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1S, pairing correlations in relativistic nuclear matter and the two-nucleon virtual state
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We use the Gorkov formulation of the Dirac-Hartree-Fock-Bogoliubov approximation to nuclear pairing to
study the!S, nucleon-nucleon correlations in nuclear matter. We find the short-range correlations'&the
pairing fields to be almost identical to those of the two-nucleon virtual state. We obtain mutually consistent
results for the pairing fields, using several different sets of effective interaction parameters, when we demand
that each of these sets places the virtual-state pole at its physical lo¢&0&%%6-28187)03312-§

PACS numbsgs): 21.65+f, 21.30~x, 21.60.Jz, 74.20.Fg

The nonrelativistic BCS and Hartree-Fock-Bogoliubov vide a good description of the two-nucleds, virtual state,
(HFB) approximations have been used with success to studyit is to furnish a good description ofS, pairing in nuclear
pairing in nuclear physics, both years apgb-7] and still  matter.
today [8-16]. Pairing approximations provide a simple The HFB approximation introduces short-range two-
means of extending the independent-particle approximationucleon correlations through the pairing fields and their mo-
to one which includes the effects of the binding energy andnentum dependence. These correlations have been investi-
short-range correlations associated with bound pairs ofiated in recent years in nonrelativistic models of nuclear
nucleons in the nuclear medium. The long-range correlationpairing [11,14-16. In particular, the close association be-
associated with collective phenomena in nuclei are similarlytween the short-range correlations of the two-nuclé&y
described using the nonrelativistic random-phase approximartual state and those of th&S, pairing fields was investi-
tion (RPA). gated in Ref[15]. We investigate the same association in the

On the other hand, it is well known that nonrelativistic relativistic model and reach a similar but stronger conclu-
independent-particle approaches using realistic two-body insion: the short-range correlations of the pairing field are al-
teractions have difficulties in accounting for basic phenom-most identical to those of the two-nucleon virtual state. For
ena, such as the spin-orbit part of the nucleon-nucleus intethe relativistic interactions we have used, the short-range re-
action and the saturation properties of nuclear matter. Thegaulsion and medium-range attraction resulting from the ex-
properties can be fairly easily described in a relativistic for-change of effective mesons provide a description of the
mulation, in which effective mesons are exchanged betweeshort-range correlations in very good agreement with those
Dirac nucleons. The success of the relativistic mean-fieldf the two-nucleon virtual state, deduced from realistic
approach, initially developed by Walecka and collaboratorswucleon-nucleon potential models. By requiring that the in-
and later by many othergl7—24, invited its extension to teractions also reproduce the position of the virtual-state pole
approximations that could take into account the residual corer, equivalently, the two-nucleon singlet scattering length,
relations between nucleons. we will show that the effective relativistic interactions can

Consistent relativistic formulations of both the RPA andprovide a consistent description of pairing, both among
the HFB[25-2§ have thus been developed. Of the latter, thethemselves and with the nonrelativistic calculations.
authors of Ref[25] derived self-consistent equations for the
components of the relativistic pairing field but performed no
calculations. The results obtained in Ré#6] and[27], us-
ing a zero-range model and a nonrelativistic reduction of the

pairing equations, respectively, are generally much larger In a two-particle system, bound-state correlations can be

than those obtained in nonrelativistic calculations, aIthougHoughl3t’ Elassmed as glt?er gsy(rjnptpth orllshbort;rr]an%g. d‘_l'he
both of the relativistic calculations used interaction param—asymp olic ones are determined principally by the binding

eters that were fit to yield the saturation point of nuclearS"€r@y. while the short-range ones depend on the high-
omentum components of the wave function. This can be

matter. Such results would indicate that other aspects of thg b ning th in which a bound pai
interaction are involved in pairing than those necessary tg €N by €xamining the manner in which a bound pair appears

describe the bulk characteristics of nuclei and of nucleaf” the two-bodyT matrix, T(E). The T matrix satisfies the

matter. The crudeness of the calculations, however, do nd'f'tegral equation

permit a firm conclusion to be reached. The results obtained

in the fully relativistic finite-range calculations of Rg¢28] T(E)=V+VGo(E)T(E), @
are very similar and do permit such a conclusion. Here we

will show that, in addition to describing the bulk properties whereV is the two-body interaction an@y(E) is the free
of nuclear matter, a nucleon-nucleon interaction must protwo-body propagator. A bound state appears inTtheatrix

PAIRING AND TWO-NUCLEON CORRELATIONS
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as a pole at a negative value of the enefgy, —€,, where  would examine the poles and respective vertex functions of

€, is the binding energy of the pair. We then have the G matrix as advocated years ago by Emgy8]. Such an
approach has been used by various autf2®s-31]. We will
T(E)=d df+T(E), ) use instead the HFB apprqxima_tion. It too has been used to
E+e study bound-state correlations in nuclear maftet,15,16

) ) » and to even estimate deuteron production in heavy-ion colli-
with T.(E) the continuum(positive energy part of theT sions[14].

matrix andd the bound-state vertex function. Substitution of
the latter expression into the integral equation immediatel
yields an equation for the vertex function,

We can lend force to our use of the HFB approximation to
%tudy bound-state correlations by analyzing qualitatively the
manner in which the one-body HFB approach takes into ac-
d=VGy(—€,)d. (3)  countthe two-body pairing bound state. We begin by observ-
ing that a bound-state vertex functidnof the T or G matrix
The vertex function describes the momentum dependencean be considered as an operator that converts a two-body
(spatial dependentef the bound state and is closely related bound state into two single particles. We could instead con-
to its wave function. By rewriting the equation for the vertex sider this a one-body operator 6) neglecting the particle
function as number of the bound state arié) considering one of the
outgoing particles as an entering hole. The effect of the ver-
d=(—€—Ho)Go(— €p)d=VCo( — n)d, 4 tex function would then be the conversion of a hole to a

we can identify the bound-state wave function asparticlg. Th_is is just what the pairing fieldy, of th_e HFB

=Gy~ €,)d. In this last expression, we can see the rOugerlp.)proxmatlon dges. ﬁnalggously, we can qssomate .the ad-

division of the correlations into asymptotic ones determined®int vertex functiond’, which converts two single particles

by the singularity of the Green’s functioGy(— €,), and tithe two-body bound state, with the conjugate pairing field,

short-range ones contained in the high momentum compa, which converts a particle to a hole.

nents of the vertex functiord. To obtain a complete one-body description, we must take
The two-nucleon system in the vacuum has a bound statiato account the propagation of particles and holes as well as

in the isospin one?S;-3D; channel — the deuteron. In the the conversion of one to the other. A HFB formalism that

isospin zero,'S, channel, where we will study pairing, the succeeds in unifying these ingredients simply and clearly is

two-nucleon system in the vacuum has no bound state. the Gorkov ond32]. Although infrequently used in nonrel-

does have a virtual state, however, with~—0.05 fm~*  ativistic studies of pairing, the formalism has served as the

and e,=k?/M~140 keV, corresponding to a two-nucleon basis for various relativistic studi¢&5,27,28. This is due,

singlet scattering lengtla,=1/k,|~23 fm. An expansion atleastin part, to its natural expression in terms of the propa-

similar to that of Eq(2) can still be performed to extract the gator language common to field-theoretical approaches.

contribution to theT matrix of the virtual state. Because the  The Gorkov formulation of pairing extends the usual par-

energy of this state is extremely small, its contribution to theticle propagatoiG(x—x') to one of the form

T matrix dominates the low-energy scattering and essentially

determines the short-range correlations in #83 channel.

The short-range correlations determined by the momentum G(x—x") F(x—x")

dependence of the vertex function of the virtual stdi€q), ~ o= N

are thus to good approximation given by the momentum de- F(x=x)  G(x=x")

pendence of the half-on-shells, T matrix at zero energy,

t10(0,0;0). Wehave from the expression analogous to Eg. _
2), in which G(x—x") describes the propagation of holes in the

medium and the anomalous propagaf(x—x') and its

conjugateF (x—x') describe the conversion of holes to par-
ticles and particles to holes, respectively. Inverting the rea-
(5) soning that lead us from the vertex functidrto the pairing
) ) ) field A, we can interpret the anomalous propagator and its
Note that the asymptotic properties of the virtual state alsgopjugate as terms describing the overlap between the two-
play a role here, by determining the magnitude of the contripayticle bound state and the two single particles. We thus
bution of the virtual state to th& matrix through the factor expect the anomalous propagators to contain information

1/, . The short-range correlations contained in ghéepen-  ahout the relative motion of the two particles in the bound
dence can be extracted unambiguously, however, by normajsjr.

izing both sides of the equation to their valuegjat0.

To look for general two-particle correlations in nuclear
matter, one could study the Brueckr@matrix. In this gen-
eralization of the two-particl@ matrix of Eq.(1), the propa-
gator Go(E) is now a many-body operator that, beside de- We sketch here the development of a Dirac version of
scribing the two-body propagation, must take into accountsorkov’s self-consistent particle-hole propagd®@8]. To do
the effects of Pauli blocking and of interaction with the this, we begin with the following ansatz to the effective
nuclear medium. To look for bound-state correlations, onesingle-particle Lagrangian:

1
tlo(q,O;O):<Q|T10(E:0)|k:0>’”v<Q|dv>6_<du|0>-

THE GORKOV FORMALISM
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T ) the isospin space ar@l is the charge conjugation matrix. We
f dt Leﬁ:f A d™ {g(x) (i ¥,0" = M) h(x) S(x—X") note that, up to a factor of, and a phase, the isospin dou-
blet 1 is the time reverse of.

+MZ(X) Yo (X) (X—X") The requirement that the effective Lagrangian be Hermit-
. ian yields the following conditions on the self-energy and
— ()2 (X=X")h(x") pairing fields:
1— _
+ SV AX=X) Prr(X) 20=732"(=X)yo and A(X)=yA(=X)y0. (8)
- — , , The requirement of invariance under transposition of the
+SPrO)AX=X)Y(X )}, ®  pairing terms yields the additional conditions

where 2 is the usual self-energyy and A are the pairing A(x)=-BTAT(-=x)BT and A_(x)z _BA_T(_X)B*
fields andw is a chemical potential, which will be used to '(9)
constrain the average baryon density.

The hole wave functiony, is defined as . . T .
W These constraints are important in limiting the possible struc-

l//T:BET’ ZT: 4B 7) ture of the self-energy and pairing fields. _
Making use of the relation betweaft and ¢, we can
where " denotes the transpose of the wave funciigrand ~ manipulate the effective one-particle Lagrangian into a ma-
the matrixB= 7,® y5C, in which the Pauli matrix, acts in  trix form,

1 -
f diLer= 5 f dix A’ (), grr(X)

X

(17,0" =M+ uyo) S(X—x") =% (x—x") A(x=x") P(x")
A(x=x") (iy,0"+M —Mo)é(x—X’)JrET(x—X’)) ( dfT(X’)> ’
(10
where
S+(x)=BXT(—x)B". (11)

The extended vector wave function is that of the quasiparticle. Its equation of motion is evident and could be written down
immediately.
Due to the translational invariance of nuclear matter, the equation in momentum space is diagonal in the wave number. For

the momentum space representation of the corresponding generalized Feynman propagator, the equation of motion takes the
form

(vyk”—M—E(k)Jero A(k)
Se(k)=1. (12

Ak) oK'+ M+ 1(K) =~ o
We note that the momentum-dependent unitary transformation that diagonalizes the matrix operator is the Dirac version of the
Bogoliubov-Valantin transformation.

To make contact between the effective quasiparticle Lagrangian and an interacting one, we assume that the meson
+interaction terms in the latter have been reduced to four-fermion terms of the following form:

1 — —
f dt Luzzf d*x d™" YT o () P(X)DP(x =X ) (X" )T (X" ) p(x"), (13

whereI' ,(x) andI'g(x") are vertex functionsD*#(x—x") is the meson propagator, and and 8 represent any indices
necessary for the correct description of the meson propagation and coupling.

We can obtain the mean-field contribution of this interaction term by replacing each of the possible pairs of fermion fields
by its ground-state expectation value,

1 _ _ _ _
J dt(LI)eﬁZEJ’ d*x d*x' D*A(x—x" ) {2 (X)T (X)) P(X T g(X" V(X)) + 2eh(X)T L) (P(X) (X I)IT p(X" ) gh(X")

— YOT (OO PT(X N TR PT(X) = gTOOT LT Y(X )T p(X V(X)) (14)
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where, by(---), we mean the time-ordered ground-state ex- Here, we restrict our attention t, pairing in symmetric

pectation value(0|T( .. .)|0). nuclear matter. The Hermiticity and transposition invariance
We note that the first term in this expression is a Hartreeconditions of Eqs(8) and(9), as well as the requirements of

one and the second a Fock exchange one, while the last twimvariance under Lorentz and parity transformations reduce

after using the definition ofs; to replace the transposeds,  the possible form of the self-energy field to

can be recognized as pairing terms. Comparing these mean

field contributions to those of the effective quasiparticle La-

grangian, we can express the self-energy and pairing fields in 3(K)=2g(k) ~ %02 o(K) + - kZy(K), (21)

terms of the two-fermion ground-state expectation values as

S(x—x')=— 5(x—x’)l“a(x)f d*x"D A (x—x") while we take the form of the pairing field to be

X » " n ”n R . - > - A
WOATLAYN) A(K) =A(K)=[As(K)— yoho(K)—i yo7-KA(K)]7-A.
T, (OD (X=X ) P(X) Y(X )T p(X'), @2
(15

Both the self-energy and pairing terms have Lorentz scalar
and and timelike vector components. To be consistent with our
) op , -, Tronet assumption of symmetric nuclear matter, the self-energy
A(x=x")= =T (x)DC(x=x")(h(x) hr(x"))BL 5(X")B",  must be an isoscalar. The transposition invariance condition

(16) of Eq. (9) forces the scalar pairing field to be an isovector.

. — . . . We have simplified the form of the pairing field by assuming
where the equation foA can be obtained using the Hermi- y,,; it can be taken to be real and that the isospin dependence
ticity condition of Eq.(8). These expressions become self- . . > A .
consistency equations when we evaluate the expectation vai®" beA |.solate.d in an overall factor ?fAn‘ where the unit
ues by using their relationship to the quasiparticleVectorn is arbitrary. The special case n=r, corresponds
to the standard one of proton-proton and neutron-neutron

propagator,
pairing. Although we have not studied more elaborate iso-
G(x—x") F(x—=x") spin dependences, we have examined complex solutions to
iSF(x—x’)=i(~ o= , ) the pairing equations and found them to differ by only an
F(x=x")  G(x=x") overall phase from the solutions restrained to be real.
W)\ _ After substituting the simplified expressions for the mean
=< ( ) (w(x’),wT(x’))> , (17)  fields into the propagator and the self-consistency equations,
Pr(X) the latter can be reduced to coupled equations for the com-
o ) i ponents of the mean fields and the chemical potential,he
which is itself a function of the mean fields. self-consistency equations contain contributions from both
~ The equations in momentum space are obtained by FOoyne negative-energy and the positive-energy stétes the
rier transforming the above expressions, giving Dirac sea and the Fermi sedo avoid the complications of
dq renormalization, we have discarded the poles of the HFB
_ @ ig%" propagator corresponding to negative-energy states. This
2(k)=T.(0)D E(O)j (2m)* T p(0)G(q)]e procedure is not equivalent to the neglect of the HF negative-

energy states performed in RE27], nor are the differences
d“q aB small, as one might first expect. The contribution to the HFB
- f (ZT)JC{(CI)D (@)G(k=a)I's(—a), (18)  states of the negative-energy HF states reduces the magni-
tude of the pairing fields, much as the contribution to the HF
states of the negative-energy free states reduces the attractive
scalar component of the HF mean field. More details can be
d%q found in Ref.[28], where we compare the two approxima-
A(k)z_J Fa(q)D“ﬁ(q)F(k—q)BF;(—q)BT. tions and show that discarding the HFB negative-energy
(2m)* states yields much more reasonable results.

and

19

_To complete the set_of equations, we include that constrain- NUMERICAL RESULTS AND DISCUSSION
ing the baryon density,
We have performed calculations 68, pairing in sym-
.09+ metric nuclear matter for various sets of interaction param-
ig~0 .
TyoG(@]e™™ . (200 eters(meson-nucleon coupling constants and meson masses

[17-19). We introduced, as an additional parameter, a mo-

Solving the self-consistency equations in conjunction withmentum cutoff aﬂﬂ=A (in the nuclear matter rest frame
this constraint, we obtain the nonperturbative self-energy andhich limits the momentum integrations in the self-
pairing fields. consistency equations. Such a cutoff could be considered a

d*q
(2m)*

ps= <E70'/’> = f
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FIG. 1. Pairing fields and gap functions at the Fermi momen-
tum, obtained with the parameters of Rf9] at two values of the
cutoff parameter, A=2 GeVkt (solid lineg and A=1 GeVkt
(dashed lineks for the o-w model. The fields\y, Ag, andA4 are in
decreasing order.

FIG. 2. Pairing fields and gap functions at the Fermi momen-
tum, obtained with a cutoff parameter &f=2 GeVkt using the
parameters of Ref.18] (dashed linesand Ref.[19] (solid lines,
for the o-0 model. The fieldsA,, A, andAq are in decreasing
order.

crude approximation to the nucleon-meson vertex form facpairing fields to effective ones for the positive- and negative-
tors that our calculations deot contain. We performed cal- energy states and to a coupling term which is small for low
culations for various values of the momentum cutoff. momenta(but increases with the momentuii28]. The ef-
As the self-consistency equations for the pairing fields argective pairing field for the positive-energy states, which we
proportional to the pairing fields, it is always possible to findcall the gap function, is
a solution in which these fields are null. This zero pairing-
field solution is just the normal HF one. In our calculations, M*(K) k*|ﬂ
we have found this to be the only self-consistent solution at Ag(k)= —Ag(k)—Ag(k)+i——Ax(k), (23
sufficiently high baryon density. At densities lower than k Ex
about two thirds of the saturation densipg=<2pgy/3, we
also find a nontrivial HFB solutioriWe will not consider the where  k*=[1+3,(k)]|K], M*=M+34(k), and
region of exponentially small pairing fields discussed in Ref.E*= \k*?+M*2. This is the quantity whose role is closest to
[15].) that of the nonrelativistic pairing field. Like the nonrelativis-
We display, in Fig. 1, the two principal components of thetic self-energy, it too is the difference between two larger
pairing field, Ag(kg) and Ag(kg), evaluated at the Fermi relativistic quantities. This is evident in Fig. 1, in which the
momentum, obtained for two different values of the momen-gap functions for the two different values of the momentum
tum cutoff A using theo-w model parameters of Reffl9].  cutoff are displayed together with the components of the
The third component of the pairing fieldr, is three orders pairing field. We observe that different values of the momen-
of magnitude smaller thaas andA, and is not shown. The tum cutoff result in gap functiona, of different magnitude
components of the pairing field are plotted as functions obut with approximately the same form of functional depen-
the Fermi momentum, where the latterdigfinedthrough its  dence on the Fermi momentum. The gap functions are quite
standard relation to the baryon density, thapis= yk2/67>  similar, in form, to those obtained in various nonrelativistic
wherey is 2 for nuclear matter and 1 for neutron matter. Wecalculations using realistic potentidl8,15,16,30.
observe that the magnitudes of the components of the pairing In Fig. 2, we compare the components of the pairing field
field, represented here by their values at the Fermi momerand gap functions obtained using the parameters of [R8].
tum, Ay ¢(ke), depend strongly on the Fermi moment(@nd  and Ref.[19], at a fixed value of the cutoff momenturh,
thus the baryon densityln both of the cases shown, which again in as-w model. Here, we observe that different values
are typical ones, the fields increase rapidly at small densitie®f the interaction parameters also result in pairing fields
reach a maximum at about 1/4 the saturation density, and faind A and gap functions\, of different magnitudes but,
back to zero before the saturation density is reached. Wagain, with roughly the same form of functional dependence
observe that the magnitude of the components of the pairingn the Fermi momentum.
field also clearly depend on the value of the momentum cut- As we expect the pairing fields and the gap function, like
off. The form of the functional dependence of the fields onthe two-nucleon vertex function, to contain only short-range
the Fermi momentum, however, is fairly insensitive to thetwo-nucleon correlations, we expect their dependence on the
value of the cutoff. momentum to be approximately the same over a wide range
Diagonalizing the equation of motion, EL2), in the of nuclear densities. We would expect significant changes in
particle-particle and hole-hole subspaces—equivalent to exheir momentum dependence only at densities high enough
panding in the HF basis in these subspaces—reduces tlier the probability to become appreciable of a third nucleon
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FIG. 3. Normalized pairing fields and gap functions, as a func-
tion of the momentum, for several values of the Fermi momentum
obtained with thes-» model parameters of Ref19] and a cutoff
parameter ofA=2 GeVkt. The ratiot,¢(k,0;0)/t,0(0,0;0) of the
BonnB S, half-on-shell T matrix at zero energy is also shown
(short-dashed line

FIG. 4. Normalized pairing fields and gap functions, as a func-
tion of the momentum, at a Fermi momentum kgf=0.5 fm™ 2,
obtained with the parameters of REI8] at two values of the cutoff
parameter,A=2 GeVkt (solid lines and A=1 GeVkt (dashed
lines), and the parameters of R¢L9] with a cutoff of A=1 GeVk
(dotted ling, for the o-w model. The ratid¢(k,0;0)/t14(0,0;0) of
the BonnB 1S, half-on-shellT matrix at zero energy is also shown
to be found simultaneously with the pair within the effective (short-dashed line
radius of about 0.5 fm that is characteristic of the short-range
correlations. In Fig. 3, we show the normalized momentummomentum dependence of the pairing fields and gap func-
dependence of the pairing fields and gap functana fixed tion, obtained for two different values of the momentum cut-
value of the Fermi momentumA (k)/A(0), obtained using 0ff using thes-w model parameters of Rgf18] and of Ref.
the interaction parameters of RE19] and a momentum cut- [19]. We see that the normalized momentum dependence of
off of A=2 GeVi/c, for several values of the baryon density.the pairing fields and gap function, although similar, is
The curve corresponding to zero density gives the momerelearly different for the two sets of interaction parameters.
tum dependence of the virtual-state solution to the vacuunfdowever, the momentum dependence of the fields depends
pairing equations, which is discussed below. Confirming ouonly weakly on the values of the cutoff, as is also the case
expectations, at low density, we find that the momentunfor the other sets of interaction parameters that we have used.
dependence of the pairing fields and gap function is indeed In the limit of zero density, the integral equation for the
almost independent of the density. As the density increasegairing field, Eq.(19), reduces to the ladder approximation
differences begin to appear in the gap function but remai®f the Bethe-Salpeter equation for a two-particle bound state,
small almost up to the density at which pairing disappearsin which the chemical potential is identified with the two-
The momentum dependence of the pairing fields remains abkody bound-state energy and antiparticle propagation in the
most identical to that of the virtual state over the entire rangéwo-nucleon center-of-mass frame has been discarded. For a
of densities for which pairing occurs. physically reasonable interaction, this has no nontrivial solu-

We note that in Ref[15] a similar comparison was made tion in the 'S, channel, as the two-nucleon system has no
of the momentum dependence of the nonrelativistic gapound state there. ThES, virtual state appears as a solution
function at various values of the baryon density, but for thewhen the equation is analytically extended to the second en-
case of neutron matter. They observed slightly larger variaergy sheet. As we have already stated, the energy of the
tions of the normalized gap function than the ones we haveirtual S, state is extremely small, so that its vertex func-
found but, as their calculations were nonrelativistic, did nottion dominates the short-range correlations in two-nucleon
observe the invariance of the pairing fields. Our results foiscattering at low energies. As the virtual state and the pair
neutron matter are almost identical to those in Fig. 3 and aretate at low nuclear matter densities are solutions of essen-
not shown here. We want to emphasize, however, that thally the same equatioiand contain essentially the same
momentum dependence of the neutron matter pairing fieldphysicg, we expect the short-range correlations of the pair
is just as independent of the matter density as is the momerstate to be similarly dominated by the short-range correla-
tum dependence of the pairing fields in the case of nucleatiions of the virtual state. We thus expect the components of
matter. the pairing field to have a momentum dependence similar to

We would also like the short-range correlations containedhat of the components of the vertex function of the virtual
in the pairing fields and gap function to be relatively inde-state. We have seen in Fig. 3 that, at low densities, this is
pendent of the interaction parameters, at least if we believindeed the case. As the gap functidg has a momentum
that these parameters provide a reasonable description of tllependence similar to that of the nonrelativistic vertex func-
actual physical situation. We can see in Fig. 4 that, to dion of the virtual statel, (q) we expect, as discussed above,
certain extent, this is the case. There we show the normalizetthat it should also have a dependence on the momentum
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similar to that of the half-on-shell matrix element of the 5 S : :
zero-energy nonrelativistitS, T matrix, t;o(q,0;0). That is,
we expect that RIS b .
4_ ----- oW 18 ’ N
Ag(@ _dy(@) _t:da,0,0 y v i -
- SIS Lt et o N OO com
34(0) 4,00 10(00,0)° 24 PR 4 . _
> o

In Figs. 3 and 4, we have plotted, together with the normal- 2 LT
ized pairing fields, the normalized nonrelativistic zero- &o2r .;,t;;; i
energy half-on-shell'S, T matrix, for the case of the | o s
Bonn-B potentia[33], which includes the exchange af o, e
p, 7, ;, and § mesons between nucleons. We see in Fig. 3, Y 1
for the interaction parameters of R¢iL9], that the agree-
ment between the ratios of gap functions and half-on-shell L
matrices is quite good. We observe in Fig. 4 that the ratios of 9z -0.1 0.0 0.1 0.2
gap functions for the interaction parameters of R&8] do -i ky (fm_1)

not agree quite as well as those of R&R] with the ratios of
half-on-shellT matrices, although they are still quite similar,  FIG. 5. The gap functior 4 at a Fermi momentum df-=0.5
as are the gap functions of the other sets of interaction pam ~* plotted versus the momentum of the bound or virtual state,
rameters. We thus conclude that the momentum dependenceky, for each set of interaction parameters and cutoff. Calcula-
of the effective interactions that we used does provide a redions with o andw mesons and, », 7, andp mesons are labeled
sonable description of the actual physical situation. in the figure. The zero-range calculation is labeled ZR.
In contrast with the almost unchanging momentum depen-
dence of the pairing fields, we find that their magnitudesmines the magnitudes of the gap functidg(kg) and the
depend strongly on the interaction parameters and the valygairing fields A ¢(kg) at ke=0.5 fm~1. The o-w results
of the cutoff. This reflects the fact that nuclear pairing is theagree well among themselves, with their values for each of
result of a delicate balance between short-range repulsioifie pairing fields and gap function all lying within a narrow
and long-range attractiofi3]. Changing the interaction pa- band. Although the inclusion of other mesons increases the
rameters or the momentum cutoff changes the point of thisize of the bands, their widths still remain small relative to
balance, modifying the magnitudes of the fields. Howeverthe magnitudes of the fields. In Fig. 5, we see that even the
such modifications do not appear in the magnitudes of th@ero-range model yields results for the gap function in good
pairing fields alone. As we have noted, in the zero densityigreement with those of the other calculations. However, it
limit, the equation for the pairing field, Eq19), reduces to cannot reproduce the values of the components of the pairing
the ladder approximation to the Bethe-Salpeter equation for &eld, Ags(kg), obtained with the finite-range models, as is
two-particle bound state in thJéSO channel. For some sets of apparent in Fig. 6.
interaction parameters and momentum cutoff, a bound state The correlations between the components of the pairing
can indeed be found. In other cases, where no bound stateld, Aq4(kg), and the position of the virtual state, shown in
exists, analytic continuation of the pairing equations to theFig. 6, yield two distinct lines. In each case, one of these
second energy sheet reveals a virtual state in‘®gchan-  lines contains most of the finite-range results while the other
nel. contains the zero-range calculations. Several of the finite-
We find the magnitudes of the gap function and the pairfange points lie between the two lines. The finite-range cal-
ing fields at low densities to be strongly correlated with theculations that fall close to the zero-range line all correspond
location in the complex momentum plane of the virtual statefo extremely low values of the momentum cutoff<500
or bound state in the vacuum that is produced by each set dfleV/c. They are thus similar to the momentum-independent
interaction parameters- cutoff. We display these correla- zero-range results in the sense that the pairing figddsnot
tions in Figs. 5 and 6, where comparison is made betweethe gap functiohin these cases vary little as a function of the
several different parameter sets with varying numbers of memomentum(Better said, they have very little room in which
sons. Calculations were performed including thew, p, and  to vary) This is clear from the leftmost portions of Figs. 3
7 mesons and also including just the w mesons, as the and 4, in which the momentum dependence expected of the
latter dominate the gross features of the pairing fields angairing fields for values of the cutoff =500 MeVk is dis-
gap function. Calculations were also performed using a relaplayed in the range of valuds<2.5 fm~1.
tivistic zero-range interaction, in which theand v mesons We can understand better the correlation between the
are taken to be infinitely heavy and the coupling constantsnagnitudes of the pairing fields and the location of the vir-
are defined so as to yield the correct nuclear-matter saturddal state if we examine the coherence length of the pairing
tion point. For each parameter set, the momentum cutoff fields. The coherence lengthof a bound pair is defined as
was varied with all other parameters kept fixed. For eaclits root-mean-square radius. In terms of the momentum-
value of the momentum cutoff, we determined the pairingspace wave function of the pajy(k), we have
gap atke=0.5 fm~1, about 1/8 of the saturation density, and
obtained the bound or virtual-state energy in the vacuum. axT(K) ax(K)
We observe in Figs. 5 and 6 that the value of the free gzzf dst_* Xﬁ
two-nucleon bound or virtual-state energy essentially deter- ak ak

/ f d3kx (k) x (k). (25
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= the various correlations is close to that for which the coher-
~ . . ence length of the pair attains its minimum value. Thus we
< AN N o f can claim that the coherence length of the physical bound
ST, S ) i pair never becomes smaller than about 4 fm.

o o We can thus justify the correlations observed with the
following argument: For the parameter sets of physical inter-
est, the size of a bound pair at low density is much greater

, , ‘ L . ‘ than the range of the interaction. As the short-range pair
Sz -0.1 0.0 0.1 0.2 correlations are about the same for all sets of finite-range
—i ky (fm") interaction parameters, it is then a single parameter, the net

attraction, that determines the differences in the binding en-
ergy of the pair obtained with each of the parameter sets. It
suffices to fix the sizéor energy of the pair at one value of
the density to obtain its trend over the entire range of values
for which the details of the interaction can be neglected. We
choose to fix the net attraction between pairs by fixing the
position in the complex momentum plane of thg, virtual

In the Bethe-Salpeter equation, the pair wave function can bgate in the vacuum. As we have seen, this is equivalent to

expressed in terms of the residue of the two-particle propaliXing the two-nucleon singlet scattering length.
gator at its pole. By analogy, we argue that here we can We thus fix a momentum cutoff for each parameter set so

tion parameters of Ref18], for whichik,=0.08 fm~* for

N 1 . w0+ A=500 MeV/c. In this case, we fix the virtual state at
x(k)= ﬁf doF(k,w)e“" (26) k,~—0.08 fm 1, its closest point to the physical location.
The pairing fields that result are then fairly consistent among
where we retain only the contribution of the positive-energythemselves and with the nonrelativistic result of R80] for
pole, to be consistent with the vacuum truncation discussetbw values of the Fermi momentum, as can be seen in Fig. 8.
earlier. In Fig. 7, we plot the inverse of the coherence lengthQur results are also very similar to those obtained in many
1/¢, atke=0.5 fm~ 1, as a function of the position of virtual other nonrelativistic calculations of both nuclear matter and
or bound state in the vacuum, just as was done in Figs. 5 angeutron matter(for which the gap function is from 10 to
6. Here too, we observe a similar strong correlation. What i0 % large}, which are not shown hel®,15,16. Although
most important at the moment, however, are the typical valthe calculations shown are restricted to those usingsthe
ues obtained for the coherence length. We observe that, iparameter sets, the gap functions obtained usingther-p
the range of calculations shown, these never fall below 3 fminteraction parameters are quite similar. Even the zero-range
Near the physical position of the virtual state, the value ofmodel can describe the behavior of the Fermi-momentum
the coherence length lies between about 4—10 fm. As will b@ap function at low densities, when it used with an appropri-
seen shortly, the Fermi momentum at which we have showate cutoffA.

FIG. 6. The pairing fielda\; andAg at a Fermi momentum of
ke=0.5 fm~?! plotted versus the momentum of the bound or virtual
state,— ik, for each set of interaction parameters and cutoff. Cal-
culations withe and ® mesons andr, w, 7, andp mesons are
labeled in the figure. The zero-range calculation is labeled ZR.
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FIG. 8. Gap functiong\, obtained for several sets of-w in- FIG. 9. Coherence lengthsobtained for the same sets ofw

teraction parameters that have been constrained so as to yieldjgeraction parameters constrained so as to yield a virtual state close
virtual state close to the physical one. The nonrelativistic calculatg the physical one as in Fig. 8.

tion of Ref.[30], which uses a Reid soft-core potential, is also

shown. virtual state in the vacuum. The asymptotic nature of the pair
is roughly determined by the magnitude of the pairing fields
We note that the good agreement between different sets eft the Fermi momentum, which are strongly varying func-
interaction parameters does not extend up to densities &bns of the nuclear matter density. Based on the variations
which the magnitude of the pairing fields begin to decreasegbserved in the pair coherence length, we estimate thag a
There, differences in the details of the interplay between atpair in nuclear matter is most tightly bound at about 1/10 the
traction and short-range repulsion become important, intronuclear saturation density, somewhat below the density for
ducing a more elaborate dependence on the parameter sefgich the pairing fields reach their maximum values. For
To the extent to which these details are reflected in the shorarger and smaller values of the density, the pair is larger in
range correlations, that is to say, in the momentum deperextent and less bound.
dence of the pairing fields, we can compare this momentum
dependence with that of the half-on shell singletatrix to
choose the most “physical” parameter sets. As we have not
performed relativistic calculations of tHe matrix, we have Our numerical results indicate that the two principal
compared the nonrelativistic calculations using the Bonn pophysical ingredients that fix the form and magnitude of the
tential to our gap functions to conclude that the-w and  pairing fields and the gap function are the energy of the
o—w— 7—p parameter sets of Refl19] are equally good nucleon-nucleon virtual state and the momentum dependence
and are the most “physical” of those we have studied. Theof its vertex function or, equivalently, the two-nucleon sin-
half-on-shell singlefT matrix obtained using the Bonn po- glet scattering length and the momentum dependence of the
tential and the gap function obtained using the  param-  half-on-shell zero-energy singldt matrix. The short-range
eters of Ref[19] are shown in Figs. 3 and 4. two-nucleon correlations contained in the momentum depen-
We show in Fig. 9 the coherence lengthebtained using dence of the pairing fields and the virtual state are deter-
the physical values of the momentum cutoff that resulted irmined by the interplay between the short-range repulsion and
the gap functions of Fig. 8. We observe that the coherencemedium-range attraction of the nucleon-nucleon interaction.
length drops rapidly from infinity, at low densities, to reach alf the short-range correlations are held fixed, the magnitude
minimum of about 5 fm at about 1/10 the density of saturatedf the pairing fields and the position of the virtual state de-
nuclear matter. It rises again rapidly, becoming infinite at thepend only on the overall strength of the interaction.
density at which pairing disappears. The minimum coher- Pairing is also expected to occur in tA8;-3D, deuteron
ence length is fairly independent of the interaction param<channel. This possibility has been investigated by two groups
eters and is about 5 or 6 fm in all cases studied. The cohef11,13,30Q, which both obtained nonrelativistiS-D gap
ence length in neutron matter displays a very similarfunctions that reach values of about 10 MeV. Although we
dependence on the Fermi momentlm but is about 10% have not performed such calculations, we note that the large
smaller than in nuclear matter of the same Fermi momentumvalues obtained for th&-D gap function are not surprising,
We conclude by interpreting the spatial form of a boundgiven the correlation we observed in Fig. 5. Since the deu-
15, pair in nuclear matter, when it exists, in terms of theteron is a bound pair while théS, two-nucleon state is
magnitude and form of the pairing field (k). The short- virtual, the stronger effective two-nucleon potential in the
range correlations of the pair, characterized by the form ofS;-2D; channel would also be expected to produce a much
the pairing field, A(k)/A(0), are almost independent of larger gap function and pairing fields.
model parameters, momentum cutoff and nuclear density, Several recent works have pointed out that medium polar-
and are almost identical to those of the two-nucle®  ization effects result in an important renormalization of the

FINAL REMARKS
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effective (nonrelativisti¢ nucleon-nucleon interactiofB4—  potential[37]. We plan to extend our study of pairing to next
36]. One of the observed effects of this renormalization is aake into account such effects.

large reduction in the magnitude of the gap function. Such a

reduction is consistent with our results _|f the polarlzatlc_)n ACKNOWLEDGMENTS
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