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Temperature dependence and fragmentation of the particle-hole giant resonances

E. C. Seva and H. M. Sofia
Departamento de Fı´sica, Comisio´n Nacional de Energı´a Atómica and CONICET, Avenida del Libertador 8250, 1429 Buenos Aires

Argentina
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We evaluate the spreading width of the giant multipole resonances at finite temperature using the disconti-
nuity in the second derivative of the Green’s function of the vibrational boson, in the Matsubara’s framework.
Our method allows us to identify the processes that contribute to the spreading width in terms of the Feynman
diagrammatic expansion of the full boson propagator. We have applied the calculation of the spreading width
to the 208Pb and the90Zr obtaining an increment of the spreading width with the temperature. We have not
reached any saturation of the spreading width increment, at least up to the temperature of our calculation.
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I. INTRODUCTION

Properties of the nuclei at very high temperature can
obtained through experiments that measuredg rays, emitted
during the decay, in particular from the energy region of
giant dipole resonances~GDR! @1#. It is also possible to mea
sure the properties of nuclei at very high excitation energ
using heavy ion collisions@2#. Recent experimental data o
the GDR in very hot nuclei and their thermal fluctuatio
have been reported in the Gro¨ningen Conference on Gian
Resonances@3–6#.

At high excitation energies the nuclear level density
creases so rapidly that it is practically impossible to stu
transitions between individual levels and therefore a stat
cal description of the system becomes adequate. The u
way to follow in this case is to replace the compound s
tems, with definite excitation energy and definite parti
number, by the grand canonical ensemble of the nuclei.

Several approaches to the thermodynamical propertie
finite systems have been developed. They are usually b
on a thermal variational description of the systems that yie
the temperature Hartree-Fock-Bogoliubov~TDHFB! @7–9#
equations as the mean-field approximation.

In past years, there have been developed several studi
the behavior of nuclei at finite temperature. In particular
behavior of the energy centroid, width, structure, a
strength of the giant multipole resonances~GMR!, is attract-
ing the attention of the nuclear physicists@10–12#.

Experimental analysis of the damping of the giant re
nances shows that the total width of the GDR increa
strongly @13# at moderate temperature (;T3) with the pos-
sibility of saturation at high temperatures, a problem tha
still a controversial point@14–16#. All theoretical studies
give no clear explanation of the observed increment. Th
mal fluctuations of the nuclear shape have been propo
@17# but they give an increment of the width that goes a
proximately asT1/2. Moreover, when thermal fluctuations a
treated dynamically, it has been shown that a moti
narrowing process arises. This process inhibits the prev
result for temperature aboveT51 MeV and strongly weak-
ens the temperature dependence of the width@18,19#. An-
other effect comes from the angular momentum transfe
to the compound nucleus that induces a deformation of
560556-2813/97/56~6!/3107~14!/$10.00
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nucleus, producing a fast rotational motion. In Ref.@20# it is
shown that angular momentum effects are responsible
most of the observed increase of the GDR width. Howeve
is not enough to explain the data, especially at low tempe
tures and little deformations, and at high temperatures, wh
the effects are constrained by the maximum angular mom
tum possible without producing nuclear fission. The lat
one makes it possible to separate temperature effects
angular momentum effects, giving a better insight of the d
ferent thermal phenomena that could contribute to the bro
ening of the giant resonance.

In this paper we start considering that the centroid of
distribution of the giant multipole strength can be describ
as a particle-hole excitation built on a highly excited grou
state, through a temperature dependent random phase
proximation~TRPA! @21#.

The damping of the giant resonance collective excitatio
is considered to proceed through different decaying p
cesses.

~a! The ‘‘escaping width’’ is related to direct particl
emission and is associated with the portion of the GMR h
ing the particle~of the particle-hole excitation! in the con-
tinuum @22–25#.

~b! The ‘‘Landau damping’’ appeared at the level of me
field theory and expressed the fragmentation of the multip
strength in different roots of the RPA at energies near
GMR energy. It has been studied@26# and seems to be nei
ther an important damping process nor one that varies
much with temperature.

~c! The ‘‘spreading width’’ provides a direct measur
ment of the fragmentation of GMR into neighboring mo
complicated configurations, mainly two-particle–two-ho
excitations. This width is directly related to the electroma
netic damping of the GMR and is influenced by variations
the temperature. At zero temperature considerable work
been developed on this subject@27–31#, but at finite tem-
perature there are only few approaches that disagree in s
of their results@32,33#, and more recently@12#. The spread-
ing width at finite temperature is also the main purpose
our work.

In this article we develop a method to calculate the d
pendence of the spreading width on the temperature, wh
is a logical extension of our previous work~see Ref.@34#!. In
that paper we studied the time evolution of the collect
3107 © 1997 The American Physical Society
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3108 56E. C. SEVA AND H. M. SOFIA
degrees of freedom, which leads to a simple diagramm
expansion of the second moment of the strength distribu
~directly related to the spreading widths). In our work we
utilize temperature~instead of time! dependent Green’s
Functions, based on the Matsubara finite temperature form
ism. A real-time Green’s function can be found by analy
continuation of the frequency variable. In the Matsubara f
malism we can evaluate consistently the self-energy to a
sired order of perturbation theory in the grand canonical
semble. The main advantage of this type of description
that the processes taken into account are specified and t
fore the approximation made is more clearly understo
from a physical point of view.

Our formalism, even if related to the perturbative expa
sion of the nuclear field theory~NFT! @35,36#, works on a
complete system of collective states. In this sense it is
ferent from Ref.@32# where they prefer to work with a mix
ture of boson~TRPA roots! and particle-hole overcomplet
basis. The price we have to pay is to calculate all the root
the TRPA in order to have the complete basis. The advan
we obtain is that the number of diagrams needed to calcu
all the contributions to the leading order are highly reduc
In this way we define a one-boson two-boson effective in
action vertex that allows the calculation of the spread
width exactly up to the first order in the NFT expansion.

The article is organized in the following way. In Sec.
we make a review of some properties that can be obta
from the short time behavior of the collective-state Gree
functions and extent it to finite temperature. In Sec. III w
develop the formalism diagrammatically in order to show
contributions that are considered within our method. In S
IV we work out a temperature dependent vertex of inter
tion between one and two TRPA bosons. The spread
width is related to the sum of the square of these verti
times some expression depending on the temperature o
pation probabilities for the bosons. We will show that t
vertices themselves depend on the fermionic tempera
occupation-probabilities. In Sec. VI we applied our form
ism to the giant dipole resonance of the90Zr and 208Pb using
an isoscalar-isovector separable interaction.
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II. STATEMENT OF THE FORMALISM

The relation between the short time behavior of t
Green’s functions and different properties of the nuclear s
tems has been analyzed in Ref.@37#. In a previous paper, we
have used the above properties to isolate the Feynman
grams that contribute to the spreading width of the partic
hole giant resonances@34#. Following the same idea we gen
eralized the method used for the calculation of the spread
width at zero temperature, to finite temperature. Therefo
we follow the Matsubara formalism that simplifies grea
the description of finite temperature systems using temp
ture dependent Green’s function~TDGF!.

The TDGF does not dependent on time as the us
Green’s function does, but on a fictitious imaginary variab
t5 i t defined in the interval 0 to 1/kBT ~whereT is the tem-
perature of the system andkB is the Boltzman constant!. We
do not calculate the thermodynamical quantities but inst
we evaluate the TDGF, using the perturbative expansion
scribed by the corresponding Feynman-Goldstone diagr
@38–40#. The main difference from the treatment at ze
temperature is that, instead of integrating the time from2`
to ` in each vertex, the variablet is integrated from 0 to
1/kBT. In the future we will callb51/kBT.

We start defining a Hamiltonian that can be split into
one-boson HamiltonianH0 and a residual interactionH1.

H05HTRPA1h, H15V2h ~2.1!

whereHTRPA is the one TRPA boson Hamiltonian whileh is
an arbitrary one-boson potential that contains all the resid
interactions or Pauli corrections that can mix the differe
root of the TRPA.V is the rest of the interaction of a gener
two-body force. We will start from the TRPA boson repr
sentationun& that diagonalizesH0.

The one-boson temperature dependent Green’s func
corresponding to the total Hamiltonian in the Lehmann re
resentation, is given by the following equation:
n’s
Gn,n8~t!5Tr@eb~V2H1mN!$Gn~t!Gn8
†

~0!u~t!1Gn8
†

~0!Gn~t!u~2t!%#

5
Tr@e2b~H2mN!$Gn~t!Gn8

†
~0!u~t!1Gn8

†
~0!Gn~t!u~2t!%#

Tr@e2b~H2mN!#
. ~2.2!

The quantityV in the exponential is the thermodynamical potential,m is the chemical potential,N the particles-number
operator,H the total Hamiltonian, andGn

† creates a TRPA boson with energyvn .
We can expand the temperature dependent Green’s function~see Fig. 1! in Feynman diagrams generated by the Dyso

equation:

Gn,n8~t92t8!5Gn
0~t92t8!dn,n81E E dt1dt2(

m
Gn

0~t12t8!Fn,m~t22t1!Gm,n8~t92t2!, ~2.3!
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56 3109TEMPERATURE DEPENDENCE AND FRAGMENTATION OF . . .
whereFn,m(t22t1) is the self-energy of the problem and
represented by the same diagrams of the Fig. 1 without
external lines.Gn

0(t) is the bare TRPA boson Green’s fun
tion. The relevant diagrams here are depending ont instead
of the normal ones that depend on the energy. In the b
there could be anything including the vertices of the Ham
tonian that introduce the ground state fluctuations.

In Ref. @37#, it is shown that a lot of relevant information
including the spreading width of the GMR, can be obtain
from the short time behavior of the Green’s function and
derivative ~around t22t150). In our case we extend th
method to short-t behavior of TDGF:

n

]tn
Gn,n8~t!U

t→01

2
]n

]tn
Gn,n8~t!U

t→02

. ~2.4!

Following Ref.@37#, we classified the Feynman diagram
in two types.~a! Restricted diagrams@Fig. 1~a!#. These are
the diagrams that have a continuous chain of boson and
mion lines, where thet intermediate are always betweent8
andt9, i.e.,

t8,t1,t2,•••,t9

or

t8.t1.t2.•••.t8.

~b! Unrestricted diagrams@Fig. 1~b!#. In these diagrams, th
intermediatet ’s do not follow the above rules. Therefore, a
such diagrams are continuous whent9→t8, and do not con-
tribute to the discontinuity att95t8.

The restricted diagrams, instead, exist only fort8.t9 or
t8,t9 with a chain of intermediate states between them
the diagram contains more than one link, each integra
produces a factort82t9 whent8→t9. Therefore, the con-
tribution to the discontinuity of thenth derivative is given
only by the restricted diagrams that have a maximum on
intermediate vertices.

FIG. 1. General form of the Feynman-Goldstone diagrams c
tributing to the one-boson Green’s function. The blobs could
anything while they are connected.~a! Schematic representation o
restricted diagrams.~b! The same for unrestricted diagrams.
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In Ref. @34#, we have showed that the second moment
the strength distribution is related to the second derivative
the Green’s function. Here we extend the formalism
TDGF:

^nuH2un&5~ lim
t92t8→01

2 lim
t92t8→02

!
]2

]t9]t8
G~n,n;t92t8!

5(
m

Wm
2 ^C0uGnucm&^cmuGn

1uC0&

2(
m̄

Wm̄
2
^C0uGn

1ucm̄&^cm̄uGnuC0&. ~2.5!

The diagrams that contribute to the short-time second
rivative have no more than two interaction vertices. If w
subtract the ones contributing to the (^nuHun&)2 the only
diagrams that remain are restricted diagrams, which be
and end with an interaction vertex and have no intermed
state equal to the initial one@34#. It must be noted that in the
limit t92t850, the two vertices occur at the same para
etert and the propagator between them disappears, givin
contribution equal to the product of the two matrix elemen

The main difference with the zero temperature case@34#
is the fact that the fermions and bosons have a tempera
occupation probability different from zero. Therefore, t
hole and particle type of levels are washed up and all of th
contribute to the diagrams with some probability of bei
occupied~holes! or unoccupied~particles!. Besides, in this
case, it is not possible to neglect the negative TRPA ro
anymore, because both of them contribute to the diagra
depending on the temperature occupation probability of
boson.

III. SELF-ENERGY CORRECTION TO THE TDGF

In this section we will show the more important featur
of the lowest corrections to the unperturbed TDGF. We c
culate in detail, as an example, the self-energy of one sim
diagram~see Fig. 2!

-
e

FIG. 2. One of the lowest order correction to the vibration
temperature dependent Green’s function. An arrowed line descr
the particle propagation while a wavy line describes the vibratio
boson.
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F~t92t8!5
1

b5 (
1,2,3,4,l

V~1 ,2 ;l!V~3 ,4 ;l!V~2 ,3 ;GR!V~1 ,4 ;GR!

3 (
pn1

,pn2
,pn3

,pn4

(
kn

E dt1dt2

e2 ipn1
~t22t8!

ip12 «̃ 1

e2 ipn2
~t92t2!

ipn2
2 «̃ 2

e2 ipn3
~t12t9!

ipn3
2 «̃ 3

e2 ipn4
~t82t1!

ipn4
2 «̃ 4

3S 1

ikn2vl
2

1

ikn1vl
De2 ikn~t22t1!, ~3.1!
n-

flect
ng,
te-
-
ents,
wherei labels a particle state with energyẽ i5e i2m, l la-
bels a TRPA vibration with energyvl , V(1,2;l) is the
particle-vibration coupling strength,pni

5(2ni11)p/\b,

kn52np/\b are the imaginary Fourier transform freque
cies of fermions and bosons,ni ,n are integers, and the
temperature dependence is in theb factor. The two
terms present in the intermediate state of the boson re
the fact that it is necessary to include, on an equal footi
the negative-energy TRPA roots. After performing the in
gration on the intermediatet, making the sum on the imagi
nary frequencies and doing some algebraic rearrangem
we arrive at
ote
bosons, as

efore, we
r

F~t92t8!5
1

b (
kn5par

e2 ikn~t92t8!

2 (
1 ,2 ,3 ,4 ,l

V~1 ,2 ;l!V~3 ,4 ;l!V~2 ,3 ;GR!V~1 ,4 ;GR!

3H @~12n1
!~11nv!1n1

nv#~2n2
21!

~ ikn1 «̃41!~2 ikn1 «̃ 23!~ «̃ 212vl!
1

@~12n1
!~11nv!1n1

nv#~2n3
21!

~ ikn1 «̃ 41!~ ikn1 «̃ 32!~ ikn1 «̃ 312vl!

2
@n1

nv2~12n1
!~11nv!#

~ ikn1 «̃ 41!~ «̃ 121vl!~ ikn2 «̃ 132vl!
2

@~12n4
!~11nv!1n4

nv#~2n2
21!

~ ikn1 «̃ 41!~ ikn2 «̃ 23!~ ikn2 «̃ 241vl!

2
@~12n4

!~11nv!1n4
nv#~2n3

21!

~ ikn1 «̃ 41!~ ikn1 «̃ 32!~ «̃ 342vl!
2

@n4
nv2~12n4

!~11nv!#

~ ikn1 «̃ 41!~ ikn1 «̃ 421vl!~ «̃ 431vl!
J

2$same as above withvl→2vl%, ~3.2!

where«̃ i j 5 «̃ i2 «̃ j andnv5(ebvl21)21, n i
5(eb «̃ i11)21 are the Bose and Fermi temperature occupation probability. N

that the appearance of Bose occupation factors is a consequence of treating all the particle-hole vibrations as quasi
it is assumed in the TRPA approximation.

This expression can be developed in such a way that each time permutation diagram can be clearly identified. Ther
will rebuild the self-energy@Eq. ~3.2!#, corresponding to the Fig. 2, in order to analyze the differentt permutation and conside
the two solutions of the TRPA (6vl). Performing some algebraic calculation, we obtain

F~t92t8!5
1

b (
kn5par

e2 ikn~t92t8! (
1 ,2 ,3 ,4 ,l

V~1 ,2 ;l!V~3 ,4 ;l!V~2 ,3 ;GR!V~1 ,4 ;GR!

3H @~12n1
!~12n2

!n3
n4

~11nv!2n1
n2

~12n3
!~12n4

!nv#

~ ikn1 «̃ 41!~ ikn2 «̃ 23!~ ikn2 «̃ 132vl!

1
@~12n1

!~12n2
!n3

~12n4
!~11nv!2n1

n2
~12n3

!n4
nv#

~ ikn2 «̃ 132vl!~ ikn2 «̃ 23!~ «̃ 431vl!

1
@~12n1

!n2
n3

n4
~11nv!2n1

~12n2
!~12n3

!~12n4
!nv#

~ ikn2 «̃ 14!~ ikn2 «̃ 132vl!~ «̃ 121vl!

1
@n1

~12n2
!n3

n4
nv2~12n1

!n2
~12n3

!~12n4
!~11nv!#

~ ikn2 «̃ 23!~ ikn2 «̃ 241vl!~ «̃ 212vl!



56 3111TEMPERATURE DEPENDENCE AND FRAGMENTATION OF . . .
1
@~12n1

!~12n2
!~12n3

!n4
nv2n1

n2
n3

~12n4
!~11nv!#

~ ikn2 «̃ 14!~ ikn2 «̃ 241vl!~ «̃ 342vl!

1
@~12n1

!~12n2
!n3

n4
nv2n1

n2
~12n3

!~12n4
!~11nv!#

~ ikn2 «̃ 14!~ ikn2 «̃ 241vl!~ ikn2 «̃ 23!

1
@n1

~12n2
!n3

~12n4
!~11nv!2~12n1

!n2
~12n3

!n4
nv#

~ «̃ 142 «̃ 23!~ «̃ 431vl!~ ikn2 «̃ 14!

1
@n1

~12n2
!n3

~12n4
!~11nv!2~12n1

!n2
~12n3

!n4
nv#

~ «̃ 142 «̃ 23!~ «̃ 431vl!~2 ikn1 «̃ 23!

1
@~12n1

!n2
n3

~12n4
!~11nv!2n1

~12n2
!~12n3

!n4
nv#

~ «̃ 431vl!~ «̃ 121vl!~ ikn2 «̃132vl!

1
@~12n1

!n2
n3

~12n4
!~11nv!2n1

~12n2
!~12n3

!n4
nv#

~ «̃ 431vl!~ «̃ 121vl!~2 ikn2 «̃422vl!

1
@~12n1

!n2
~12n3

!n4
~11nv!2n1

~12n2
!n3

~12n4
!nv#

~ «̃ 231 «̃ 41!~ «̃ 212vl!~ ikn2 «̃ 14!

1
@~12n1

!n2
~12n3

!n4
~11nv!2n1

~12n2
!n3

~12n4
!nv#

~ «̃ 231 «̃ 41!~ «̃ 212vl!~2 ikn1 «̃ 23!
J

2$same as above withvl→2vl%. ~3.3!
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Each term of the above equation could be associated
a diagram that represents at permutation of the original one
It can be observed that the calculation of each term follo
well-defined rules.

The numerator of each term takes into account the B
and Fermi temperature occupation numbers and is ea
constructed looking at the circulation of the diagram~for
eacht permutation!. The particles that appear in the diagra
contribute with (12n) factors, while the holes contribut
with n factors. On the other hand, the bosons with posit
roots of the TRPA (1vl) contribute with (11nv) factors
and are represented by wavy lines with upward arrows, w
the negative roots (2vl) contribute withnv factors, being
represented by a wavy line with downward arrows.

For each term another always exists with the same
nominator that can be constructed changing the directio
all the arrows and consequently the temperature occupa
numbers, namely changing@(12n)↔n ,(11nv)↔nv].
This new diagram represents the permutation oft8↔t9 ~see
Fig. 2!. The sign between these two terms depends o
phase (2)A, whereA is the number of intermediate states
the diagram. The denominators follow the usual rules use
the NFT or Raileigh-Schro¨dinger perturbation theory. The
can be written as a product of the energy difference betw
the initial state and the intermediate states.

As an example, the second term of Eq.~3.3! represents
the t permutation of Fig. 3 and one can easily obtain
contribution following the previous rules.

In Ref. @32# the spreading width of the GMR is calculate
using the diagram of Fig. 2, but considering only two te
th

s

e
ily

e

le

e-
of
on

a

in

n

-

poral permutations, the terms 1 and 6 of Eq.~3.3!, and the
interchange ofvl→2vl . They neglect the other tempora
permutations assuming that they are only important if
vibrational state are strongly collective. Besides, they w
with the fermion-occupation numbers at zero temperatu
neglecting the variation produced on these numbers by
increasing temperature. This assumption implies neglec
the new configurations of particle-particle and hole-hole t
arise at finite temperature. They use, instead of the Eq.~3.3!,
the following one:

~12n1
!,~12n2

!,n3
,n4
→1, ~3.4!

producing

FIG. 3. t permutations of the diagram of Fig. 2. The two di
grams have the same denominator but all the thermal occupa
numbers are changed from particle to hole and vice versa. An
termediate wavy line, with an upward arrow, represents a posi
TRPA root while a downward arrow is a negative TRPA root.
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F~t92t8!5
1

b (
kn5par

e2 ikn~t92t8! (
1 ,2 ,3 ,4 ,l

V~1 ,2 ;l!V~3 ,4 ;l!V~2 ,3 ;GR!V~1 ,4 ;GR!

3H ~11nv!

~ ikn1 «̃ 41!~ ikn2 «̃ 23!~ ikn2 «̃ 132vl!
1

nv

~ ikn2 «̃ 14!~ ikn2 «̃ 241vl!~ ikn2 «̃ 23!

1
nv

~ ikn1 «̃ 41!~ ikn2 «̃ 23!~ ikn2 «̃ 131vl!
1

~11nv!

~ ikn2 «̃ 14!~ ikn2 «̃ 242vl!~ ikn2 «̃ 23!
J , ~3.5!
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that is, Eq.~17! of Ref. @32#.

IV. SPREADING WIDTH OF THE GMR

The spreading width of the GMR at finite temperatu
depends on the discontinuity of the second derivative of
Green’s function@see Eq.~2.5!#. The diagrams that contrib
ute to the width@34# are those that begin and end with a
interaction and have no intermediate state equal to the in
one. The relevant diagrams are some of the differentt per-
mutations of the diagrams shown in Fig. 4. In the NF
framework, these diagrams contribute to the leading or
correction of the energy of the one boson state.

However, different from the NFT that works with a
overcomplete basis of RPA bosons and particle holes,
prefer to work within a complete basis. In this case,
TRPA vertices are not considered interaction vertices
only the amplitude of the fermionic pair in the collectiv
state. The only interaction vertices considered are th
changing the number of bosons~or particle-hole pair! by 61
@34#. In this way the number of diagrams involved are r
duced drastically. On the other hand, the price we have
pay in order to work in a complete collective basis is to u
as intermediate states all the TRPA roots.

The calculation cannot be made in the same way as

FIG. 4. The leading-order correction to the energy of the o
boson state. All thet permutations~that are not in the figure! con-
tribute to the spreading width and must be included in the calc
tion.
e

al

er

e
e
t

se

-
to
e

as

been done at zero temperature@34#, because the Bose an
Fermi temperature occupation numbers are present in
sum of the different contributions. Therefore, we develop
a method to sum the diagrams that can be applied to
calculation of the spreading width at finite temperature.
Appendix A, we show how the Bose and Fermi occupat
numbers can be factorized summing conveniently the con
butions tos2.

From the above explanation we see that the relevant
grams contributing tos2 are those restricted diagrams th
have two interactions changing the number of bosons~or
particle-hole pair! by 61, linked to the initial or final boson
line. These vertices must act between the annihilation of
initial boson and the creation of the final one.

We observe, within our method, that the contribution
the relevant diagrams to the discontinuity of the second
rivative of the temperature boson Green’s function~see Ap-
pendix A! is reduced to the square of the matrix eleme
between one-boson and two-boson state. The main dif
ence with the zero temperature case is that these matrix
ments depend on the Fermi occupation numbers only, w
the Bose occupation numbers appear in the definition ofs2

because of the temperature-dependent two-boson propag
The final conclusion is that the only intermediate sta

that can be reached from the one-boson state, through
two-body interaction in leading order in perturbation theo
are the two-boson states shown diagrammatically in Fig
Those of Fig. 5~a! are the forward matrix element betwee

-

-

FIG. 5. Two-body matrix elements~including direct and ex-
change parts! that contribute to the one-boson two-bosons effect
interaction vertex.~a! Diagrammatic representation of the forwa
vertex Eq.~4.1! and ~b! of the backward vertex Eq.~4.2!.
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one and two-boson states, while those of Fig. 5~b! are related
to the backward vertex of the TRPA and show the dep
dence with the ground state fluctuations. It must be no
that these diagrams are temperature dependent, so both
e
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a
he

in

ia
o

th

-

-
d

for-

ward and backward vertices, have the possibility that
two-boson states have positive~negative! energies, i.e.,
propagate in the positive~negative! direction oft.

The vertices of Fig. 5 are
^lnuHul1n1 ,l2n2&5 (
1 ,2 ,3

$@X
12

~n1!
~l1!X13

~n! ~l!1Y
12

~n1!
~l1!Y13

~n! ~l!#L 23

~n2!
~l2!@~12n1

!n2
n3

2n1
~12n2

!~12n3
!#

1X
23

~n2!
~l2!Y13

~n1!
~l1!L 12

~n! ~l!@n1
n2

~12n3
!2~12n1

!~12n2
!n3

#%

3A2l111A2l211~2 !1131l21lH l l1 l2

3 2 1
JA11dn1n2

~4.1!

and

^0uHu@l1n1 ,l2n2#l ,ln& (
1 ,2 ,3

$@X
12

~n1!
~l1!Y13

~n! ~l!1X13

~n! ~l!Y12

~n1!
~l1!#L 23

~n2!
~l2!@~12n1

!n2
n3

2n1
~12n2

!~12n3
!#

1Y
23

~n2!
~l2!X13

~n1!
~l1!L 12

~n! ~l!@n1
n2

~12n3
!2~12n1

!~12n2
!n3

#%A2l111A2l211~2 !1131l21lH l l1 l2

3 2 1
J

3A11dn1n2
, ~4.2!
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where X
12

(n1)(l1) and Y13

(n) (l) are the TRPA forward and

backward amplitudes, respectively. The scattering matrix
ements from one- to two-boson states are

L 8
~n!

~l!5 (
1 ,2

@X12

~n! ~l!^2uVu81&1Y12

~n! ~l!

3^1uVu82&#. ~4.3!

It is important to note that the scattering matrix eleme
change sign depending upon whether the levelsj and j 8
correspond to particle or hole. Therefore, there are big c
cellations either for finite or zero temperature. Finally, t
spreading width of the GMR is

s25 (
l1 ,n1 ,l2 ,n2

$u^lnuHul1n1 ,l2n2&u2

3@~nv1
11!~nv2

11!2nv1
nv2

#

1u^0uHu@l1n1 ,l2n2#l ,ln&u2

3@~nv1
11!~nv2

11!2nv1
nv2

#%. ~4.4!

This final expression for the spreading width consider
the changing betweenv1↔v2 is summarized in Fig. 6. It
considers all the contributions coming from the NFT d
grams up to the leading order. It depends only on the tw
body interaction, the temperature, and the collectivity of
two bosons that mix with the giant resonance.

Making the limitT→0 in Eq.~4.4!, we obtain the spread
ing width calculated in Ref.@34#. In this limit, the Fermi
occupation numbers verify that (12ni)→1 ~for particle! and
l-

s

n-

g

-
-

e

ni→1 ~for hole!, while the Bose occupation-numbers veri
that nv→0, surviving only the particle-hole excitations.

V. ISOSCALAR-ISOVECTOR SEPARABLE INTERACTION

In this paper we discuss the properties of the GMR in
framework of schematic separable forces. In this section
obtain, for normal nucleus at finite temperature, the TR
solutions of the multipole particle-hole Hamiltonian. We d
fine the single particle (Hsp) and the multipole@H(l)#

FIG. 6. Schematic representation of the contribution to
square of the spreading width~second moment of the strength fun
tion!. It must be noted that the two vertices occur at the samet,
which implies that there is no propagator between them. It me
that these diagrams have no energy denominators.~a! Contributions
from the forward one-boson two-bosons matrix element.~b! Con-
tributions from the backward one-boson two-bosons matrix e
ment. These diagrams are temperature dependent, so the po
and negative TRPA roots in the intermediate two-bosons state m
be considered.
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Hamiltonians following Refs.@41,36#

Hsp5( ,p« a
†~p!a~p!, ~5.1!

wherep5n(p) labels neutrons~protons!, a
†(p)@a2

(p)# are

the fermion creation~annihilation! operators, and«  are the
single-particle energies. The two-body Hamiltonian is

H~l!52S k01k112k8

2 D( mQlm
n Qlm

n†

2S k01k122k8

2 D( mQlm
p Qlm

p†

2S k02k1

2 D( m@Qlm
p Qlm

n†
1Qlm

n Qlm
p†

#, ~5.2!

where the quantitiesk0, k1 are the coupling constant of th
isoscalar and isovector particle-hole residual interactio
and their relation is obtained from the ratio between the is
calar and isovector optical potentials@42#. The parameterk8
is the coupling constant for the admixture between the is
calar and isovector modes in the presence of neutron exc
Qlm

p andQlm
n are the multipole particle-hole operators bu

out of neutrons and protons, respectively, and are define
the following way:

Qlm
p 5

~21!

l̂
( 1>2

Mp~1 ,2 ;l!@bp
†~1 ,2 ;lm!

1~2 !l2mbp~1 ,2 ;l2m!#, ~5.3!

with l̂5A2l11 and

bp
†~1 ,2 ;lm!5@a1

† ~p!a2
~p!#lm

5 (
m2

,m1

^21m2
m1

ulm&a2m2

†

3~p!~2 !12m1a12m1
~p!, ~5.4!

where the index is used to denote either the state above
below the Fermi surface. The coefficientsMp(1 ,2 ;l) are
defined as

Mp~1 ,2 ;l!5^1uu f l
p~r !Yluu2& i

l 2
2 l 1

1l

5Mp~2 ,1 ;l!~2 !1221l. ~5.5!

We use for the radial dependence off l
p(r ), peaked around

the nuclear surface,f l
p(r )5]W(r )/]r , where W(r ) is a

Wood Saxon potential.
The creation operator of a collective excitation is defin

in the same way as it is done in the zero-temperature R

Gnlm
† 5( p,1>2

X12

~n!pbp
†~1 ,2 ;lm!

2~2 !l2mY12

~n!pbp~1 ,2 ;l2m!, ~5.6!
s,
s-

s-
ss.

in

r

d
:

where this operator~as Qlm
p ) includes particle-particle

(« 1
,« 2

.m), particle-hole (« 1
.m, « 2

,m), and hole-hole

(« 1
,« 2

,m) excitations. The indexn specifies the TRPA
root number.

The linearization condition reads

^@Hsp1H~l!,Gnlm
† #&5\vnGnlm

† , ~5.7!

where ^ & denotes the grand canonical ensemble avera
This leads to the soscalar-isovector dispersion relation, fr
where either thevn TRPA energies or the isovector an
isoscalar strength can be obtained

Ln
p

Ln
n

5
l̂22~k01k112k8!F n

n

~k02k1!F n
p

, ~5.8!

with

F n
pLn

p5 (
1>2Pp

~n2
2n1

!Mp~1 ,2 ;l!@X12

~n!p1Y12

~n!p#

~5.9!

and

F n
p5 (

1>2Pp
~n2

2n1
!Mp~1 ,2 ;l!2

3F 1

« 12

p 2\v
n1

1

« 12

p 1\vn
G . ~5.10!

The amplitudes that define the TRPA bosons are given b

X12

~n!p5
Ln

pMp~1 ,2 ;l!

« 12

p 2\vn

, Y12

~n!p5
Ln

pMp~1 ,2 ;l!

« 12

p 1\vn

.

~5.11!

The particle-vibration coupling strength,Ln
p , is deter-

mined through Eq.~5.8! and the normalization condition o
the TRPA bosons

~Ln
n!225 (

j 1> j 2Pn
~nj 2

2nj 1
!Mn~ j 1 ,2 ;l!2

4« j 1 j 2

n \vn

~« j 1 j 2

n !22~\vn!2

1 (
j 1> j 2Pp

F l̂22~k01k112k8!F n
n

~k02k1!F n
p G2

3~nj 2
2nj 1

!Mp~ j 1 , j 2 ;l!2
4« j 1 j 2

p \vn

~« j 1 j 2

p !22~\vn!2
.

~5.12!

VI. RESULTS

In the present section we apply our model to the gi
dipole resonance~GDR!. We have calculated the spreadin
width of the GDR 12 in the 208Pb and 90Zr isotopes. The
TRPA roots are obtained using a isoscalar-isovector se
rable interaction, developed in the previous section. For
radial dependence of the interaction, peaked around
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nuclear surface, we use the]V(r )/]r , with V(r ) the Woods-
Saxon potential

V~r !5
2V0

F11expS r 2R0

a D G , ~6.1!

with

V0550 MeV, R05r 0A1/3, a50.5 fm, r 051.2 fm.
~6.2!

The set of single-particle levels was obtained using
spherical harmonic oscillator levels with the corrections d
to the centrifugal and spin-orbit interactions@43#

E

\v
5N1

3

2
2k l 2mS l ~ l 11!2

N~N13!

2 D for j 5 l 11/2

E

\v
5N1

3

2
2k~ l 11!2mS l ~ l 11!2

N~N13!

2 D
for j 5 l 21/2, ~6.3!

where \v541 A21/3 with A the mass number of th
nucleus, andN, j ,l are the principal quantum number and t
total and orbital angular momentum quantum numbers,
spectively.k andm are chosen to obtain the best fit for ea
nucleus@44#.

We have defined the single-particle levels starting fr
N50 up to 3 shells over the Fermi level. These are go
enough for our calculations only for the levels around
Fermi surface, where we use the neighboring odd isot
data of the208Pb and90Zr. The change of the single-particl
energies around the Fermi surface has been done, in
cases, taking care of keeping the energy-baricenter of
exchanged levels in the same position. Thermal Hartr
Fock calculations@45# have shown that the single-partic
energies have weak temperature dependence. Therefore
use the zero temperature energies and wave function
over our calculations.

The isoscalar strengthk0 is determined by fixing the en
ergy of the first collective TRPA root. The isovector streng
k1 and the coupling constant of the two modes are de
mined using the following formulas@41,36#:
e
e

e-

d
e
e

th
he
e-

we
all

r-

k0

k1
50.21~312l!

V1

V0
,

k852
1

2
k1

N2Z

A
, ~6.4!

whereV15120 MeV andV05250 MeV are the depth of
the isovector and isoscalar potentials, respectively.N, Z, and
A are the neutron, proton, and mass numbers of the co
sponding nucleus.

For the calculation of the spreading width of the GDR 12

in the 208 Pb and90 Zr we use, as intermediate bosons, all t
TRPA roots ~collective and noncollective ones! with
excitation energies vn<30 MeV and multipolarities
l50,1,2,3,4,5.

The ratio of the isoscalar-isovector strength of the se
rable interaction is checked using the energy of the availa
experimental data, for the adiabatic and giant roots at z
temperature, for all the multipolarities, verifying quite we
the relations of Eq.~6.4!.

The chemical potentialmp is adjusted for each tempera
ture in such a way that the particle number average is c
served:

^N&5 (
j nPn

nj n
, ^P&5 (

j pPp
nj p

. ~6.5!

In Table I ~Table III! we show the variation with the
temperature of the GDR energy and the proton and neu
chemical potentials for208Pb (90Zr!. In Table II ~Table IV!
are shown, for the208Pb (90Zr), the temperature dependenc
of the partial contributions to the square of the spread
width s2. These contributions correspond to the sum of
the TRPA roots for a given angular momentum of t
intermediate-boson states of the diagrams of Fig. 6@see Eq.
~4.4!#.

TABLE I. Temperature dependence of the GDR energy and
proton and neutron chemical potentials, for the208Pb. The GDR
energy, chemical potentials, and temperature are given in MeV

T51 T52 T53 T54 T55

vGDR 14.06 13.85 13.63 13.41 13.22
mn –0.37 –0.64 –1.01 –1.50 –2.10
mp –0.30 –0.55 –0.97 –1.54 –2.27
e

3
7
1
1
4

TABLE II. Relative contribution@Eq. ~4.4!# to the square of the spreading widths2 of the diagrams of
Fig. 6 for the208Pb.B1 is the contribution of Fig. 6~a! andB2 of Fig. 6~b!, both of them including the chang
betweenl1↔l2, l1 andl2 being the quantum numbers of the intermediate boson states.

Int. Bosons T51 T52 T53 T54 T55

l1
p l2

p B1 B2 B1 B2 B1 B2 B1 B2 B1 B2

1201 0.43 0.06 0.37 0.04 0.32 0.03 0.31 0.03 0.31 0.0
2112 3.18 0.58 3.19 0.66 3.06 0.63 3.14 0.61 3.24 0.5
3221 5.12 1.08 6.00 1.48 6.68 1.60 7.08 1.72 9.23 1.7
4132 5.65 1.35 6.70 2.09 7.71 2.31 9.32 2.36 11.48 2.3
5241 5.92 0.90 6.09 0.99 6.59 0.97 8.02 1.00 10.85 1.0
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The final results of the calculation of the GDR spread
width 12, for the 208Pb and90Zr isotopes, are shown in Fig
7 and Fig. 8, respectively.

VII. CONCLUSIONS

Most of the approaches to evaluate the spreading w
consider thats is produced by the admixture between t
GMR and more complicated structures, mainly two-particl
two-hole states. If the ground state correlations are con
ered through an RPA or TRPA treatment of the collect
states, the problem gets more complicated. In Ref.@34# we
have developed a method that considers all the contribut
to the spreading width of the GMR, corresponding to t
leading order in the NFT perturbation theory.

In this paper, we extended the calculation of the spread
width at finite temperature, using the short time discontinu
of the second derivative of the collective Green’s functio
We extend the method of Ref.@37# to temperature dependen
propagators, which introduce temperature dependent p
abilities for both fermionic and bosonic states. In this wa
we can define an effective interaction vertex between o
boson and two-bosons of the TRPA that simplify greatly
calculation. The ground state fluctuations are conside
through the so-called backward vertex@see Fig. 5~b!#.

It has been suggested@46# that there exist two main fac
tors that produce the strong increase of the spreading w
with the temperature, the fluctuations of the nuclear surfa
and the transfer angular momentum, but neither facto
enough to explain the experimental data, mainly in the
gion of medium and high temperatures. Therefore, we c
sider it of interest to see if the spreading width of the GM
increases continuously with the temperature@33# or saturates
at a certain temperature@32#. Our model is based in the sam
physical concepts as Ref.@32#, but our method of working in
a complete basis of collective TRPA states, instead of us
an overcomplete basis of bosons and particle-holes, yiel

TABLE III. Temperature dependence of the GDR energy a
the proton and neutron chemical potentials for the90Zr. The GDR
energy, chemical potentials, and temperature are given in MeV

T51 T52 T53 T54 T55

vGDR 16.70 16.63 16.54 16.48 16.39
mn –1.56 –2.15 –2.76 –3.73 –4.05
mp –1.22 –1.48 –1.92 –2.51 –3.22
th

–
d-

ns
e

g
y
.

b-
,
e-
e
d

th
e,
is
-
-

g
a

factorization of the result that reduced drastically the num
of diagrams to calculate. This method ensures that all
contributions at leading order are considered, without a
approximation neither over the temperature occupation pr
abilities nor over the diagrams involved. It would be al
possible to solve the TRPA in the continuum using Gam
resonances@22,24# in order to consider both together, th
spreading and the escaping width of the resonance.

We have considered a modelistic isovector-isoscalar se
rable interaction that includes most of the physical proper
of interest. We observed that the spreading width increa
with the temperature, as was pointed out in Ref.@33#, with-
out saturation until 5 MeV~see Fig. 7 and Fig. 8!. We do not
discard a possible saturation at higher temperatures.

Another important aspect of this work was related to t
study of the temporal permutations of the diagrams cont
uting to the self-energy. We observed that it is possible
reconstruct the finite temperature results inserting the co
sponding occupation factors in the zero-temperature exp
sion. For each fermion~boson! in the diagrams at zero tem
perature, one has to add only the occupation number of
fermion ~boson! to obtain the corresponding diagrams at
nite temperature. Additionally, the negative TRPA solutio

d

FIG. 7. Spreading width of the giant dipole resonance~12) of
208Pb as a function of the temperature, given by Eq.~4.4!.
e

6
1
2
9
8

TABLE IV. Relative contribution@Eq. ~4.4!# to the square of the spreading widths2 of the diagrams of
Fig. 6 for the90Zr. B1 is the contribution of Fig. 6~a! andB2 of Fig. 6~b!, both of them including the chang
betweenl1↔l2, wherel1 andl2 are the quantum numbers of the intermediate boson states.

Int. Bosons T51 T52 T53 T54 T55

l1
pl2

p B1 B2 B1 B2 B1 B2 B1 B2 B1 B2

1201 1.02 0.17 0.96 0.11 0.96 0.09 1.05 0.07 1.03 0.5
2112 2.53 1.10 3.37 2.16 4.27 3.12 6.37 3.66 6.78 2.7
3221 2.51 1.09 3.60 2.48 5.13 3.36 8.72 5.20 9.54 4.7
4132 4.82 0.93 4.48 0.75 4.56 0.65 4.93 0.51 6.11 0.4
5241 9.29 3.22 8.76 2.89 8.99 2.50 9.45 1.67 14.04 1.9
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FIG. 8. Spreading width of the giant dipole resonance 12 of
90Zr as a function of the temperature, given by Eq.~4.4!.
must be included to consider all the contributions to t
spreading width.

APPENDIX A

In this appendix we show that the Bose and Fermi oc
pation numbers could be factorized if one can sum con
niently the relevant diagrams contributing to the spread
width.

We consider the case in which there are not two eq
fermionic states. Therefore, one has to consider the contr
tions to the self-energy from the diagrams that have t
triangles@Fig. 4~c!, 4~d!, 4~e!, 4~f!#. We will choose, as an
example, the differentt permutations of Figs. 4~c!, 4~d!,
4~e!, 4~f! that have the following Fermi occupation numbe
n1

n2
(12n3

)n4
n5

(12n6
) independently of the Bose oc

cupation numbers. We will also take into account thet per-
mutations with the opposite occupation numbers, i.e., all
diagrams that can be obtained changing@(12ni)↔ni ,
(11nv)↔nv].

There is not permutation of Fig. 4~c! with these Fermi
occupation numbers. Threet permutations of Fig. 4~d! have
these Fermi occupation numbers. Following the rules giv
in Sec. III, the sum of the contributions to the self-energy
equal to
he

are
1

b (
kn5par

e2ikn~t92t8! (
1,2,3,4,5,6,l1

V~1 ,3 ;GR!V~6 ,5 ;GR!V~2 ,3 ,4 ,5!V~1 ,2 ;l1!V~4 ,6 ;l1!

3H @n1
n2

~12n3
!n4

n5
~12n6

!nv1
1~12n1

!~12n2
!n3

~12n4
!~12n5

!n6
~11nv1

!#

~ ikn2 «̃ 65!~ ikn2 «̃ 13!~ ikn2 «̃ 232v1!~ «̃ 461v1!

1
@n1

n2
~12n3

!n4
n5

~12n6
!~11nv1

!1~12n1
!~12n2

!n3
~12n4

!~12n5
!n6

nv1
#

~ ikn2 «̃ 65!~ ikn2 «̃ 13!~ ikn2 «̃ 231v1!~ «̃ 462v1!
J , ~A1!

where GR labels the giant resonance TRPA root. The sum overl1 implies a sum over all the possible multipolarities of t
complete collective basis of TRPA roots.

Threet permutations of the Fig. 4~e! have also these Fermi occupation numbers, the sum of them being equal to

1

b (
kn5even

e2 ikn~t92t8! (
1 ,2 ,3 ,4 ,5 ,6 ,l2

V~1 ,3 ;GR!V~6 ,5 ;GR!V~1 ,2 ,4 ,6!V~2 ,3 ;l2!V~4 ,5 ;l2!

3H @n1
n2

~12n3
!n4

n5
~12n6

!~11nv2
!1~12n1

!~12n2
!n3

~12n4
!~12n5

!n6
nv2

#

~ ikn2 «̃ 65!~ ikn2 «̃ 13!~ ikn2 «̃ 642v2!~ «̃ 321v2!

1
@n1

n2
~12n3

!n4
n5

~12n6
!nv2

1~12n1
!~12n2

!n3
~12n4

!~12n5
!n6

~11nv2
!#

~ ikn2 «̃ 65!~ ikn2 «̃ 13!~ ikn2 «̃ 641v2!~ «̃ 322v2!
J . ~A2!

Twenty t permutations of Fig. 4~f! contribute with the same Fermi occupation probabilities. The sum of all of them
equal to
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1

b (
kn5even

e2 ikn~t92t8! (
1 ,2 ,3 ,4 ,5 ,6 ,l1 ,l2

V~1 ,3 ;GR!V~6 ,5 ,GR!V~1 ,2 ;l1!V~4 ,6 ;l1!V~2 ,3 ;l2!V~4 ,5 ;l2!

3
1

~ ikn2 «̃ 65!~ ikn2 «̃ 13!~ ikn2v12v2!

3H n1
n2

~12n3
!n4

n5
~12n6

!~11nv2
!1~12n1

!~12n2
!n3

~12n4
!~12n5

!n6
nv2

~ ikn2 «̃ 642v2!~ «̃ 321v2!

1
n1

n2
~12n3

!n4
n5

~12n6
!nv1

1~12n1
!~12n2

!n3
~12n4

!~12n5
!n6

~11nv1
!

~ ikn2 «̃ 232v1!~ «̃ 461v1!
J

2$same as above withv1→2v1%2$same as above withv2→2v2%

1$same as above withv1→2v1 andv2→2v2%. ~A3!

One way to factorize conveniently the differentt permutation is using the property that verifies the TRPA solutions
separable interactions~see Appendix B!. This expression relates the fermionic two-body interaction with the TRPA ferm
boson matrix elements, and is given by

V~ i , j ,k,l !52(
n
V~ i , j ;ln!V~k,l ;ln!F 1

«̃ i j 2vn

2
1

«̃ i j 1vn
G , ~A4!

where the sum is over all the TRPA roots with multipolarityl, and is valid for any particle-hole statei , j .
Replacing the corresponding fermionic matrix element in the Eq.~A1! and Eq.~A2!, and summing for all thet permuta-

tions, we arrive to the result

1

b (
kn5even

e2 ikn~t92t8! (
1 ,2 ,3 ,4 ,5 ,6 ,l1 ,l2

@~11nv1
!~11nv2

!2nv1
nv2

#

~ ikn2v12v2!

V~4 ,5 ;l2!V~65 ,GR!V~4 ,6 ;l1!

~ ikn2 «̃ 65!~ «̃ 642v1!

3
V~1 ,3 ;GR!V~1 ,2 ;l1!V~2 ,3 ;l2!

~ «̃ 232v2!~ ikn2 «̃ 13!
@~12n1

!~12n2
!n3

~12n4
!~12n5

!n6
1n1

n2
~12n3

!n4
n5

~12n6
!#

2$same as above withv1→2v1%2$same as above withv2→2v2%

1$same as above withv1→2v1 and v2→2v2%. ~A5!

In this expression are factorized the Bose and the Fermi occupation numbers.
If we make a similar analysis, for the reverse circulation of the triangle, and we sum it up with the Eq.~A5! we obtain

1

b (
kn5even

e2 ikn~t92t8! (
1 ,2 ,3 ,4 ,5 ,6 ,l1 ,l2

@~11nv1
!~11nv2

!2nv1
nv2

#

~ ikn2v12v2!
@n1

n2
~12n3

!2~12n1
!~12n2

!n3
#

3
V~1 ,3 ;GR!V~1 ,2 ;l1!V~2 ,3 ;l2!

~ «̃ 232v2!~ ikn2 «̃ 13!
@n4

n5
~12n6

!2~12n4
!~12n5

!n6
#

3
V~4 ,5 ;l2!V~6 ,5 ,GR!V~4 ,6 ;l1!

~ ikn2 «̃ 65!~ «̃ 642v1!
2$same as above withv1→2v1%2$same as above withv2→2v2%

1$same as above withv1→2v1 and v2→2v2%, ~A6!

where, in this expression, three well-differentiated factors can be seen. The first is related to the two intermediat
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propagators and depends on the energy and occupation numbers of these bosons. The other two factors represent
element between one-boson and two-boson states and depend on the Fermi occupation numbers of the triangles,
fermion interaction, and the particle-hole amplitudes in the TRPA collective states.

APPENDIX B

The TRPA solutions verify the following rule when a separable isoscalar-isovector interaction is used. Expand
matrix element of any particle-hole operator between a particle-hole state and the ground state in terms of the
distribution over the TRPA bosons, we arrive at

(
n
F n

rLn
rFLn

r1Mr1~1 ,2 ,l!

«
12

r1 2\vn

2
Ln

r1Mr1~æ1 ,2 ,l!

«
12

r1 1\vn
G5Mr~1 ,2 ,l!dr1p , ~B1!

where the sum is over all the TRPA rootsn and r,r1 label neutron or proton states. This expression is valid for
particle-hole state1 ,2 for either proton or neutrons. Looking at the dispersion relation@Eq. ~5.8!#, and replacing in the
equation above, we obtain

(
n

Ln
n2F 1

« 12

n 2\vn

2
1

« 12

n 1\vn
G5

~k01k112k8!

l̂2
,

(
n

Ln
p2F 1

« 12

p 2\vn

2
1

« 12

p 1\vn
G5

~k01k122k8!

l̂2
, ~B2!

(
n

Ln
pLn

p1F 1

« 12

p 2\vn

2c1« 12

p 1\vnG5
~k02k1!

l̂2
.

These Equations could also be useful for checking the TRPA results.
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