5) vanishes in

accordance with the fact that both poles in the equivalent
For the calculations of the scattering processes, the enerdgtegral are located on the same side of the real axis. The
E is real and nonvanishing sums are proportional to the level density
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p=1/D, i.e., they have a coherent component growing at 4 2

high excitation energy.
The sumS,, can be calculated as

0—,2
e WE(E)

E’'=E

Spo= EV 14,1%=
(A8)

After simple algebra, we obtain

323
ds
522: - ;g|m8+ ?Red—E (Ag)

In the overlapping limit, the first term in EqA9) gives
47w/D+y%, whereas the second one is proportional to
(1—y?)/D?y? and therefore it is small compared to the first
term since the exponential smallness of—(y1?) overcom-
pensates an extra factg/D.
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