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Temperature dependence and fragmentation of the particle-hole giant resonances
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We evaluate the spreading width of the giant multipole resonances at finite temperature using the disconti-
nuity in the second derivative of the Green'’s function of the vibrational boson, in the Matsubara’s framework.
Our method allows us to identify the processes that contribute to the spreading width in terms of the Feynman
diagrammatic expansion of the full boson propagator. We have applied the calculation of the spreading width
to the 2°%Pb and the®’Zr obtaining an increment of the spreading width with the temperature. We have not
reached any saturation of the spreading width increment, at least up to the temperature of our calculation.
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I. INTRODUCTION nucleus, producing a fast rotational motion. In H&0] it is
shown that angular momentum effects are responsible for
Properties of the nuclei at very high temperature can bénost of the observed irjcrease of the GDR width. However, it
obtained through experiments that measuyedys, emitted IS Not enough to explain the data, especially at low tempera-
during the decay, in particular from the energy region of thetures and little deformatlons, and at hlg.h temperatures, where
giant dipole resonancé&DR) [1]. It is also possible to mea- the effects are constrained by the maximum angular momen-

sure the properties of nuclei at very high excitation energieéum pOSSIb|e_ W'tho.Ut producing nuclear fission. The latter
. . - . one makes it possible to separate temperature effects from
using heavy ion collision§2]. Recent experimental data on

) : . .~ angular momentum effects, giving a better insight of the dif-
the GDR in very h°t. nucle|" qnd their thermal ﬂucwa.t'onsferent thermal phenomena that could contribute to the broad-
have been reported in the Giagen Conference on Giant

ening of the giant resonance.
Resonancef3-6]. _ o In this paper we start considering that the centroid of the

At high excitation energies the nuclear level density in-gjstripution of the giant multipole strength can be described
creases so rapidly that it is practically impossible to studyas 3 particle-hole excitation built on a highly excited ground
transitions between individual levels and therefore a Statististate, through a temperature dependent random phase ap-
cal description of the system becomes adequate. The usugloximation(TRPA) [21].
way to follow in this case is to replace the compound sys- The damping of the giant resonance collective excitations
tems, with definite excitation energy and definite particleis considered to proceed through different decaying pro-
number, by the grand canonical ensemble of the nuclei. cesses.

Several approaches to the thermodynamical properties of (a) The “escaping width” is related to direct particle
finite systems have been developed. They are usually baseghission and is associated with the portion of the GMR hav-
on a thermal variational description of the systems that yieldéng the particle(of the particle-hole excitationin the con-
the temperature Hartree-Fock-Bogoliub6VDHFB) [7—-9]  tinuum[22-25.
equations as the mean-field approximation. (b) The “Landau damping” appeared at the level of mean

In past years, there have been developed several studiesfidld theory and expressed the fragmentation of the multipole
the behavior of nuclei at finite temperature. In particular thestrength in different roots of the RPA at energies near the
behavior of the energy centroid, width, structure, andGMR energy. It has been studi¢?6] and seems to be nei-
strength of the giant multipole resonan¢@MR), is attract-  ther an important damping process nor one that varies too
ing the attention of the nuclear physici$i0—17. much with temperature.

Experimental analysis of the damping of the giant reso- (c) The “spreading width” provides a direct measure-
nances shows that the total width of the GDR increasesnent of the fragmentation of GMR into neighboring more
strongly[13] at moderate temperature-(T3) with the pos- complicated configurations, mainly two-particle—two-hole
sibility of saturation at high temperatures, a problem that isexcitations. This width is directly related to the electromag-
still a controversial poinf14—-14. All theoretical studies netic damping of the GMR and is influenced by variations in
give no clear explanation of the observed increment. Therthe temperature. At zero temperature considerable work has
mal fluctuations of the nuclear shape have been proposdseen developed on this subjd@7-31], but at finite tem-
[17] but they give an increment of the width that goes ap-perature there are only few approaches that disagree in some
proximately asTY/2. Moreover, when thermal fluctuations are of their resultg32,33, and more recentlj12]. The spread-
treated dynamically, it has been shown that a motioning width at finite temperature is also the main purpose of
narrowing process arises. This process inhibits the previousur work.
result for temperature abovie=1 MeV and strongly weak- In this article we develop a method to calculate the de-
ens the temperature dependence of the widB19. An-  pendence of the spreading width on the temperature, which
other effect comes from the angular momentum transferred a logical extension of our previous wofkee Ref[34]). In
to the compound nucleus that induces a deformation of théhat paper we studied the time evolution of the collective
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degrees of freedom, which leads to a simple diagrammatic [l. STATEMENT OF THE FORMALISM
expansion of the second moment of the strength distribution

(directly related to the spreading width). In our work we The relation between the short time behavior of the

utilize temperature(instead of timg dependent Green's Green’s functions and different properties o_f the nuclear sys-
Functions, based on the Matsubara finite temperature formal€M$ has been analyzed in Rgg7]. In a previous paper, we
ism. A real-time Green’s function can be found by analytich@ve used the above properties to isolate the Feynman dia-
continuation of the frequency variable. In the Matsubara forgrams that contribute to the spreading width of the particle-
malism we can evaluate consistently the self-energy to a dd10l€ giant resonanc¢84]. Following the same idea we gen-
sired order of perturbation theory in the grand canonical en€alized the method used for the calculation of the spreading
semble. The main advantage of this type of description jwidth at zero temperature, to fln_lte temperature. Therefore,
that the processes taken into account are specified and theiée follow the Matsubara formalism that simplifies greatly
fore the approximation made is more clearly understoodhe description of finite temperature systems using tempera-
from a physical point of view. ture dependent Green'’s functighDGF). _

Our formalism, even if related to the perturbative expan- 1he TDGF does not dependent on time as the usual
sion of the nuclear field theorgNFT) [35,36, works on a Grgen’s funct!on dogs, but on a fictitious imaginary variable
complete system of collective states. In this sense it is dif7=it defined in the interval O to RAT (whereT is the tem-
ferent from Ref[32] where they prefer to work with a mix- Perature of the system atkg is the Boltzman constantWe
ture of boson(TRPA root$ and particle-hole overcomplete do not calculate the therm_odynamlcal quantities but mstead
basis. The price we have to pay is to calculate all the roots ofve evaluate the TDGF, using the perturbative expansion de-
the TRPA in order to have the complete basis. The advantagieribed by the corresponding Feynman-Goldstone diagrams
we obtain is that the number of diagrams needed to calculate8—40d. The main difference from the treatment at zero
all the contributions to the leading order are highly reducedtemperature is that, instead of integrating the time frem
In this way we define a one-boson two-boson effective inter!0 * in each vertex, the variable is integrated from 0 to
action vertex that allows the calculation of the spreadingl/keT. In the future we will callg=1/kgT.
width exactly up to the first order in the NFT expansion. We start defining a Hamiltonian that can be split into a

The article is organized in the following way. In Sec. II 0ne-boson Hamiltoniaki, and a residual interactioH ;.
we make a review of some properties that can be obtained
from the short time behavior of the collective-state Green’s
functions and extent it to finite temperature. In Sec. Ill we Ho=Hrpath, H;=V-h 2.9
develop the formalism diagrammatically in order to show the
contributions that are considered within our method. In Sec.

IV we work out a temperature dependent vertex of interacwhereHgpa is the one TRPA boson Hamiltonian whiteis

tion between one and two TRPA bosons. The spreadingn arbitrary one-boson potential that contains all the residual
width is related to the sum of the square of these verticegteractions or Pauli corrections that can mix the different
times some expression depending on the temperature occreot of the TRPAY is the rest of the interaction of a general
pation probabilities for the bosons. We will show that thetwo-body force. We will start from the TRPA boson repre-
vertices themselves depend on the fermionic temperaturgentationn) that diagonalize$,.

occupation-probabilities. In Sec. VI we applied our formal- The one-boson temperature dependent Green’s function,
ism to the giant dipole resonance of tffZr and 2°%Pb using  corresponding to the total Hamiltonian in the Lehmann rep-
an isoscalar-isovector separable interaction. resentation, is given by the following equation:

G (1) =Tr[ B H N ()T (0)6(7)+T ], (0)T (1) 6(— 7)}]

Trle  PH=ENIT ()T, (0)6(7) +T},(0)T () 6(— 7)}]
- Tr[e AH-#N)] '

2.2

The quantity() in the exponential is the thermodynamical potentjaljs the chemical potentialN the particles-number
operatorH the total Hamiltonian, andl| creates a TRPA boson with energy; .

We can expand the temperature dependent Green'’s funs@nFig. 1 in Feynman diagrams generated by the Dyson’s
equation:

Gn’n,(f”—r’)=Gg(T"—T’)5n]nr+f fdrldQ% GO 11— 7 )Fnm(72— 71)Gmn (7' — 72), 2.3
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(b)

FIG. 1. General form of the Feynman-Goldstone diagrams con-
tributing to the one-boson Green'’s function. The blobs could be
anything while they are connecte@ Schematic representation of
restricted diagramgb) The same for unrestricted diagrams.

FIG. 2. One of the lowest order correction to the vibrational
temperature dependent Green’s function. An arrowed line describes
the particle propagation while a wavy line describes the vibrational
boson.
whereF, (7,— 71) is the self-energy of the problem and is

represented by the same diagrams of the Fig. 1 without the

external IinesGﬂ(r) is the bare TRPA boson Green’s func-

tion. The relevant diagrams here are depending amstead In Ref.[34], we have showed that the second moment of
of the normal ones that depend on the energy. In the blokhe strength distribution is related to the second derivative of
there could be anything including the vertices of the Hamil-the Green’s function. Here we extend the formalism to

tonian that introduce the ground state fluctuations. TDGF:
In Ref.[37], it is shown that a lot of relevant information,
including the spreading width of the GMR, can be obtained 52
from the short time behavior of the Green’s function and its (n|[H?n)=( lim — Im )———G(n,n;7"—7')
derivative (aroundt,—t;=0). In our case we extend the S04 r—gige 9T 0T

method to short- behavior of TDGF:
=§m: Wr2n<q,0|rn|‘/’m><$m|rrﬂqfo>

n "
_Gn,n’(T) __nGn,n’(T)

(2.4
ar"

- W%“%Wrﬂ'ﬁ@@/’ﬁrnm’o) (2.9

7—0+ 7—0—

Following Ref.[37], we classified the Feynman diagrams  The diagrams that contribute to the short-time second de-
in two types.(a) Restricted diagramfFig. 1(a)]. These are rivative have no more than two interaction vertices. If we
the diagrams that have a continuous chain of boson and fesubtract the ones contributing to thén{H|n))? the only
mion lines, where the intermediate are always betweeh  diagrams that remain are restricted diagrams, which begin
and7’, i.e., and end with an interaction vertex and have no intermediate
state equal to the initial or{@4]. It must be noted that in the
limit 7"— 7' =0, the two vertices occur at the same param-
eter 7 and the propagator between them disappears, giving a
contribution equal to the product of the two matrix elements.
or The main difference with the zero temperature a4

is the fact that the fermions and bosons have a temperature
occupation probability different from zero. Therefore, the
T'>T>7> > hole and patrticle type of levels are washed up and all of them
contribute to the diagrams with some probability of being
occupied(holeg or unoccupied(particles. Besides, in this
(b) Unrestricted diagramFig. 1(b)]. In these diagrams, the case it is not possible to neglect the negative TRPA roots
intermediater’'s do not follow the above rules. Therefore, all anymore, because both of them contribute to the diagrams,

such diagrams are continuous wheh- 7', and do not con-  depending on the temperature occupation probability of the
tribute to the discontinuity at”=7'. boson.

The restricted diagrams, instead, exist only for- 7" or
7' < 7" with a chain of intermediate states between them. If
the diagram contains more than one link, each integration
produces a factor’ — 7’ when 7’ — 7. Therefore, the con- In this section we will show the more important features
tribution to the discontinuity of theth derivative is given of the lowest corrections to the unperturbed TDGF. We cal-
only by the restricted diagrams that have a maximurm of culate in detail, as an example, the self-energy of one simple
intermediate vertices. diagram(see Fig. 2

7' < <mp<--- <7’

lll. SELF-ENERGY CORRECTION TO THE TDGF
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F(7"—71")= VU1.J2:MVU3z.J4:M VU 2.J3:GRV(J1.J4,GR)

1
B°123.4

e_ipnl(Tz_T/) e_ipnz(T”_TZ) e_ipn3(71_7ﬂ) e_ipnA(T/_Tl)

X 2 delde N ~ N s " s N —
Pny:PnyPnyPn, Kn IP1—&1  1Pn,— €2  IPn,~ &3 IPn,~ €4

1 1

X = —
|kn_w)\ Ikn+w)\

e_ikn(TZ_Tl), (31)

wherei labels a particle state with energy=¢e,—u, A la-  terms present in the intermediate state of the boson reflect
bels a TRPA vibration with energyw, , V(1,2;\) is the the fact that it is necessary to include, on an equal footing,
particle-vibration coupling strengthpni=(2ni+ 1 7wlhpB, the negative-energy TRPA roots. After performing the inte-
k,=2nm/% B are the imaginary Fourier transform frequen- gration on the intermediate, making the sum on the imagi-
cies of fermions and bosonsy; ,n are integers, and the nary frequencies and doing some algebraic rearrangements,
temperature dependence is in thg factor. The two we arrive at

F(r"—1')= %kn_par #Jm%m VJ1.J2:MVU3.J2a: MV 2.J3,GRV1.J4;GR)

y [(1—njl)(l+nw)+njlnw](2njz—1) . [(1—njl)(1+nw)+njlnw](2njs—1)

(iknt 220 (—iKnt 229 (E—wy)  (iKyt 249 (ikn+ €30 (iKnt+ €31~ wy)
[nJlnﬂ,—(l—nJl)(lJrnw)] [(1—nj4)(1+nw)+nj4nm](2n12—1)
(ikn+ 540 (Brot ) (K= 5 13- @) (1Kot 8.42) (1Ko~ 8.20) (kg — 824+ 0,

[(1—nj4)(1+nw)+nj4nw](2n13—1) [nj4nw—(1—nj4)(1+nw)]
(ke 5kt e (Fagm @) (iKet 54 (iKnt B gzt 0,)(Eggt 0))
—{same as above witlw, — — w,}, (3.2

wheree;;=¢;—¢; andn, = (ef —1)"1, n,= (ef%1+ 1)~ are the Bose and Fermi temperature occupation probability. Note

that the appearance of Bose occupation factors is a consequence of treating all the particle-hole vibrations as quasibosons, a:
it is assumed in the TRPA approximation.

This expression can be developed in such a way that each time permutation diagram can be clearly identified. Therefore, we
will rebuild the self-energyEq. (3.2)], corresponding to the Fig. 2, in order to analyze the differgmérmutation and consider
the two solutions of the TRPAX w,). Performing some algebraic calculation, we obtain

{ 1 1 7|k (T”iT,)
F(7—7)=% 2> e > VU1J2MVU3Ja M VU2,J3:GRVULJ4;GR)
Bk, =par J1J2.J3Ja
[(1-n,)(1—n, )n,.n, (1+n,)—n, N, (1=n,)(1-n, )n,]
(iKn+ 2 42) (IKn— € 29) (IKp— € 13— @),)

[(1—njl)(l—njz)njs(l—nj4)(1+ nw)—nJanZ(l—nJS)nan]

X

+ = .
(ikn=&13— @)) (K, = &23) (843t ®))

[(l—njl)njznjgnJA(lJr nw)—njl(l—njz)(l—njs)(l—nJA)nw]
(ikn— €12 (Ikn— € 13— @) (£ 12+ @),)

[njl(l—njz)nj3nj4nw—(1—nJl)nJZ(l—njg)(l—nj4)(1+ n, |

+

(iKn— 2 29)(ikn— € 24+ 0)) (€ 21— @),)
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[(1_”Jl)(l_ng)(l_”Js)”u”w_nJanszg(l_”J4)(1+ n,)]
+

(ikn= 12 (IKn— 8 24t 0)) (234~ )
[(1—nJ1)(1—nj2)nJSnJ4nw— njlnjz(l—njs)(l—nj4)(1+ n, ]
(iKn— € 12) (IKn— € 241 @) (iKn— & 29)
[nJl(l—nJZ)nJS(l—nj4)(l+ n,)—(1-n,)n, (1- ”13)n14nw]
(€ 14— €29 (€ 43t 0\ (iKy— £ 14)
[njl(l—njz)njg(l—nj4)(1+ nw)—(l—njl)njz(l— nJS)nan]
(14— €29 (Bagt 0\)(— Kyt 2 5)
[(1—nJ1)nJZnJB(1—nJ4)(l+ nw)—njl(l—njz)(l— njz)n“nw]
(€45t 0)) (£ 12+ ©)) (iKy— 13— w))
[(1—njl)njzn13(1—nj4)(1+ nw)—njl(l—njz)(l— njs)nJAnw]
(agt @) (£ 12+ 0))(—iKn—Eao— )
[(1=n,)n, (1-n)n, (1+n,)—n, (1-n, )n, (1-n,)n,]
(223t e4) (21— 0)) (k=5 19)

[(1=n,)n, (1-n)n, (1+n,)—n, (1-n, )n, (1-n,)n,]
(e23t 240 (21— 0))(—iKnt 529

—{same as above witlw, — — w,}. (3.3

+

+

+

+

Each term of the above equation could be associated withoral permutations, the terms 1 and 6 of E8.3), and the
a diagram that representsrgpermutation of the original one. interchange ofw, — — w, . They neglect the other temporal
It can be observed that the calculation of each term followgpermutations assuming that they are only important if the
well-defined rules. vibrational state are strongly collective. Besides, they work
The numerator of each term takes into account the Bosgith the fermion-occupation numbers at zero temperature,
and Fermi temperature occupation numbers and is easilyjeglecting the variation produced on these numbers by the
constructed looking at the circulation of the diagrdfor  increasing temperature. This assumption implies neglecting
eachr permutatiof. The particles that appear in the diagramthe new configurations of particle-particle and hole-hole that
contribute with (:-n;) factors, while the holes contribute arise at finite temperature. They use, instead of the(Eg),
with n; factors. On the other hand, the bosons with positivethe following one:
roots of the TRPA { w,) contribute with (&n,) factors

and are represented by wavy lines with upward arrows, while (1- njl),(l— njz),njz,nj4—>1, (3.9
the negative roots«{ w,) contribute withn, factors, being
represented by a wavy line with downward arrows. producing

For each term another always exists with the same de-
nominator that can be constructed changing the direction of
all the arrows and consequently the temperature occupation
numbers, namely changing(1—n,)«<n,,(1+n,)<n,].

This new diagram represents the permutation’sef: 7’ (see 2
Fig. 2). The sign between these two terms depends on a 3
phase )*, whereA is the number of intermediate states in 1
the diagram. The denominators follow the usual rules used in
the NFT or Raileigh-Schdinger perturbation theory. They 4
can be written as a product of the energy difference between
the initial state and the intermediate states.
As an example, the second term of E§.3) represents FIG. 3. 7 permutations of the diagram of Fig. 2. The two dia-
the 7 permutation of Fig. 3 and one can easily obtain itsgrams have the same denominator but all the thermal occupation
contribution following the previous rules. numbers are changed from particle to hole and vice versa. An in-

In Ref.[32] the spreading width of the GMR is calculated termediate wavy line, with an upward arrow, represents a positive
using the diagram of Fig. 2, but considering only two tem-TRPA root while a downward arrow is a negative TRPA root.
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1 : n_ ot
F(f’—T’>=EE e (= X V(U2 NV 4N V2,03 GRVU1,J4GR)

kn=par J1J2:J3: 4.\
(1+n,) Ny
(iknt 841 (ko= 29 (IKn—E15= @) (ikn— 2 1) (iKn— 8 24t @) (I(Ky— 5 29)
n, (1+n,)
et —————————————————, (39
(ikKnt+ ea)(iKn—e23)(iKy—e13t @) (IKp—&14)(IKn— &24— 0)) (1K, — £ 23)
|
that is, Eq.(17) of Ref.[32]. been done at zero temperatyi]|, because the Bose and
Fermi temperature occupation numbers are present in the
IV. SPREADING WIDTH OF THE GMR sum of the different contributions. Therefore, we developed

] ) o a method to sum the diagrams that can be applied to the

The spreading width of the GMR at finite temperaturecgjcylation of the spreading width at finite temperature. In
Green's functior{see Eq.(2.5]. The diagrams that contrib- umpers can be factorized summing conveniently the contri-
ute to the width[34] are those that begin and end with an ptions too2.
interaction and have no intermediate state equal to the initial From the above explanation we see that the relevant dia-
one. The relevant diagrams are some of the differeper-  grams contributing tar? are those restricted diagrams that
mutations of the diagrams shown in Fig. 4. In the NFThave two interactions changing the number of bostors
framework, these diagrams contribute to the leading Ordebarticle-hole pairby =+ 1, linked to the initial or final boson

correction of the energy of the one boson state. line. These vertices must act between the annihilation of the
However, different from the NFT that works with an jnitial boson and the creation of the final one.

overcomplete basis of RPA bosons and particle holes, we \ye opserve, within our method, that the contribution of
prefer to work within a complete basis. In this case, thege relevant diagrams to the discontinuity of the second de-
TRPA vertices are not considered interaction vertices bufjative of the temperature boson Green’s functisae Ap-
only the amplitude of the fermionic pair in the collective pendix A is reduced to the square of the matrix element
state. The only interaction vertices considered are thoSgetween one-boson and two-boson state. The main differ-
changing the number of boso(wr particle-hole pairby =1 gnce with the zero temperature case is that these matrix ele-
[34]. In this way the number of diagrams involved are re-ments depend on the Fermi occupation numbers only, while
duced drastically. On the other hand, the price we have tghe Bose occupation numbers appear in the definitionof
pay in order_ to work in a complete collective basis is t0 Us€yecause of the temperature-dependent two-boson propagator.
as intermediate states all the TRPA roots. The final conclusion is that the only intermediate states
The calculation cannot be made in the same way as hagat can be reached from the one-boson state, through the
two-body interaction in leading order in perturbation theory,
are the two-boson states shown diagrammatically in Fig. 5.
Those of Fig. 5a) are the forward matrix element between

A A, S VR W
2 3 2
1 + o+ 3
3 2 1
A A (a) A A
M A, A A, A

A, A,
2 3 2
" (b) i 1

FIG. 4. The leading-order correction to the energy of the one- FIG. 5. Two-body matrix elementéncluding direct and ex-
boson state. All the- permutationgthat are not in the figujecon- change parjsthat contribute to the one-boson two-bosons effective
tribute to the spreading width and must be included in the calculainteraction vertex(a) Diagrammatic representation of the forward
tion. vertex Eq.(4.1) and(b) of the backward vertex Ed4.2).

s A,
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one and two-boson states, while those of Fidp) are related ward and backward vertices, have the possibility that the
to the backward vertex of the TRPA and show the depentwo-boson states have positivenegative energies, i.e.,
dence with the ground state fluctuations. It must be notegiropagate in the positivénegative direction of 7.

that these diagrams are temperature dependent, so both for- The vertices of Fig. 5 are

(n[HINngAong)= 2 XX )+ Y)Y OIATZ()[(2=n, )n, 0, —n, (1-n, )(1-n,)]
1J24J3

+ X2 () YDA VN0, (1=n,) = (1=, )(1-n, )n, T}

J1J2
N (4.1)

Jz J2 Ja

AN AN A
v v R I

and

OFIDNL Az A 3 {IX) T OWYG5 )+ X0 00V, O TA 2 (L= y,)n 0y, =y, (1=n,)(1-n,,)]
1J24J3

AN A
(np) (ny) ) o V(1 _ _ 1 "2
+YJZJZB()\Z)XJI}B(kl)AJZJZ(A)[njanZ(l n,)—(1=n, )(1=n,)n, TV2h 1+ 1320+ 1( )Jl+13+"2”[h B Jl]

X 1+ 8 e (4.2

where xJ(”Jl)()\l) and Yj(”j (\) are the TRPA forward and ni—1 (for hole), while the Bose occupation-numbers verify
12 13

backward amplitudes, respectively. The scattering matrix elghatnwﬂo' surviving only the particle-hole excitations.

ements from one- to two-boson states are
V. ISOSCALAR-ISOVECTOR SEPARABLE INTERACTION

AN = XM (\ Y 1) +Y™ (n In this paper we discuss the properties of the GMR in the
4 () ng[ 1112( W2V 1112( ) framework of schematic separable forces. In this section we
) obtain, for normal nucleus at finite temperature, the TRPA

X{JJ1VI'J2)]. 4.3 solutions of the multipole particle-hole Hamiltonian. We de-

o ) ) fine the single particle X)) and the multipole[ +(\)]
It is important to note that the scattering matrix elements

change sign depending upon whether the leyeksnd |’
correspond to particle or hole. Therefore, there are big can-
cellations either for finite or zero temperature. Finally, the
spreading width of the GMR is

o?= 2 {IAn[H|INng o0 2

Aq1.Ng1. AN

X[(n,,+1)(n,,+1)=n, N, ]
+[(OH|[N 11, A2n2]y AN)|?
xX[(n,,+1)(n,,+1)—n,n, I} (4.4

(a) (b)
FIG. 6. Schematic representation of the contribution to the

This final expression for the spreading width Cor]S'der'ngsquare of the spreading widteecond moment of the strength func-

the C_hanglng betweea’?HL_"Z IS sum_marlzed in Fig. 6. It_ tion). It must be noted that the two vertices occur at the satne
considers all the contributions coming from the NFT dla'Which implies that there is no propagator between them. It means

grams up to the leading order. It depends only on the twoOpa¢ these diagrams have no energy denominatar€ontributions

body interaction, the temperature, and the collectivity of theiom the forward one-boson two-bosons matrix elemént.Con-

two bosons that mix with the giant resonance. tributions from the backward one-boson two-bosons matrix ele-
Making the limitT—O0 in Eq.(4.4), we obtain the spread- ment. These diagrams are temperature dependent, so the positive

ing width calculated in Ref[34]. In this limit, the Fermi  and negative TRPA roots in the intermediate two-bosons state must

occupation numbers verify that (In;) — 1 (for particle and  be considered.
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Hamiltonians following Refs[41,36 where this operator(as QQ#) includes particle-particle
(8J1,8J2>,u), particle-hole (:J1>,u, sJ2<,u), and hole-hole
HspZE J,psja}(p)aj(p), (5.1) (8J1,8J2<,u,) excitations. The index specifies the TRPA

root number.

wherep= v() labels neutrongprotons, a}(p)[ajz(p)] are The linearization condition reads

the fermion creatiofannihilation operators, and, are the ([Hept HON), T D=t ], (5.7
single-particle energies. The two-body Hamiltonian is
where ( ) denotes the grand canonical ensemble average.

ko+kq+ 2k’ t This leads to the soscalar-isovector dispersion relation, from
H(N) =~ 2 E 2 ru where either thew,, TRPA energies or the isovector and
isoscalar strength can be obtained
k0+ kl_ 2k’ . ﬂ_T ~ ,
—(T)E 1w AT N2—(Kot+Kky+2K)F} 58
Kk Aq (ko—kpDF7
0 1 w VT 14 7TT
_( 2 )2 ,U-[Q?\;LQMJ._F QMLQM’-]’ (52) with
where the quantitieky, k; are the coupling constant of the PAD_ B : (Mp L v(Mp
isoscalar and isovector particle-hole residual interactions, ]:”An_hggep (N, =) MPU L2 MK+ Y
and their relation is obtained from the ratio between the isos- (5.9

calar and isovector optical potentid#¥2]. The parametek’
is the coupling constant for the admixture between the isosand
calar and isovector modes in the presence of neutron excess.

Qy, and 9y, are the multipole particle-hole operators built FP= > (n,—n IMP(J1,J2:0)?
out of neutrons and protons, respectively, and are defined in J1=J2EP
the following way: 1 1
(—1) X . - nt 17 . (5.10
- & —hw & w
QE#:TE 12, MPUL T2 NBRU L 2 M) )2 o2 "
The amplitudes that define the TRPA bosons are given by
+H(=)M BN = )], (5.3
ARMP(J1,J2;N) ARMP(J1,J2;N)
R X(”)D= _n s MAJert (mp_ 7" MWt
with A=+2\+1 and J1J2 e —%o ’ JiJ2 P tho ’
JiJo n JiJ2 n

(5.11

The particle-vibration coupling strength\", is deter-
mined through Eq(5.8) and the normalization condition of
the TRPA bosons

ByU1Jzim)=[a] (P)a,,(P)]\,

= E <J2.]1m12mjl|)‘/"’>a;r2mjz

m; My,
X(p)(_)Jl—mjlajl,mh(p), (5.9 4et i hoy
Ap~2= 2> (g, =) MU 22N s
where the indey is used to denote either the state above or i=l2ey PP @n

: - D ) A
below the Fermi surface. The coefficiemtdP(j;,J,;\) are 82— (Kot Kyt 2K') F? 2

defined as +
i1=jgem (kO_kl)fr?
MP(1J2i0) =l lFR Yl lg2)ile e T
= MP(, 15N (— YI2A M jan) R i
MP(J2,J 1N (-) . (69 X (N, =N )M (j1,]2\) SR

We use for the radial dependence f@{r), peaked around (5.12
the nuclear surfacef®(r)=aoW(r)/ar, where W(r) is a ’
Wood Saxon potential. VI RESULTS

The creation operator of a collective excitation is defined
in the same way as it is done in the zero-temperature RPA: | the present section we apply our model to the giant
dipole resonancéGDR). We have calculated the spreading
i i 208ph and °°Zr isotopes. The
rt = _ o xXmpgty g width of the GDR T in the ) ar topes.
n\p 2 PJ1=J2 JlJzﬁp(Jl J2i ) TRPA roots are obtained using a isoscalar-isovector sepa-
=P N rable interaction, developed in the previous section. For the
(=) YJ1J2Bp(‘]l’J2’)\ ), (56 radial dependence of the interaction, peaked around the
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nuclear surface, we use ta(r)/dr, with V(r) the Woods- TABLE I. Temperature dependence of the GDR energy and the
Saxon potential proton and neutron chemical potentials, for tf&Pb. The GDR
energy, chemical potentials, and temperature are given in MeV.
_VO
W)= TR (6.2) T=1 T=2 T=3 T=4 T=5
— o
1+eXP< a ” ®GDR 14.06 13.85 13.63 13.41 13.22
i, -0.37 -0.64 -1.01 -1.50 -2.10
with Hp -030  -055  -097  -154 = -2.27
Vo=50 MeV, Ry=r,AY3, a=0.5 fm, ry=1.2 fm.
(6.2) @zo 21(3+2>\)E
kl ' VO !
The set of single-particle levels was obtained using the
spherical harmonic oscillator levels with the corrections due K — Ek N—-Z 6.4
to the centrifugal and spin-orbit interactiop%3] 2™ A '

3 ( ) ] whereV;=120 MeV andV,=—50 MeV are the depth of
7o NFTo—«l= ,U«( I(I+1)- T) for j=1+1/2  the isovector and isoscalar potentials, respectivé/yz, and
A are the neutron, proton, and mass numbers of the corre-
sponding nucleus.

EZ N+ 3_ k(1+1)— | 1(1+1)— M) For the calculation of the spreading width of the GDR 1
hw 2 2 in the 26 Pb and® Zr we use, as intermediate bosons, all the
TRPA roots (collective and noncollective oneswith
for j=1-1/2, (6.3 excitation energies w,<30 MeV and multipolarities

A=0,1,2,3,4,5.
where Zw=41 A3 with A the mass number of the The ratio of the isoscalar-isovector strength of the sepa-
nucleus, and\,j,| are the principal quantum number and the rable interaction is checked using the energy of the available
total and orbital angu|ar momentum quantum numberS, reeXperimental data, for the adiabatic and giant roots at zero
spectively.x andu are chosen to obtain the best fit for eachtemperature, for all the multipolarities, verifying quite well
nucleus[44]. the relations of Eq(6.4).

We have defined the single-particle levels starting from The chemical potentigk, is adjusted for each tempera-
N=0 up to 3 shells over the Fermi level. These are goodure in such a way that the particle number average is con-
enough for our calculations only for the levels around theserved:

Fermi surfg&% wherg%zwe use the neighboring odd isotope

data of the“**Pb and®“Zr. The change of the single-particle _ _ _ _

energies around the Fermi surface has been done, in both (N) jzev N, (P) jze:w Mo ©9
cases, taking care of keeping the energy-baricenter of the

exchanged levels in the same position. Thermal Hartree- In Table | (Table Ill) we show the variation with the
Fock calculationd45] have shown that the single-particle temperature of the GDR energy and the proton and neutron
energies have weak temperature dependence. Therefore, wieemical potentials for%Pb (°°zr). In Table Il (Table 1V)

use the zero temperature energies and wave functions afe shown, for thé®®Pb (°°Zr), the temperature dependence
over our calculations. of the partial contributions to the square of the spreading

The isoscalar strengtky, is determined by fixing the en- width 0. These contributions correspond to the sum of all
ergy of the first collective TRPA root. The isovector strengththe TRPA roots for a given angular momentum of the
k, and the coupling constant of the two modes are deterintermediate-boson states of the diagrams of Fifse® Eq.
mined using the following formulajgt1,36: 4.9)].

TABLE Il. Relative contribution[Eq. (4.4)] to the square of the spreading widi of the diagrams of
Fig. 6 for the?%®Ph.B; is the contribution of Fig. @) andB, of Fig. 6(b), both of them including the change
between\ ;< \,, A1 and\, being the quantum numbers of the intermediate boson states.

Int. Bosons T=1 T=2 T=3 T=4 T=5

N NJ B, B, B, B, B, B, B, B, B, B,
170" 0.43 0.06 0.37 0.04 0.32 0.03 0.31 0.03 0.31 0.03
271° 3.18 0.58 3.19 0.66 3.06 0.63 3.14 0.61 3.24 0.57
3 2% 5.12 1.08 6.00 1.48 6.68 1.60 7.08 1.72 9.23 1.71
4+3~ 5.65 1.35 6.70 2.09 7.71 2.31 9.32 2.36 11.48 2.31

574% 5.92 0.90 6.09 0.99 6.59 0.97 8.02 1.00 10.85 1.04
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TABLE Ill. Temperature dependence of the GDR energy and 80 -
the proton and neutron chemical potentials for ti2r. The GDR
energy, chemical potentials, and temperature are given in MeV.

75
T=1 T=2 T=3 T=4  T=5
70 |-
woDR 1670 1663 1654 1648  16.39
i -156  -215 -276  -3.73  -4.05
1y -122  -148  -192  -251  -322 esr

60 |-

-
o

Most of the approaches to evaluate the spreading width 45
consider thato is produced by the admixture between the
GMR and more complicated structures, mainly two-particle— P N S S
two-hole states. If the ground state correlations are consid- "o 1 2 3 4 5
ered through an RPA or TRPA treatment of the collective Temperature [MeV]
states, the problem gets more complicated. In Re4] we FIG. 7. Spreading width of the giant dipole resonafte) of
have developed a method that considers all the contribution®sp, 4 4 function of the temperature, given by &qé).
to the spreading width of the GMR, corresponding to the
leading order in the NFT perturbation theory. factorization of the result that reduced drastically the number

In this paper, we extended the calculation of the spreadingf diagrams to calculate. This method ensures that all the
width at finite temperature, using the short time discontinuitycontributions at leading order are considered, without any
of the second derivative of the collective Green’s function.approximation neither over the temperature occupation prob-
We extend the method of Rdf37] to temperature dependent abilities nor over the diagrams involved. It would be also
propagators, which introduce temperature dependent prolpossible to solve the TRPA in the continuum using Gamow
abilities for both fermionic and bosonic states. In this way,resonance$22,24 in order to consider both together, the
we can define an effective interaction vertex between onespreading and the escaping width of the resonance.
boson and two-bosons of the TRPA that simplify greatly the We have considered a modelistic isovector-isoscalar sepa-
calculation. The ground state fluctuations are consideredable interaction that includes most of the physical properties
through the so-called backward vertesee Fig. %)]. of interest. We observed that the spreading width increases

It has been suggest¢d6] that there exist two main fac- with the temperature, as was pointed out in R88], with-
tors that produce the strong increase of the spreading widtbut saturation until 5 Me\(see Fig. 7 and Fig.)8We do not
with the temperature, the fluctuations of the nuclear surfacediscard a possible saturation at higher temperatures.
and the transfer angular momentum, but neither factor is Another important aspect of this work was related to the
enough to explain the experimental data, mainly in the restudy of the temporal permutations of the diagrams contrib-
gion of medium and high temperatures. Therefore, we conuting to the self-energy. We observed that it is possible to
sider it of interest to see if the spreading width of the GMRreconstruct the finite temperature results inserting the corre-
increases continuously with the temperati88] or saturates sponding occupation factors in the zero-temperature expres-
at a certain temperatuf82]. Our model is based in the same sion. For each fermiofboson in the diagrams at zero tem-
physical concepts as R¢B2], but our method of working in  perature, one has to add only the occupation number of the
a complete basis of collective TRPA states, instead of usingermion (boson to obtain the corresponding diagrams at fi-
an overcomplete basis of bosons and particle-holes, yields @ite temperature. Additionally, the negative TRPA solutions

The final results of the calculation of the GDR spreading
width 17, for the 2°%Pb and®Zr isotopes, are shown in Fig.
7 and Fig. 8, respectively.

Spreading width of the GDR [MeV]

VIl. CONCLUSIONS

TABLE IV. Relative contribution[Eq. (4.4)] to the square of the spreading widifd of the diagrams of
Fig. 6 for the®%Zr. B, is the contribution of Fig. @) andB, of Fig. 6(b), both of them including the change
between\ ;< \,, where\; and\, are the quantum numbers of the intermediate boson states.

Int. Bosons T=1 T=2 T=3 T=4 T=5

NTAS B, B, B, B, B, B, B, B, B, B,
170" 1.02 0.17 0.96 0.11 0.96 0.09 1.05 0.07 1.03 0.56
271° 2.53 1.10 3.37 2.16 4.27 3.12 6.37 3.66 6.78 2.71
3 2% 2.51 1.09 3.60 2.48 5.13 3.36 8.72 5.20 9.54 4.72
4+3~ 4.82 0.93 4.48 0.75 4.56 0.65 4.93 0.51 6.11 0.49

574% 9.29 3.22 8.76 2.89 8.99 2.50 9.45 1.67 14.04 1.98
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80 - must be included to consider all the contributions to the
I spreading width.
sl APPENDIX A

In this appendix we show that the Bose and Fermi occu-
pation numbers could be factorized if one can sum conve-
niently the relevant diagrams contributing to the spreading

70 |

50 -

=

[}

=)

T 65| width.

; We consider the case in which there are not two equal
560 fermionic states. Therefore, one has to consider the contribu-
£ | ™ tions to the self-energy from the diagrams that have two
s / triangles[Fig. 4(c), 4(d), 4(e), 4(f)]. We will choose, as an

o 55 . . .

£ /' example, the different- permutations of Figs. (4), 4(d),

g T 4(e), 4(f) that have the following Fermi occupation numbers,
Q.

n

nJanz(l_ nJS)nJ4nJ5(1— njs) independently of the Bose oc-
cupation numbers. We will also take into account thper-

45 mutations with the opposite occupation numbers, i.e., all the
diagrams that can be obtained changipd —n;)«<n;,
4.0 L ] L ] L 1 L 1 L 1 . (1+nw)<—>nw].
0 1 2 3 4 5

There is nor permutation of Fig. &) with these Fermi
Temperature [MeV] occupation numbers. Threepermutations of Fig. @) have
these Fermi occupation numbers. Following the rules given
in Sec. I, the sum of the contributions to the self-energy is

FIG. 8. Spreading width of the giant dipole resonance df
equal to

907r as a function of the temperature, given by E44).

1 ik ()
B > et > V(U1.J3:GRWVU6.J5:GR) V2,03 Ja:5)VU1.d2: M) V(Ja.d6:N1)
kn=par J1J2J3Jads5Je M

[njlnjz(l—nja)nj4nJ5(1—nJG)nw1+(1—njl)(l—njz)njs(l—nj4)(1—n15)n16(1+ nwl)]

(iKn— €69 (ikn— £ 13) (iKn— & 23— 1) (€ 46+ 1)

. [njlnjz(l—njs)nj4nJ5(l—nJ6)(1+ nwl)+(l—njl)(1—njz)njs(l—njél)(l—njs)njenw1

(ikn—€65) (ikn— € 13) (ikn— & 237 1) (€ 46— 1)

: (A1)

where GR labels the giant resonance TRPA root. The sumoyé@nplies a sum over all the possible multipolarities of the
complete collective basis of TRPA roots.
Three r permutations of the Fig.(d) have also these Fermi occupation numbers, the sum of them being equal to

1 : "n_ 1

B e o) > V(J1:J3:GR)VU6.J5:GRV1.J2.J4:06) V2.3 M) V(J4,J5:N2)
k,=even J1J2.J3.J4aJ5.J6: 2

[nJanz(l_ njs)njélnjs(l—nje)(lﬂL nw2)+(1—njl)(1—n12)nJ3(1— nj4)(1—n15)n16nw2]

(iKn— € 65) (ikn— € 13) (IKy— £ 64— @2) (£ 39+ w5)

s [njlnjz(l—njs)nMnJS(l—nje)nw2+(1—njl)(l—nJZ)nJB(l—nJ4)(1—nJ5)nJG(l+ nwz)]

5 ~ . ~ . = = (A2)
(ikh—eg5) (ikn— £ 13)(IKy— g4t w2) (832~ w))

Twenty 7 permutations of Fig. &) contribute with the same Fermi occupation probabilities. The sum of all of them are
equal to
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%kneven et 2, WiJsiGRWIe s GRVULI2 MW Jeih) Wz s W Jsiha)
1
(ikn— € 65) (ikn— & 19)(ikn— w1~ w3)
n,n,(1-n)n; n, (1-n,)(1+n,)+(1-n, )(1-n, )n, (1-n, )(1-nHn, n,,
(ikn— £ 64— w2) (2 3o+ @)
nJanZ(l—njs)n“njs(l—nje)nler(l—njl)(l—njz)njs(l—nJ4)(1—nJS)nJG(1+nwl)
(ikn— & 23~ @1) (46T ®1)
—{same as above witlb;——w;}—{same as above witlw,— —w,}
+{same as above witlv;——w; andw,— — w,}. (A3)

One way to factorize conveniently the differenfpermutation is using the property that verifies the TRPA solutions for
separable interactior(see Appendix B This expression relates the fermionic two-body interaction with the TRPA fermion-
boson matrix elements, and is given by

1

sij—wn 8ij+0)n

Wi, ik D == 23 VL) VK TNy : (A4)

where the sum is over all the TRPA roots with multipolarityand is valid for any particle-hole staig .
Replacing the corresponding fermionic matrix element in the(Bd) and Eqg.(A2), and summing for all the permuta-
tions, we arrive to the result

L S o) (141, )(1+10,) = N0 N0, ] V(J4,05:02) VU eJ5,GRIV4.J6:01)

Bry=even J1d2J3Jads 6 N2 (ikn— w1~ ) (iKn—€65) (€ 64— 1)

XV(.]l:J3;GR)V(.11JZ;)\l)VUZJS;)\Z)

(gza_ wz)(ikn_gla)

[(1_”11)(1_”Jz)”Js(l_”14)(1_”15)n16+ njlnjz(l—nj3)nj4njs(1—nJG)]

—{same as above witlb;——w;}—{same as above witlv,— —w,}

+{same as above witw;——w; and w,— —w,}. (A5)

In this expression are factorized the Bose and the Fermi occupation numbers.
If we make a similar analysis, for the reverse circulation of the triangle, and we sum it up with tiAZqve obtain

[(1+ n‘”l)(1+ nwz) - nwlnw2

1 H " !
- e—lkn(T -7 :
Bk, Zeven J1J2.J30405J6: M1 A2 (ikn— w1~ )
VU1.J3:GRVU1.J2: M) VU 2.J3:82)
X ~ . ~ [n_14n15(1_nJG)_(l_nM)(l_nJS)n_]e]
(€23~ wo)(iK,—&13)

XV(J4’J5;)\Z)V(JG’JSaGR)V(J4J6;)\1)

(iKn—€65) (€ 64— 1)

[nJanz(l_nja)_(l_nJl)(l_ng)an]

—{same as above witlv;— — w;}—{same as above witlv,— — w,}

+{same as above witw;——w; and w,——w,}, (A6)

where, in this expression, three well-differentiated factors can be seen. The first is related to the two intermediate boson
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propagators and depends on the energy and occupation numbers of these bosons. The other two factors represent the matri
element between one-boson and two-boson states and depend on the Fermi occupation numbers of the triangles, the boson
fermion interaction, and the particle-hole amplitudes in the TRPA collective states.

APPENDIX B

The TRPA solutions verify the following rule when a separable isoscalar-isovector interaction is used. Expanding the
matrix element of any particle-hole operator between a particle-hole state and the ground state in terms of the strength
distribution over the TRPA bosons, we arrive at

Alepl(Jl 1.]2 !)\) _ AﬁlMﬂl(&l ’.]2 ')\)

2 FEAL— (B1)

8p1 _ :MP(Jl’J27)\)5plp1
JiJ2

891

hw, 2+ﬁwn
where the sum is over all the TRPA roaotsand p,p, label neutron or proton states. This expression is valid for any

particle-hole statg,,j, for either proton or neutrons. Looking at the dispersion relafiBg. (5.8)], and replacing in the

equation above, we obtain

s sz' 11 ] (kotkat2k)
no " _sjljz—ﬁwn sjvljz-l-ﬁwn_ A2 ’
s Aﬂz' 11 _ (ko tky—2K") ®2)
no " _sﬂjz—ﬁwn sfljz-l—ﬁwn_ A2 ,
ko—k
> ARAN — —clel | +ho, =¥.
n lelz_ﬁw“ N

These Equations could also be useful for checking the TRPA results.
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