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1S0 pairing correlations in relativistic nuclear matter and the two-nucleon virtual state
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We use the Gorkov formulation of the Dirac-Hartree-Fock-Bogoliubov approximation to nuclear pairing to
study the1S0 nucleon-nucleon correlations in nuclear matter. We find the short-range correlations of the1S0

pairing fields to be almost identical to those of the two-nucleon virtual state. We obtain mutually consistent
results for the pairing fields, using several different sets of effective interaction parameters, when we demand
that each of these sets places the virtual-state pole at its physical location.@S0556-2813~97!03312-8#

PACS number~s!: 21.65.1f, 21.30.2x, 21.60.Jz, 74.20.Fg
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The nonrelativistic BCS and Hartree-Fock-Bogoliub
~HFB! approximations have been used with success to s
pairing in nuclear physics, both years ago@1–7# and still
today @8–16#. Pairing approximations provide a simp
means of extending the independent-particle approxima
to one which includes the effects of the binding energy a
short-range correlations associated with bound pairs
nucleons in the nuclear medium. The long-range correlati
associated with collective phenomena in nuclei are simila
described using the nonrelativistic random-phase approxi
tion ~RPA!.

On the other hand, it is well known that nonrelativist
independent-particle approaches using realistic two-body
teractions have difficulties in accounting for basic pheno
ena, such as the spin-orbit part of the nucleon-nucleus in
action and the saturation properties of nuclear matter. Th
properties can be fairly easily described in a relativistic f
mulation, in which effective mesons are exchanged betw
Dirac nucleons. The success of the relativistic mean-fi
approach, initially developed by Walecka and collaborat
and later by many others@17–24#, invited its extension to
approximations that could take into account the residual c
relations between nucleons.

Consistent relativistic formulations of both the RPA a
the HFB@25–28# have thus been developed. Of the latter,
authors of Ref.@25# derived self-consistent equations for th
components of the relativistic pairing field but performed
calculations. The results obtained in Refs.@26# and@27#, us-
ing a zero-range model and a nonrelativistic reduction of
pairing equations, respectively, are generally much lar
than those obtained in nonrelativistic calculations, althou
both of the relativistic calculations used interaction para
eters that were fit to yield the saturation point of nucle
matter. Such results would indicate that other aspects of
interaction are involved in pairing than those necessary
describe the bulk characteristics of nuclei and of nucl
matter. The crudeness of the calculations, however, do
permit a firm conclusion to be reached. The results obtai
in the fully relativistic finite-range calculations of Ref.@28#
are very similar and do permit such a conclusion. Here
will show that, in addition to describing the bulk properti
of nuclear matter, a nucleon-nucleon interaction must p
560556-2813/97/56~6!/3097~10!/$10.00
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vide a good description of the two-nucleon1S0 virtual state,
if it is to furnish a good description of1S0 pairing in nuclear
matter.

The HFB approximation introduces short-range tw
nucleon correlations through the pairing fields and their m
mentum dependence. These correlations have been inv
gated in recent years in nonrelativistic models of nucl
pairing @11,14–16#. In particular, the close association b
tween the short-range correlations of the two-nucleon1S0
virtual state and those of the1S0 pairing fields was investi-
gated in Ref.@15#. We investigate the same association in t
relativistic model and reach a similar but stronger conc
sion: the short-range correlations of the pairing field are
most identical to those of the two-nucleon virtual state. F
the relativistic interactions we have used, the short-range
pulsion and medium-range attraction resulting from the
change of effective mesons provide a description of
short-range correlations in very good agreement with th
of the two-nucleon virtual state, deduced from realis
nucleon-nucleon potential models. By requiring that the
teractions also reproduce the position of the virtual-state p
or, equivalently, the two-nucleon singlet scattering leng
we will show that the effective relativistic interactions ca
provide a consistent description of pairing, both amo
themselves and with the nonrelativistic calculations.

PAIRING AND TWO-NUCLEON CORRELATIONS

In a two-particle system, bound-state correlations can
roughly classified as either asymptotic or short-range. T
asymptotic ones are determined principally by the bind
energy, while the short-range ones depend on the h
momentum components of the wave function. This can
seen by examining the manner in which a bound pair app
in the two-bodyT matrix, T(E). The T matrix satisfies the
integral equation

T~E!5V1VG0~E!T~E!, ~1!

whereV is the two-body interaction andG0(E) is the free
two-body propagator. A bound state appears in theT matrix
3097 © 1997 The American Physical Society
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3098 56B. V. CARLSON, T. FREDERICO, AND F. B. GUIMARA˜ES
as a pole at a negative value of the energy,E52eb , where
eb is the binding energy of the pair. We then have

T~E!5d
1

E1eb
d†1Tc~E!, ~2!

with Tc(E) the continuum~positive energy! part of theT
matrix andd the bound-state vertex function. Substitution
the latter expression into the integral equation immedia
yields an equation for the vertex function,

d5VG0~2eb!d. ~3!

The vertex function describes the momentum depende
~spatial dependence! of the bound state and is closely relat
to its wave function. By rewriting the equation for the vert
function as

d5~2eb2H0!G0~2eb!d5VG0~2eb!d, ~4!

we can identify the bound-state wave function
c5G0(2eb)d. In this last expression, we can see the rou
division of the correlations into asymptotic ones determin
by the singularity of the Green’s function,G0(2eb), and
short-range ones contained in the high momentum com
nents of the vertex function,d.

The two-nucleon system in the vacuum has a bound s
in the isospin one,3S1-3D1 channel — the deuteron. In th
isospin zero,1S0 channel, where we will study pairing, th
two-nucleon system in the vacuum has no bound state
does have a virtual state, however, withkv'20.05i fm 21

and ev5kv
2/M'140 keV, corresponding to a two-nucleo

singlet scattering lengtha051/ukvu'23 fm. An expansion
similar to that of Eq.~2! can still be performed to extract th
contribution to theT matrix of the virtual state. Because th
energy of this state is extremely small, its contribution to
T matrix dominates the low-energy scattering and essent
determines the short-range correlations in the1S0 channel.
The short-range correlations determined by the momen
dependence of the vertex function of the virtual state,dv(q),
are thus to good approximation given by the momentum
pendence of the half-on-shell1S0 T matrix at zero energy
t10(q,0;0). Wehave from the expression analogous to E
~2!,

t10~q,0;0!5^quT10~E50!uk50&'^qudv&
1

ev
^dvu0&.

~5!

Note that the asymptotic properties of the virtual state a
play a role here, by determining the magnitude of the con
bution of the virtual state to theT matrix through the factor
1/ev . The short-range correlations contained in theq depen-
dence can be extracted unambiguously, however, by nor
izing both sides of the equation to their values atq50.

To look for general two-particle correlations in nucle
matter, one could study the BruecknerG-matrix. In this gen-
eralization of the two-particleT matrix of Eq.~1!, the propa-
gator G0(E) is now a many-body operator that, beside d
scribing the two-body propagation, must take into acco
the effects of Pauli blocking and of interaction with th
nuclear medium. To look for bound-state correlations, o
f
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would examine the poles and respective vertex functions
theG matrix as advocated years ago by Emery@2,3#. Such an
approach has been used by various authors@29–31#. We will
use instead the HFB approximation. It too has been use
study bound-state correlations in nuclear matter@11,15,16#
and to even estimate deuteron production in heavy-ion co
sions@14#.

We can lend force to our use of the HFB approximation
study bound-state correlations by analyzing qualitatively
manner in which the one-body HFB approach takes into
count the two-body pairing bound state. We begin by obse
ing that a bound-state vertex functiond of theT or G matrix
can be considered as an operator that converts a two-b
bound state into two single particles. We could instead c
sider this a one-body operator by~1! neglecting the particle
number of the bound state and~2! considering one of the
outgoing particles as an entering hole. The effect of the v
tex function would then be the conversion of a hole to
particle. This is just what the pairing field,D, of the HFB
approximation does. Analogously, we can associate the
joint vertex function,d†, which converts two single particle
to the two-body bound state, with the conjugate pairing fie

D̄, which converts a particle to a hole.
To obtain a complete one-body description, we must ta

into account the propagation of particles and holes as we
the conversion of one to the other. A HFB formalism th
succeeds in unifying these ingredients simply and clearly
the Gorkov one@32#. Although infrequently used in nonrel
ativistic studies of pairing, the formalism has served as
basis for various relativistic studies@25,27,28#. This is due,
at least in part, to its natural expression in terms of the pro
gator language common to field-theoretical approaches.

The Gorkov formulation of pairing extends the usual p
ticle propagatorG(x2x8) to one of the form

S G~x2x8! F~x2x8!

F̃~x2x8! G̃~x2x8!
D ,

in which G̃(x2x8) describes the propagation of holes in t
medium and the anomalous propagatorF(x2x8) and its
conjugateF̃(x2x8) describe the conversion of holes to pa
ticles and particles to holes, respectively. Inverting the r
soning that lead us from the vertex functiond to the pairing
field D, we can interpret the anomalous propagator and
conjugate as terms describing the overlap between the
particle bound state and the two single particles. We t
expect the anomalous propagators to contain informa
about the relative motion of the two particles in the bou
pair.

THE GORKOV FORMALISM

We sketch here the development of a Dirac version
Gorkov’s self-consistent particle-hole propagator@28#. To do
this, we begin with the following ansatz to the effectiv
single-particle Lagrangian:
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56 30991S0 PAIRING CORRELATIONS IN RELATIVISTIC NUCLEAR . . .
E dt Leff5E d4x d4x8$c~x!~ ign]n2M !c~x!d~x2x8!

1mc~x!g0c~x!d~x2x8!

2c~x!S~x2x8!c~x8!

1
1

2
c~x!D~x2x8!cT~x8!

1
1

2
cT~x!D̄~x2x8!c~x8!%, ~6!

whereS is the usual self-energy,D and D̄ are the pairing
fields andm is a chemical potential, which will be used t
constrain the average baryon density.

The hole wave function,cT , is defined as

cT5BcT, cT5cTB†, ~7!

wherecT denotes the transpose of the wave functionc, and
the matrixB5t2^ g5C, in which the Pauli matrixt2 acts in
the isospin space andC is the charge conjugation matrix. W
note that, up to a factor ofg0 and a phase, the isospin dou
blet cT is the time reverse ofc.

The requirement that the effective Lagrangian be Herm
ian yields the following conditions on the self-energy a
pairing fields:

S~x!5g0S†~2x!g0 and D~x!5g0D̄†~2x!g0 . ~8!

The requirement of invariance under transposition of
pairing terms yields the additional conditions

D~x!52BTDT~2x!B† and D̄~x!52BD̄T~2x!B* .
~9!

These constraints are important in limiting the possible str
ture of the self-energy and pairing fields.

Making use of the relation betweencT and c, we can
manipulate the effective one-particle Lagrangian into a m
trix form,
n down

ber. For
takes the

on of the

e meson

n fields
E dt Leff5
1

2E d4x d4x8„c~x!,cT~x!…

3S ~ ign]n2M1mg0!d~x2x8!2S~x2x8! D~x2x8!

D̄~x2x8! ~ ign]n1M2mg0!d~x2x8!1ST~x2x8!
D S c~x8!

cT~x8!
D ,

~10!

where

ST~x!5BST~2x!B†. ~11!

The extended vector wave function is that of the quasiparticle. Its equation of motion is evident and could be writte
immediately.

Due to the translational invariance of nuclear matter, the equation in momentum space is diagonal in the wave num
the momentum space representation of the corresponding generalized Feynman propagator, the equation of motion
form

S gnkn2M2S~k!1mg0 D~k!

D̄~k! gnkn1M1ST~k!2mg0
D SF~k!51 . ~12!

We note that the momentum-dependent unitary transformation that diagonalizes the matrix operator is the Dirac versi
Bogoliubov-Valantin transformation.

To make contact between the effective quasiparticle Lagrangian and an interacting one, we assume that th
1interaction terms in the latter have been reduced to four-fermion terms of the following form:

E dt LI5
1

2E d4x d4x8c~x!Ga~x!c~x!Dab~x2x8!c~x8!Gb~x8!c~x8!, ~13!

where Ga(x) and Gb(x8) are vertex functions,Dab(x2x8) is the meson propagator, anda and b represent any indices
necessary for the correct description of the meson propagation and coupling.

We can obtain the mean-field contribution of this interaction term by replacing each of the possible pairs of fermio
by its ground-state expectation value,

E dt~LI !eff5
1

2E d4x d4x8Dab~x2x8!$2c~x!Ga~x!c~x!^c~x8!Gb~x8!c~x8!&12c~x!Ga~x!^c~x!c~x8!&Gb~x8!c~x8!

2c~x!Ga~x!^c~x!cT~x8!&Gb
T~x8!cT~x8!2cT~x!Ga

T~x!^cT~x!c~x8!&Gb~x8!c~x8!%, ~14!
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where, by^•••&, we mean the time-ordered ground-state e
pectation value,̂0uT( . . . )u0&.

We note that the first term in this expression is a Hart
one and the second a Fock exchange one, while the last
after using the definition ofcT to replace the transposedc ’s,
can be recognized as pairing terms. Comparing these m
field contributions to those of the effective quasiparticle L
grangian, we can express the self-energy and pairing field
terms of the two-fermion ground-state expectation values

S~x2x8!52d~x2x8!Ga~x!E d4x9Dab~x2x9!

3^c~x9!Gb~x9!c~x9!&

2Ga~x!Dab~x2x8!^c~x!c~x8!&Gb~x8!,

~15!

and

D~x2x8!52Ga~x!Dab~x2x8!^c~x!cT~x8!&BGb
T~x8!B†,

~16!

where the equation forD can be obtained using the Herm
ticity condition of Eq.~8!. These expressions become se
consistency equations when we evaluate the expectation
ues by using their relationship to the quasiparti
propagator,

iSF~x2x8!5 i S G~x2x8! F~x2x8!

F̃~x2x8! G̃~x2x8!
D

5K S c~x!

cT~x!
D „c~x8!,cT~x8!…L , ~17!

which is itself a function of the mean fields.
The equations in momentum space are obtained by F

rier transforming the above expressions, giving

S~k!5Ga~0!Dab~0!E d4q

~2p!4
Tr@Gb~0!G~q!#eiq001

2E d4q

~2p!4
Ga~q!Dab~q!G~k2q!Gb~2q!, ~18!

and

D~k!52E d4q

~2p!4
Ga~q!Dab~q!F~k2q!BGb

T~2q!B†.

~19!

To complete the set of equations, we include that constr
ing the baryon density,

rB5^cg0c&5E d4q

~2p!4
Tr@g0G~q!#eiq001

. ~20!

Solving the self-consistency equations in conjunction w
this constraint, we obtain the nonperturbative self-energy
pairing fields.
-
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al-
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d

Here, we restrict our attention to1S0 pairing in symmetric
nuclear matter. The Hermiticity and transposition invarian
conditions of Eqs.~8! and~9!, as well as the requirements o
invariance under Lorentz and parity transformations red
the possible form of the self-energy field to

S~k!5SS~k!2g0S0~k!1gW •kWSV~k!, ~21!

while we take the form of the pairing field to be

D~k!5D̄~k!5@DS~k!2g0D0~k!2 ig0gW •kWDT~k!#tW•n̂.
~22!

Both the self-energy and pairing terms have Lorentz sc
and timelike vector components. To be consistent with
assumption of symmetric nuclear matter, the self-ene
must be an isoscalar. The transposition invariance condi
of Eq. ~9! forces the scalar pairing field to be an isovect
We have simplified the form of the pairing field by assumi
that it can be taken to be real and that the isospin depend
can be isolated in an overall factor oftW•n̂, where the unit
vector n̂ is arbitrary. The special casetW•n̂5t2 corresponds
to the standard one of proton-proton and neutron-neu
pairing. Although we have not studied more elaborate i
spin dependences, we have examined complex solution
the pairing equations and found them to differ by only
overall phase from the solutions restrained to be real.

After substituting the simplified expressions for the me
fields into the propagator and the self-consistency equati
the latter can be reduced to coupled equations for the c
ponents of the mean fields and the chemical potential,m. The
self-consistency equations contain contributions from b
the negative-energy and the positive-energy states~from the
Dirac sea and the Fermi sea!. To avoid the complications o
renormalization, we have discarded the poles of the H
propagator corresponding to negative-energy states.
procedure is not equivalent to the neglect of the HF negat
energy states performed in Ref.@27#, nor are the differences
small, as one might first expect. The contribution to the H
states of the negative-energy HF states reduces the ma
tude of the pairing fields, much as the contribution to the
states of the negative-energy free states reduces the attra
scalar component of the HF mean field. More details can
found in Ref.@28#, where we compare the two approxim
tions and show that discarding the HFB negative-ene
states yields much more reasonable results.

NUMERICAL RESULTS AND DISCUSSION

We have performed calculations of1S0 pairing in sym-
metric nuclear matter for various sets of interaction para
eters~meson-nucleon coupling constants and meson ma
@17–19#!. We introduced, as an additional parameter, a m
mentum cutoff atukuW5L ~in the nuclear matter rest frame!,
which limits the momentum integrations in the se
consistency equations. Such a cutoff could be considere
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56 31011S0 PAIRING CORRELATIONS IN RELATIVISTIC NUCLEAR . . .
crude approximation to the nucleon-meson vertex form f
tors that our calculations donot contain. We performed cal
culations for various values of the momentum cutoff.

As the self-consistency equations for the pairing fields
proportional to the pairing fields, it is always possible to fi
a solution in which these fields are null. This zero pairin
field solution is just the normal HF one. In our calculation
we have found this to be the only self-consistent solution
sufficiently high baryon density. At densities lower tha
about two thirds of the saturation density,rB<2rB0/3, we
also find a nontrivial HFB solution.~We will not consider the
region of exponentially small pairing fields discussed in R
@15#.!

We display, in Fig. 1, the two principal components of t
pairing field, DS(kF) and D0(kF), evaluated at the Ferm
momentum, obtained for two different values of the mome
tum cutoff L using thes-v model parameters of Ref.@19#.
The third component of the pairing field,DT , is three orders
of magnitude smaller thanDS andD0 and is not shown. The
components of the pairing field are plotted as functions
the Fermi momentum, where the latter isdefinedthrough its
standard relation to the baryon density, that is,rB5gkF

3/6p2

whereg is 2 for nuclear matter and 1 for neutron matter. W
observe that the magnitudes of the components of the pa
field, represented here by their values at the Fermi mom
tum,D0,s(kF), depend strongly on the Fermi momentum~and
thus the baryon density!. In both of the cases shown, whic
are typical ones, the fields increase rapidly at small densi
reach a maximum at about 1/4 the saturation density, and
back to zero before the saturation density is reached.
observe that the magnitude of the components of the pai
field also clearly depend on the value of the momentum c
off. The form of the functional dependence of the fields
the Fermi momentum, however, is fairly insensitive to t
value of the cutoff.

Diagonalizing the equation of motion, Eq.~12!, in the
particle-particle and hole-hole subspaces—equivalent to
panding in the HF basis in these subspaces—reduces

FIG. 1. Pairing fields and gap functions at the Fermi mom
tum, obtained with the parameters of Ref.@19# at two values of the
cutoff parameter,L52 GeV/c ~solid lines! and L51 GeV/c
~dashed lines!, for thes-v model. The fieldsD0, Ds , andDg are in
decreasing order.
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e

-
,
t

f.

-

f

ng
n-

s,
all
e
g

t-

x-
the

pairing fields to effective ones for the positive- and negati
energy states and to a coupling term which is small for l
momenta~but increases with the momentum! @28#. The ef-
fective pairing field for the positive-energy states, which w
call the gap function, is

Dg~k!5
M !~k!

Ek
!

D0~k!2DS~k!1 i
k!ukuW

Ek
!

DT~k!, ~23!

where k!5@11SV(k)#ukuW , M !5M1S0(k), and
E!5Ak!21M !2. This is the quantity whose role is closest
that of the nonrelativistic pairing field. Like the nonrelativi
tic self-energy, it too is the difference between two larg
relativistic quantities. This is evident in Fig. 1, in which th
gap functions for the two different values of the momentu
cutoff are displayed together with the components of
pairing field. We observe that different values of the mome
tum cutoff result in gap functionsDg of different magnitude
but with approximately the same form of functional depe
dence on the Fermi momentum. The gap functions are q
similar, in form, to those obtained in various nonrelativis
calculations using realistic potentials@9,15,16,30#.

In Fig. 2, we compare the components of the pairing fi
and gap functions obtained using the parameters of Ref.@18#
and Ref.@19#, at a fixed value of the cutoff momentumL,
again in as-v model. Here, we observe that different valu
of the interaction parameters also result in pairing fieldsD0
and Ds and gap functionsDg of different magnitudes but
again, with roughly the same form of functional dependen
on the Fermi momentum.

As we expect the pairing fields and the gap function, li
the two-nucleon vertex function, to contain only short-ran
two-nucleon correlations, we expect their dependence on
momentum to be approximately the same over a wide ra
of nuclear densities. We would expect significant change
their momentum dependence only at densities high eno
for the probability to become appreciable of a third nucle

- FIG. 2. Pairing fields and gap functions at the Fermi mom
tum, obtained with a cutoff parameter ofL52 GeV/c using the
parameters of Ref.@18# ~dashed lines! and Ref.@19# ~solid lines!,
for the s-v model. The fieldsD0, Ds , and Dg are in decreasing
order.
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3102 56B. V. CARLSON, T. FREDERICO, AND F. B. GUIMARA˜ES
to be found simultaneously with the pair within the effecti
radius of about 0.5 fm that is characteristic of the short-ra
correlations. In Fig. 3, we show the normalized moment
dependence of the pairing fields and gap function~at a fixed
value of the Fermi momentum!, D(k)/D(0), obtained using
the interaction parameters of Ref.@19# and a momentum cut
off of L52 GeV/c, for several values of the baryon densi
The curve corresponding to zero density gives the mom
tum dependence of the virtual-state solution to the vacu
pairing equations, which is discussed below. Confirming
expectations, at low density, we find that the moment
dependence of the pairing fields and gap function is ind
almost independent of the density. As the density increa
differences begin to appear in the gap function but rem
small almost up to the density at which pairing disappea
The momentum dependence of the pairing fields remains
most identical to that of the virtual state over the entire ran
of densities for which pairing occurs.

We note that in Ref.@15# a similar comparison was mad
of the momentum dependence of the nonrelativistic g
function at various values of the baryon density, but for
case of neutron matter. They observed slightly larger va
tions of the normalized gap function than the ones we h
found but, as their calculations were nonrelativistic, did n
observe the invariance of the pairing fields. Our results
neutron matter are almost identical to those in Fig. 3 and
not shown here. We want to emphasize, however, that
momentum dependence of the neutron matter pairing fi
is just as independent of the matter density as is the mom
tum dependence of the pairing fields in the case of nuc
matter.

We would also like the short-range correlations contain
in the pairing fields and gap function to be relatively ind
pendent of the interaction parameters, at least if we beli
that these parameters provide a reasonable description o
actual physical situation. We can see in Fig. 4 that, to
certain extent, this is the case. There we show the normal

FIG. 3. Normalized pairing fields and gap functions, as a fu
tion of the momentum, for several values of the Fermi moment
obtained with thes-v model parameters of Ref.@19# and a cutoff
parameter ofL52 GeV/c. The ratio t10(k,0;0)/t10(0,0;0) of the
Bonn-B 1S0 half-on-shellT matrix at zero energy is also show
~short-dashed line!.
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momentum dependence of the pairing fields and gap fu
tion, obtained for two different values of the momentum c
off using thes-v model parameters of Ref.@18# and of Ref.
@19#. We see that the normalized momentum dependenc
the pairing fields and gap function, although similar,
clearly different for the two sets of interaction paramete
However, the momentum dependence of the fields depe
only weakly on the values of the cutoff,L, as is also the case
for the other sets of interaction parameters that we have u

In the limit of zero density, the integral equation for th
pairing field, Eq.~19!, reduces to the ladder approximatio
of the Bethe-Salpeter equation for a two-particle bound st
in which the chemical potential is identified with the two
body bound-state energy and antiparticle propagation in
two-nucleon center-of-mass frame has been discarded. F
physically reasonable interaction, this has no nontrivial so
tion in the 1S0 channel, as the two-nucleon system has
bound state there. The1S0 virtual state appears as a solutio
when the equation is analytically extended to the second
ergy sheet. As we have already stated, the energy of
virtual 1S0 state is extremely small, so that its vertex fun
tion dominates the short-range correlations in two-nucle
scattering at low energies. As the virtual state and the p
state at low nuclear matter densities are solutions of es
tially the same equation~and contain essentially the sam
physics!, we expect the short-range correlations of the p
state to be similarly dominated by the short-range corre
tions of the virtual state. We thus expect the components
the pairing field to have a momentum dependence simila
that of the components of the vertex function of the virtu
state. We have seen in Fig. 3 that, at low densities, thi
indeed the case. As the gap functionDg has a momentum
dependence similar to that of the nonrelativistic vertex fu
tion of the virtual statedv(q) we expect, as discussed abov
that it should also have a dependence on the momen

-
,

FIG. 4. Normalized pairing fields and gap functions, as a fu
tion of the momentum, at a Fermi momentum ofkF50.5 fm21,
obtained with the parameters of Ref.@18# at two values of the cutoff
parameter,L52 GeV/c ~solid lines! and L51 GeV/c ~dashed
lines!, and the parameters of Ref.@19# with a cutoff ofL51 GeV/c
~dotted line!, for thes-v model. The ratiot10(k,0;0)/t10(0,0;0) of
the Bonn-B 1S0 half-on-shellT matrix at zero energy is also show
~short-dashed line!.
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56 31031S0 PAIRING CORRELATIONS IN RELATIVISTIC NUCLEAR . . .
similar to that of the half-on-shell matrix element of th
zero-energy nonrelativistic1S0 T matrix, t10(q,0;0).That is,
we expect that

Dg~q!

Dg~0!
'

dv~q!

dv~0!
'

t10~q,0;0!

t10~0,0;0!
. ~24!

In Figs. 3 and 4, we have plotted, together with the norm
ized pairing fields, the normalized nonrelativistic zer
energy half-on-shell1S0 T matrix, for the case of the
Bonn-B potential@33#, which includes the exchange ofs, v,
r, p, h, andd mesons between nucleons. We see in Fig
for the interaction parameters of Ref.@19#, that the agree-
ment between the ratios of gap functions and half-on-sheT
matrices is quite good. We observe in Fig. 4 that the ratio
gap functions for the interaction parameters of Ref.@18# do
not agree quite as well as those of Ref.@19# with the ratios of
half-on-shellT matrices, although they are still quite simila
as are the gap functions of the other sets of interaction
rameters. We thus conclude that the momentum depend
of the effective interactions that we used does provide a
sonable description of the actual physical situation.

In contrast with the almost unchanging momentum dep
dence of the pairing fields, we find that their magnitud
depend strongly on the interaction parameters and the v
of the cutoff. This reflects the fact that nuclear pairing is t
result of a delicate balance between short-range repul
and long-range attraction@13#. Changing the interaction pa
rameters or the momentum cutoff changes the point of
balance, modifying the magnitudes of the fields. Howev
such modifications do not appear in the magnitudes of
pairing fields alone. As we have noted, in the zero den
limit, the equation for the pairing field, Eq.~19!, reduces to
the ladder approximation to the Bethe-Salpeter equation f
two-particle bound state in the1S0 channel. For some sets o
interaction parameters and momentum cutoff, a bound s
can indeed be found. In other cases, where no bound
exists, analytic continuation of the pairing equations to
second energy sheet reveals a virtual state in the1S0 chan-
nel.

We find the magnitudes of the gap function and the p
ing fields at low densities to be strongly correlated with t
location in the complex momentum plane of the virtual st
or bound state in the vacuum that is produced by each se
interaction parameters1 cutoff. We display these correla
tions in Figs. 5 and 6, where comparison is made betw
several different parameter sets with varying numbers of
sons. Calculations were performed including thes, v, r, and
p mesons and also including just thes-v mesons, as the
latter dominate the gross features of the pairing fields
gap function. Calculations were also performed using a r
tivistic zero-range interaction, in which thes andv mesons
are taken to be infinitely heavy and the coupling consta
are defined so as to yield the correct nuclear-matter sat
tion point. For each parameter set, the momentum cutofL
was varied with all other parameters kept fixed. For ea
value of the momentum cutoff, we determined the pair
gap atkF50.5 fm21, about 1/8 of the saturation density, an
obtained the bound or virtual-state energy in the vacuum

We observe in Figs. 5 and 6 that the value of the f
two-nucleon bound or virtual-state energy essentially de
l-
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mines the magnitudes of the gap functionDg(kF) and the
pairing fields D0,s(kF) at kF50.5 fm21. The s-v results
agree well among themselves, with their values for each
the pairing fields and gap function all lying within a narro
band. Although the inclusion of other mesons increases
size of the bands, their widths still remain small relative
the magnitudes of the fields. In Fig. 5, we see that even
zero-range model yields results for the gap function in go
agreement with those of the other calculations. Howeve
cannot reproduce the values of the components of the pa
field, D0,s(kF), obtained with the finite-range models, as
apparent in Fig. 6.

The correlations between the components of the pair
field, D0,s(kF), and the position of the virtual state, shown
Fig. 6, yield two distinct lines. In each case, one of the
lines contains most of the finite-range results while the ot
contains the zero-range calculations. Several of the fin
range points lie between the two lines. The finite-range c
culations that fall close to the zero-range line all correspo
to extremely low values of the momentum cutoff,L&500
MeV/c. They are thus similar to the momentum-independ
zero-range results in the sense that the pairing fields~but not
the gap function! in these cases vary little as a function of th
momentum.~Better said, they have very little room in whic
to vary.! This is clear from the leftmost portions of Figs.
and 4, in which the momentum dependence expected of
pairing fields for values of the cutoffL&500 MeV/c is dis-
played in the range of valuesk&2.5 fm21.

We can understand better the correlation between
magnitudes of the pairing fields and the location of the v
tual state if we examine the coherence length of the pair
fields. The coherence lengthj of a bound pair is defined a
its root-mean-square radius. In terms of the momentu
space wave function of the pair,x(kW ), we have

j25E d3k
]x†~kW !

]kW

]x~kW !

]kW
Y E d3kx†~kW !x~kW !. ~25!

FIG. 5. The gap functionDg at a Fermi momentum ofkF50.5
fm21 plotted versus the momentum of the bound or virtual sta
2 ikb , for each set of interaction parameters and cutoff. Calcu
tions withs andv mesons ands, v, p, andr mesons are labeled
in the figure. The zero-range calculation is labeled ZR.
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3104 56B. V. CARLSON, T. FREDERICO, AND F. B. GUIMARA˜ES
In the Bethe-Salpeter equation, the pair wave function can
expressed in terms of the residue of the two-particle pro
gator at its pole. By analogy, we argue that here we
obtain the~un-normalized! pair wave function as the residu
of the anomalous propagatorF(k) at its pole,

x~kW !5
1

2p i E dv F~kW ,v!eiv01
, ~26!

where we retain only the contribution of the positive-ener
pole, to be consistent with the vacuum truncation discus
earlier. In Fig. 7, we plot the inverse of the coherence leng
1/j, at kF50.5 fm21, as a function of the position of virtua
or bound state in the vacuum, just as was done in Figs. 5
6. Here too, we observe a similar strong correlation. Wha
most important at the moment, however, are the typical v
ues obtained for the coherence length. We observe tha
the range of calculations shown, these never fall below 3
Near the physical position of the virtual state, the value
the coherence length lies between about 4–10 fm. As wil
seen shortly, the Fermi momentum at which we have sho

FIG. 6. The pairing fieldsD0 andDS at a Fermi momentum o
kF50.5 fm21 plotted versus the momentum of the bound or virtu
state,2 ikb , for each set of interaction parameters and cutoff. C
culations withs and v mesons ands, v, p, and r mesons are
labeled in the figure. The zero-range calculation is labeled ZR.
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the various correlations is close to that for which the coh
ence length of the pair attains its minimum value. Thus
can claim that the coherence length of the physical bo
pair never becomes smaller than about 4 fm.

We can thus justify the correlations observed with t
following argument: For the parameter sets of physical int
est, the size of a bound pair at low density is much grea
than the range of the interaction. As the short-range p
correlations are about the same for all sets of finite-ra
interaction parameters, it is then a single parameter, the
attraction, that determines the differences in the binding
ergy of the pair obtained with each of the parameter sets
suffices to fix the size~or energy! of the pair at one value o
the density to obtain its trend over the entire range of val
for which the details of the interaction can be neglected.
choose to fix the net attraction between pairs by fixing
position in the complex momentum plane of the1S0 virtual
state in the vacuum. As we have seen, this is equivalen
fixing the two-nucleon singlet scattering length.

We thus fix a momentum cutoff for each parameter se
that it places the1S0 virtual state at its physical location o
kv'20.05i fm 21. This is impossible for thes-v interac-
tion parameters of Ref.@18#, for which ikv*0.08 fm21 for
L*500 MeV/c. In this case, we fix the virtual state
kv'20.08i fm 21, its closest point to the physical location
The pairing fields that result are then fairly consistent amo
themselves and with the nonrelativistic result of Ref.@30# for
low values of the Fermi momentum, as can be seen in Fig
Our results are also very similar to those obtained in ma
other nonrelativistic calculations of both nuclear matter a
neutron matter~for which the gap function is from 10 to
20 % larger!, which are not shown here@9,15,16#. Although
the calculations shown are restricted to those using thes-v
parameter sets, the gap functions obtained using thes-v-p-r
interaction parameters are quite similar. Even the zero-ra
model can describe the behavior of the Fermi-moment
gap function at low densities, when it used with an approp
ate cutoffL.

l
l-

FIG. 7. The inverse of the coherence length 1/j at a Fermi
momentum ofkF50.5 fm21 plotted versus the momentum of th
bound or virtual state,2 ikb , for each set of interaction paramete
and cutoff. Calculations withs andv mesons ands, v, p, andr
mesons are labeled in the figure. The zero-range calculation i
beled ZR.
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56 31051S0 PAIRING CORRELATIONS IN RELATIVISTIC NUCLEAR . . .
We note that the good agreement between different se
interaction parameters does not extend up to densitie
which the magnitude of the pairing fields begin to decrea
There, differences in the details of the interplay between
traction and short-range repulsion become important, in
ducing a more elaborate dependence on the parameter
To the extent to which these details are reflected in the sh
range correlations, that is to say, in the momentum dep
dence of the pairing fields, we can compare this momen
dependence with that of the half-on shell singletT matrix to
choose the most ‘‘physical’’ parameter sets. As we have
performed relativistic calculations of theT matrix, we have
compared the nonrelativistic calculations using the Bonn
tential to our gap functions to conclude that thes2v and
s2v2p2r parameter sets of Ref.@19# are equally good
and are the most ‘‘physical’’ of those we have studied. T
half-on-shell singletT matrix obtained using the Bonn po
tential and the gap function obtained using thes2v param-
eters of Ref.@19# are shown in Figs. 3 and 4.

We show in Fig. 9 the coherence lengthsj obtained using
the physical values of the momentum cutoff that resulted
the gap functions of Fig. 8. We observe that the cohere
length drops rapidly from infinity, at low densities, to reach
minimum of about 5 fm at about 1/10 the density of satura
nuclear matter. It rises again rapidly, becoming infinite at
density at which pairing disappears. The minimum coh
ence length is fairly independent of the interaction para
eters and is about 5 or 6 fm in all cases studied. The co
ence length in neutron matter displays a very sim
dependence on the Fermi momentumkF but is about 10%
smaller than in nuclear matter of the same Fermi moment

We conclude by interpreting the spatial form of a bou
1S0 pair in nuclear matter, when it exists, in terms of t
magnitude and form of the pairing field,D(k). The short-
range correlations of the pair, characterized by the form
the pairing field, D(k)/D(0), are almost independent o
model parameters, momentum cutoff and nuclear den
and are almost identical to those of the two-nucleon1S0

FIG. 8. Gap functionsDg obtained for several sets ofs-v in-
teraction parameters that have been constrained so as to yi
virtual state close to the physical one. The nonrelativistic calcu
tion of Ref. @30#, which uses a Reid soft-core potential, is al
shown.
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virtual state in the vacuum. The asymptotic nature of the p
is roughly determined by the magnitude of the pairing fie
at the Fermi momentum, which are strongly varying fun
tions of the nuclear matter density. Based on the variati
observed in the pair coherence length, we estimate that a1S0
pair in nuclear matter is most tightly bound at about 1/10
nuclear saturation density, somewhat below the density
which the pairing fields reach their maximum values. F
larger and smaller values of the density, the pair is large
extent and less bound.

FINAL REMARKS

Our numerical results indicate that the two princip
physical ingredients that fix the form and magnitude of t
pairing fields and the gap function are the energy of
nucleon-nucleon virtual state and the momentum depende
of its vertex function or, equivalently, the two-nucleon si
glet scattering length and the momentum dependence o
half-on-shell zero-energy singletT matrix. The short-range
two-nucleon correlations contained in the momentum dep
dence of the pairing fields and the virtual state are de
mined by the interplay between the short-range repulsion
medium-range attraction of the nucleon-nucleon interacti
If the short-range correlations are held fixed, the magnitu
of the pairing fields and the position of the virtual state d
pend only on the overall strength of the interaction.

Pairing is also expected to occur in the3S1-3D1 deuteron
channel. This possibility has been investigated by two gro
@11,13,30#, which both obtained nonrelativisticS-D gap
functions that reach values of about 10 MeV. Although w
have not performed such calculations, we note that the la
values obtained for theS-D gap function are not surprising
given the correlation we observed in Fig. 5. Since the d
teron is a bound pair while the1S0 two-nucleon state is
virtual, the stronger effective two-nucleon potential in t
3S1-3D1 channel would also be expected to produce a m
larger gap function and pairing fields.

Several recent works have pointed out that medium po
ization effects result in an important renormalization of t

a
-

FIG. 9. Coherence lengthsj obtained for the same sets ofs-v
interaction parameters constrained so as to yield a virtual state c
to the physical one as in Fig. 8.
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3106 56B. V. CARLSON, T. FREDERICO, AND F. B. GUIMARA˜ES
effective ~nonrelativistic! nucleon-nucleon interaction@34–
36#. One of the observed effects of this renormalization i
large reduction in the magnitude of the gap function. Suc
reduction is consistent with our results if the polarizati
effects of the medium reduce the attraction of the effect
two-nucleon potential. Another recent study has shown
the quark substructure of the nucleons and exchanged
sons is also expected to lead to a less attractive two-nuc
cl

od

cl.

cl.

ys

.

cl.
a
a

e
at
e-
on

potential@37#. We plan to extend our study of pairing to ne
take into account such effects.
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@28# F. B. Guimarães, B. V. Carlson, and T. Frederico, Phys. Re

C 54, 2385~1996!.
@29# W. H. Dickhoff, Phys. Lett. B210, 15 ~1988!.
@30# B. E. Vonderfecht, C. C. Gearhart, W. H. Dickhoff, A. Poll

and A. Ramos, Phys. Lett. B253, 1 ~1991!.
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