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We use the shell model Monte Carlo method to calculate compléig-8hell response functions for
Gamow-Teller(GT) operators and obtain the corresponding strength distributions using a maximum entropy
technique. The approach is validated against direct diagonalizatiotfforCalculated GT strength distribu-
tions agree well with data fromn(p) and (p,n) reactions for nuclei wittA=48-64. We also calculate the
temperature evolution of the GTdistributions for representative nuclei and find that the Gdistributions
broaden and the centroids shift to lower energies with increasing tempe80&56-28137)02212-1

PACS numbgs): 21.60.Cs, 21.60.Ka, 27.40z, 23.40-s

[. INTRODUCTION assumed mean field. These nucleons interact through a re-
sidual effective interaction, which is derived from a realistic
The Gamow-Telle(GT) properties of nuclei in the me- nucleon-nucleon potential through ti&-matrix formalism
dium mass region of the periodic table are crucial determi{12]. The resultant interaction matrix elements require some
nants of the precollapse evolution of a supernpi/la The  minimal tuning to optimally account for known spectro-
core of a massive star at the end of hydrostatic burning iscopic properties. In the conventional approach, the solution
stabilized by electron degeneracy pressure as long as its massthe shell model is obtained by diagonalizing the nuclear
does not exceed the appropriate Chandrasekhar Mags Hamiltonian in a suitably chosen basis of many-particle con-
If the core mass exceedd ., electrons are captured by figurations. Since the Hamiltonian matrix to be diagonalized
nuclei. For many of the nuclei that determine the electrorgrows combinatorially with the size of the single-particle
capture rate in this early stage of the presupernf®a  basis and the number of valence nucleons, realistic calcula-
Gamow-Teller(GT) transitions contribute significantly. Due tions are feasible in the fulfp-shell only for nuclei with
to insufficient experimental information, the GTransition = A<50. Hence, the traditional calculation of various nuclear
rates have so far been treated only qualitatively in collaps@roperties for medium-heavy and heavy nuclei lies beyond
simulations, assuming the GTstrength to reside in a single the scope of direct-diagonalization methods except in a se-
resonance whose energy relative to the daughter ground staterely truncated model space.
has been parametrized phenomenologicgBy, the total The SMMC method13-16 scales more gently with the
GT, strength has been taken from the single-particle modelproblem size than do traditional direct-diagonalization tech-
However, recent 1f{,p) experiments[4—8], show that the niques, allowing larger, and hence more realistic, calcula-
GT, strength is fragmented over many states, and that tht#ons. This method exploits the fact that most of the billions
total strength is significantly quenched compared to theof configurations in nuclei are unimportant for general
single-particle model(A recent update of the GTrates for  nuclear properties, so that only a subset of the relevant con-
use in supernova simulations assumed a constant quenchifigurations needs to be sampled. Observables are calculated
factor of 2[2].) as thermal averages in a canonical ensemble of nuclear con-
In this paper, we describe our calculations of Gamow-figurations, so that nuclei at finite temperature can be studied
Teller strength distributions in iron region nuclei: the shell quite naturally.
model Monte CarldSMMC) technique is used to obtain the =~ SMMC methods were used in the first complefe«)cal-
response functions of the Gamow-Teller operators in the fultulations for a number of ground-stdte7—19, and finite-
0% w fp-shell model space. These response functions are réemperature propertief20] of mid-fp shell nuclei. These
lated to the strength distributions through an inverse Laplacstudies used both the Richter-Broy2il] and the KB3[22]
transformation, which we carry out using a maximum en-residual interactions. For the purposes of investigating
tropy method. Gamow-Teller transitions, the KB3 interactigobtained by
Our starting point is the interacting shell modig], which  minimally modifying the monopole strength in the original
gives an accurate and consistent description of the properti¢€uo-Brown matrix elementf24]) is well suited for full (b w
of light nuclei [10,11] when an appropriate interaction is studies throughout the lowép shell region[23]. Observ-
used. In the shell model, nucleons occupy a spectrum adbles that have been calculated with this interaction in the
single-particle orbitals that are formed by the presence of aSMMC approach include the energil), the totalB(E2),
B(M1), GT strengths, and various pairing properties; the
calculated ground-state properties compare very well with
*Present address: Laboratory for Laser Energetics, University oexperiment. Importantly, these studies showed that the ex-
Rochester, 250 E. River Road, Rochester, NY 14623. perimentally observed quenching of the total GT strength is
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consistently reproduced by the correlations within thefipll  is related toR 4(7) by a Laplace transform:
shell if a renormalization of the spin operator by the factor
0.8 is invoked 19,23. The same renormalization factor had o
already been deduced frosw-shell[11] and f p-shell nuclei RA( T)=f S4(E)e” "dE. 6)
with A=<49[25,26 and thus appears to be universal. o

In Sec. Il, we reveiw the SMMC method and its applica-
tion to response functions. We apply a maximum entropy Note from Eq.(3) that ground-state to ground-state tran-
(ME) method to perform the required inverse Laplace transSitions require large— 7) in addition to larges. The large-
form of the SMMC response functions; our implementation” behavior ofR, allows, in principle, a measurement of the
of ME for SMMC is discussed in Sec. IIl. Section IV in- SpPecific transition between the ground state and the lowest
cludes a validation of these methods against direct diagona@llowed final state by the operator; the slope ofd¢g(7)]
ization for GT transitions in“Ti, and we present GT N this limit provides the transition energy, and the intercept
strength functions for several heavier nuclei in fipeshell ~ Measures the transition strength.
(A=48-64) where experimental data are available. We also The SMMC canonical expectation values are based on the

discuss the evolution of these distributions with temperaturediscretization of the many-body propagator™ into a finite

each time slice the many-body propagator is linearized via

the Hubbard-Stratonovich transformati¢@7,28; observ-

ables are thus expressed as path integrals of one-body propa-
The SMMC method is based on a statistical formulationgators in fluctuating auxiliary fields. The integration is car-

of the nuclear many-body problem. In the finite-temperatureied out by a Metropolis random wa[lR9].

version of this approach, an observable is calculated as the To circumvent the “sign problem” encountered in the

Il. THE SHELL MODEL MONTE CARLO METHOD

a given temperatur@ and is given by 13-16 extrapolation procedure outlined in Refd.7,20. Yet an-
other, but distinct, source of the sign problem is an odd num-

R TrA[ile*Bp'] ber of nucleons in the canonical expectation valuiss. We
(A —re (1) overcome this problem by a number-projection technique,

Trale "] first employed in[18] and subsequently used [i6], that

. N ) ) i allows us to extract information concerning oddnuclei
where U:exp(A—,BH) is the imaginary-time many-body from the neighboring even-even system.
propagator, TgU is the canonical partition function foA

nucl_eons,H is the shell model Hamiltonian, an@=1/T is IIl. THE METHOD OF MAXIMUM ENTROPY
the inverse temperature.

In terms of a spectral expansion, the total strength of a Once we have the Gamow-Teller response functions, they
transition operatord is then given by the following expec- Must be inverted to obtain strength distributions. The inverse

tation value: of the Laplace transforn(b) required to extract the strength
functions is an ill-conditioned numerical problgi80]. The
D fe*BEi|<f|V21|i>|2 kernel (which in this case i~ "F) acts as a smoothing op-
B(A)=(ATA)=— S o FE : (2)  erator and thus the solution, for which the kernel must be
|

inverted, will be extremely sensitive to small changes, to

where|i) (|f)) are the many-body states of the initiéhal) errorg in the input data. In this section, we describe a maxi-

. tropy procedure to carry out the inversjas.
nucleus with energye; (E;). The total strength from the mum en 5 o L
ground state can be obtained by choosing a sufficiently large Consider thex” deviation of the datar;=R(r=145),

value for 8 such that only the ground state contributes due tgVith errorse; from the fit values~;{S} produced by the trial

the Boltzmann weight inverse and obtained according to EB):
In addition to the “static” strengtHEg. (2)], one can )

calculate for an imaginary-time, the response function, Z{S}zz ri—Fi{S}

R 4(7), which describes dynamical behavior and contains in- X i - '

formation about the nuclear spectrum:

(6

a;j

Direct minimization ofy? is numerically stable only in the

—(B—7H Yta—H g 4 -
Trale Ae " A] simplest of circumstancegsuch as few-parameter data fit-

Ru(1)=(AT(7)A(0))=

Tra[e #1] ting). Combining x? with some other auxiliary well-
. conditioned functionaP{S} such thatP{S} has a minimum
_ Sire” PRie” METE|(f| Ali)|? at the smooth solutio®(E) and penalizes strongly oscillat-
- 3. e FEi ' 3) ing functions, leads to a compromise between fitting the data
and the expected smoothness of the inverse. Thus one mini-
The strength distribution mizes the joint functional

31 8(E—E¢+Epe PEi[(f| A)i)|2

SA(E): Eie_BEi

1
@ 5 X3{SH+ P(S). ™
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The functionalP{S} is chosen as the information theo- 1.5-2 MeV; this width can be estimated from
retic entropy, d2In[R(7)]/d7?| —o. The parametew is the inverse of the total
strength of the distribution, and is calculated from the default
S(E)) ®) model asa=[[dEM(E)] 1. In the case of the GT opera-
m(E)/ |’ tor, we make a better guess for the default model by includ-
ing some features of the distribution. Experimental distribu-
wherem(E) is a default model and is an adjustable pa- tions typically have three regions: tie=T, and T=T,+1
rameter that both specify thee priori knowledge ofS(E). regions distributed around 6 and 12 MeV, respectively, and a
In order to minimize the functional7), we employ the  more fragmented region at lower energies. We choose for
technique of Ref[31], which involves an iterative sequence our GT_ default model two Gaussians with the same widths,
of linear programming problems. We first expand B8).to  each centered at the appropriate energy. The lower energy
second order ir§(E) about some positive functio(E) to  part of the distributions is governed by the highiegion of
obtain the response function. Although this region of the response
2 function is sometimes contaminated by large statistical fluc-
S+—. (9 tuations, the reconstruction tends to give a low-energy peak
2f that well describes these more discrete transitions.

m(E)—S(E)+ S(E)In

P{S}:ade

f
+|Inf—=|—1
m

P{f|S}:af dE((m—;

If the true minimumS(E) of the nonquadratic functional in
Eq. (8) is taken as a point of expansion fifE) in [Eq. (9)], IV. GAMOW-TELLER STRENGTH DISTRIBUTIONS
then it also gives the minimum of the corresponding qua-

dratic functional The GT operators are defined @5 . =X,0y7 , where

o, is the Pauli spin operator for nuclebmnd 7, (") is the
isospin lowering(raising operator that changes a neutron
: (100 (proton into a proton(neutron; they thus describe charge-
changing decay modes. GT strength distributions play an im-
portant role in two very different contexts. In the astrophysi-
cal context, medium-heavy nuclei at a finite temperature in
the core of a presupernova capture electrons. A strong phase

1
> X{al+P(sla}

S(E)=min

Since we require extraction of positive strength function,
we iterate while retaining partially the result of the previous

iteration as
space dependence makes the relevant electron capture rates
1 more sensitive to GTdistributions than to total strengths
S =min §X2{8}+ P{f(”)ls}}, (1)  [32,33 and thus necessitates completied calculations of
§=0 these distributions. GT strengths are also important in studies
with of double 8 decay[34]. The two-neutrino mode of this de-

cay, which provides important confidence in extracting the
(/e — gan—1) ) neutrino mass from zero-neutrino decay experiments, is
E)=¢5 (B)+(1-8S™(B), (12) equivalent to a description of the GT strength functions from
and the default model as the starting approximatio,to ~ the ground states of the parent and daughter nuclei. Thus,
any reliable calculation of the two-neutrino matrix element
SOE)=S"Y(E)=m(E). (13)  must accurately describe these strength distributions.
In the following sections we demonstrate and validate the
The rate of convergence and stability are controlled by theE method for the GT operator by comparing our results
mixing parameter & £<1; a value ofé=0.3 is a reasonable with direct diagonalization. We then compare our results
choice to guarantee stability. Typically, convergence to thevith experimentally obtained distributions for various
“true” solution is obtained in less than 40 iterations. In this fp-shell nuclei. In what follows we will use the renormalized
way, the minimization of a general functional that is intrinsic GT operator corresponding BT ./1.26[19,23.
to a maximum entropy approach is reduced to an iterative
procedure in which each step requires the minimization of a
quadratic functional with linear inequality constraints.
Some general remarks regarding this inversion technique Direct-diagonalization results in the complégeshell can
are called for. Sinc&®(7) is calculated at discrete values of be obtained for nuclei wittA<48. We choose*®Ti for a
imaginary time and, in principle, up to an imaginary tige ~ comparison and in Fig. 1, we show our results for this
the smallest energy that can be resolve®(i) is of order  nucleus. The lower left-most panel shows the G&sponse
1/8, and the largest is the inverse of the discretization sizéunction R(7) for “®Ti as measured in the parent and the
1/AB. In practice, numerical noise forces a cutoff in the larg-middle lower panel shows the extracted strength distribution
est value that can be used, thus decreasing the energy res8(E) in the daughter®Sc. Also shown in the same panel is
lution. the direct-diagonalization resyl5]. The discrete transitions
As we mentioned above, the default model can be chosefound in the direct diagonalization have been smeared with a
by investigating the characteristics of the response functionGaussian of width 0.25 MeV in order to facilitate compari-
From Eq.(3), one sees thalln[R(7)]/d7,—, gives the cen- sons. While the SMMC total strengthe., the area under the
troid of the distribution in the parent nucleus, and thus in thecurve B(GT,)=0.72£0.11 [19] compares very well with
case of the GT operator we choose for the default model athe direct-diagonalization value of 0.723], the SMMC can
Gaussian with a peak at this energy and with a width ofrecover only gross features of this distribution. In particular,

A. Comparison with direct diagonalization
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FIG. 1. Left-most panels show the GTuppey and GT, (lower) response functions calculated through the SMMC. The middle panels
show the corresponding strength function and direct-diagonalization r¢28I&5 in the corresponding daughter. For the GWe show
both theT=T, and T=T,+1 channels, while the dash-dot line in the Glistribution comes from folding the SMMC results with a
Gaussian corresponding to the experimental sensitivity. The right-most panels show the cumulative strengths as a function of the daughter
excitation energy. For the GTwe show the cumulativd=T,+ 1 strength starting from the total in tile=T, channel.

the peak is somewhat too narrow, mainly due to the infor-obtained from the renormalized Ikeda sum rule
mation lost by the Laplace transform. This attribution wasB(GT_)—B(GT,)=3(N—2)/(1.26¥ which is obeyed by
checked by calculating the response funct®{r) for the  both the SMMC and direct-diagonalization calculations. The
direct diagonalization distributiorfThe peaks were smeared GT_ operator takes theN>Z parent nucleus (with
by Gaussians of 0.25 MeV width to account for the SMMCT=T,4+1) to T=T,(dotted, T=T,+1 (dashed and
finite discretizatior). This response function is shown in the T=T,+2 (not shown states in thé® daughter. Tha=T,
lower left panel of Fig. 1, and agrees well with the SMMC ¢tates are the lowest in energy and contain nt&&% in this
result. _ o casg of the strength. Assuming in the default model that the
The lower right-most pa.nel in Fig. *1 shows the eNer9Ycentroid of thel=T,+ 1 states is located 5 MeV higher than
dependence of the cumulative strengfhS(E')dE’, where  the centroid of thel =T, states, we obtain a good reproduc-
E* is the excitation energy in the daughter. One can see thafon of both components of the strength distribution. This
the SMMC recovers the centroid and the width of the distri-general assumption is experimentally valid in the even-even
bution reasonably. _ . nuclei in this region. We also see at low energy a hint of the
A brle_f remark about the possible sources of error is ingiscrete low-energy states in the reconstruction.
order. Since our ME procedure provides a most probable
extraction of the strength function, the strength distributions
do not have error bars associated with them. However, from
the SMMC error bars foR(7), we estimate the error in the Experimental GT distributions are obtained from
position of the centroid to be about 0.5 MeV. In addition, weintermediate-energy charge exchangep| [or (p,n)] cross
note that the response functions are measured in the paresgctions at forward angles, which are proportional to the GT
nucleus, and to obtain the energy in the daughter we use tratrength[38]. These experimental distributions typically ex-
experimental mass excesses and a parametrization of thend only to 8 MeV in the daughter nucleus to exclude con-
Coulomb energy as defined j&3]. [In the test case*{Ti),  tributions from other multipolarities.
we exactly calculate this mass differencehis parametriza- We first compare ouf®Ti result for the GT, distribution
tion provides a good overall description of the masses of thagainst experiment, as shown in Fig. 2. To simulate the finite
nuclei in this region19]. We find an average deviation be- experimental resolution and presentation of the data, the
tween 0.1 MeV(for A=48 nucle) and 0.5 MeV(for A=54  SMMC results have been smeared with Gaussians of stan-
nuclej of our calculated binding energies from experimentaldard deviation of 1.77 MeV, following Ref39]. Our results
values, suggesting that our procedure is quite justified. are represented by the dotted line in Fig. 2, while the diago-
The upper panels of Fig. 1 show our results for the_.GT nalization results are shown as a solid histogram. The
operator in“®Ti. The total strengttB(GT_) can be readily smeared diagonalization result is shown by the dashed line in

B. Comparison with experiment
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FIG. 2. Calculated strength functigemeared by the experimen-
tal resolution for the GT, operator for*®Ti compared to the ex-
perimental datd5]. Also shown is the shell model spectrum ob-
tained by diagonalization, and smeared by 0.25 Mblstogram
and by 1.77 MeV(dashed ling to account for the experimental
resolution.

the figure. The experiment8l(GT, ) distribution, shown as
solid dots, sums 1.420.2[5] compared to our renormalized
value of 0.710.11. We find that the calculatedi@ GT,
strength extends only over the regiBi<8 MeV [in agree- E' (MeV) £’ (MeV)

ment with the experimental value for this range of energy

B(GT,)=0.77+0.1]. Whether the observed strength for FIG. 3. Comparison of calculated GTstrength distribution
E*>8 MeV is indeed the missing GT strength and might beagainst experimerié4,7,42,43 for even-even nuclei as function of
related to correlations outside thé® model space is still excitation energy in the corresponding daughter nuclei.

under debate. We refer the reader to the work in Refs.

[23,36. The quenching of the GT strength fiof shell nuclei ~ Of configurations outside the#» model space. Our results

is also discussed i[87], although the calculations presented for the total strengths are given in Table I.

there were performed in severely truncated shell model SMMC results for oddA nuclei in the 1, p) direction are
spaces. We note that the inadequacy ofiaw0model space shown in Flg 4, where again the centroids and widths of the
to describe the GT distribution atE*>8 MeV might have distributions are in good agreement with the datai2,43.
some relevance to theB decay of*¢Ca[40], where consid-

erable 288 strength could be obtained from the overlap of TABLE I. RenormalizedB(GT,) str_engths as calculated in the
this distribution with that of*3Ca in the p,n) direction for ~SMMC approach compared to experimental strengh2,42,43.
these energies. However, the measure@2 decay rate of The supgrscrlpts on the gxperlmental results indicate the upper limit
48Ca[41] agrees well with the calculation based on the,p  ©°f €N€rgies used to obtain the total strength.

shell model, which includes the 1/1.26 normalization of the

GT transition operator. Nucleus B(CT.) (SMMO) B(GT.) (expy
We now turn to a comparison of SMMC results with ex-  4Tj 0.71+0.11 1.310.22
periment for nuclei in the midp shell where complete 5y 1.40+0.14 1.48-0.03°
direct-diagonalization calculations are not possible. We first 54¢ 3.84+0.28 3.1+0.6°¢
consider therf,p) reaction and in Fig. 3 we show our results 55y 1.84+0.36 1.7+0.2¢
for all even-even nuclei witth=48-64 for which data are  segg 2510.17 29+0.39
available[4,6,7. The SMMC results have been smeared with  ssy; 4.23+0.31 3.8+049
Gau;sians of s'gandard deviati(_)n of 1.77 .MeV to account for s, 2.60+0.31 2.39-0.07°
the finite experimental resolution, following R€89]. Ex- 60N 3.26+0.25 3.110.08°
perimentally, the GT strength is significantly fragmented ez 216+0.25 253+ 0.07¢
over many states; the centroids and the widths of these dis-MNi 1.09+0.18 1.72-0.09°

tributions are reproduced very well in the SMMC approach
We note in Fig. 3 that the experimental GT distributions@Jp to 14 MeV.
show larger strengths at energigés>6 MeV than the cal- °Up to 12.5 MeV.
culations. This is similar to the case #iTi discussed above °Up to 10 MeV.
and might indicate again that the reproduction of the GTUp to 8.5 MeV.
strength at higher excitation energies requires the inclusiofUp to 8 MeV.
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L FIG. 5. Left panels: Calculated GTdistributions for several

10 12 nuclei in the midfp shell against distributions obtained from, )
reactions[6,44]. Right panels: Cumulative strength distributions
versus daughter excitation energy for SMMC calculations and ex-
perimentB(GT_) from SMMC (solid circles and from experiment
(open circleg are shown staggered for clarity.

FIG. 4. Calculated GT distributions for oddA nuclei. Also
shown are the experimental distributidits42,43. The energies are
in the corresponding daughter.

S%Fe and®®Fe. For the Ni isotopes, only partial information

is available about these distributions. F8Ni the peaks in

he experimental data4] shown are to be associated with a

finite width 1.3, 0.7, and 0.5 MeV for the peaks at 9.2, 11.2,
nd 13.0 MeV, respectively. The strength in the giant reso-

nance region between 6.4 and 13.0 MeV is quoted as 5.5,

observed GT distributions in oddA nuclei in Fig. 4 are while we obtain 6.1, which is consistent with the uncertainty

consistently at higher excitation energies in the daughteIn the excitation energy. FoiNi the experimental value of

compared to the even-even cases in Fig. 3, a feature reprﬁ]e total GT, strength[44] is 7.2+ 1.8 whereas we obtain

: . - 710.87+0.23. As our calculation obeys the renormalized
duced by the SMMC calculations. These higher excnauoqkeda sum rule and reproduces the milaasured &tfength
energies cause somé& & strength to lie above the typical 8 . o L
MeV cutoff in odd-A nuclei. The data foPV and Co have the lower experimental value indicates some strength outside

been analyzed for additional strength above 8 M8%,33 the. experimental wmdow_di >14 MeV. We also note that

. 55 while Ref.[44] quotes an integrated strength of 6.22 between
(see Table), while, to our knowledge,”Mn has not been 4.0 and 14.0 MeV we obtain a value of 4.65
reanalyzed for potential GT strength Bt>8 MeV. For ’ ’ T
even-even nuclei thefw GT, strength appears to be ex-
hausted at energies below 8 MeV, in agreement with the C. Temperature dependence of GT strengths
SMMC results shown in Fig. 3. Our results fétV and We now turn to the temperature evolution of GT
Mn show some strength above 8 MeV, but this is not thestrength functions. Representative strength distributions for
case for®Co. two nuclei, **Co and®"Ni, at several temperatures are shown

In Fig. 5 we compare the GT distributions for a few in Fig. 6. Both figures are plotted as a function Bf the

nuclei where experimental data are availalfigi4]; the ex-  energy transfer to the parent nucleus. We note that the re-
perimental data foP®Fe have been obtained from RE39]. striction of the model space to onlfp-shell renders our
From the cumulative strengths in the right panels of Fig. 5calculation quantitatively unreliable for even-even nuclei at
we can conclude that the SMMC approach reproduces th&=1.4 MeV[20], while for the oddA cases this temperature
experimental distribution moderately well for the cases ofis likely even lower.

Calculations for oddA nuclei are performed at a finite tem-
perature of 0.8 MeV(The temperature dependence of thes
distributions will be discussed later in Sec. IV)(Ohe re-
sponse functions for the three nuclei in Fig. 4 are sample
from the partition functions of their neighbors, i.8%y from
52Cr, 5Mn from %%Fe, and®°Co from ®Ni. The peaks of the
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FIG. 6. Temperature evolution of GTstrength distribution for sample nucl@eft: 5°Co; right: ®Ni) versus parent excitation energy.

With increasing temperature, three distinct effects occusumes that the internal configuration of the low-lying states
that influence the GT strength distributions. is roughly the same. With increasing temperature, however,

(i) The number of states contributing to the thermal en-states with other internal configurations gain statistical
semble increases. Due to the pairing gap in even-even nucleieight, and in particular, the pair correlations in these ex-
this occurs at a higher temperatures in even-even nuclei thagited states decrease. SMMC calculations indicate that pairs
in oddA nuclei. break around’=1 MeV in even-even nuclei, allowing for a

(i) GT transitions which are Pauli blocked at low tem- dramatic increase in thermally populated states in the parent
peratures due to closed neutron subsh@lg., thef7, or-  at and above this temperature. For these excited states, no
bital) can become thermally unblocked as neutrons ar@oherence energy has to be paid as penalty to break a proton
moved to excited orbitals with increasing temperature. Simipair in the GT transition, and the peak in the GT distribution
larly, protons which are thermally excited to higher orbitalsmoves to smaller energies. We also note that at temperatures
can undergo allowed GT transitions. T<1.3 MeV the thermal ensemble already includes the low-

(i ) The ground state in even-even nuclei is dominated byest excitedT+1 states allowing for transitions &=0. In
like-nucleon pairing. As indicated by SMMC calculations, contrast, these transitions are not observed®@o at the
these pairs break at aroufig=1 MeV. Thus at low tempera- temperatures considered here, since Thel states in this
tures, a GT, transition involves breaking a proton pair asso-nuclei are at higher excited energies due to the larger neutron
ciated with an extra energy of 1-2 MeV. This “penalty en- excess. We also observe a gradual decrease of the peak po-
ergy” is removed at higher temperatures in states of highesition with temperature in accordance with the fact that no

excitation energy, in which the pair correlations are dimin-pairing gap has to be overcome in oddauclei.
ished.

As we will discuss in the following, these three effects V. SUMMARY AND CONCLUSIONS
allow for an understanding of the temperature dependence of
the GT, strength distributions. As mentioned in the Introduction, electron capture on iron

In the case of"°Co, with increasing temperature, the en- region nuclei plays an important role at the onset of core
tire distribution shifts to lower excitation energies. The totalcollapse in a massive star. Under these conditions, nuclei
strength decreases and the width of the distribution increasd®ve a finite temperature of 6-2.6 MeV. It is well known
marginally with increasing temperatur¢®Ve have checked that for nuclei with an openedlp-shell neutron configura-
that in the highT limit, B(GT,) rises to the single-particle tion, GT. transitions dominate the electron capture rate, and
value as expectefiDue to the lack of pairing of the odd a strong phase-space dependence makes the rate sensitive to
particle in an oddA nucleus, states of various spins are morethe full GT, distribution, rather than only to the total
quickly populated than in the even-even systems. Thesstrength. Unfortunately, the GTstrength is not experimen-
states then make transitions to daughter states by the Gally accessible for those nuclei of importance in the presu-
operator. Thus, a plethora of states is easily accessible gernova collapse. Thus, collapse studies have to rely on the-
moderate temperatures, and the required excitation energy oretical estimates which, until recently, could not be
the daughter is lower. performed with great confidence. This has now changed. As

For ®Ni, the peak in the strength distribution remains SMMC calculations reproduce the measured data from first
roughly constant with increasing temperature, while theprinciples without nucleus-specific data fittifgrhich has
width increases with the appearance of low-lying strengttbeen necessary in previous stugligsey are reliable enough
due to transitions from the thermally occupied to the emptyto predict the GT distributions for those astrophysically im-
excited orbitals. Note also that the centroid of the distribu-portant nuclei not experimentally accessible. SMMC calcu-
tion remains constant at the low temperatures and then shiftations for these nuclei are in progress.
to lower excitation at higher temperatures. The near con- In this paper, we have calculated response functions for
stancy of the peak position ifNi at low temperatures sup- the Gamow-Teller operators for several nuclei in the
ports the shifting assumptiofattributed to Brink in Ref. shell. We use the KB3 interaction, which is well suited for
[45]) which states that the centroid corresponding to eacl% w calculations. Using an implementation of the ME tech-
parent excited state is shifted upward in the daughter nucleusique, we have then obtained the corresponding strength dis-
by the energy of the parent stdi45]. This hypothesis as- tributions.
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The extracted Gamow-Teller distributions compare veryrates for nuclei relevant to the presupernova collapse will be
well with both direct-diagonalization calculations and the ex-described elsewhere.
perimentally obtained distributions. We note that we invoke
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