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Gamow-Teller strength distributions in fp-shell nuclei
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We use the shell model Monte Carlo method to calculate complete 0f 1p-shell response functions for
Gamow-Teller~GT! operators and obtain the corresponding strength distributions using a maximum entropy
technique. The approach is validated against direct diagonalization for48Ti. Calculated GT strength distribu-
tions agree well with data from (n,p) and (p,n) reactions for nuclei withA548–64. We also calculate the
temperature evolution of the GT1 distributions for representative nuclei and find that the GT1 distributions
broaden and the centroids shift to lower energies with increasing temperature.@S0556-2813~97!02212-7#

PACS number~s!: 21.60.Cs, 21.60.Ka, 27.40.1z, 23.40.2s
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I. INTRODUCTION

The Gamow-Teller~GT! properties of nuclei in the me
dium mass region of the periodic table are crucial deter
nants of the precollapse evolution of a supernova@1#. The
core of a massive star at the end of hydrostatic burnin
stabilized by electron degeneracy pressure as long as its
does not exceed the appropriate Chandrasekhar massMCH .
If the core mass exceedsMCH , electrons are captured b
nuclei. For many of the nuclei that determine the elect
capture rate in this early stage of the presupernova@2#,
Gamow-Teller~GT! transitions contribute significantly. Du
to insufficient experimental information, the GT1 transition
rates have so far been treated only qualitatively in colla
simulations, assuming the GT1 strength to reside in a singl
resonance whose energy relative to the daughter ground
has been parametrized phenomenologically@3#; the total
GT1 strength has been taken from the single-particle mo
However, recent (n,p) experiments@4–8#, show that the
GT1 strength is fragmented over many states, and that
total strength is significantly quenched compared to
single-particle model.~A recent update of the GT1 rates for
use in supernova simulations assumed a constant quenc
factor of 2 @2#.!

In this paper, we describe our calculations of Gamo
Teller strength distributions in iron region nuclei: the sh
model Monte Carlo~SMMC! technique is used to obtain th
response functions of the Gamow-Teller operators in the
0\v f p-shell model space. These response functions are
lated to the strength distributions through an inverse Lapl
transformation, which we carry out using a maximum e
tropy method.

Our starting point is the interacting shell model@9#, which
gives an accurate and consistent description of the prope
of light nuclei @10,11# when an appropriate interaction
used. In the shell model, nucleons occupy a spectrum
single-particle orbitals that are formed by the presence o
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assumed mean field. These nucleons interact through a
sidual effective interaction, which is derived from a realis
nucleon-nucleon potential through theG-matrix formalism
@12#. The resultant interaction matrix elements require so
minimal tuning to optimally account for known spectro
scopic properties. In the conventional approach, the solu
to the shell model is obtained by diagonalizing the nucl
Hamiltonian in a suitably chosen basis of many-particle c
figurations. Since the Hamiltonian matrix to be diagonaliz
grows combinatorially with the size of the single-partic
basis and the number of valence nucleons, realistic calc
tions are feasible in the fullf p-shell only for nuclei with
A<50. Hence, the traditional calculation of various nucle
properties for medium-heavy and heavy nuclei lies beyo
the scope of direct-diagonalization methods except in a
verely truncated model space.

The SMMC method@13–16# scales more gently with the
problem size than do traditional direct-diagonalization te
niques, allowing larger, and hence more realistic, calcu
tions. This method exploits the fact that most of the billio
of configurations in nuclei are unimportant for gene
nuclear properties, so that only a subset of the relevant c
figurations needs to be sampled. Observables are calcu
as thermal averages in a canonical ensemble of nuclear
figurations, so that nuclei at finite temperature can be stud
quite naturally.

SMMC methods were used in the first complete 0\v cal-
culations for a number of ground-state@17–19#, and finite-
temperature properties@20# of mid-f p shell nuclei. These
studies used both the Richter-Brown@21# and the KB3@22#
residual interactions. For the purposes of investigat
Gamow-Teller transitions, the KB3 interaction~obtained by
minimally modifying the monopole strength in the origin
Kuo-Brown matrix elements@24#! is well suited for full 0\v
studies throughout the lower-f p shell region@23#. Observ-
ables that have been calculated with this interaction in
SMMC approach include the energy^H&, the totalB(E2),
B(M1), GT strengths, and various pairing properties;
calculated ground-state properties compare very well w
experiment. Importantly, these studies showed that the
perimentally observed quenching of the total GT strength

of
3079 © 1997 The American Physical Society
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3080 56RADHA, DEAN, KOONIN, LANGANKE, AND VOGEL
consistently reproduced by the correlations within the fullf p
shell if a renormalization of the spin operator by the fac
0.8 is invoked@19,23#. The same renormalization factor ha
already been deduced fromsd-shell @11# and f p-shell nuclei
with A<49 @25,26# and thus appears to be universal.

In Sec. II, we reveiw the SMMC method and its applic
tion to response functions. We apply a maximum entro
~ME! method to perform the required inverse Laplace tra
form of the SMMC response functions; our implementati
of ME for SMMC is discussed in Sec. III. Section IV in
cludes a validation of these methods against direct diago
ization for GT transitions in 48Ti, and we present GT
strength functions for several heavier nuclei in thef p-shell
(A548264) where experimental data are available. We a
discuss the evolution of these distributions with temperatu
A brief conclusion follows in Sec. V.

II. THE SHELL MODEL MONTE CARLO METHOD

The SMMC method is based on a statistical formulat
of the nuclear many-body problem. In the finite-temperat
version of this approach, an observable is calculated as
canonical expectation value of a corresponding operatorÂ at
a given temperatureT and is given by@13–16#

^Â&5
TrA@Âe2bĤ#

TrA@e2bĤ#
, ~1!

where Û5exp(2bĤ) is the imaginary-time many-bod
propagator, TrAÛ is the canonical partition function forA
nucleons,Ĥ is the shell model Hamiltonian, andb51/T is
the inverse temperature.

In terms of a spectral expansion, the total strength o
transition operatorÂ is then given by the following expec
tation value:

B~A![^Â†Â&5
( i , fe

2bEiu^ f uÂu i &u2

( ie
2bEi

, ~2!

whereu i & (u f &) are the many-body states of the initial~final!
nucleus with energyEi (Ef). The total strength from the
ground state can be obtained by choosing a sufficiently la
value forb such that only the ground state contributes due
the Boltzmann weight.

In addition to the ‘‘static’’ strength@Eq. ~2!#, one can
calculate for an imaginary-timet, the response function
RA(t), which describes dynamical behavior and contains
formation about the nuclear spectrum:

RA~t![^Â†~t!Â~0!&5
TrA@e2~b2t!ĤÂ†e2tĤÂ#

TrA@e2bĤ#

5
( i f e

2bEie2t~Ef2Ei !u^ f uÂu i &u2

( ie
2bEi

. ~3!

The strength distribution

SA~E!5
( i f d~E2Ef1Ei !e

2bEiu^ f uÂu i &u2

( ie
2bEi

~4!
r
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is related toRA(t) by a Laplace transform:

RA~t!5E
2`

`

SA~E!e2tEdE. ~5!

Note from Eq.~3! that ground-state to ground-state tra
sitions require large (b2t) in addition to largeb. The large-
t behavior ofRA allows, in principle, a measurement of th
specific transition between the ground state and the low
allowed final state by the operator; the slope of loge @R(t)#
in this limit provides the transition energy, and the interce
measures the transition strength.

The SMMC canonical expectation values are based on
discretization of the many-body propagatore2bH into a finite
number of ‘‘time’’ slicesNt each of durationDb5b/Nt . At
each time slice the many-body propagator is linearized
the Hubbard-Stratonovich transformation@27,28#; observ-
ables are thus expressed as path integrals of one-body p
gators in fluctuating auxiliary fields. The integration is ca
ried out by a Metropolis random walk@29#.

To circumvent the ‘‘sign problem’’ encountered in th
SMMC calculations with realistic interactions, we use t
extrapolation procedure outlined in Refs.@17,20#. Yet an-
other, but distinct, source of the sign problem is an odd nu
ber of nucleons in the canonical expectation values@16#. We
overcome this problem by a number-projection techniq
first employed in@18# and subsequently used in@16#, that
allows us to extract information concerning odd-A nuclei
from the neighboring even-even system.

III. THE METHOD OF MAXIMUM ENTROPY

Once we have the Gamow-Teller response functions, t
must be inverted to obtain strength distributions. The inve
of the Laplace transform~5! required to extract the strengt
functions is an ill-conditioned numerical problem@30#. The
kernel ~which in this case ise2tE) acts as a smoothing op
erator and thus the solution, for which the kernel must
inverted, will be extremely sensitive to small changes~i.e., to
errors! in the input data. In this section, we describe a ma
mum entropy procedure to carry out the inversion@16#.

Consider thex2 deviation of the data,r i[R(t5 iDb),
with errorss i from the fit valuesFi$S% produced by the trial
inverse and obtained according to Eq.~5!:

x2$S%5(
i

S r i2Fi$S%

s i
D 2

. ~6!

Direct minimization ofx2 is numerically stable only in the
simplest of circumstances~such as few-parameter data fi
ting!. Combining x2 with some other auxiliary well-
conditioned functionalP$S% such thatP$S% has a minimum
at the smooth solutionS(E) and penalizes strongly oscillat
ing functions, leads to a compromise between fitting the d
and the expected smoothness of the inverse. Thus one m
mizes the joint functional

1

2
x2$S%1P$S%. ~7!
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56 3081GAMOW-TELLER STRENGTH DISTRIBUTIONS INf p- . . .
The functionalP$S% is chosen as the information theo
retic entropy,

P$S%5aE dEFm~E!2S~E!1S~E!lnS S~E!

m~E! D G , ~8!

wherem(E) is a default model anda is an adjustable pa
rameter that both specify thea priori knowledge ofS(E).

In order to minimize the functional~7!, we employ the
technique of Ref.@31#, which involves an iterative sequenc
of linear programming problems. We first expand Eq.~8! to
second order inS(E) about some positive functionf (E) to
obtain

P$ f uS%5aE dEH S m2
f

2D1F lnS f

mD21GS1
S2

2 f J . ~9!

If the true minimumS(E) of the nonquadratic functional in
Eq. ~8! is taken as a point of expansion off (E) in @Eq. ~9!#,
then it also gives the minimum of the corresponding q
dratic functional

S~E!5min
a

F1

2
x2$a%1P$Sua%G . ~10!

Since we require extraction of positive strength functio
we iterate while retaining partially the result of the previo
iteration as

S~n11!5min
S>0

F1

2
x2$S%1P$ f ~n!uS%G , ~11!

with

f ~n!~E!5jS~n21!~E!1~12j!S~n!~E!, ~12!

and the default model as the starting approximation toS,

S~0!~E!5S~21!~E![m~E!. ~13!

The rate of convergence and stability are controlled by
mixing parameter 0,j,1; a value ofj50.3 is a reasonable
choice to guarantee stability. Typically, convergence to
‘‘true’’ solution is obtained in less than 40 iterations. In th
way, the minimization of a general functional that is intrins
to a maximum entropy approach is reduced to an itera
procedure in which each step requires the minimization o
quadratic functional with linear inequality constraints.

Some general remarks regarding this inversion techni
are called for. SinceR(t) is calculated at discrete values
imaginary time and, in principle, up to an imaginary timeb,
the smallest energy that can be resolved inS(E) is of order
1/b, and the largest is the inverse of the discretization s
1/Db. In practice, numerical noise forces a cutoff in the la
estt value that can be used, thus decreasing the energy r
lution.

As we mentioned above, the default model can be cho
by investigating the characteristics of the response funct
From Eq.~3!, one sees thatdln@R(t)#/dtut50 gives the cen-
troid of the distribution in the parent nucleus, and thus in
case of the GT1 operator we choose for the default mode
Gaussian with a peak at this energy and with a width
-

,
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1.522 MeV; this width can be estimated from
d2ln@R(t)#/dt2ut50. The parametera is the inverse of the tota
strength of the distribution, and is calculated from the defa
model asa5@*dEm(E)#21. In the case of the GT2 opera-
tor, we make a better guess for the default model by incl
ing some features of the distribution. Experimental distrib
tions typically have three regions: theT5Tz andT5Tz11
regions distributed around 6 and 12 MeV, respectively, an
more fragmented region at lower energies. We choose
our GT2 default model two Gaussians with the same widt
each centered at the appropriate energy. The lower en
part of the distributions is governed by the hight region of
the response function. Although this region of the respo
function is sometimes contaminated by large statistical fl
tuations, the reconstruction tends to give a low-energy p
that well describes these more discrete transitions.

IV. GAMOW-TELLER STRENGTH DISTRIBUTIONS

The GT operators are defined asGT65( lslt l
6 , where

sl is the Pauli spin operator for nucleonl andt l
2 (t l

1) is the
isospin lowering~raising! operator that changes a neutro
~proton! into a proton~neutron!; they thus describe charge
changing decay modes. GT strength distributions play an
portant role in two very different contexts. In the astrophy
cal context, medium-heavy nuclei at a finite temperature
the core of a presupernova capture electrons. A strong p
space dependence makes the relevant electron capture
more sensitive to GTdistributions than to total strengths
@32,33# and thus necessitates complete 0\v calculations of
these distributions. GT strengths are also important in stu
of doubleb decay@34#. The two-neutrino mode of this de
cay, which provides important confidence in extracting t
neutrino mass from zero-neutrino decay experiments
equivalent to a description of the GT strength functions fro
the ground states of the parent and daughter nuclei. T
any reliable calculation of the two-neutrino matrix eleme
must accurately describe these strength distributions.

In the following sections we demonstrate and validate
ME method for the GT operator by comparing our resu
with direct diagonalization. We then compare our resu
with experimentally obtained distributions for variou
f p-shell nuclei. In what follows we will use the renormalize
GT operator corresponding toGT6/1.26 @19,23#.

A. Comparison with direct diagonalization

Direct-diagonalization results in the completef p shell can
be obtained for nuclei withA<48. We choose48Ti for a
comparison and in Fig. 1, we show our results for th
nucleus. The lower left-most panel shows the GT1 response
function R(t) for 48Ti as measured in the parent and t
middle lower panel shows the extracted strength distribut
S(E) in the daughter48Sc. Also shown in the same panel
the direct-diagonalization result@35#. The discrete transitions
found in the direct diagonalization have been smeared wi
Gaussian of width 0.25 MeV in order to facilitate compa
sons. While the SMMC total strength~i.e., the area under the
curve! B(GT1!50.7260.11 @19# compares very well with
the direct-diagonalization value of 0.79@23#, the SMMC can
recover only gross features of this distribution. In particul
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FIG. 1. Left-most panels show the GT2 ~upper! and GT1 ~lower! response functions calculated through the SMMC. The middle pa
show the corresponding strength function and direct-diagonalization results@23,35# in the corresponding daughter. For the GT2 we show
both theT5Tz and T5Tz11 channels, while the dash-dot line in the GT1 distribution comes from folding the SMMC results with
Gaussian corresponding to the experimental sensitivity. The right-most panels show the cumulative strengths as a function of the
excitation energy. For the GT2 we show the cumulativeT5Tz11 strength starting from the total in theT5Tz channel.
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the peak is somewhat too narrow, mainly due to the inf
mation lost by the Laplace transform. This attribution w
checked by calculating the response functionR(t) for the
direct diagonalization distribution.~The peaks were smeare
by Gaussians of 0.25 MeV width to account for the SMM
finite discretization.! This response function is shown in th
lower left panel of Fig. 1, and agrees well with the SMM
result.

The lower right-most panel in Fig. 1 shows the ener

dependence of the cumulative strength*0
E!

S(E8)dE8, where
E! is the excitation energy in the daughter. One can see
the SMMC recovers the centroid and the width of the dis
bution reasonably.

A brief remark about the possible sources of error is
order. Since our ME procedure provides a most proba
extraction of the strength function, the strength distributio
do not have error bars associated with them. However, f
the SMMC error bars forR(t), we estimate the error in th
position of the centroid to be about 0.5 MeV. In addition, w
note that the response functions are measured in the p
nucleus, and to obtain the energy in the daughter we use
experimental mass excesses and a parametrization o
Coulomb energy as defined in@23#. @In the test case (48Ti!,
we exactly calculate this mass difference.# This parametriza-
tion provides a good overall description of the masses of
nuclei in this region@19#. We find an average deviation be
tween 0.1 MeV~for A548 nuclei! and 0.5 MeV~for A554
nuclei! of our calculated binding energies from experimen
values, suggesting that our procedure is quite justified.

The upper panels of Fig. 1 show our results for the G2

operator in 48Ti. The total strengthB(GT2! can be readily
-
s
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obtained from the renormalized Ikeda sum ru
B(GT2)2B(GT1)53(N2Z)/(1.26)2 which is obeyed by
both the SMMC and direct-diagonalization calculations. T
GT2 operator takes theN.Z parent nucleus ~with
T5Tz11) to T5Tz~dotted!, T5Tz11 ~dashed!, and
T5Tz12 ~not shown! states in the48V daughter. TheT5Tz

states are the lowest in energy and contain most~85% in this
case! of the strength. Assuming in the default model that t
centroid of theT5Tz11 states is located 5 MeV higher tha
the centroid of theT5Tz states, we obtain a good reprodu
tion of both components of the strength distribution. Th
general assumption is experimentally valid in the even-e
nuclei in this region. We also see at low energy a hint of
discrete low-energy states in the reconstruction.

B. Comparison with experiment

Experimental GT distributions are obtained fro
intermediate-energy charge exchange (n,p) @or (p,n)# cross
sections at forward angles, which are proportional to the
strength@38#. These experimental distributions typically e
tend only to 8 MeV in the daughter nucleus to exclude co
tributions from other multipolarities.

We first compare our48Ti result for the GT1 distribution
against experiment, as shown in Fig. 2. To simulate the fin
experimental resolution and presentation of the data,
SMMC results have been smeared with Gaussians of s
dard deviation of 1.77 MeV, following Ref.@39#. Our results
are represented by the dotted line in Fig. 2, while the dia
nalization results are shown as a solid histogram. T
smeared diagonalization result is shown by the dashed lin
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56 3083GAMOW-TELLER STRENGTH DISTRIBUTIONS INf p- . . .
the figure. The experimentalB(GT1) distribution, shown as
solid dots, sums 1.4260.2 @5# compared to our renormalize
value of 0.7160.11. We find that the calculated 0\v GT1

strength extends only over the regionE!,8 MeV @in agree-
ment with the experimental value for this range of ene
B(GT1!50.7760.1#. Whether the observed strength f
E!.8 MeV is indeed the missing GT strength and might
related to correlations outside the 0\v model space is still
under debate. We refer the reader to the work in R
@23,36#. The quenching of the GT strength forp f shell nuclei
is also discussed in@37#, although the calculations presente
there were performed in severely truncated shell mo
spaces. We note that the inadequacy of a 0\v model space
to describe the GT1 distribution atE!.8 MeV might have
some relevance to thebb decay of48Ca @40#, where consid-
erable 2nbb strength could be obtained from the overlap
this distribution with that of48Ca in the (p,n) direction for
these energies. However, the measured 2nbb decay rate of
48Ca @41# agrees well with the calculation based on the 0\v
shell model, which includes the 1/1.26 normalization of t
GT transition operator.

We now turn to a comparison of SMMC results with e
periment for nuclei in the mid-f p shell where complete
direct-diagonalization calculations are not possible. We fi
consider the (n,p) reaction and in Fig. 3 we show our resul
for all even-even nuclei withA548264 for which data are
available@4,6,7#. The SMMC results have been smeared w
Gaussians of standard deviation of 1.77 MeV to account
the finite experimental resolution, following Ref.@39#. Ex-
perimentally, the GT1 strength is significantly fragmente
over many states; the centroids and the widths of these
tributions are reproduced very well in the SMMC approa
We note in Fig. 3 that the experimental GT distributio
show larger strengths at energiesE!.6 MeV than the cal-
culations. This is similar to the case of48Ti discussed above
and might indicate again that the reproduction of the
strength at higher excitation energies requires the inclus

FIG. 2. Calculated strength function~smeared by the experimen
tal resolution! for the GT1 operator for48Ti compared to the ex-
perimental data@5#. Also shown is the shell model spectrum o
tained by diagonalization, and smeared by 0.25 MeV~histogram!
and by 1.77 MeV~dashed line! to account for the experimenta
resolution.
y

s.

el

f

t

r

is-
.

n

of configurations outside the 0\v model space. Our result
for the total strengths are given in Table I.

SMMC results for odd-A nuclei in the (n,p) direction are
shown in Fig. 4, where again the centroids and widths of
distributions are in good agreement with the data@7,42,43#.

FIG. 3. Comparison of calculated GT1 strength distribution
against experiment@4,7,42,43# for even-even nuclei as function o
excitation energy in the corresponding daughter nuclei.

TABLE I. RenormalizedB(GT1) strengths as calculated in th
SMMC approach compared to experimental strengths@4,7,42,43#.
The superscripts on the experimental results indicate the upper
of energies used to obtain the total strength.

Nucleus B(GT1) ~SMMC! B(GT1) ~expt!

48Ti 0.7160.11 1.3160.2a

51V 1.4060.14 1.4860.03b

54Fe 3.8460.28 3.160.6 c

55Mn 1.8460.36 1.760.2 d

56Fe 2.5160.17 2.960.3 d

58Ni 4.2360.31 3.860.4 d

59Co 2.6060.31 2.3960.07b

60Ni 3.2660.25 3.1160.08e

62Ni 2.1660.25 2.5360.07e

64Ni 1.0960.18 1.7260.09e

aUp to 14 MeV.
bUp to 12.5 MeV.
cUp to 10 MeV.
dUp to 8.5 MeV.
eUp to 8 MeV.
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3084 56RADHA, DEAN, KOONIN, LANGANKE, AND VOGEL
Calculations for odd-A nuclei are performed at a finite tem
perature of 0.8 MeV.~The temperature dependence of the
distributions will be discussed later in Sec. IV C.! The re-
sponse functions for the three nuclei in Fig. 4 are samp
from the partition functions of their neighbors, i.e.,51V from
52Cr, 55Mn from 56Fe, and59Co from 60Ni. The peaks of the
observed GT1 distributions in odd-A nuclei in Fig. 4 are
consistently at higher excitation energies in the daugh
compared to the even-even cases in Fig. 3, a feature re
duced by the SMMC calculations. These higher excitat
energies cause some 0\v strength to lie above the typical
MeV cutoff in odd-A nuclei. The data for51V and 59Co have
been analyzed for additional strength above 8 MeV@32,33#
~see Table I!, while, to our knowledge,55Mn has not been
reanalyzed for potential GT strength atE!.8 MeV. For
even-even nuclei the 0\v GT1 strength appears to be ex
hausted at energies below 8 MeV, in agreement with
SMMC results shown in Fig. 3. Our results for51V and
55Mn show some strength above 8 MeV, but this is not
case for59Co.

In Fig. 5 we compare the GT2 distributions for a few
nuclei where experimental data are available@6,44#; the ex-
perimental data for56Fe have been obtained from Ref.@39#.
From the cumulative strengths in the right panels of Fig.
we can conclude that the SMMC approach reproduces
experimental distribution moderately well for the cases

FIG. 4. Calculated GT1 distributions for odd-A nuclei. Also
shown are the experimental distributions@7,42,43#. The energies are
in the corresponding daughter.
e

d

r
ro-
n

e

e

,
e
f

54Fe and56Fe. For the Ni isotopes, only partial informatio
is available about these distributions. For58Ni the peaks in
the experimental data@44# shown are to be associated with
finite width 1.3, 0.7, and 0.5 MeV for the peaks at 9.2, 11
and 13.0 MeV, respectively. The strength in the giant re
nance region between 6.4 and 13.0 MeV is quoted as
while we obtain 6.1, which is consistent with the uncertain
in the excitation energy. For60Ni the experimental value o
the total GT1 strength@44# is 7.261.8 whereas we obtain
10.8760.23. As our calculation obeys the renormaliz
Ikeda sum rule and reproduces the measured GT1 strength,
the lower experimental value indicates some strength out
the experimental window ofE!.14 MeV. We also note tha
while Ref.@44# quotes an integrated strength of 6.22 betwe
4.0 and 14.0 MeV we obtain a value of 4.65.

C. Temperature dependence of GT strengths

We now turn to the temperature evolution of GT1

strength functions. Representative strength distributions
two nuclei, 59Co and60Ni, at several temperatures are show
in Fig. 6. Both figures are plotted as a function ofE, the
energy transfer to the parent nucleus. We note that the
striction of the model space to onlyf p-shell renders our
calculation quantitatively unreliable for even-even nuclei
T*1.4 MeV @20#, while for the odd-A cases this temperatur
is likely even lower.

FIG. 5. Left panels: Calculated GT2 distributions for several
nuclei in the mid-f p shell against distributions obtained from (p,n)
reactions@6,44#. Right panels: Cumulative strength distribution
versus daughter excitation energy for SMMC calculations and
periment.B(GT2! from SMMC ~solid circles! and from experiment
~open circles! are shown staggered for clarity.
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FIG. 6. Temperature evolution of GT1 strength distribution for sample nuclei~left: 59Co; right: 60Ni! versus parent excitation energy
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With increasing temperature, three distinct effects oc
that influence the GT strength distributions.

~i! The number of states contributing to the thermal e
semble increases. Due to the pairing gap in even-even nu
this occurs at a higher temperatures in even-even nuclei
in odd-A nuclei.

~ii ! GT transitions which are Pauli blocked at low tem
peratures due to closed neutron subshells~e.g., thef 7/2 or-
bital! can become thermally unblocked as neutrons
moved to excited orbitals with increasing temperature. Si
larly, protons which are thermally excited to higher orbita
can undergo allowed GT transitions.

~iii ! The ground state in even-even nuclei is dominated
like-nucleon pairing. As indicated by SMMC calculation
these pairs break at aroundT51 MeV. Thus at low tempera
tures, a GT1 transition involves breaking a proton pair ass
ciated with an extra energy of 1–2 MeV. This ‘‘penalty e
ergy’’ is removed at higher temperatures in states of hig
excitation energy, in which the pair correlations are dim
ished.

As we will discuss in the following, these three effec
allow for an understanding of the temperature dependenc
the GT1 strength distributions.

In the case of59Co, with increasing temperature, the e
tire distribution shifts to lower excitation energies. The to
strength decreases and the width of the distribution incre
marginally with increasing temperatures.@We have checked
that in the high-T limit, B(GT1! rises to the single-particle
value as expected.# Due to the lack of pairing of the odd
particle in an odd-A nucleus, states of various spins are mo
quickly populated than in the even-even systems. Th
states then make transitions to daughter states by the
operator. Thus, a plethora of states is easily accessibl
moderate temperatures, and the required excitation energ
the daughter is lower.

For 60Ni, the peak in the strength distribution remai
roughly constant with increasing temperature, while
width increases with the appearance of low-lying stren
due to transitions from the thermally occupied to the em
excited orbitals. Note also that the centroid of the distrib
tion remains constant at the low temperatures and then s
to lower excitation at higher temperatures. The near c
stancy of the peak position in60Ni at low temperatures sup
ports the shifting assumption~attributed to Brink in Ref.
@45#! which states that the centroid corresponding to e
parent excited state is shifted upward in the daughter nuc
by the energy of the parent state@45#. This hypothesis as
r

-
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an

e
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y

-

r
-
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l
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e
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T
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e
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sumes that the internal configuration of the low-lying sta
is roughly the same. With increasing temperature, howe
states with other internal configurations gain statisti
weight, and in particular, the pair correlations in these
cited states decrease. SMMC calculations indicate that p
break aroundT51 MeV in even-even nuclei, allowing for a
dramatic increase in thermally populated states in the pa
at and above this temperature. For these excited states
coherence energy has to be paid as penalty to break a pr
pair in the GT transition, and the peak in the GT distributi
moves to smaller energies. We also note that at temperat
T<1.3 MeV the thermal ensemble already includes the lo
est excitedT11 states allowing for transitions atE50. In
contrast, these transitions are not observed in59Co at the
temperatures considered here, since theT11 states in this
nuclei are at higher excited energies due to the larger neu
excess. We also observe a gradual decrease of the pea
sition with temperature in accordance with the fact that
pairing gap has to be overcome in odd-A nuclei.

V. SUMMARY AND CONCLUSIONS

As mentioned in the Introduction, electron capture on ir
region nuclei plays an important role at the onset of c
collapse in a massive star. Under these conditions, nu
have a finite temperature of 0.220.6 MeV. It is well known
that for nuclei with an openedf p-shell neutron configura-
tion, GT1 transitions dominate the electron capture rate, a
a strong phase-space dependence makes the rate sensi
the full GT1 distribution, rather than only to the tota
strength. Unfortunately, the GT1 strength is not experimen
tally accessible for those nuclei of importance in the pre
pernova collapse. Thus, collapse studies have to rely on
oretical estimates which, until recently, could not
performed with great confidence. This has now changed.
SMMC calculations reproduce the measured data from
principles without nucleus-specific data fitting~which has
been necessary in previous studies!, they are reliable enough
to predict the GT1 distributions for those astrophysically im
portant nuclei not experimentally accessible. SMMC calc
lations for these nuclei are in progress.

In this paper, we have calculated response functions
the Gamow-Teller operators for several nuclei in thef p
shell. We use the KB3 interaction, which is well suited f
0\v calculations. Using an implementation of the ME tec
nique, we have then obtained the corresponding strength
tributions.
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The extracted Gamow-Teller distributions compare v
well with both direct-diagonalization calculations and the e
perimentally obtained distributions. We note that we invo
the standard renormalization factor of 1/1.26 for the tran
tion operator, in keeping with the observation insd- and
f p-shell nuclei that complete 0\v calculations require this
overall renormalization for agreement with experiment.

We have also studied the effect of finite temperature
Gamow-Teller distributions and have demonstrated
sample nuclei that our calculations atT50.8 MeV should be
adequate to describe the distributions required to calcu
electron capture rates for the presupernova problem@2#.
Studies of the Gamow-Teller strengths and electron cap
rt-
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rates for nuclei relevant to the presupernova collapse will
described elsewhere.
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