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Relativistic three-body bound states and the reduction from four to three dimensions

Paul C. Dulany* and S. J. Wallace
Department of Physics and Center for Theoretical Physics, University of Maryland, College Park, Maryland 20742-4111

~Received 14 February 1997!

Beginning with an effective field theory based upon meson exchange, the Bethe-Salpeter equation for the
three-particle propagator~six-point function! is derived. Using the one-boson-exchange form of the kernel, this
equation is then analyzed using time-ordered perturbation theory, and a three-dimensional equation for the
propagator is developed. The propagator consists of a prefactor in which the relative energies are fixed by the
initial state of the particles, an intermediate part in which only global propagation of the particles occurs, and
a post-factor in which relative energies are fixed by the final state of the particles. The pre- and post-factors are
necessary in order to account for the transition from states where particles are off their mass shell to states
described by the global propagator with all of the particle energies on shell. The pole structure of the inter-
mediate part of the propagator is used to determine the equation for the three-body bound state: a Schro¨dinger-
like relativistic equation with a single, global Green’s function. The role of the pre- and post-factors in the
relativistic dynamics is to incorporate the poles of the breakup channels in the initial and final states. The
derivation of this equation by integrating over the relative times rather than via a constraint on relative
momenta allows the inclusion of retardation and dynamical boost corrections without introducing unphysical
singularities.@S0556-2813~97!01312-5#

PACS number~s!: 21.30.Fe, 21.45.1v, 13.75.Cs
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I. INTRODUCTION

Faddeev’s three-body work of 1960@1#, combined with
the earlier two-body work of Bethe and Salpeter, and G
Mann and Low@2,3#, produced significant interest within th
nuclear and particle physics communities in solving the fu
relativistic three-body problem@4–10#. Calculations based
upon the full four-dimensional theory, however, have prov
very difficult, and have only recently been performed
Rupp and Tjon using separable interactions@11#.

In the meantime, three-dimensional nonrelativistic cal
lations based upon the Schro¨dinger equation have progresse
significantly. Using NN potentials which provide a good d
scription of two-body data, recent calculations have be
performed to a precision of 10 keV@12#. Given the successe
of these nonrelativistic calculations in obtaining excelle
precision, discrepancies with experiment of order 10 keV
larger are due to inaccuracies in the theoretical input ra
than uncertainties in the calculations. The main ‘‘missi
physics’’ in these calculations are three-body forces and r
tivistic effects. A recent calculation found the triton to b
underbound by roughly 480–860 keV@12#. A recent assess
ment of the triton potential energy suggested that a consis
relativistic calculation could account for as much as 300 k
of repulsion @13, and references therein#; however, recent
relativistic calculations using the Blankenbecler-Sugar f
malism and the CD-Bonn potential showed anincreased
binding of 200 keV@12#. The size of the relativistic effect
determines the amount of three-body interaction that wo
therefore be required. A consistent relativistic three-nucle
calculation is needed in order to permit some understand
of the respective roles of relativistic effects and three-bo
forces in nuclear binding.

*Electronic mail: dulany@quark.umd.edu
560556-2813/97/56~6!/2992~13!/$10.00
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In view of the successes of the nonrelativistic calculatio
and the need for relativistic calculations, many thre
dimensional reductions of the relativistic four-dimension
Bethe-Salpeter equation have been made following the t
body work of Blankenbecler and Sugar, and Logunov a
Tavkhelidze@14–19#. This approach, often called the quas
potential approach, consists of replacing the Bethe-Salp
equation with a set of two coupled equations. These eq
tions involve two new functions, the quasipotentialW and
the quasipotential Green’s functionGQP. We may choose
one of these functions arbitrarily. The requirement that th
equations be equivalent to the Bethe-Salpeter equation
fixes the other function. Traditionally, the quasipotent
Green’s functionGQP is chosen to contain a Diracd function
constraint which reduces the dimensionality of one of
new equations. Difficulties with this procedure arise wh
the equation for the quasipotentialW is truncated. What form
these difficulties take is dependent upon the form of the c
straint used in the quasipotential Green’s function. For
ample, in the Gross equation@20# this truncation introduces
into the wave function unphysical singularities which mu
be removed by hand. In the instant formalism@21#, singulari-
ties arise when attempting the dynamical boost of the w
function. Although they take different forms, the root cau
of these difficulties is thed function constraint combined
with the truncation of the quasipotential. Given the difficu
ties with solving the full four-dimensional equation, the su
cess of the nonrelativistic three-dimensional calculatio
and the fundamental problems in the quasipotential
proach, a different technique for dimensional reducti
seems warranted.

In this paper we develop an approach to the relativis
three-body problem, with an emphasis on three-body bo
states. We start from the Bethe-Salpeter equation for the
three-body Green’s function in momentum space. For d
niteness, we use scalar meson exchange as a model fo
2992 © 1997 The American Physical Society
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56 2993RELATIVISTIC THREE-BODY BOUND STATES AND . . .
interaction; extension to other forms of interactions
straightforward. Negative energy states are omitted as
dominant physics is obtained from positive energy states

We perform a Fourier transformation of the zeroth co
ponent of all internal momenta to relative-time variables, a
carry out the relative-time integrations, which has the eff
of transforming each Feynman graph into several tim
ordered graphs. These time-ordered graphs are th
dimensional in nature. Rearranging and summing gra
produces an expression for the full, four-dimensional, thr
body Green’s function in which all of the internal variabl
are three dimensional. It follows that the bound-state eq
tion is three dimensional as well. We find that the propaga
consists of a prefactor in which the relative energies are fi
by the initial state of the particles, an intermediate part
which only global propagation of the particles occurs, an
post-factor in which relative energies are fixed by the fi
state of the particles. The pre- and post-factors are neces
in order to account for the transition from states where p
ticles are off their mass shell to states described by the gl
propagator with all of the particle energies on shell. T
formalism allows calculations of bound states in thre
dimensions~where much success has been shown! and pro-
vides the formalism for embedding the result within a fou
dimensional covariant scattering theory.

In Sec. II we define the full three-body Green’s functio
Then, in Sec. III we examine the three-dimensional reduc
of the internal momenta of the Green’s function. In Sec.
we examine the structure of the Green’s function, organiz
the summation of graphs into pre- and post-factors, an
three-dimensional iterative Green’s function. In Sec. V
extract the bound-state equation from the pole of the Gre
function. Finally, in Sec. VI we discuss our conclusions fro
this work. We also provide three appendixes: Appendix A
which we provide the rules for time-ordered perturbati
theory for our model, Appendix B, in which we provid
more details of the reduction from four to three dimensio
and Appendix C, in which we discuss cluster separability
our formalism.

II. THE FULL THREE-BODY GREEN’S FUNCTION

The four-dimensional three-body Green’s function is d
fined in field theory as the six-point function

G~x1 ,x2 ,x3 ;y1 ,y2 ,y3!

[^0uT@c1~x1!c2~x2!c3~x3!c̄3~y3!c̄2~y2!c̄1~y1!#u0&.

~1!

Here we allowc to represent either spin-1/2 or spin-0 pa
ticles, and consider the three particles to be distinguisha
Note that with distinguishable particles,c1 can only contract
with c̄1, and for spin-1/2 particles anticommutes withc̄2

and c̄3. The interaction is assumed to be a sum of mes
nucleon interaction terms@see Eq.~9!#.

The Bethe-Salpeter equation@2,3# for the three-body
Green’s function may be derived from Eq.~1! by expanding
G in a perturbation series in the interaction picture. Rearra
ing the resulting Feynman graphs into two sets, the two-b
he
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irreducible graphs and the iterative graphs, and denoting
sum of two-body irreducible graphs for clusterj asVj ~see
Fig. 1!, we find

G52 ig1g2g32G(
j 51

3

Vjgkgl5G01G(
j

@Vj~ ig j !
21#G0

5G01G0(
j

@Vj~ ig j !
21#G, ~2!

where G052 ig1g2g3. ~For reviews of the Bethe-Salpete
equation see Nakanishi@22# and Remiddi@23#.! Note that we
are considering distinguishable particles, and that the s
script of the single-particle Green’s functiongj refers to the
particle species. For indistinguishable particles the produ
would need to be symmetrized or antisymmetrized depe
ing upon whether we are considering spin-0 or spin-1/2 p
ticles. The indexj of the interaction in Eq.~2! conforms to
‘‘odd particle out’’ notation, such thatVj represents the sum
of two-body irreducible graphs between particlesk and l ,
where (jkl ) is an even permutation of (123). The ‘‘sel
energy-summed’’ single-particle propagatorgj is approxi-
mated by the free propagator using the physical mass,

gj~x8,x!'2 i ^0uT@c j~x8!c̄ j~x!#u0&. ~3!

Although this analysis neglects Feynman diagrams rep
senting three-body interactions, we shall see later that Eq~2!
containstime-ordereddiagrams representing three-body i
teractions.

III. THREE-DIMENSIONAL REDUCTION

A three-dimensional reduction follows from decomposi
graphs into sums of distinct time intervals between conse
tive meson emission and absorption events, and then i
grating over the duration of each interval.

In order to establish some notation, the free-parti
propagator is written as the sum of a positive- and
negative-energy part

g~p!5
N1~p!

p02e~p!1 ih
2

N2~p!

p01e~p!2 ih
, ~4!

where the on-shell energy of a particle is denoted by

e j~p![Ap21mj
2, ~5!

and we define

N1~p![u~p! ū~p!, ~6!

and similarly

FIG. 1. The sum of two-body-irreducible graphs denoted byVj .
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2994 56PAUL C. DULANY AND S. J. WALLACE
N2~p![2v~2p! v̄ ~2p!. ~7!

For spin-1/2 particles,u(p) is a positive-energy Dirac spinor

v(2p) is a negative-energy Dirac spinor,ū (p)5u†(p)g0,
and v̄ (2p)5v†(2p)g0. Dirac spinors obey the Hermi
tian normalization conditions: u†(p)u(p)51, and

v†(2p)v(2p)51. For spin-0 particles u(p)5ū (p)
51/A2e, and v(2p)52 v̄ (2p)51/A2e. Combining these
definitions with that ofG provided in Eq.~10!, we have
G ū (p)u(p)5g0m/e and G v̄ (2p)v(2p)52g0m/e for ei-
ther spin-0 or spin-1/2 particles. This notation permits
analysis to proceed on a common footing for both spins.

To facilitate the time-ordered analysis, we perform a Fo
rier transformation of the time-like component of the m
mentum ofg(p),

g~ t8,t;p![E dp0

~2p!
e2 ip0~ t82t !g~p!

5~2 i !u~ t82t !N1~p!e2 i e~p!~ t82t !

2 iu~ t2t8!N2~p!ei e~p!~ t82t !. ~8!

In order to simplify the analysis, two approximations a
used:

~i! Positive energy particles. The contribution of negative
energy states to the propagator of Eq.~8! is neglected. This is
the traditional starting point in nuclear physics. It breaks
covariance of the theory but is generally believed to be co
mensurate with our present understanding of nuclear for
Extension of the analysis to incorporate negative-ene
states will be left to the future.

~ii ! One boson exchange. For NN interactions, a suitabl
effective interaction should describe the NN phase shifts
deuteron binding. This may be accomplished by the use
one-boson-exchange~OBE! interaction, such thatVj is re-
placed by the first term in Fig. 1.

Consider an interaction Hamiltonian of the form,

HI55 (
j 51

3

2g0 : c̄ jwc j :, for spin-1/2,

(
j 51

3

22mjg0 :F j* wF j :, for spin-0,

~9!

where g0 is a coupling constant. Separate fields are int
duced for each particle in order to treat them as distinct p
ticles.
e

-

e
-
s.
y

d
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-
r-

It is convenient to define a vertex factor as follows:

G j[H g0 , for spin-1/2;

2mjg0 , for spin-0,
~10!

where the factor 2mj is introduced in order that both case
have a common nonrelativistic limit. Performing a Fouri
transform with respect to the timelike component of the m
mentum, and using the approximation in which only the on
boson-exchange potential is retained, produces

Vj.2 iGkG l H ~2 i !u~ tk2t l !
e2 iv~ tk2t l !

2v

1~2 i !u~ t l2tk!
e1 iv~ tk2t l !

2v J , ~11!

where v5Am21q2, with m being the meson mass andq
being its three momentum.

The OBE interaction together with the use of the fre
particle propagator@Eq. ~3!# means that the analysis pertain
to the ladder approximation Feynman graphs@22#.

Inserting Eqs.~8! and ~11! into Eq. ~2! leads to an equa
tion for the Green’s function in which all of the ‘‘internal’
integrations are over the three momenta and the rela
times. Each contribution can be decomposed into a sequ
of time intervals between consecutive meson emission
absorption events. The integral over the time duration
each such interval may be performed analytically to prod
the time-ordered perturbation theory~TOPT! rules and cor-
responding graphs~see Appendix A!.

In order to provide a few examples, consider subgra
that contain no initial or final particle lines, i.e., that a
embedded within other graphs such that interactions sepa
them from initial or final particle lines. Time intervals i
which three particles propagate freely correspond to

~12!
and time intervals beginning with emission of a meson and ending with its absorption correspond to

~13!
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56 2995RELATIVISTIC THREE-BODY BOUND STATES AND . . .
When a second meson is in flight during a time interval such as in Eq.~13!, the contribution is modified to the form,

~14!

where labels of the exchanged bosons correspond to ‘‘odd-particle-out’’ notation. In Eq.~14!, the expression on the right-han
side corresponds to the time interval and vertices within the dashed box on the left-hand side. For each distinct time
there is a denominator equal to the total energy minus the sum of the on-shell energies of all of the particles present d
time interval. Although consideration was limited to the OBE interaction, the time-ordered rules apply quite generally a
example, the ‘‘cross-box’’ diagram shown yields:

~15!

Note that there is an implied integration over the loop three momenta. In general there are six time-ordered d
corresponding to a single cross-box Feynman graph, differing by the time ordering of vertices on one particle line with
to those on the other particle line.

The transition from four to three dimensions necessitates a reclassification of diagrams in terms of three-particle
ibility with respect toG0 so as to distinguish between two- versus three-body forces in the time-ordered formalism. Co
the simple, iterative Feynman~four-dimensional! diagram shown at the left of Fig. 2. The reduction from four to th
dimensions produces 12 time-ordered diagrams, the sum of the first four being the iteration of the two-body force. T
eight, however, do not have the requisite time interval with only the three particles propagating, and are hence three
irreducible. These diagrams, along with their ‘‘sibling’’ diagrams~where particle two interacts with particle three befo

FIG. 2. By the reduction from four to three dimensions, the Feynman diagram on the left produces the 12 time-ordered diagram
right. Note that four of the time-ordered diagrams are iterative like the original Feynman diagram, but that the other eight are
constitute a three-dimensional three-body force.



la

n
ri
, w
th

n
e
o
ac
n

c-
he
t

o
n
o

r

nd
s

ry

s
c-

ia
3
a
el

he
n
e-

nal
c-
e
p-
any

orn
nd

e
ion
the
t at
s in

tate
al.
ned

ator

ex-

-

2996 56PAUL C. DULANY AND S. J. WALLACE
particle one!, make up the three-body forceV0
31. The sub-

script denotes ‘‘zero particles out’’ while the superscript
bels the odd-particle-out exchanges of which this graph
composed. Please see Appendix B for a fuller description
this transition from four to three dimensions.

IV. THE THREE-DIMENSIONAL THREE-BODY
GREEN’S FUNCTION

Having carried out the reduction to three dimensions a
reclassified the diagrams, we may resum the infinite se
for G. This sum may then be separated and factored. First
take cluster separability into account, and then we factor
connected three-body term into three pieces.

Cluster separability@24,25# means that a Green’s functio
describing the propagation of clusters of particles, wh
there are no interactions between the clusters, consists
product of independent factors, one for each cluster. E
cluster’s factor is the same as if the other clusters were
present. For three particles, we may have~a! no particles
interacting,~b! two particles interacting and the third a spe
tator, and~c! all three particles interacting. As these are t
only possible cases, cluster separability states that for
most general Green’s function we have

G~p1 f ,p2 f ,p3 f ;p1i ,p2i ,p3i !

5Gc;1
~1!~p1 f ;p1i !Gc;2

~1!~p2 f ;p2i !Gc;3
~1!~p3 f ;p3i !

1(
j 51

3

Gc; j
~1!~pj f ;pji !Gc;kl

~2! ~pk f ,pl f ;pki ,pli !

1Gc
~3!~p1 f ,p2 f ,p3 f ;p1i ,p2i ,p3i !. ~16!

We are denoting a fully connectedn-particle Green’s func-
tion for particlesj , . . . ,k by Gc; j , . . . ,k

(n) . ~We omit the 1,2,3
label for n53.! Note that the fully connected part,Gc

(3) ,
vanishes by definition in the limit that one particle does n
interact; the correct cluster limit obtains from the disco
nected diagrams in this case. Note also that if a three-b
bound state exists, it corresponds to a pole inGc

(3) and has no
contribution in the other parts. Please see Appendix C fo
more complete discussion.

As we are primarily interested in obtaining the bou
state, we discard two sets of graphs:~a! disconnected graph
in which one or more of the particles never interact, and~b!
graphs in which there is an initial or final particle in eve
three-body-reducible time interval~i.e., in which there are no
factors ofG0). ~See Appendix C.! After discarding these two
sets of graphs, we find that the sum of connected graph
which there is at least one fully internal time interval is fa
tored into three parts,

Gc
~3!→ i ~2p!4d~4!~Pf2Pi ! f post

~4D→3D!G3
~3D! f pre

~3D→4D! .
~17!

We shall defineG3, f pre, and f post shortly. The super-
scripts (4D→3D), (3D), and (3D→4D) label the depen-
dence of the three parts of the Green’s function on the init
state and final-state relative energies. The superscript (
denotes thatG3 has no dependence upon the initial or fin
relative energies. As we have integrated out the internal r
-
is
of

d
es
e
e

n
f a
h

ot

he

t
-
dy

a

in

l-
D)
l
a-

tive energies this function is purely three dimensional. T
superscript (4D→3D) on f post denotes that it depends upo
the final relative energies of the particles. This function d
scribes the transition from the three-dimensional inter
time intervals to the four dimensional final state. The fun
tion f pre performs a similar function, depending upon th
initial relative energies of the particles. As mentioned in A
pendix C, this pattern of energy dependence is present in
fully connected Green’s function that goes beyond the B
terms. However, the functional forms of the parts depe
upon the number of particles involved.

We defineG3 as

G3[G0(
n50

` F S (
j 51

3

VjNk
1Nl

11V0N1
1N2

1N3
1DG0Gn

5G01G0S (
j 51

3

VjNk
1Nl

11V0N1
1N2

1N3
1DG3 . ~18!

The three-body potential (V05V0
121V0

231V0
311V0

1231•••)
is the sum of diagrams in which~a! all three particles are
interacting and~b! there are no three-particle-reducible tim
intervals. The three-dimensional three-body Green’s funct
G3 represents the sum of the diagrams in which all of
particles have interacted at least once, and will interac
least once more. This requirement ensures that interaction
G3 are separated by the global propagatorG0 and do not
contain any dependence on the initial-state and final-s
particle relative energies, i.e., are fully three dimension
When there is a three-body bound-state pole, it is contai
in G3.

Additional factors f pre and f post arise in Eq.~17! from
sequences of two-body interactions of particlesj andk in the
initial and final states, separated by the two-body propag
for clusterl , G0

l [1/(Pjk
0 2e j2ek1 ih), wherePjk

0 5pj
01pk

0

is the total energy of the pair. These factors may be
pressed as

f post5
N1

1N2
1N3

1

~p1 f
0 2e11 ih!~p2 f

0 2e21 ih!~p3 f
0 2e31 ih!

3F (
j 51

3

(
kÞ j

~VjNk
1Nl

1G0
j !V j

LS Vk1
V0

2
Nk

1DNl
1Nj

1G ,

~19a!

f pre5F (
j 51

3

(
kÞ j

S Vk1
V0

2
Nk

1DNl
1Nj

1V j
R~G0

j VjNk
1Nl

1!G
3

1

~p1i
0 2e11 ih!~p2i

0 2e21 ih!~p3i
0 2e31 ih!

,

~19b!

whereV j
L andV j

R are the left and right two-body wave op
erators for clusterj , defined as
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V j
L[ (

m50

` S VjNk
1Nl

1
1

pk
01pl

02ek2e l1 ih
D m

5 (
m50

`

~VjNk
1Nl

1G0
j !m, ~20a!

V j
R[ (

m50

` S 1

pk
01pl

02ek2e l1 ih
VjNk

1Nl
1D m

. ~20b!

These wave operators transform the two-body free propa
tor G0

j into the full two-body Green’s functionG2
j :

G2
j 5G0

j V j
L5V j

RG0
j 5G0

j 1G0
j VjNk

1Nl
1G2

j . ~21!

Through these wave operators, the pre- and post-factorsf pre
and f post) contain the two-body bound-state poles for t
different possible clusterings of particles within the initi
and final states. Note that when all particles in the initial a
final states are on the mass shell,Pjk

0 5P02e l , andG0
l 5G0.

For consideration of interactions of the bound state with, s
a photon, one needs the full structure ofG, including the pre-
and post-factors that allow for breakup. However, the thr
body bound state is determined from consideration ofG3 as
defined by Eq.~18!.
a
s

-

a-

d

y,

-

V. BOUND-STATE EQUATION

Assume that there is a pole inG3 at P05EB(P), where
EB(P)5AMB

21P2, andMB is the bound-state mass. To fin
the bound-state equation, we writeG3 as

G35
uc&^cu

P02EB1 ih
1R, ~22!

and therefore

Gc
~3!5 i ~2p!4d~4!~Pf2Pi !

3F f postuc&^cu f pre

P02EB1 ih
1 f postR fpreG , ~23!

wherec is the three-dimensional TOPT analog of the Beth
Salpeter wave function for the bound state, andR is regular
at the bound-state pole. Inserting Eq.~22! into the second
line of Eq.~18!, taking the residue atP0→EB , and rearrang-
ing, we have
CEB~p1 ,p2 ,p3!5G0
EB~p1 ,p2 ,p3!E dp18

~2p!3

dp28

~2p!3

dp38

~2p!3F (j 51

3

Ṽ j
EB~pk ,pl ,pj ;pk8 ,pl8 ,pj !~2p!3d~3!~pj2pj8!

1Ṽ 0
EB~p1 ,p2 ,p3 ;p18 ,p28 ,p38!GCEB~p18 ,p28 ,p38!, ~24!

where we have defined

CEB~p1 ,p2 ,p3![ ū1~p1! ū2~p2! ū3~p3!cEB~p1 ,p2 ,p3!, ~25!

and

Ṽ j
EB[H ū k~pk! ū l~pl !@Vj

EB~pk ,pl ,pj ;pk8 ,pl8 ,pj !#uk~pk8!ul~pl8!, spin-1/2;

A mkml

ek~pk!e l~pl !
@Vj

EB~pk ,pl ,pj ;pk8 ,pl8 ,pj !#A mkml

ek~pk8!e l~pl8!
, spin-0.

~26a!

Ṽ 0
EB[H ū1~p1! ū2~p2! ū3~p3!@V0

EB~p1 ,p2 ,p3 ;p18 ,p28 ,p38!#u1~p18!u2~p28!u3~p38!, spin-1/2;

A m1m2m3

e1~p1!e2~p2!e3~p3!
@V0

EB~p1 ,p2 ,p3 ;p18 ,p28 ,p38!#A m1m2m3

e1~p18!e2~p28!e3~p38!
, spin-0.

~26b!
-
af-
are
e

ird
Here the two-body interactionṼ j
EB , which consists of a sum

of two-particle irreducible time-ordered graphs between p
ticles k and l (Vj

EB), multiplied by spinor factors, depend
upon the momentum of the noninteracting particlepj . This
is due to the termP02e j (pj ) in the denominator of the po
tential @see, for example, Eq.~13!#. As noted earlier, the
r-
connected partGc

(3) vanishes by definition if there is a non
interacting particle. Therefore, cluster separability is un
fected by dependence of the two-body interactions that
internal to Gc

(3) on the momentum of the spectator. Th
bound state for a two-body cluster in the limit that the th
particle does not interact~i.e., for sufficiently short-range
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interactions and when there are no zero-energy bound st!
derives fromGc

(2) and the potentials internal to it have n
dependence on the spectator momentum.

Equation~24! is a Schro¨dinger-like relativistic equation: it
is three dimensional, has a global relativistic propagator@Eq.
~12!#, and reduces to the Schro¨dinger equation in the nonrel
ativistic limit. Also note that our interaction has energy d
pendence and hence retardation.

VI. CONCLUSION

We have examined the full three-body Green’s funct
for the case of one-boson-exchange interactions and posi
energy spin-0 or spin-1/2 particles. We expanded out
Bethe-Salpeter equation for the Green’s function into an
finite series of four-dimensional graphs. After performing
Fourier transformation of the internal energies into relat
times, we integrated over the relative times, leaving an
pansion of the full Green’s function which only involve
three-dimensional internal variables~and hence integrations!,
while still depending upon the full four-dimensional natu
of the initial and final states.

Concentrating upon those graphs which contribute to
three-body bound-state pole, we resummed the series
three factors: a three-dimensional Green’s functionG3 obey-
ing an iterative equation, and pre- and post-factors wh
link the three-dimensionalG3 to the off-shell states of the
four-dimensional theory. The bound-state equation was t
extracted fromG3 and shown to have a Schro¨dinger-like
structure involving a global relativistic propagator. The on
boson-exchange potential was shown to be augmented
factors which for spin-1/2 particles are plane-wave spino
and for spin-0 particles are kinematical factors. Although
bound state is determined without reference to them, the
and post-factors are needed when interactions are consid
The current must include off-shell factors to account for
introduction of four-momentum into the graph through t
interaction. The complete analysis of these currents, h
ever, is left to future papers.

Numerical calculations involving three bosons are un
way. They are based upon Eq.~24! in the limit in which
Ṽ0→0, and compare the full~retarded! Ṽj to an instant ap-
proximation, as well as comparing these forms to those p
posed by others. Full relativistic kinematics are used in c
junction with these relativistic interactions.
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APPENDIX A: TIME-ORDERED
PERTURBATION-THEORY RULES

The rules for calculating graphs in a time-ordered pert
bation theory using positive-energy particles are

~1! Assign an overall factor of~i! 2 i if no particles inter-
es

-

e-
e
-

e
-

e
to

h

n

-
by
s,
e
e-
ed.
e

-

r

o-
-

r-
ir

s

-

act, ~ii ! 1 if only two particles interact,~iii ! i if all three
particles interact.

~2! Assign a factor of (2p)4d (4)@((pf2pi)#, where the
sum is over interacting particles.

~3! To each particle line with no interactions between t
initial and final states, assign a factor of

~2p!4 d~4!~pf2pi !N
1~pi !.

~4! To each final particle line emerging from it’s last in
teraction, assign a factor of

N1~pf !

pf
02e1 ih

.

~5! For each vertex on particlej , ~i! Conserve three mo
mentum,~ii ! assign a factor of

G jNj
1~pj8!

A2v~ upj2pj8u!
,

where pj8 is associated with an earlier time than that w
which pj is associated.

~6! For each unconstrained three momentump, assign a
factor of

E dp

~2p!3
.

~7! To each time slice between vertices, assign a facto

1

P02E12E22E32(
m

vm1 ih
,

where,

En[H en5Apn
21mn

2, for internal particles;

pn
0 , for external particles,

andm ranges over the exchanged bosons existing during
time slice.

~8! For each initial line, a factor of

1

pi
02e1 ih

.

APPENDIX B: REDUCTION FROM FOUR
TO THREE DIMENSIONS

In Fig. 2 we have the Feynman diagram representing
interaction between particles one and two, ‘‘followed’’ by a
interaction between particles two and three. As in Eqs.~12!–
~14!, we assume that this graph is embedded within ot
graphs. Using the notation of Fig. 3, our positive-energy
proximation, and performing a Fourier transformation of t
time-component of momentum, we have
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~B1!

where the first two lines of expression~B1! account for the fact that this graph is embedded within another graph, and we
labeled the exchanged-bosonu functions A, B, a, and b. Using the identity

u~x2y!u~x82y!5u~x2x8!u~x82y!1u~x82x!u~x2y!, ~B2!

one can expand the expression~B1! into the 12 terms shown in Fig. 2. The labels above the columns show from whiu
functions each column originates. The top four diagrams are three-particle reducible, and are therefore represe
iterations of the two-body force. The other eight diagrams are part of the three-dimensional three-body force.

Let us choose the third diagram in the~aA! column of Fig. 2. This diagram results from theu functions

u~ t f2t1!u~ t12t28!u~ t282t3!u~ t32t2!u~ t22t i !. ~B3!

Defining the time interval variables

t55t f2t1 , t45t12t28 , t35t282t3 , t25t32t2 , t15t22t i , t05t i , ~B4!

and noting thatu](t f ,t1 ,t28 ,t3 ,t2 ,t i)/](t5 ,t4 ,t3 ,t2 ,t1 ,t0)u51, Eq. ~B1! has the form~for this particular combination ofu
functions!

E dt5dt4dt3dt2dt1dt0u~t5!u~t4!u~t3!u~t2!u~t1!u~t0!~2 i !eiP f
0
~t51t41t31t21t1!ei t0~Pf

0
2Pi

0
!e2 i e18~t5!

3e2 i e28~t51t4!e2 i e38~t51t41t3!S G2 G3

2v1~p32p38!
D @e2 iv1~t3!#@N29

1 e2 i e29~t31t2!#@N3
1e2 i e3~t21t1!#

3S G1 G2

2v3~p12p18!
D @e2 iv3~t41t31t2!#@N1

1e2 i e1~t41t31t21t1!#@N2
1e2 i e2~t1!#. ~B5!

Using the identities

E
2`

`

dt ei t~Pf
0
2Pi

0
!52pd~Pf

02Pi
0!, ~B6a!

FIG. 3. An enlargement of the Feynman diagram on the left of Fig. 2. Here we also add the time and three-momentum label
expression~B1! to the particle lines.
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E
2`

`

dtu~t!ei t~a2b1 ih!5
i

a2b1 ih
, ~B6b!

we can calculate the integrals in Eq.~B5!. Simplifying the result, we have

2pd~Pf
02Pi

0!
1

Pf
02e182e282e381 ih

F G1N1
1

A2v3~p12p18!

1

Pf
02e12e282e382v31 ih

3
G2N29

1

A2v1~p32p38!

1

Pf
02e12e292e382v12v31 ih

G3N3
1

A2v1~p32p38!

1

Pf
02e12e292e32v31 ih

G2N2
1

A2v3~p12p18!
G

3
1

Pf
02e12e22e31 ih

. ~B7!
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This result agrees with the rules given in Appendix
The effect of the pre- and post-factors on this ‘‘interna
graph is to introduce the total energy for the initial and fin
states. Each time interval corresponds to a denominator
the on-shell energy of each existing particle subtracted fr
the total energy. The graph begins and ends with aG0 factor.
Note that the graph in Fig.~2! does not include theseG0
factors. Instead it includes only those factors within t
brackets. These factors are also the ones which contribu
V0.

APPENDIX C: CLUSTER SEPARABILITY AND TOPT

Cluster separability~CS! implies that if we describe par
ticles propagating using a Green’s function, and if one cl
ter of particles does not interact with another cluster of p
ticles, then we can perform a separation of variab
~between these two clusters! on the Green’s function@24,25#.

Let us describe three distinguishable particles propaga
with initial momentap1 ,p2 ,p3 and final momentap18 ,p28 ,p38
by the Green’s functionG(p18 ,p28 ,p38 ;p1 ,p2 ,p3). CS tells us
that in the absence of interactions, we must have

G~p18 ,p28 ,p38 ;p1 ,p2 ,p3!→Gc;1
~1!~p18 ;p1!Gc;2

~1!~p28 ;p2!

3Gc;3
~1!~p38 ;p3!. ~C1!

If we have only two of the particles interacting~say 1 and 2!,
we have

G~p18 ,p28 ,p38 ;p1 ,p2 ,p3!→Gc;12
~2! ~p18 ,p28 ;p1 ,p2!Gc;3

~1!~p38 ;p3!.
~C2!

Finally, if all three particles interact, we have the fully co
nected Green’s function

G~p18 ,p28 ,p38 ;p1 ,p2 ,p3!→Gc
~3!~p18 ,p28 ,p38 ;p1 ,p2 ,p3!. ~C3!
.

l
ith
m

to

-
r-
s

g

As these are the only possible cases, CS states that fo
most general three-body Green’s function we have Eq.~16!,
which we restate here

G~p18 ,p28 ,p38 ;p1 ,p2 ,p3!

5Gc;1
~1!~p18 ;p1!Gc;2

~1!~p28 ;p2!Gc;3
~1!~p38 ;p3!

1(
i 51

3

Gc; jk
~2! ~pj8 ,pk8 ;pj ,pk!Gc; i

~1!~pi8 ;pi !

1Gc
~3!~p18 ,p28 ,p38 ;p1 ,p2 ,p3!.

We are working in momentum space, where the Gree
function is simply the result of performing a Fourier tran
form on the configuration space Green’s function. For
n-body system,

G~p18 , . . . ,pn8 ;p1 , . . . ,pn!

[E )
i 51

n

d4xid
4yie

i ~pi8xi2piyi !G~x1 , . . . ,xn ;y1 , . . . ,yn!.

~C4!

Please note that some authors choose to note the Dirad
functions explicitly, by factoring them out of the momentu
space Green’s functions. In this case, the left-hand side
Eq. ~C4! would be

~2p!4d~4!~p181•••1pn82p12•••2pn!

3G~p18 , . . . ,pn8 ;p1 , . . . ,pn![•••.

We have chosen not to perform this separation.

1. The TOPT case

Let us now examine the results of CS in the context of
three-body TOPT rules given in Appendix A.
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a. No interactions

This case is the simplest, giving

G~p18 ,p28 ,p38 ;p1 ,p2 ,p3!5~2 i !
~2p!4d~4!~p12p18!N1~p1!

p1
02e11 ih

~2p!4d~4!~p22p28!N1~p2!

p2
02e21 ih

~2p!4d~4!~p32p38!N1~p3!

p3
02e31 ih

,

~C5!

which implies that

Gc;1
~1!~p18 ;p1!5 ig1~p18 ;p1!5 i ~2p!4d~4!~p12p18!

N1~p1!

p1
02e11 ih

. ~C6!

b. Two particles interacting

For definiteness we will assume that particles 1 and 2 are interacting, and that particle 3 is the spectator. This imp
of the four interactionsV0, V1, V2, andV3, only V3 is nonzero.

From the TOPT rules given in Appendix A, we obtain the Green’s functionG for the case of particles 1 and 2 interactin
It is possible to write it in operator notation~defined shortly! in the form

G~p18 ,p28 ,p38 ;p1 ,p2 ,p3!5H i ~2p!4d~4!~p32p38!
N3

1

p3
02e31 ih

J H ~2 i !~2p!4d~4!~p11p22p182p28!
N1

1

p18
02e181 ih

3
N2

1

p28
02e281 ih

~@V3
~4D!N1

1N2
1#1@V3

~4D→3D!N1
1N2

1~G0
3V3

L!V3
~3D→4D!N1

1N2
1# !

3
1

p1
02e11 ih

1

p2
02e21 ih

J ~C7!

5Gc;3
~1!~p38 ;p3!Gc;12

~2! ~p18 ,p28 ;p1 ,p2! ~C8!
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where the last line identifiesGc;12
(2) (p18 ,p28 ;p1 ,p2). First we

will define the different forms of the potentialV3, and then
we will define the global propagator for clusterl , G0

l , and
the wave operatorV3.

As shown in item 7 of the TOPT rules in Appendix A, th
denominator of each time interval takes a different form
pending upon whether all, some, or none of the particles
external~e.g., initial or final! particles. We may factor the
fully connected Green’s function into parts based upon
forms of these denominators and their dependence upon
initial and final relative energies. We use the supersc
(4D) to denote the part which depends upon both the in
and the final relative energies, (4D→3D) and (3D→D) to
denote transitional parts depending only upon the final
initial relative energies, respectively, and (3D) to denote
part which is independent of both the initial and final relati
energies. These forms are four-dimensional, transitional,
three-dimensional, respectively. For the case ofGc

(2) , these
parts are simply different forms of the two-body interactio
~The parts are more complicated for the three body case
we see later in this Appendix and in Sec. IV.! We may see
the relevant differences in these forms of the two-body in
-
re

e
the
t
l

r
e

nd

.
as

r-

action most easily by briefly restricting ourselves to the o
meson-in-flight approximation. Extension to the complete
teraction is straightforward.

The four-dimensional form of this interaction follow
from both particles being external particles. Denoting t
two-body center-of-mass energy asP12

0 5p1
01p2

0 ,

V3
~4D!5

G1

A2v~ up12p18u!

3
1

P12
0 2p1

02p28
02v1 ih

G2

A2v~ up22p28u!

1
G2

A2v~ up22p28u!

3
1

P12
0 2p28

02p2
02v1 ih

G1

A2v~ up12p18u!
.

~C9!
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FIG. 4. The TOPT graphs representing the ‘‘Born’’ terms for the fully connected three-body Green’s function. The open circles re
one or more two-body forces, the boxes in graphs~b! and~c! represent two-body forces, and the boxes in graphs~d!–~h! represent three-body
forces. The identifying feature is that no graphs contain a three-body reducible time interval that has no initial or final particles.
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Note that the denominator depends upon either the initia
final energies of the particlesp0, rather than the ‘‘on-shell’’
energye. This is due to the fact that they are always in eith
initial or final states, and allows for the full four-dimension
nature ofG. This only appears in the Born term, in which th
two particles interact only once.

The transitional form of the potential has two varian
one initial particle with one internal particle, and one fin
particle with one internal particle. Here we show the seco
variant explicitly

V3
~4D→3D!5

G1

A2v~ uq2p18u!

3
1

P12
0 2e12p28

02v1 ih

G2

A2v~ uP2q2p28u!

1
G2

A2v~ uP2q2p28u!

3
1

P12
0 2pt8

02e22v1 ih

G1

A2v~ uq2p18u!
.

~C10!

Note that each denominator depends upon one particle’s
shell energye, and the other particle’s final energyp0. This
is due to one particle going into its final state at the beg
ning of the interaction, while the other does not do so u
the end of the interaction. The on-shell~internal! particle
reflects our integration over the internal time variables, wh
the ‘‘off-shell’’ ~final! particle reflects the~fully specified!
four-dimensional nature ofG. The other variant of this form
V3

(3D→4D) is similar, and involves the initial particle states
Finally we have the three-dimensional form, where all

the particles are internal particles, and hence we have i
grated out their energy dependence.
r

r

:
l
d

n-

-
il

e

f
e-

V3
~3D!5

G1

A2v~ uq2q8u!

1

P12
0 2e12e282v1 ih

G2

A2v~ uq82qu!

1
G2

A2v~ uq82qu!

1

P12
0 2e182e22v1 ih

3
G1

A2v~ uq2q8u!
. ~C11!

Note that all of the particles are on shell, as none of them
initial or final particles. This reflects our integration over a
internal time variables. This is the form which appears in
two-body bound-state equation, and is independent of
initial and final relative energies.

We have only been considering the one-meson-in-fli
approximation, but these comments hold for the general c
of V3.

We also define the two-body global propagator for clus
l

G0
l [

1

Pjk
0 2e j2ek1 ih

,

wherePjk
0 5pj

01pk
0 is the total energy of the pair.

It is useful to define the right and left two-body wav
operators for clusterj

V j
L[ (

m50

`

~Vj
~3D!Nk

1Nl
1G0

j !m, ~C12a!

V j
R[ (

m50

`

~G0
j Vj

~3D!Nk
1Nl

1!m. ~C12b!

These wave operators transform the three-dimensional t
body free propagatorG0

j into the full three-dimensional two
body Green’s functionG2

j :
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G2
j 5G0

j V j
L5V j

RG0
j 5G0

j 1G0
j Vj

~3D!Nk
1Nl

1G2
j . ~C13!

c. All three particles interacting

Finally, we have all three particles interacting. As in t
two-body case@Eq. ~C7!#, we may separate out the Bor
terms from the fully connected Greens function. In this co
text Born terms are defined as those in which all three-bo
reducible time intervals contain either an initial or final pa
e

x

al

er
-
y-

ticle; there is no factor ofG0, the three-dimensional three
body-reducible time interval. Examples of the three-bo
Born diagrams are given in Fig. 4. These graphs are
analog of the two-bodyV3

(4D) . The simplest example is on
of the terms associated with the graph in Fig. 4~d!; a single
TOPT three-body force. Choosing the term analogous to
shown in the second diagram in column~bA! of Fig. 2, but
with external legs, we have
V0
~4D!→ i ~2p!4d~4!~P2P8!

N1
1~p18!

p28
02e1~p18!1 ih

N2
1~p28!

p28
02e2~p28!1 ih

N3
1~p38!

p8302e3~p38!1 ih

G2N2
1~P2p182p3!

A2v~p32p38!

3
1

P02p18
02e2~P2p182p3!2p38

02v~p32p38!1 ih

G2N2
1~p2!

A2v~p12p18!

3
1

P02p18
02p2

02p38
02v~p12p18!2v~p32p38!1 ih

G3N3
1~p3!

A2v~p32p38!

3
1

P02p18
02p2

02p3
02v~p12p18!1 ih

G1N1
1~p1!

A2v~p12p18!

1

p1
02e1~p1!1 ih

1

p2
02e2~p2!1 ih

1

p3
02e3~p3!1 ih

.

~C14!
r-

f
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Note that both initial and final particle energies are need
this is a fully four-dimensional graph.

In Sec. IV of the main text we show that when one e
cludes the three-body Born terms,Gc

(3) can be factored in a
similar way to Eq.~C7!, as shown in Eq.~17!, which we
repeat here for convenience

Gc
~3!5 i ~2p!4d~4!~Pf2Pi ! f post

~4D→3D!G3
~3D! f pre

~3D→4D! .

Here the pre- and post-factorsf pre
(3D→4D) and f post

(4D→3D)) cor-
respond to the transitional factors containingV3

(3D→4D) and
V3

(4D→3D) in Eq. ~C7!. They connect the three-dimension
G3 to the four-dimensional external world.

It is interesting to see howGc
(3) of Eq. ~17! vanishes in the

limit that one particle does not interact~i.e., for sufficiently
short-range interactions and when there are no zero-en
d:

-

gy

bound states!. If particle 1, say, does not interact thenV2,
V3, andV0 vanish: by definition these potentials involve pa
ticle 1 interacting at least one time. This causes bothf pre and
f post @Eqs. ~19b!# to vanish, as they both involve factors o
two of the four possible interactions (V1, V2, V3, andV0),
three of which must now vanish. Note that this does n
requireG3 of Eq. ~18! to vanish, merely the factors whic
multiply it in the definition ofGc

(3) . In fact, even in the ab-
sence of any interactionsG3 has a nonzero value (G0), how-
ever it is not physically meaningful; if eitherf pre or f post

vanishes, then the physically meaningfulGc
(3) vanishes. An-

other way to state this is thatGc
(3) is fully connected, and

therefore must vanish in the limit that one particle does
interact. In the factorization ofGc

(3) we have introduced, the
pre- and post-factors ensure connectedness and therefor
sure that it vanishes.
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