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Relativistic three-body bound states and the reduction from four to three dimensions
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Beginning with an effective field theory based upon meson exchange, the Bethe-Salpeter equation for the
three-particle propagatgsix-point functior) is derived. Using the one-boson-exchange form of the kernel, this
equation is then analyzed using time-ordered perturbation theory, and a three-dimensional equation for the
propagator is developed. The propagator consists of a prefactor in which the relative energies are fixed by the
initial state of the particles, an intermediate part in which only global propagation of the particles occurs, and
a post-factor in which relative energies are fixed by the final state of the particles. The pre- and post-factors are
necessary in order to account for the transition from states where particles are off their mass shell to states
described by the global propagator with all of the particle energies on shell. The pole structure of the inter-
mediate part of the propagator is used to determine the equation for the three-body bound stateliaggchro
like relativistic equation with a single, global Green’s function. The role of the pre- and post-factors in the
relativistic dynamics is to incorporate the poles of the breakup channels in the initial and final states. The
derivation of this equation by integrating over the relative times rather than via a constraint on relative
momenta allows the inclusion of retardation and dynamical boost corrections without introducing unphysical
singularities [S0556-281@7)01312-5

PACS numbds): 21.30.Fe, 21.45:v, 13.75.Cs

[. INTRODUCTION In view of the successes of the nonrelativistic calculations
and the need for relativistic calculations, many three-
Faddeev’s three-body work of 196Q], combined with  dimensional reductions of the relativistic four-dimensional
the earlier two-body work of Bethe and Salpeter, and Gell-Bethe-Salpeter equation have been made following the two-
Mann and Low2,3], produced significant interest within the body work of Blankenbecler and Sugar, and Logunov and
nuclear and particle physics communities in solving the fullyTavkhelidze[14—-19. This approach, often called the quasi-
relativistic three-body problenp4—10]. Calculations based potential approach, consists of replacing the Bethe-Salpeter
upon the full four-dimensional theory, however, have provedequation with a set of two coupled equations. These equa-
very difficult, and have only recently been performed bytions involve two new functions, the quasipotenti&l and
Rupp and Tjon using separable interactiphs]. the quasipotential Green’s functid®Bqoe. We may choose
In the meantime, three-dimensional nonrelativistic calcu-one of these functions arbitrarily. The requirement that these
lations based upon the Schilinger equation have progressed equations be equivalent to the Bethe-Salpeter equation then
significantly. Using NN potentials which provide a good de-fixes the other function. Traditionally, the quasipotential
scription of two-body data, recent calculations have beerGreen’s functiorGqp is chosen to contain a Diragfunction
performed to a precision of 10 ke\12]. Given the successes constraint which reduces the dimensionality of one of the
of these nonrelativistic calculations in obtaining excellentnew equations. Difficulties with this procedure arise when
precision, discrepancies with experiment of order 10 keV otthe equation for the quasipotentiéis truncated. What form
larger are due to inaccuracies in the theoretical input rathethese difficulties take is dependent upon the form of the con-
than uncertainties in the calculations. The main “missingstraint used in the quasipotential Green’s function. For ex-
physics” in these calculations are three-body forces and relaample, in the Gross equatigg0] this truncation introduces
tivistic effects. A recent calculation found the triton to be into the wave function unphysical singularities which must
underbound by roughly 480—-860 kd¥2]. A recent assess- be removed by hand. In the instant formalig2d], singulari-
ment of the triton potential energy suggested that a consisteties arise when attempting the dynamical boost of the wave
relativistic calculation could account for as much as 300 keMfunction. Although they take different forms, the root cause
of repulsion[13, and references thergirhowever, recent of these difficulties is thes function constraint combined
relativistic calculations using the Blankenbecler-Sugar for-with the truncation of the quasipotential. Given the difficul-
malism and the CD-Bonn potential showed Bxtreased ties with solving the full four-dimensional equation, the suc-
binding of 200 keV[12]. The size of the relativistic effects cess of the nonrelativistic three-dimensional calculations,
determines the amount of three-body interaction that wouldind the fundamental problems in the quasipotential ap-
therefore be required. A consistent relativistic three-nucleomproach, a different technique for dimensional reduction
calculation is needed in order to permit some understandingeems warranted.
of the respective roles of relativistic effects and three-body In this paper we develop an approach to the relativistic
forces in nuclear binding. three-body problem, with an emphasis on three-body bound
states. We start from the Bethe-Salpeter equation for the full
three-body Green’s function in momentum space. For defi-
*Electronic mail: dulany@quark.umd.edu niteness, we use scalar meson exchange as a model for the
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interaction; extension to other forms of interactions is

straightforward. Negative energy states are omitted as thc’
FIG. 1.

dominant physics is obtained from positive energy states.
We perform a Fourier transformation of the zeroth com-

carry out the relative-time integrations, which has the effec

ponent of all internal momenta to relative-time variables, ancLr

of transforming each Feynman graph into several time—F
ordered graphs. These time-ordered graphs are three-

dimensional in nature. Rearranging and summing graphs
produces an expression for the full, four-dimensional, three-
body Green’s function in which all of the internal variables

are three dimensional. It follows that the bound-state equa-
tion is three dimensional as well. We find that the propagator
consists of a prefactor in which the relative energies are fixed
by the initial state of the particles, an intermediate part in

which only global propagation of the particles occurs, and a
post-factor in which relative energies are fixed by the final

state of the particles. The pre- and post-factors are necessa

in order to account for the transition from states where par—e

ticles are off their mass shell to states described by the globé\

propagator with all of the particle energies on shell. This
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The sum of two-body-irreducible graphs denotedpy

reducible graphs and the iterative graphs, and denoting the
um of two-body irreducible graphs for clusteasV; (see
ig. 1), we find

3
g=—iglgzgs—ggl ngkg|:go+g; [Vi(ig;) 1%

:go+g0§ [Vi(ig)) 16, )

here Go=—1910,93. (For reviews of the Bethe-Salpeter
uation see Nakanisf22] and Remidd[23].) Note that we

re considering distinguishable particles, and that the sub-
script of the single-particle Green’s functigp refers to the

formalism allows calculations of bound states in three_particle species. For indistinguishable particles the products

dimensions(where much success has been shoamd pro-
vides the formalism for embedding the result within a four-
dimensional covariant scattering theory.

In Sec. Il we define the full three-body Green’s function.

would need to be symmetrized or antisymmetrized depend-
ing upon whether we are considering spin-0 or spin-1/2 par-
ticles. The index of the interaction in Eq(2) conforms to
“odd particle out” notation, such thay; represents the sum

Then, in Sec. lll we examine the three-dimensional reductiol! tWo-body irreducible graphs between particlesand |,
of the internal momenta of the Green’s function. In Sec. [vWhere (ki) is an even permutation of (123). The “self-
we examine the structure of the Green’s function, organizingnergy-summed” single-particle propaga®y is approxi-
the summation of graphs into pre- and post-factors, and grated by the free propagator using the physical mass,

three-dimensional iterative Green'’s function. In Sec. V we

extract the bound-state equation from the pole of the Green’s

function. Finally, in Sec. VI we discuss our conclusions from
this work. We also provide three appendixes: Appendix A, in
which we provide the rules for time-ordered perturbation
theory for our model, Appendix B, in which we provide
more details of the reduction from four to three dimensions
and Appendix C, in which we discuss cluster separability
our formalism.

In

Il. THE FULL THREE-BODY GREEN’'S FUNCTION

The four-dimensional three-body Green'’s function is de-
fined in field theory as the six-point function

g;(x",x)=—i{0|T[4;(x") ¢;(x)]|0). (3)

Although this analysis neglects Feynman diagrams repre-
senting three-body interactions, we shall see later thatZq.

. tontainstime-ordereddiagrams representing three-body in-
teractions.

Ill. THREE-DIMENSIONAL REDUCTION

A three-dimensional reduction follows from decomposing

graphs into sums of distinct time intervals between consecu-
tive meson emission and absorption events, and then inte-

grating over the duration of each interval.

G(X1,X2,X3;Y1,Y2,Y3)

= (0| T[ ¢r2(X1) tra(X2) ra(X3) ra(Y3) ¥a(Y2) ¥1(y1)1]0).
(1)

Here we allowy to represent either spin-1/2 or spin-0 par-

ticles, and consider the three particles to be distinguishable.

In order to establish some notation, the free-particle

propagator is written as the sum of a positive- and a
negative-energy part

N* N~
o(p)= (p) (p) @

pP—e(p)+in pPte(p)—in’

Note that with distinguishable particleg; can only contract where the on-shell energy of a particle is denoted by

with ¢4, and for spin-1/2 particles anticommutes wigh

and 3. The interaction is assumed to be a sum of meson-
nucleon interaction termsee Eq.(9)].

The Bethe-Salpeter equatiof2,3] for the three-body
Green'’s function may be derived from Ed.) by expanding
G in a perturbation series in the interaction picture. Rearrang-

&(p)=p*+m’, (5)
and we define
N*(p)=u(p)u(p), (6)

ing the resulting Feynman graphs into two sets, the two-bodgnd similarly
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N~ (p)=—uv(— p)v_(— D). (7) It is convenient to define a vertex factor as follows:

For spin-1/2 particles)(p) is a positive-energy Dirac spinor,

v(—[lis a negative-energy Dirac spinau_,(p)=uT(p) Y, go, forspin-1/2;
and v (—p)=vT(—p)y°. Dirac spinors obey the Hermi- i
tian normalization conditions: uf(p)u(p)=1, and

v’'(—=p)v(—p)=1. For spin-0 particles u(p) =u_(p)

glfl‘/? and_;;h( Ihp)t: _ﬂf (_p); 1(4\/_2_6.ECor1n(;:)|n|ng Lhese where the factor @ is introduced in order that both cases
efinitions wi at ofl" provided in Eq.(10), we have have a common nonrelativistic limit. Performing a Fourier

T'u(p)u(p)=gom/e andT'v (—p)v(—p)=—gom/e for ei-  transform with respect to the timelike component of the mo-
ther spin-0 or spin-1/2 particles. This notation permits thementum, and using the approximation in which only the one-

analysis to proceed on a common footing for both spins.  poson-exchange potential is retained, produces
To facilitate the time-ordered analysis, we perform a Fou-

rier transformation of the time-like component of the mo-
mentum ofg(p),

2m;go, forspin-0, (10

e ol
dp? Vj:_irkrl[(_i)e(tk_tl)T
g(t’,t;p)EJ’_(zﬂ-) efipo(t’—t)g(p) _ etio(tc=t)
— (=)t —ON* (p)eIPIT - +(_')6(t'_tk)TJ’ Y

—i6(t—t" )N~ (p)elePt’ -t (8)
where = u?+0? with « being the meson mass amgd
being its three momentum.

The OBE interaction together with the use of the free-
particle propagatdEg. (3)] means that the analysis pertains
to the ladder approximation Feynman graphag].

In order to simplify the analysis, two approximations are
used:

(i) Positive energy particleS he contribution of negative-
energy states to th? propagator of B).is neg_lected. Thisis Inserting Eqs(8) and(11) into Eq.(2) leads to an equa-
the traditional starting point in nuclear physics. It breaks thetion for the Green's function in which all of the “internal”
covariance of the theory but is generally believed to be com:-

mensurate with our present understanding of nuclear forcemtegrations are over the three momenta and the relative
. P i . 9 . Times. Each contribution can be decomposed into a sequence
Extension of the analysis to incorporate negative-energ

. %f time intervals between consecutive meson emission and
states will be left to the future.

(i) One boson exchang&or NN interactions, a suitable absorption events. The integral over the time duration of
effective interaction should describe the NN phase shifts an ach such interval may be performed analytically to produce

deuteron binding. This may be accomplished by the use of Flee time-ordered perturbation thedfyOPT) rules and cor-

4 X . sponding graph&see Appendix A
one-boson-exchangOBE) interaction, such thal is re- In order to provide a few examples, consider subgraphs
placed by the first term in Fig. 1.

Consider an interaction Hamiltonian of the form that contain no initial or final particle lines, i.e., that are
' embedded within other graphs such that interactions separate

3 them from initial or final particle lines. Time intervals in
2 _go;Ij(pwj :,  for spin-1/2, which three particles propagate freely correspond to
=1
Hi=q 3 9
—2migy:®* o®d . :, for spin-0, 1
jgl j90: P ¢P; p = = G()

P0—€1—62—63+’1:77

where g is a coupling constant. Separate fields are intro-

duced for each patrticle in order to treat them as distinct par-

ticles. (12

and time intervals beginning with emission of a meson and ending with its absorption correspond to

—~————
~~_ DN} 1 TNy

T~

T Vw3 PY— €] — €y — €3 — w3 + i 1/ 2ws

(13
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a A a B b A b B

FIG. 2. By the reduction from four to three dimensions, the Feynman diagram on the left produces the 12 time-ordered diagrams on the
right. Note that four of the time-ordered diagrams are iterative like the original Feynman diagram, but that the other eight are not, and
constitute a three-dimensional three-body force.

When a second meson is in flight during a time interval such as i), the contribution is modified to the form,

E ~ H

: - ~___ T,Nj 1 I Nt
—_—— : X — = = .

P~ —— V2ws P — €] — €3 — €3 — wy — w3 + 1N 1/2ws

(14

where labels of the exchanged bosons correspond to “odd-particle-out” notation. (h4Ecthe expression on the right-hand

side corresponds to the time interval and vertices within the dashed box on the left-hand side. For each distinct time interval
there is a denominator equal to the total energy minus the sum of the on-shell energies of all of the particles present during that
time interval. Although consideration was limited to the OBE interaction, the time-ordered rules apply quite generally and, for
example, the “cross-box” diagram shown yields:

—_——————
~-—~" _I)N; 1
2wy PP — €l — €2 —e3 —wi +1in
XFQNT, 1 Lo NS
V2ws P — €] — € — €3 — w3 ~ w} +in 2wl
1 [N
X
PO — €l — el — €3 — w3 +in /2uws (15

Note that there is an implied integration over the loop three momenta. In general there are six time-ordered diagrams
corresponding to a single cross-box Feynman graph, differing by the time ordering of vertices on one patrticle line with respect
to those on the other particle line.

The transition from four to three dimensions necessitates a reclassification of diagrams in terms of three-particle irreduc-
ibility with respect toG, so as to distinguish between two- versus three-body forces in the time-ordered formalism. Consider
the simple, iterative Feynma¢iour-dimensiongl diagram shown at the left of Fig. 2. The reduction from four to three
dimensions produces 12 time-ordered diagrams, the sum of the first four being the iteration of the two-body force. The other
eight, however, do not have the requisite time interval with only the three particles propagating, and are hence three-particle
irreducible. These diagrams, along with their “sibling” diagraivehere particle two interacts with particle three before
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particle ong, make up the three-body fora&*. The sub- tive energies this function is purely three dimensional. The
script denotes “zero particles out” while the superscript la-superscript (4B-3D) on f s denotes that it depends upon

bels the odd-particle-out exchanges of which this graph i¢he final relative energies of the particles. This function de-
composed. Please see Appendix B for a fuller description o$cribes the transition from the three-dimensional internal

this transition from four to three dimensions. time intervals to the four dimensional final state. The func-

tion f. performs a similar function, depending upon the

IV. THE THREE-DIMENSIONAL THREE-BODY initial relative energies of the particles. As mentioned in Ap-
GREEN’S FUNCTION pendix C, this pattern of energy dependence is present in any

fully connected Green'’s function that goes beyond the Born
Having carried out the reduction to three dimensions anderms. However, the functional forms of the parts depend
reclassified the diagrams, we may resum the infinite seriegpon the number of particles involved.
for G. This sum may then be separated and factored. First, we e defineG; as
take cluster separability into account, and then we factor the
connected three-body term into three pieces. . .
Cluster separability24,25 means that a Green’s function
describing the propagation of clusters of particles, when GszGonZO [(21 V;NENHVONIN;N;)GO}
there are no interactions between the clusters, consists of a - =
product of independent factors, one for each cluster. Each
cluster’s factor is the same as if the other clusters were not =Gg+Gg
present. For three particles, we may hdeag no particles
interacting,(b) two particles interacting and the third a spec-
tator, and(_c) all three particles interacting. As these are therg three-body potentialMy=Vi2+V23+ V34223, .. )
only possible cases, cluste_r separability states that for thg ha sum of diagrams in whicte) all three particles are
most general Green’s function we have interacting andb) there are no three-particle-reducible time
G(P1t+Pat sPar :P1i +Pai »Pai) intervals. The three-dimensional three-body Green'’s function
G5 represents the sum of the diagrams in which all of the
=G A(P113P11) Gea( P21 s P21) G2 (Pat ; Pai) particles have interacted at least once, and will interact at
least once more. This requirement ensures that interactions in

[

3
]Zl VJNQNHVON;N;N;)GS. (19

8 G3 are separated by the global propagaBy and do not
+E Q(c;lj)(pjf ;pji)ggﬂ|(pkf,plf »Pki » Pii) contain any dependence on the initial-state and final-state
=1 particle relative energies, i.e., are fully three dimensional.
+G3 (Pt Pat . Pat :P1i +Pai »Pai)- (16) Wféen there is a three-body bound-state pole, it is contained
In 3.
We are denoting a fully connectedparticle Green’s func- Additional factorsf, and f . arise in Eq.(17) from
tion for particlesj, . .. k by ggnj) .. k- (We omit the 1,2,3  Sequences of two-body interactions of partiglesdk in the

label for n=3.) Note that the fully connected pargff‘), initial and finaII states,oseparated by the two-b(())dy %ropggator
vanishes by definition in the limit that one particle does notor clusterl, Go=1/(Pj,— €;— e +i7), wherePj = pj+py

interact; the correct cluster limit obtains from the discon-iS the total energy of the pair. These factors may be ex-
nected diagrams in this case. Note also that if a three-bodjressed as
bound state exists, it corresponds to a polg{ and has no
contribution in the other parts. Please see Appendix C for a
more complete discussion.

As we are primarily interested in obtaining the bound
state, we discard two sets of grapke: disconnected graphs
in which one or more of the particles never interact, &md
graphs in which there is an initial or final particle in every
three-body-reducible time intervéle., in which there are no
factors ofGg). (See Appendix G.After discarding these two (193
sets of graphs, we find that the sum of connected graphs in
which there is at least one fully internal time interval is fac-

N7 NSN3

(pY;— €1 +im) (P — €2+ 7)(P3— €3+i7m)

f post—

X

2

3
_ v
;1 kE#J (ViNINS GHOH v+ —°Nk+> NN

i Y, .
tored into three parts, fprez[z D (Vk+?ON;)NﬁN;’QjR(GngN;Nr)}
. " - =1 k7
GO —i(2m)* o (P— P e SPGEPfED~4D),
17 " 1
We shall defineGs, fye, and f,og shortly. The super- (PSi— €1 +in)(pY— €2 +in)(PY— e +in)
scripts (4D-3D), (3D), and (3DBD-4D) label the depen- (19b)

dence of the three parts of the Green'’s function on the initial-

state and final-state relative energies. The superscript (3D)

denotes thaG; has no dependence upon the initial or final WhereQ}‘ andeR are the left and right two-body wave op-
relative energies. As we have integrated out the internal releerators for clustef, defined as
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m V. BOUND-STATE EQUATION
VNS N

0,.0 .
PktP —ex—etin

oo
0=
m=0

= 2 (VINGNTGY™ (209

Assume that there is a pole B; at P°=Eg(P), where
Eg(P)= \/M2B+ P2, andMg is the bound-state mass. To find
the bound-state equation, we wriig; as

m _ e
vjN,jNﬁ> . (20D G o iy 22

0, .0 :
PktP —e—€+in

These wave operators transform the two-body free propaga- d theref
tor G into the full two-body Green’s functiofs) : and therefore

i—glot=0RGli=Gl+GiV.N*N*GI
Gh=GH0;=O]GL=G)+GLV;NyN"GL. (21 G2 =i (2m)* 8 (P~ P))
Through these wave operators, the pre- and post-factggs (
and f,.s) contain the two-body bound-state poles for the % fposl ¢><¢|fpre
different possible clusterings of particles within the initial PO—Eg+in
and final states. Note that when all particles in the initial and
final states are on the mass shef, = P°— ¢, andGy=G,
For consideration of interactions of the bound state with, saywherey is the three-dimensional TOPT analog of the Bethe-
a photon, one needs the full structuredpincluding the pre-  Salpeter wave function for the bound state, & regular
and post-factors that allow for breakup. However, the threeat the bound-state pole. Inserting EG2) into the second
body bound state is determined from consideratiosgfas  line of Eq.(18), taking the residue &°— Eg, and rearrang-
defined by Eq(18). ing, we have

+ fposR forel» (23

dp; dp, dps |
(2m)3 (2m)® (2m)¥i

3
\IfEB(pl,pz,ps)=G(E,B(pl,pz,pa)f 2, VER(piopr oy PPy Py (2726 (=)

+V§B(p1,pz,p3;pi,pé,pé)}‘IfEB(pi,pé,pé), (24)
where we have defined
WEe(p;,p2,p3)=U1(P1) U2(P2) Us(P3) ¥FB(P1,P2,P3), (25)

and

Ui(P) Ui (PO LV (P Py 3PP P TU(POU (), spin-1/2;

N BT V= i (268
fk(pk)€|(p|)[ *(Prc-PrPy iPkPIPy)] ; 'y spin-0.

e(Py) (P

U1(P1) U2(P2) Us(P2)[VEB(Py1.P2,Pa;P1,Ps.P3) UL (P Ua(Po)Us(Ps),  Spin-1/2;

VEBE \/ m;m,ms
€1(P1) €2(P2) €3(P3

Eg S \/ m;m,ms 0 (26b)
[Vo2(P1,P2,P3;P1.P2.P spin-0.
) e B e1(py) €x( p2)63(p3)

Here the two-body interactiod Ee which consists of a sum connected parg(c3) vanishes by definition if there is a non-
of two-particle |rredu0|ble time-ordered graphs between parinteracting particle. Therefore, cluster separability is unaf-
ticlesk and| (V B) multiplied by spinor factors, depends fected by dependence of the two-body interactions that are
upon the momentum of the noninteracting partigje This  internal to G on the momentum of the spectator. The
is due to the ternP?— €j(p;) in the denominator of the po- bound state for a two-body cluster in the limit that the third
tential [see, for example, Eq13)]. As noted earlier, the particle does not interadi.e., for sufficiently short-range
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interactions and when there are no zero-energy bound statesct, (i) 1 if only two particles interact(iii) i if all three
derives fromG{®) and the potentials internal to it have no particles interact.

dependence on the spectator momentum. (2) Assign a factor of (2)*s)[=(p;—p;)], where the
Equation(24) is a Schrdinger-like relativistic equation: it sum is over interacting particles.
is three dimensional, has a global relativistic propaggiaor. (3) To each particle line with no interactions between the

(12)], and reduces to the Scliliager equation in the nonrel- initial and final states, assign a factor of
ativistic limit. Also note that our interaction has energy de-

endence and hence retardation.
P (2m)* 8D (p—pINT(P).

VI CONCLUSION (4) To each final particle line emerging from it's last in-

We have examined the full three-body Green’s functionteraction, assign a factor of
for the case of one-boson-exchange interactions and positive-
energy spin-0 or spin-1/2 particles. We expanded out the N™(py)
Bethe-Salpeter equation for the Green’s function into an in- 0 _ i
finite series of four-dimensional graphs. After performing a
Eourier trapsformation of the interr}al e_nergies int.o relative (5) For each vertex on particlg (i) Conserve three mo-
times, we integrated over the rela}tlve times, IeaV|.ng an eXmentum,(ii) assign a factor of
pansion of the full Green’s function which only involved
three-dimensional internal variabléand hence integratiopns N (p!/

oo . . : iNj (py)
while still depending upon the full four-dimensional nature —_—
of the initial and final states. V2o(|pj—pj|)

Concentrating upon those graphs which contribute to the
three_body bound-state pole, we resummed the series inWhere pJ, is associated with an earlier time than that with
three factors: a three-dimensional Green’s funcoyobey- ~ Which p; is associated.
ing an iterative equation, and pre- and post-factors which (6) For each unconstrained three momentpjrassign a
link the three-dimensionaB; to the off-shell states of the factor of
four-dimensional theory. The bound-state equation was then
extracted fromG; and shown to have a Sclilinger-like dp
structure involving a global relativistic propagator. The one- f (2m)3
boson-exchange potential was shown to be augmented by
factors which for spin-1/2 particles are plane-wave spinors, (7) To each time slice between vertices, assign a factor of
and for spin-0 particles are kinematical factors. Although the
bound state is determined without reference to them, the pre- 1
and post-factors are needed when interactions are considered.
The current must include off-shell factors to account for the PO—E;—E,—Es— > wn+in
introduction of four-momentum into the graph through the m
interaction. The complete analysis of these currents, how-
ever, is left to future papers. where,

Numerical calculations involving three bosons are under
way. They are based upon E(@4) in the limit in which _ [en=+lpa+m3,  forinternal particles;
V,—0, and compare the fultetarded V; to an instant ap- " | p%, forexternal particles,
proximation, as well as comparing these forms to those pro-
posed by others. Full relativistic kinematics are used in conandm ranges over the exchanged bosons existing during the
junction with these relativistic interactions. time slice.

(8) For each initial line, a factor of

pP—e+in
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In Fig. 2 we have the Feynman diagram representing an
interaction between particles one and two, “followed” by an
interaction between particles two and three. As in E48)—
(14), we assume that this graph is embedded within other

The rules for calculating graphs in a time-ordered perturgraphs. Using the notation of Fig. 3, our positive-energy ap-
bation theory using positive-energy particles are proximation, and performing a Fourier transformation of the

(1) Assign an overall factor ofi) —i if no particles inter- time-component of momentum, we have

APPENDIX A: TIME-ORDERED
PERTURBATION-THEORY RULES
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FIG. 3. An enlargement of the Feynman diagram on the left of Fig. 2. Here we also add the time and three-momentum labels used in
expressionB1) to the particle lines.
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where the first two lines of expressi¢B1) account for the fact that this graph is embedded within another graph, and we have
labeled the exchanged-bosérfunctions A, B, a, and b. Using the identity

O(X—y)O(x' —y)=6(X—x") (X" =y) + (X" —x) O(x~y), (B2)
one can expand the expressi@i) into the 12 terms shown in Fig. 2. The labels above the columns show from which
functions each column originates. The top four diagrams are three-particle reducible, and are therefore representable as

iterations of the two-body force. The other eight diagrams are part of the three-dimensional three-body force.
Let us choose the third diagram in tkeA) column of Fig. 2. This diagram results from tléefunctions

O(ts—11) 0(t1—t5) (13— t3) O(ta—t) (12— t)). (B3)
Defining the time interval variables

7'5:tf_t1, T4:tl_té, T3:té_t3, 7'2:t3_t2, Tl:tz_ti! Tozti y (B4)
and noting thatd(ts,ty,t5,t3,t5,t)/d(75,74,73,72,71,70)| =1, Eq.(B1) has the form(for this particular combination of
functiong
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2w1(P3—P3)

X e—ieé(75+ 74)e—isé(75+7'4+ 73)( ) [e—iwl(r3)][N;e—ie/2'(73+ 72)][N;e—i63(7'2+ Tl)]

r\r

m) [e*iw3(7’4+ T3+ TZ)][N]_ efiel(74+ T3+ 7o+ Tl)][NZ e*ifz(Tl)]_ (BS)
3\M1 1

Using the identities

fﬁ dr e PP =275(PP—PY), (B6a)
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o 4 . [
j_ dT@(T)e'T(a_b+'7’)=m, (B6b)

we can calculate the integrals in E@®5). Simplifying the result, we have

Ny 1
2m8(P{—P)) 55— — [ = — — ,
Pf_61_62_63+|77{ V2ws(p—py) PI—e1—eh—eb—ws+in

2N, 1 TsNg 1 P

X
V2w,(p3—p3) P— €1 €j— €5— w1~ watim V20,(ps—p3) PY— €1~ €5~ €3— wa+in \2ws(p;—p})

1
X : (B7)
P(f)_ €1 €r— €3+i n

This result agrees with the rules given in Appendix A.As these are the only possible cases, CS states that for the
The effect of the pre- and post-factors on this “internal” most general three-body Green'’s function we have(E6),
graph is to introduce the total energy for the initial and finalwhich we restate here
states. Each time interval corresponds to a denominator with
the on-shell energy of each existing particle subtracted fro P
the total energy. The graph begins and ends wiBydactor. "0(p1.p2.P3:P1.P2.Pa)

Note that the graph in Fig2) does not include thes&, =G (p1; PGPS P2) God (s Pa)
factors. Instead it includes only those factors within the 5
brackets. These factors are also the ones which contribute to S g

(2)
Vo

(P! PiiP; PG (P] ip1)

(3) (! ’ ’.
APPENDIX C: CLUSTER SEPARABILITY AND TOPT +6c7(P1.P2.P3:P1.P2,P3).

_ Cluster sepa_\rabilitjCS) implies that if_we desc_ribe par- We are working in momentum space, where the Green’s
ticles propagating using a Green’s function, and if one clussynction is simply the result of performing a Fourier trans-

ter of particles does not interact with another cluster of parsoym on the configuration space Green’s function. For the
ticles, then we can perform a separation of variablesn_body system

(between these two clustgisn the Green'’s functiof4,25.

Let us describe three distinguishable particles propagating ,
with initial momentap;,p,,p3 and final moment@;,p5,p; (P1,
by the Green’s functio(p;,p5,P3:P1.P2.P3). CS tells us
that in the absence of interactions, we must have

. yprq:pla CEE] !pn)

n
f .Hl A4, A4y, e PO T PYIG(Xy, oo o XniYs e i)

G(P1.P5.P3:P1.Pa.Ps)— GEA(P1 1) TN (P2 Po) (€4
><g<.1>(p’ D3). (C1) Pleas_:e note t_hf_:\t some authors choose to note the Birac

¢33 3 functions explicitly, by factoring them out of the momentum
space Green'’s functions. In this case, the left-hand side of
If we have only two of the particles interactiigay 1 and 2 Eq. (C4) would be

we have
(2m)*6(pyt - +pp—P1— - —Pn)

g(pi,pé,pé:pl,pz,ps)ﬂgﬁﬂz(pi,pé;pl,pz)gé?%(pé;?é)z.) XG(PY, . PLiPL, e PR)= -
We have chosen not to perform this separation.

Finally, if all three particles interact, we have the fully con-
nected Green'’s function 1. The TOPT case

L, Bt ot s Let us now examine the results of CS in the context of the
G(P1,P2,P3;P1,P2,P3) =G (P1,P2,P3:P1,P2,P3). (C3)  three-body TOPT rules given in Appendix A.
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a. No interactions
This case is the simplest, giving

R (2m)* 8 (p1—p)NT(p1) (2m)* 8 (P~ p)IN*(py) (2m)*6Y(p3—p3)N* (p3)
G(P1,P2:P3:P1,P2,P3)=(—1)

p2—61+i77 pg_fz‘H?? pg_€3+i77 ,
(CH
which implies that
, o . . N"(py)
G(p1:p) =ig1(ps;py) =i(2m)* 6 (py—pp)————. (C6)
pi—etin

b. Two particles interacting

For definiteness we will assume that particles 1 and 2 are interacting, and that particle 3 is the spectator. This implies that
of the four interaction®/y, V4, V,, andVs, only V; is nonzero.

From the TOPT rules given in Appendix A, we obtain the Green’s fundfidar the case of particles 1 and 2 interacting.
It is possible to write it in operator notatiddefined shortlyin the form

’ ’ ’ f ' N; . , , Nir
G(P1,P2,P3:P1,P2,P3) = |(27T)45(4)(p3_p3)0—.H(")(277)45(4)@1"'pz_pl_pz)ﬁ
ps—€3tin P —€tiny
Ny
X —s———([V§'PNI NS T+ [ VP 73ONT NS (G5 VEP PN NS )
Py — €ty
1 1
x5 ) : (C7
pi—e1tinp—€extin
= Gu3(P3:P3) G4 P1 D5 P1.P2) (8

where the last line identifieggiz(pi ,P5;P1,P). First we  action most easily by briefly restricting ourselves to the one-

will define the different forms of the potentials, and then meson-in-flight approximation. Extension to the complete in-

we will define the global propagator for clusterGl, and ~ teraction is straightforward. o .

the wave operatof) The four-dimensional form of this interaction follows
3.

As shown in item 7 of the TOPT rules in Appendix A, the Iron_wbbccj)th patrtlc_lefs: being externgézgarglile%. Denoting the
denominator of each time interval takes a different form de- "0 P00 CENIETOI-MASS ENETGY B,= P17 P2,
pending upon whether all, some, or none of the particles are
external(e.qg., initial or fina) particles. We may factor the (4D) _ I'y
fully connected Green’s function into parts based upon the s 2w(|p1—p;))
forms of these denominators and their dependence upon the

initial and final relative energies. We use the superscript

(4D) to denote the part which depends upon both the initial X 1 I

and the final relative energies, (4B8D) and (3D-D) to P~ pY—ps’— w+in V2w(|p.—p3l)
denote transitional parts depending only upon the final or

initial relative energies, respectively, and (3D) to denote the r,

part which is independent of both the initial and final relative T

energies. These forms are four-dimensional, transitional, and 20(|p2—p2l)

three-dimensional, respectively. For the casé&s@ , these

parts are simply different forms of the two-body interaction. % 1 Iy

(The parts are more complicated for the three body case, as p‘l)z_ péo_ pg—w+i 7 \/Zw(|p1—pi|)

we see later in this Appendix and in Sec. )We may see
the relevant differences in these forms of the two-body inter- (C9
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FIG. 4. The TOPT graphs representing the “Born” terms for the fully connected three-body Green'’s function. The open circles represent
one or more two-body forces, the boxes in grafif)sand(c) represent two-body forces, and the boxes in grdghsh) represent three-body
forces. The identifying feature is that no graphs contain a three-body reducible time interval that has no initial or final particles.

Note that the denominator depends upon either the initial or r 1 r

final energies of the particlgs’, rather than the “on-shell” V$P= ! 5 , . 2
energye. This is due to the fact that they are always in either V20(|9-q'[) P1;~ €1- &~ o+in J2w(|q'—q])
initial or final states, and allows for the full four-dimensional

nature ofG. This only appears in the Born term, in which the + T2 5 !
two particles interact only once. V2w(|g'—a]) P €e1—€e,—w+iny
The transitional form of the potential has two variants: r
1

one initial particle with one internal particle, and one final «
particle with one internal particle. Here we show the second V2w(lg—q']) '
variant explicitly

(C1y

Note that all of the particles are on shell, as none of them are
initial or final particles. This reflects our integration over all

4D3D r, internal time variables. This is the form which appears in the
V% - ):—\/27, two-body bound-state equation, and is independent of the
w(|a=pi)) initial and final relative energies.

1 I We have only been considering the one-meson-in-flight
2 approximation, but these comments hold for the general case

x 0 10 H ’
Pl €1—P3 —w+in \2o(|P—gq—pj|) of V3.

We also define the two-body global propagator for cluster

I, |
+ !
V2w(IP—q—pj|)
|
1 r, Go=
X 50

=P’ e2—w+in 2w(lg—pi))
(€10 whereP{, = p(+py is the total energy of the pair.
It is useful to define the right and left two-body wave
operators for clustey

Note that each denominator depends upon one particle’s on-
shell energye, and the other particle’s final energy. This ~ ‘
is due to one particle going into its final state at the begin- 0f= > (VIPPNENSGH™, (C12a
ning of the interaction, while the other does not do so until m=0
the end of the interaction. The on-shéihterna) particle
reflects our integration over the internal time variables, while ,
the “off-shell” (final) particle reflects thefully specified Q=2 (GhVIEONSNH)™ (C12h
four-dimensional nature df. The other variant of this form
Vv§$P~4P) is similar, and involves the initial particle states.
Finally we have the three-dimensional form, where all of These wave operators transform the three-dimensional two-
the particles are internal particles, and hence we have intéody free propagatds}, into the full three-dimensional two-
grated out their energy dependence. body Green’s functiorG) :

1
0 .
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GL=Gh0t=0RGh=Gl+GLVIEPN/ N/ GL. (C13

c. All three patrticles interacting

Finally, we have all three particles interacting. As in the

3003

ticle; there is no factor of5,, the three-dimensional three-
body-reducible time interval. Examples of the three-body
Born diagrams are given in Fig. 4. These graphs are the
analog of the two-body{'® . The simplest example is one

two-body case[Eq. (C7)], we may separate out the Born ©Of the terms associated with the graph in Figd)4a single
terms from the fully connected Greens function. In this con-TOPT three-body force. Choosing the term analogous to that
text Born terms are defined as those in which all three-bodyshown in the second diagram in colurtim®) of Fig. 2, but
reducible time intervals contain either an initial or final par- with external legs, we have

N3 (py)

N3 (p5)

N3 (p3) T',N; (P—pi—ps)

VP —i(2m)* e (P-P')—

P’ —ex(pp)+in pyP—ex(ph)+in p's0—es(ps)+in  \2w(ps—pi)
y 1 I',N7 (p2)
PO—p1°— e,(P—p;—ps) — Pi°— w(ps—p3)+i7 V2w(p;—py)
« 1 I'3N3 (p3)
PO—p1°—pd—pi— w(p;—py) — w(ps—p3) +i7 V2w(ps—p3)
y 1 I'1Ny (py) 1 1 1

PO—p;%—p5—pI—w(p1—p))+i7 V2w(pi—py) PI—ex(py)+in pI—ex(po)+in p3—es(ps)+in

(C14

Note that both initial and final particle energies are neededbound states If particle 1, say, does not interact th&f,

this is a fully four-dimensional graph.

V3, andV, vanish: by definition these potentials involve par-

In Sec. IV of the main text we show that when one ex-ticle 1 interacting at least one time. This causes Hgthand
cludes the three-body Born term@® can be factored in a fpost [EQS. (19b)] to vanish, as they both involve factors of

similar way to Eq.(C7), as shown in Eq(17), which we
repeat here for convenience

G =i(2m) "6V (P— P g PGP P

Here the pre- and post-factof§e "*® and f(t5 ) cor-
respond to the transitional factors containiig’®*" and

two of the four possible interactiond/(, V,, V3, andVy),
three of which must now vanish. Note that this does not
require G; of Eq. (18) to vanish, merely the factors which
multiply it in the definition ofg‘f). In fact, even in the ab-
sence of any interactior@; has a nonzero values), how-
ever it is not physically meaningful; if eithefr, . or f.g
vanishes, then the physically meaning@i{?’ vanishes. An-

V{*P=3D) in Eq. (C7). They connect the three-dimensional Other way to state this is tha(> is fully connected, and

G, to the four-dimensional external world.

therefore must vanish in the limit that one particle does not

Itis interesting to see ho@® of Eq. (17) vanishes in the  interact. In the factorization of{® we have introduced, the

limit that one particle does not intera@te., for sufficiently

pre- and post-factors ensure connectedness and therefore en-

short-range interactions and when there are no zero-energyre that it vanishes.
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